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Continuing work initiated in an earlier publication [T. Ichita, K. Yamada, and H. Asada, Phys. Rev. D

83, 084026 (2011)], we reexamine the post-Newtonian effects on Lagrange’s equilateral triangular

solution for the three-body problem. For three finite masses, it is found that a triangular configuration

satisfies the post-Newtonian equation of motion in general relativity if and only if it has the relativistic

corrections to each side length. This post-Newtonian configuration for three finite masses is not always

equilateral, and it recovers previous results for the restricted three-body problem when one mass goes to

zero. For the same masses and angular velocity, the post-Newtonian triangular configuration is always

smaller than the Newtonian one.
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I. INTRODUCTION

One of the classical problems in astronomy and physics
is the three-body problem in Newtonian gravity (e.g.,
Refs. [1–3]).

The gravitational three-body problem is not integrable
by the analytical method. As particular solutions, however,
Euler and Lagrange found a collinear solution and an
equilateral triangular one, respectively.

The solutions for the restricted three-body problem,
where one of three bodies is a test mass, are known as
Lagrange points L1, L2, L3, L4, and L5 [1]. Lagrange’s
equilateral triangular solution has also a practical impor-
tance, since it is stable for some cases. Lagrange points L4

and L5 for the Sun-Jupiter system are stable and indeed
the Trojan asteroids are located there. For the Sun-Earth
system, asteroids were also found around L4 by recent
observations [4].

Recently, Lagrange points have attracted renewed interest
for relativistic astrophysics [5–10], where they have dis-
cussed the relativistic corrections for Lagrange points [5,6]
and the gravitational radiation reaction onL4 andL5 analyti-
cally [7] and by numerical methods [8–10]. It is currently
important to reexamine Lagrange points in the framework of
general relativity. As a pioneering work, it was pointed out
by Nordtvedt that the location of the triangular points is very
sensitive to the ratio of the gravitational mass to the inertial
one [11].Along this course, itmight be important as a gravity
experiment to discuss the three-body coupling terms in the
post-Newtonian (PN) force, because some of the terms are
proportional to a product of threemasses asM1 �M2 �M3.
Such a triple product can appear only for relativistic three-
(or more) body systems but cannot for a relativistic compact
binary nor a Newtonian three-body system.

It was shown by Ichita, Yamada, and Asada, including
the present authors, that a relativistic equilateral triangular
solution does not satisfy the equation of motion at the first

post-Newtonian (1PN) order except for two cases [12]:
(i) three finite masses are equal and (ii) one mass is finite
and the other two are zero. Hence, it is interesting to
investigate what happens at the 1PN level for three unequal
finite masses in Lagrange’s equilibrium configuration. For
the restricted three-body problem, on the other hand,
Krefetz found a relativistic triangular solution by adding
the corrections to the position of the third body [5]. For
three general finite masses, we shall look for a relativistic
equilibrium solution that corresponds to Lagrange’s equi-
lateral triangular one.
Throughout this paper, we take the units of G ¼ c ¼ 1.

II. NEWTONIAN EQUILATERAL
TRIANGULAR SOLUTION

First, we consider the Newtonian gravity among three
masses denoted as MI (I ¼ 1, 2, 3) in a circular motion.
The location of each mass is written as rI, where we choose
the origin of the coordinates as the common center of mass,
so that

M1r1 þM2r2 þM3r3 ¼ 0: (1)

We start by seeing whether the Newtonian equation of
motion for each body can be satisfied if the configuration
is an equilateral triangle. Let us put r12 ¼ r23 ¼ r31 � a,
where we define the relative position between masses as

rIJ � rI � rJ; (2)

and rIJ � jrIJj for I, J ¼ 1, 2 3. Then, the equation of
motion for each mass becomes

drI
dt2

¼ �M

a3
rI; (3)

where M denotes the total mass
P

IMI. Therefore, it is
possible that each body moves around the common center
of mass with the same orbital period.
Figure 1 shows a triangular configuration for general
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Equation (3) gives

!2
N ¼ M

a3
; (4)

where !N denotes the Newtonian angular velocity. The
orbital radius rI � jrIj of each body with respect to the
common center of mass is obtained as [2]

r1 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
2 þ �2�3 þ �2

3

q
; (5)

r2 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1 þ �1�3 þ �2

3

q
; (6)

r3 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1 þ �1�2 þ �2

2

q
; (7)

where we define the mass ratio as �I � MI=M.

III. POST-NEWTONIAN EQUILATERAL
TRIANGULAR SOLUTION

Next, let us study the dominant part of general relativ-
istic effects on this solution. Namely, we take account of
the term at the 1PN order by employing the Einstein-
Infeld-Hoffman (EIH) equation of motion in the standard
PN coordinate as [13–15]

dvK

dt
¼ X

A�K

rAK
MA

r3AK

�
1�4

X
B�K

MB

rBK
� X

C�A

MC

rCA

�
1�rAK �rCA

2r2CA

�

þv2
Kþ2v2

A�4vA �vK�3

2
ðvA �nAKÞ2

�

� X
A�K

ðvA�vKÞMAnAK � ð3vA�4vKÞ
r2AK

þ7

2

X
A�K

X
C�A

rCA
MAMC

rAKr
3
CA

; (8)

where vI denotes the velocity of each mass in an inertial
frame and we define

nIJ � rIJ
rIJ

: (9)

Note that Eq. (8) for the EIH equation expresses the
acceleration of each mass, where the force exerted on one
mass is divided by the mass. The PN force includes
a product of three masses, whereas the acceleration by
Eq. (8) does that of two masses.
We consider three masses in a circular motion with the

angular velocity !, so that each rI can be a constant. In
addition, the common center of mass remains unchanged
for the equilateral triangular configuration as shown in
Ref. [12]. Hence, the PN location rI and orbital radius rI
of each body are unchanged from the Newtonian ones. As a
consequence, the equation of motion forM1 can be written
as [12]

�!2r1 ¼ �M

a3
r1 þ �EIH1; (10)

where �EIH1 denotes the PN terms defined as

�EIH1¼ 1

16

M2

a3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
2þ�2�3þ�2

3

q ff16ð�2
2þ�2�3þ�2

3Þ

�½3�ð�1�2þ�2�3þ�3�1Þ�þ9�2�3½2ð�2þ�3Þ
þ�2

2þ4�2�3þ�2
3�gn1þ3

ffiffiffi
3

p
�2�3ð�2��3Þ

�ð5�3�1Þn?1g; (11)

by using n1 ¼ r1=r1 and n?1 ¼ v1=r1! defined as the
unit normal vector to r1.
Equations (10) and (11) seem to disagree with Eqs. (31)

and (32) in Ref. [12]. However, it is not the case. This
equality can be shown by noting that the angular velocity
in the PN term, which appears at Eqs. (31) and (32) in
Ref. [12], is equal to M=a3.
One can obtain the equation of motion for M2 and M3

by cyclic manipulations as 1 ! 2 ! 3 ! 1. These
expressions show that the equilateral triangular solution
is present at 1PN order only for two cases: (i) three finite
masses are equal and (ii) one mass is finite and the other
two are zero [16].

IV. POST-NEWTONIAN TRIANGULAR SOLUTION
FOR THREE FINITE MASSES

For the restricted three-body problem, an inequilateral
triangular solution was investigated [5,6]. Hence, for three
finite masses, we study a PN triangular configuration.

FIG. 1 (color online). PN triangular configuration. Each mass
is located at one of the apexes. rI � jrIjðI ¼ 1; 2; 3Þ denotes the
orbital radius of each body. Each "IJ denotes the relativistic
correction to each side length at the 1PN order. In the equilateral
case, "12 ¼ "23 ¼ "31 ¼ 0, namely, r12 ¼ r23 ¼ r31 ¼ a.
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Let us denote each side length of a PN triangle as

rIJ ¼ að1þ "IJÞ; (12)

where "IJ denotes the nondimensional correction at the
1PN order (see Fig. 1). Here, if all three corrections are
equal (i.e., "12 ¼ "23 ¼ "31 ¼ "), a PN configuration is
still an equilateral triangle, though each side length is
changed by a scale transformation as a ! að1þ "Þ.
Namely, one of the degrees of freedom for ð"12; "23; "31Þ
corresponds to a scale transformation, and this is unphys-
ical. In other words, we take account of only the correc-
tions which keep the size of the system but change its
shape. For its simplicity, we adopt the arithmetic mean of
three side lengths in order to characterize the size of the
system as

r12 þ r23 þ r31
3

¼ a

�
1þ 1

3
ð"12 þ "23 þ "31Þ

�
(13)

(see the Appendix for possible choices of fixing the
unphysical degree of freedom). This arithmetic mean of
the PN triangle is chosen to be the same as a side length of
the Newtonian equilateral triangle as

a

�
1þ 1

3
ð"12 þ "23 þ "31Þ

�
¼ a; (14)

so that the degree of freedom for a scale transformation can
be fixed. Otherwise, a degree of freedom for a scale trans-
formation would remain so that an ambiguity due to the
similarity could enter our results. Thus, we obtain a con-
straint on ð"12; "23; "31Þ as

"12 þ "23 þ "31 ¼ 0: (15)

Hence, we look for the remaining two conditions for
determining ð"12; "23; "31Þ in the following.

We assume a circular motion of each body, where
the angular velocity of each mass is denoted as
!I (I ¼ 1, 2, 3). At the 1PN order, the equation of motion
for M1 becomes

�!2
1r1¼M2

r21
r321

þM3

r31
r331

þ�EIH1

¼�M

a3
r1�3

2

M

a2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2
2þ�2�3þ�2

3

q

�f½�2ð�1��2�1Þ"12þ�3ð�1��3�1Þ"31�n1

þ ffiffiffi
3

p
�2�3ð"12�"31Þn?1gþ�EIH1þOð2PNÞ:

(16)

Note that each mass location rI may be different from the
Newtonian one, because the origin of the coordinates is
chosen as the common center of mass in the 1PN approxi-
mation. However, we can replace rI with the Newtonian
location of M1 because of the following reason. The two
terms including rI of Eq. (16) are expanded as

�!2
1r1 ¼ �!2

1rN1 �!2
NrPN1 þ Oð2PNÞ; (17)

�M

a3
r1 ¼ �M

a3
rN1 �M

a3
rPN1; (18)

respectively, where rN1 and rPN1 denote the Newtonian
location and the 1PN correction, respectively. By using
Eqs. (4), (17), and (18) imply that the 1PN corrections to rI
cancel out in Eq. (16).
Furthermore, n1 and n?1 also have PN corrections.

However, these corrections multiplied by "12 (or "31)
make 2PN (or higher-order) contributions in Eq. (16),
and hence they can be neglected. Also in �EIH1, 1PN
corrections to n1 and n?1 lead to 2PN, since they are
multiplied by 1PN term as M2=a3. We obtain the equation
of motion for M2 and M3 by cyclic manipulations as
1 ! 2 ! 3 ! 1.
The PN equilibrium configurations can be present if

and only if the following conditions (a) and (b) hold.
(a) Each mass has to satisfy the EIH equation of motion,
and (b) a triangular configuration does not change with
time. Condition (a) is equivalent to (a0) the coefficients
of n?I in the equation of motion for each mass are
zero:

"12 � "31 � 1

8

M

a
ð�2 � �3Þð5� 3�1Þ ¼ 0; (19)

"23 � "12 � 1

8

M

a
ð�3 � �1Þð5� 3�2Þ ¼ 0; (20)

"31 � "23 � 1

8

M

a
ð�1 � �2Þð5� 3�3Þ ¼ 0: (21)

Condition (b) is restated as (b0) the angular velocity for
each mass is the same in order to keep the distance
between masses unchanged:

!2
1 �!2

2 ¼ 0; (22)

!2
1 �!2

3 ¼ 0: (23)

Equations (22) and (23) are rewritten as
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3

2

M

a3
1

�2
2 þ �2�3 þ �2

3

½�2ð�1 � �2 � 1Þ"12 þ �3ð�1 � �3 � 1Þ"31�

� 3

2

M

a3
1

�2
3 þ �3�1 þ �2

1

½�3ð�2 � �3 � 1Þ"23 þ �1ð�2 � �1 � 1Þ"12�

�M2

a4

�
9

16

1

�2
2 þ �2�3 þ �2

3

�2�3½2ð�2 þ �3Þ þ �2
2 þ 4�2�3 þ �2

3�
�

þM2

a4

�
9

16

1

�2
3 þ �3�1 þ �2

1

�3�1½2ð�3 þ �1Þ þ �2
3 þ 4�3�1 þ �2

1�
�
¼ 0; (24)

3

2

M

a3
1

�2
2 þ �2�3 þ �2

3

½�2ð�1 � �2 � 1Þ"12 þ �3ð�1 � �3 � 1Þ"31�

� 3

2

M

a3
1

�2
1 þ �1�2 þ �2

2

½�1ð�3 � �1 � 1Þ"31 þ �2ð�3 � �2 � 1Þ"23�

�M2

a4

�
9

16

1

�2
2 þ �2�3 þ �2

3

�2�3½2ð�2 þ �3Þ þ �2
2 þ 4�2�3 þ �2

3�
�

þM2

a4

�
9

16

1

�2
1 þ �1�2 þ �2

2

�1�2½2ð�1 þ �2Þ þ �2
1 þ 4�1�2 þ �2

2�
�
¼ 0; (25)

respectively. It seems that ð"12; "23; "31Þ do not always
satisfy the above five conditions Eqs. (19)–(23) simulta-
neously. However, the number of independent conditions
turns out to be two.

The reason is as follows. By eliminating "12 from
Eqs. (19) and (20), we obtain Eq. (21). Moreover, the
left-hand sides of Eqs. (24) and (25) always vanish if and
only if Eqs. (19) and (20) are satisfied. These can be seen
by direct calculations.

Thus, we obtain the expressions for ð"12; "23; "31Þ as

"12 ¼ 1

24

M

a
½ð�2 � �3Þð5� 3�1Þ � ð�3 � �1Þð5� 3�2Þ�;

(26)

"23 ¼ 1

24

M

a
½ð�3 � �1Þð5� 3�2Þ � ð�1 � �2Þð5� 3�3Þ�;

(27)

"31 ¼ 1

24

M

a
½ð�1 � �2Þð5� 3�3Þ � ð�2 � �3Þð5� 3�1Þ�;

(28)

which recover previous results for the restricted three-body
problem [5].

Substituting Eqs. (26) and (28) into Eq. (16), we obtain
the angular velocity as

!1 ¼ !N

�
1þM

a
!PN

�
; (29)

where

!PN ¼ � 1

16
½29� 14ð�1�2 þ �2�3 þ �3�1Þ�: (30)

By using �1 þ �2 þ �3 ¼ 1, one can immediately show
!PN < 0, so that we find !<!N for the same masses and
a. In other words, for the same masses and angular veloc-
ity, the PN triangular configuration is always smaller than
the Newtonian one.
Table I shows the relativistic corrections of the dis-

tance between each body for Lagrange point L4 (L5) of
the Solar System. Here we choose M1 and M2 as the Sun
and each planet, respectively. In the case of the restricted
three-body problem (�3 ! 0), it is convenient to use
Eqs. (19) and (20) rather than Eqs. (26)–(28), because
it is natural to change not r12 but location of M3.
Equation (20) implies that the correction of distance
between each planet and Lagrange point L4 (L5) is
approximately 5=16 of the Schwarzschild radius of the
Sun. Hence, we obtain the same values of this correction
for Earth and Jupiter. Similar corrections are mentioned
also in the previous paper [6].

TABLE I. The corrections for Lagrange point L4 (L5) of the
Solar System. Equations (19) and (20) are used for the evalu-
ation. Here, we choose M1 and M2 as the Sun and each planet,
respectively. Thus, r12 ¼ að1þ "12Þ is the distance between the
Sun and each planet.

Planet Sun-L4 (L5) [m] Planet-L4 (L5) [m]

Jupiter �0:353 �923
Earth �0:00111 �923
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The above PN effects, however, are so tiny that they
could be neglected in the near-future measurements [17].

It is interesting to extend this 1PN work to higher PN
orders for gravitational wave physics (see Refs. [18–21] for
the equation of motion and compact binaries).

V. CONCLUSION

We reexamined the post-Newtonian effects on
Lagrange’s equilateral triangular solution for the three-
body problem. For three finite masses, it was found that
a general triangular configuration satisfies the post-
Newtonian equation of motion in general relativity if and
only if it has the relativistic corrections to each side length.
It was shown also that the post-Newtonian triangular
configuration is always smaller than the Newtonian one
for the same masses and angular velocity. Studying the
correction to stability of this configuration is left as future
work.
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APPENDIX: CHOICES OF FIXING THE
UNPHYSICAL DEGREE OF FREEDOM

Instead of the arithmetic mean of the three side lengths,
one might wish to use the geometric mean of them or
the triangular area. Hence, let us mention briefly these
cases.

The geometric mean of three side lengths by Eq. (12) is
written up to the 1PN order as

ðr12r23r31Þ1=3 ¼ a

�
1þ 1

3
ð"12 þ "23 þ "31Þ

�
þ Oð"2Þ;

(A1)

where Oð"2Þ denotes the second order of ð"12; "23; "31Þ,
namely, at the 2PN order. This expression is identical with
the arithmetic mean by Eq. (13). In addition, we can obtain
the condition that these means are equal to a side length
of the Newtonian equilateral triangle as

"12 þ "23 þ "31 ¼ 0: (A2)

Next, we consider a PN triangular area. A triangular area
S is given by Heron’s formula as

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðs� r12Þðs� r23Þðs� r31Þ

q
; (A3)

where

s ¼ r12 þ r23 þ r31
2

: (A4)

Hence, substitution of Eq. (12) into Eq. (A3) leads to

S ¼
ffiffiffi
3

p
4

a2
�
1þ 2

3
ð"12 þ "23 þ "31Þ

�
þ Oð"2Þ; (A5)

which corresponds to the triangular area of each side length
[Eq. (A1)]. Therefore, a PN triangular area is equal to a
Newtonian equilateral triangular one if and only if

"12 þ "23 þ "31 ¼ 0: (A6)

This is identical with the condition in Eq. (A2).
As a consequence, at the 1PN level, the arithmetic mean

of the three side lengths, the geometric mean of them, and
the triangular area lead to the same characterization of the
size of the system.
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