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Pulsar timing arrays (PTAs) will be sensitive to a finite number of gravitational wave (GW) ‘‘point’’

sources (e.g. supermassive black hole binaries). N quiet pulsars with accurately known distances dpulsar can

characterize up to 2N=7 distant chirping sources per frequency bin �fgw ¼ 1=T and localize them with

‘‘diffraction-limited’’ precision �� * ð1=SNRÞð�gw=dpulsarÞ. Even if the pulsar distances are poorly known,
a PTA with F GW frequency bins can still characterize up to ð2N=7Þð1� 1

2FÞ sources per bin, and the

quasisingular pattern of timing residuals in the vicinity of a GW source still allows the source to be localized

quasitopologically within roughly the smallest quadrilateral of quiet pulsars that encircles it on the sky, down

to a limiting resolution �� * ð1=SNRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gw=dpulsar

q
. PTAs may be unconfused, even at the lowest GW

frequencies: in that case, standard analysis techniques designed to detect a stochastic GW background would

be incomplete and suboptimal, whereas matched filtering could provide more information and sensitivity.
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I. INTRODUCTION

Our Local Group of galaxies is sprinkled with milli-
second pulsars—natural clocks of extraordinary stability.
Gravitational waves (GWs) passing through theMilkyWay,
after being generated e.g. by the inspiral of two super-
massive black holes in a distant galaxy, generate fluctua-
tions in the time of arrival (TOA) of the pulses at the Earth
[1–5]. In the future, we are likely to detect such GWs via
their coherent imprint on the TOA fluctuations from a
collection of pulsars distributed on the sky: a ‘‘pulsar timing
array’’ (PTA). Several collaborations are actively monitor-
ing pulsars for this purpose, including NANOGrav, EPTA,
PPTA and IPTA (see [4,6–10] for a review). Much research
has focused on using PTAs to study stochastic GW back-
grounds ([11–13] and references therein), and upper bounds
are improving [14]. Recently, various authors have begun to
study the ability of PTAs to detect and characterize indi-
vidual GW point sources [8,15–22].

Continuing in this direction, this paper is concerned with
conceptually clarifying the theoretical behavior and capa-
bilities of PTAs as GW point source telescopes. We address
two related issues. (i) A PTA may be sensitive to so many
GW sources that it becomes ‘‘confused’’—i.e. unable to
disentangle and individually characterize the sources.
When does a PTA become ‘‘confusion limited’’ rather
than sensitivity limited? How many GW sources is it ca-
pable of individually characterizing [17]? (ii) When a set of
GW point sources can be individually characterized, how
well can their angular positions be determined [8,15–22]?

Regarding issue (i) we will see that PTAs with many
pulsars can characterize many GW sources per GW fre-
quency bin; the traditional rule of thumb that a GW detector
becomes confused when there is more than about one GW

source per GW frequency bin is too pessimistic for PTAs.
Regarding issue (ii) we must distinguish pulsars whose
distances are known accurately or poorly relative to
�gw=ð1� cos�Þ, where �gw is the gravitational wavelength

and � is the angle between pulsar and source. Pulsars with
accurately known distances can angularly localize a GW
source very precisely; each such pulsar acts like a single
baseline of a diffraction-limited radio interferometer array—
with the radio wavelength replaced by the gravitational
wavelength, and the length of the radio baseline replaced
by the distance from the pulsar to the Earth. The contribution
from pulsars with poorly known distances is more interest-
ing: due to a quasisingularity in the pattern of timing resid-
uals near the location of the GW source, the source can still
be localized surprisingly well, for reasons that have less to do
with diffraction and more to dowith topology (also see [18]).
The paper is organized as follows. Section II establishes

our notation and basic formalism; this section is mainly a
rederivation of previously known results but casts them in a
compact and general form that will be important for our
analysis in the following sections. Our new results are
contained in Secs. III and IV, in which we obtain and
interpret useful and new analytic expressions for both the
angular resolution and confusion limits of a PTA, when the
distances to the pulsars are accurately or poorly known,
respectively. Finally, Sec. V discusses some of the key
implications of our results and highlights a number of
open questions for future research.

II. BASIC FORMALISM

We label the three spatial directions with the latin indi-
ces fi; j; k; l; m ¼ 1; 2; 3g, raised and lowered with �ij and
�ij. The N pulsars in the network are labeled by the greek
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indices f�;� ¼ 1; . . . ; Ng, raised and lowered with ���

and ���. We go to the trouble of introducing raised

and lowered indices here simply to make use of the con-
venient Einstein summation convention: repeated indices
(one upper, one lower) are summed.

A gravitational wave on Minkowski space is described
in transverse-traceless gauge [23] by the line element
ds2 ¼ �dt2 þ ½�ij þ 2hij�dxidxj. In this gauge, the ~x ¼
constant worldlines are timelike geodesics; along such
worldlines, the proper time � is the coordinate time t. To
avoid notational clutter, let us start with just a single
gravitational plane wave traveling in the n̂ direction:

hijðt; ~xÞ ¼
Z 1

�1
df~hijðfÞe2�ifðn̂� ~x�tÞ; (1)

it is straightforward to extend the following analysis to a
sum of m ¼ 1; . . . ;M plane waves, each traveling in a
different direction n̂m; this extension is discussed below.
Throughout this paper, we use ‘‘dot product’’ notation
to mean contraction with the unperturbed 3-metric

�ij: ~a � ~b � �ija
ibj; and hats denote unit 3-vectors:

â � â ¼ 1. To avoid confusion, please note: in this paper,
since n̂ is the direction of gravitational wave propagation,
the direction to the gravitational wave source is�n̂, notþn̂.

If an electromagnetic flash is emitted from position ~xi at
time ti, what is its arrival time t at position ~xf? If we define

~xfi � ~xf � ~xi ¼ xfix̂fi, then at zeroth order (i.e. in the

absence of gravitational waves) the answer is t0 ¼ ti þ
xfi. Solving the geodesic equation to first order in hij yields

the perturbed result t ¼ t0 þ �t, where

�t¼
Z
df

i~hijðfÞx̂ifix̂jfi½e2�ifðn̂� ~xf�t0Þ�e2�ifðn̂� ~xi�tiÞ�
2�fð1� n̂ � x̂fiÞ : (2)

Now consider an observer at fixed spatial position ~x ¼ ~0
receiving signals from � ¼ 1; . . . ; N pulsars at spatial
positions ~r� ¼ r�r̂�. For pulsar �, the TOA fluctuation
�t�ðt0Þ, as a function of the unperturbed TOA t0, is

�t�ðt0Þ ¼
Z 1

�1
df�~t�ðfÞe�2�ift0 ; (3)

where �~t�ðfÞ, the Fourier transform of the TOA fluctua-
tion, is given by

�~t�ðfÞ ¼
i~hijðfÞr̂i�r̂j�½1� P�ðfÞ�

2�fð1þ n̂ � r̂�Þ (4)

and, for later convenience, we have defined the phase

P �ðfÞ � e2�ifr�ð1þn̂�r̂�Þ: (5)

Themeasured TOA fluctuations s�ðt0Þ from pulsar � are
gravitational wave signal �t�ðt0Þ plus noise n�ðt0Þ:

s�ðt0Þ ¼ �t�ðt0Þ þ n�ðt0Þ: (6)

(As a caveat, some of the TOA fluctuation ‘‘signal’’ may
not be attributed to gravitational waves but instead must be
absorbed into determining the parameters of the pulsar
timing model which accounts e.g. for the relative motion
of the pulsars and the Earth. This caveat is important for
GWs with periods of 1 yr, or >10 yr, but may be ignored
otherwise—particularly for the more conceptual questions
that are the focus of this paper.) We take the noise to be
stationary and Gaussian, so it is characterized by its corre-
lation function C��ðTÞ or, equivalently, its spectral density
S��ðfÞ ¼ ~C��ðfÞ:

C��ðTÞ ¼ n�ðt0 þ TÞn�ðt0Þ; (7a)

�ðf� f0ÞS��ðfÞ ¼ ~n��ðfÞ~n�ðf0Þ: (7b)

Then, given any two functions gð1ÞðtÞ and gð2ÞðtÞ, we can
define their natural noise-weighted inner product to be

ðgð1Þjgð2ÞÞ ¼
Z 1

�1
df~gð1Þ� ðfÞ�½S�1ðfÞ���~gð2Þ� ðfÞ: (8)

We will assume that the noise is approximately uncorre-
lated between different pulsars: S��ðfÞ ¼ S�ðfÞ���. (This

approximation is a common one in the pulsar literature. At
the moment, it is justified by the fact that the terrestrial
time standards used for pulsar timing are accurate to about
10 ns—i.e. the terrestrial clock error is small relative to the
timing fluctuations in the quietest current pulsars and
relative to the gravitational-wave induced fluctuations cur-
rently being sought. Furthermore, it may be that future
technological improvements keep the terrestrial time stan-
dards perpetually ahead of the accuracy needed for gravi-
tational wave detection; but if this ever fails to be the case,
one would have to determine whether the noise between
different pulsars is significantly correlated and incorporate
those correlations into the analysis that follows.) Under the
assumption that the noise is uncorrelated between different
pulsars, matched filtering will detect a given gravitational
wave signal with expected signal-to-noise ratio squared
(SNR2) given by

SNR2 ¼ ð�tj�tÞ ¼ XN
�¼1

SNR2
�; (9a)

SNR2
� ¼

Z 1

�1
df

j�~t�ðfÞj2
S�ðfÞ ; (9b)

where �~t�ðfÞ is given by (4). When a gravitational wave
signal (which depends on various parameters �k) is
detected with sufficient SNR, the likelihood function
(i.e. the probability of the observed data stream as a
function of the underlying signal parameters �k) may be
approximated as a Gaussian / exp½�ð1=2Þ�k�kl�

l� near its
peak, and the expected inverse covariance matrix is the
Fisher information matrix, given by
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�kl ¼
�
@t

@�k

��������
@t

@�l

�
: (10)

The Fisher information matrix quantifies the accuracy with
which the parameters �k may be inferred from the observed
signal. For an introduction to signal analysis and Fisher
matrices, and their use in gravitational wave detection, see
Refs. [24–26]. We are interested, in particular, in the angu-
lar resolution of a PTA. Define an orthonormal triad from n̂
and two other unit vectors m̂ �	 ( �	 ¼ 1, 2); let 
 �	 be the

rotation angle around m̂ �	. The 2� 2 angular part of �kl is

� �	 �� ¼
�
@½�t�
@
 �	

��������
@½�t�
@
 ��

�
¼ XN

�¼1

��
�	 ��; (11a)

��
�	 �� ¼

Z 1

�1
df

@½�~t�ðfÞ��
@
 �	

1

S�ðfÞ
@½�~t�ðfÞ�

@
 �� : (11b)

To evaluate these angular derivatives, we act with the
infinitesimal rotation Rij � �ij � �ijkm̂

k
�	


�	 on the gravita-

tional wave field, but not on the pulsar positions: e.g.

@ð1þn̂� r̂�Þ=@
 �	¼�ijkn̂
ir̂j�m̂k

�	 and @½~hijðfÞr̂i�r̂j��=@
 �	¼
2~hilðfÞ�ljkr̂i�r̂j�m̂k

�	. In this way, we find

@½�~t�ðfÞ�
@
 �	

¼ i½AðfÞ þBðfÞ�
2�f

; (12)

where A comes from differentiating the phase P � in (4),
and B comes from differentiating everything else:

A � 2�ifr�
~hijr̂

i
�r̂

j
�r̂k�n̂

lm̂m
�	�klm

ð1þ n̂ � r̂�Þ P �; (13a)

B �
~hijr̂

i
�r̂

k
�m̂

l
�	

1þ n̂ � r̂�
�
2�jkl �

r̂j�n̂m�klm
1þ n̂ � r̂�

�
½1� P ��: (13b)

In understanding the meaning of these equations, we should
distinguish two cases: (i) pulsars whose distances r� are
known accurately relative to �gw=ð1þ n̂ � r̂�Þ, so P� is

known; and (ii) pulsars whose distances r� are known
poorly relative to �gw=ð1þ n̂ � r̂�Þ, so P� is essentially a

random phase. We consider these two cases in turn.

III. PULSARS WHOSE DISTANCES ARE
ACCURATELY KNOWN

First consider a monochromatic gravitational plane wave
of frequency fgw ¼ c=�gw and a pulsar whose distance r� is

known accurately relative to �gw=ð1þ n̂ � r̂�Þ. Then, if

2�r�=�gw � 1, the A term dominates the B term in

Eq. (12). Combining Eqs. (4) and (9)–(13), we obtain

��
�	 ��

SNR2
�

�
�
2�r�
�gw

�
2 ðr̂i�n̂jm̂k

�	�ijkÞðr̂i0�n̂j0m̂k0
�� �i0j0k0 Þ

j1� P�ðfgwÞj2
: (14)

Since the second fraction on the right-hand side of this
equation is typically Oð1Þ, this says that when a pulsar at a
well known distance r� registers a gravitational wave with
signal-to-noise level SNR�, its contribution to ��

�	 �� is

typically ��
�	 �� 	 ð2�r�=�gwÞ2SNR2

�. In other words, each

such pulsar acts just like one of the baselines of a radio
interferometer array; but, in this analogy, the radio waves
are replaced by gravitational waves, and the baselines are
of galactic length scales and extend in all three spatial
dimensions—a remarkable instrument.
Now consider multiple GW sources. At the low GW

frequencies probed by PTAs (where the expected GW point
sources are supermassive black hole binaries, far from final
merger) the frequency of each gravitational plane wave
drifts negligibly over the observation time scale T 	 10 yr;
and over the light travel time from the pulsars to the Earth,
the frequency drift or ‘‘chirp’’ is approximately linear:

hijðt; ~xÞ ¼ Refĥije�2�ið�Þg, where ð�Þ�f0�þ1
2
_f�2, ��

t�n̂� ~x, and fĥij; f0; _fg are constants (see [10,15,17] for

more discussion of the drift specifics). The induced timing
residuals for pulsar � are a sum of two peaks in frequency
space: an ‘‘Earth term’’ at frequency f0 and a ‘‘pulsar

term’’ at frequency f0 � _fr�ð1þ n̂ � r̂�Þ; if _f is large
enough (i.e. for supermassive black hole binaries of suffi-
ciently high mass, sufficiently close to merger) these two
peaks may lie in separate frequency bins [15]. The number
of such GW sources that may be individually characterized
by a PTA may be determined via the following counting
argument. First recall that a PTA that collects data for a
total time span T (e.g. 10 yr) cannot distinguish two GW
frequencies separated by less than �f	 1=T; thus we
should think of the PTA’s GW frequency spectrum as being
divided into bins of finite width (	�f). To fully specify
the pattern of timing residuals, we must provide the fol-
lowing information: in every GW frequency bin, and for
each Earth term in that bin, we give the associated propa-

gation direction n̂, frequency derivative _f, and two com-
plex amplitudes (i.e. an the amplitude and phase for both
polarization modes), for a total of seven real numbers. On
the other hand, since the angular dependence of Eq. (4)
contains spherical harmonics of arbitrarily high angular
momentum order, the number of independent measure-
ments collected by the PTA is simply 2N per GW fre-
quency bin—namely, the measured amplitude and phase of
the timing residuals, for each pulsar, in each GW frequency
bin [27]. To completely characterize the individual
sources, the independent measurements must outnumber
the parameters to be determined; that is, the PTA can
characterize up to an average of 2N=7 chirping GW point
sources per GW frequency bin. For simplicity, this argu-
ment neglects ‘‘boundary effects’’ coming from GW
sources for which the Earth term lies within the detectable
frequency range, while the pulsar term does not, or vice
versa. If we assume that all of the GW sources are mono-

chromatic ( _f ¼ 0), the maximum number that can be
characterized improves only slightly to 2N=6 per GW
frequency bin, but the fitting procedure becomes much
easier since we can treat each GW frequency bin indepen-
dently. If the PTA can disentangle and characterize the
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individual sources, one expects the angular resolution to be
diffraction limited �� * ð1=SNRÞð�gw=rpulsarÞ [the more

precise expectation is given by Eq. (14)].
Typically, to be in the ‘‘accurately measured’’ category,

a pulsar’s distance would have to be known to better than a
gravitational wavelength (e.g. a few parsecs). Although
most pulsar distances are poorly known, often only to a
factor of 2 using dispersion measure, the quiet pulsars most
relevant to GW timing sometimes allow more accurate
distance measurements via ‘‘timing parallax’’ or ordinary
imagining parallax. Some of the most impressive pulsar
distances that have been obtained to date are 156:3

1:3 pc (to J0437� 4715) [28], 262
 5 pc (to B0950þ
08), 433
 8 pc (to B0809þ 74) [29], 361
 9 pc
(to B1929þ 10) [30], and 950
 20 pc (to B2045� 16)
[31]. These high accuracies are currently only available for
rather nearby pulsars; but note the following two points.
First of all, remember that the relevant accuracy threshold
for the pulsar distance r� is not actually �gw, but rather

�gw=ð1þ n̂ � r̂�Þ, which is � �gw for pulsars that happen

to be located in nearly the same direction as the gravita-
tional wave source. As a result, the distances to such
pulsars can be of benefit, even if they are known to an
accuracy considerably worse than the relevant gravita-
tional wavelength. Second, looking toward the future, there
is still the potential for significantly improved pulsar dis-
tance measurements. On one hand, an instrument like the
Square Kilometer Array could dramatically improve both
the accuracy and distance reach of distance pulsar mea-
surements via both timing and imaging parallax: see e.g.
[32]. On the other hand, there is promising potential for
interstellar holographic distance measurements: low fre-
quency very-long-baseline interferometry combined with
cyclic spectroscopy [33] may allow the long baselines
associated with the scattering disk to be used for localiza-
tion [33–36]. It is now possible to image the interstellar
scattering disk of pulsars at low frequencies, and it may be
possible to use these as billion kilometer baselines to
extract up to nanoarcsecond astrometric information [37].

IV. PULSARS WHOSE DISTANCES
ARE POORLY KNOWN

If the pulsar distance r� is poorly known relative to
�gw=ð1þ n̂ � r̂�Þ, then P � becomes a random phase con-

taining essentially no information; the A term is washed
out, and only the B term remains in Eq. (12). Such pulsars
no longer contribute diffraction-limited information, but
all is not lost.

We start by sketching the key ideas, roughly. Consider,
as a concrete example, a GW of the form

hijðt; ~xÞ ¼ h sin½2�f0ðzþ tÞ�
0 1 0

1 0 0

0 0 0

0
BB@

1
CCA; (15)

where h is a positive real number. This is a GW with
frequency f0 and ‘‘cross’’ polarization, traveling in the
n̂ ¼ �ẑ direction (which means that the GW source is
located at the north pole of the celestial sphere). Then,
using Eqs. (1), (3), and (4), we find that the corresponding
pattern of GW-induced timing residuals is given by

�t�ðtÞ ¼ �hð1þ cos��Þ sin2’�

2�f0

� Ref½1� P�ðf0Þ�e�2�if0tg: (16)

The first thing to notice is that this expression divides the
celestial sphere into four slices: 0<’� < �

2 ,
�
2 <’� < �,

�<’� < 3�
2 and 3�

2 <’� < 2�. Thus, at time t ¼ 0 we

see that all of the pulsars in the slices 0<’� < �
2 and �<

’� < 3�
2 exhibit early pulse arrivals (�t� < 0), whereas all

of the pulsars in the slices �
2 <’� < � and 3�

2 <’� < 2�

exhibit late pulse arrivals (�t� > 0); and at time t ¼
ð2f0Þ�1 (half a GW period later), the situation is reversed:
all of the pulsars in the slices 0<’� < �=2 and �<
’� < 3�=2 exhibit late pulse arrivals (�t� > 0), whereas
all of the pulsars in the slices �=2<’� < � and 3�=2<
’� < 2� exhibit early pulse arrivals (�t� < 0). Note that
this is true regardless of the values of the unknown phases
P�ðf0Þ (contributed by the pulsar term in each pulsar’s
timing residual), since the real part of ½1� P �ðf0Þ� will
always be positive (or, more correctly, non-negative). The
point is that the GW source lies at the point on the celestial
sphere where these four slices meet; so by localizing the
meeting point, we also localize the GW source. As we
explain below, among pulsars with poorly known dis-
tances, those close to the GW source (�� � 1) and far
from the Earth (r� � �gw=2�) contribute particularly

strongly to the angular localization of the GW source. To
get an initial sense of why this is true, first ignore the factor
Ref. . .g in Eq. (16), and focus on the remaining angular
dependence �ð��;’�Þ ¼ ð1þ cos��Þ sin2’� [3]. Note
that �ð��; ’�Þ is singular at the GW source’s location
(�� ¼ 0) because, although it does not diverge as �� !
0, it does not vanish either, and instead � approaches a
different finite nonzero value depending on the azimuthal
direction ’� along which we take the limit �� ! 0. In
other words, �ð��; ’�Þ is singular in the sense that,
although � itself does not diverge, its azimuthal (’�)
derivative does diverge as �� ! 0. By contrast, the full
expression (16) for �t� is not singular: including the factor
Ref. . .g smooths out the singularity in �ð��;’�Þ since,
when �� is sufficiently small, ½1� P �� vanishes as �2�.
This is because, when the pulsar is close enough to the GW
source on the celestial sphere, its pulses move along with
the GW itself, with negligible change in their relative phase
(like a surfer riding an ocean wave); the Earth term and
pulsar term then cancel, and no timing residual is measur-
able. If the pulsar is sufficiently far away from the Earth
(r� � �gw=2�), this effect only kicks in for small angular
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separations �� &
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gw=ð2�r�Þ

q
. In other words, when

�gw=ð2�r�Þ � 1, Eq. (16) is quasisingular at �� ¼ 0; it

becomes genuinely singular in the limit �gw=ð2�r�Þ ! 0.

The fact that �t� varies rapidly (with cos2’� dependence)

around a tiny circle of radius
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gw=ð2�r�Þ

q
& �� � 1

surrounding the quasisingularity is the key to localizing
the GW source.

To see this in more detail, split the pulsar directions r̂�
into components parallel and perpendicular to the GW
source direction ẑ: r̂� ¼ �̂� sin�� þ ẑ cos��. Now
approach the quasisingularity in two steps: first consider

the ‘‘weaker’’ limit
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gw=ð2�r�Þ

q
& �� � 1 in which ��

is small but [1� P �] is not; then proceed to the

‘‘stronger’’ limit �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gw=ð2�r�Þ

q
� 1 in which ��

and ½1� P �� are both small. In the weaker limit, Eq. (4)
becomes

�~t�ðfÞ � i

�f
~hijðfÞ�̂i

��̂
j
�½1� P �ðfÞ� (17)

while Eq. (12) becomes

@½�~t�ðfÞ�
�
 �	

¼ 2i

�f

C� �	ðfÞ
��

½1� P �ðfÞ�; (18)

where

C� �	ðfÞ � ~hijðfÞ�̂i
�½�jkln̂km̂l

�	 þ �̂j
��̂k

�n̂
lm̂m

�	�klm�: (19)

Thus (still in the weaker limit) we have

��
�	 ��

SNR2
�

� 4

�2�

C� �	ðfgwÞC� ��ðfgwÞ�
j~hijðfgwÞ�̂i

��̂
j
�j2

: (20)

Since the second fraction on the right-hand side of this
expression is genericallyOð1Þ, this says that when a pulsar
is near (but not too near) a GW source on the sky, its
contribution to � �	 �� is typically ��

�	 �� 	 ð4=�2�ÞSNR2
�.

In the stronger limit �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gw=ð2�r�Þ

q
� 1, Eqs. (4)

and (12) imply that �~t�ðfÞ and @½�~t�ðfÞ�=@
 �	 are smooth
and vanishing at �� ¼ 0. So as �� decreases, ��

�	 �� initially

increases as 1=�2� and then drops to zero; in between it
attains a maximum value:

��
�	 �� 	

8�r�
�gw

SNR2
� (21)

at a separation angle �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gw=ð2�r�Þ

q
� 1.

Now consider multiple GW sources. We can repeat the
previous section’s counting argument, except that we must
now include the N unknown pulsar distances when we are
counting the parameters needed to specify the pattern of
timing residuals; with this modification, we find that a PTA
which monitors F different GW frequency bins can com-
pletely characterize up to an average of ð2N=7Þð1� 1=2FÞ

‘‘chirping’’ sources [or ð2N=6Þð1� 1=2FÞ monochromatic
sources] per bin. Note that, although we did not know the
pulsar distances a priori, they are determined, in principle,
by the fit [38,39].
If the PTA can disentangle and characterize the individ-

ual sources, how well can they be angularly localized? To
answer this question, one should ask, for each combination
of pulsar and GW source, whether the fit to the timing
residuals has determined r� accurately or poorly relative to
�gw=ð1þ n̂ � r̂�Þ; roughly speaking, if r� has been deter-

mined accurately, then we expect the pulsar will contribute
diffraction-limited angular information as described by
Eq. (14); and if r� has been determined poorly, then we
expect the pulsar will contribute ‘‘quasisingularity-
limited’’ angular information ��

�	 �� for that source, as

described by Eqs. (20) and (21). Consider the localization
of a GW source when all of the pulsar’s have poorly known
distances; as explained above, the quasisingular pattern of
timing residuals implies that the angular localization will
be dominated by the pulsars that are close to that source on
the celestial sphere; in particular, it is roughly set by the
smallest quadrilateral of pulsars that encircles the source
on the celestial sphere, down to a limiting angular resolu-

tion of roughly ��	 ð1=SNR�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gw=dpulsar

q
[the more

precise statement is given by Eqs. (20) and (21)]. To
understand this behavior, consider the example in Fig. 1.

V. DISCUSSION

As we have seen, if a PTA is confronted with too many
GW sources, it will become ‘‘confused’’ (unable to disen-
tangle the sources). It was previously assumed (e.g. in
[16]), as a rule of thumb, that PTAs would become con-
fused when there was more than one GW source per
frequency bin. In this paper, we have derived the confusion
limit and shown that the actual result is different: a PTA
containing N pulsars does not become confused until there
are 2N=7 sources per frequency bin (or slightly less, if the
pulsar distances are not accurately known); until this
threshold is crossed, the PTA is sensitivity limited, not

FIG. 1. The four circles represent four pulsars that form a
small square on the sky. The timing residuals of all four pulsars
are oscillating with the same amplitude and period Tgw, but

different phases; each pulsar’s oscillation is 180� out of phase
with its two nearest neighbors. (This figure depicts this by
showing four different moments in the oscillation cycle: black,
white, or gray circles indicate that, at that moment, the pulses are
arriving early, late, or ‘‘on time,’’ respectively.) This signature
indicates that the square contains a GW point source.
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confusion limited. In other words, a PTAwith many pulsars
is much less confused than the naive rule of thumb would
suggest. To translate this into concrete terms, see the lower
left-hand panel of Fig. 2 in Ref. [16]. This figure estimates
the expected number of GW sources above a certain mini-
mum timing residual threshold. From it, we see that the
expected number of GW sources per frequency bin with
timing residuals above 100 ns (a relatively near-term and
achievable threshold) is well below 0.1 in every bin; the
expected number of GW sources per frequency bin with
timing residuals above 10 ns (a rather ambitious threshold)
is well below 10 in every bin; and even the expected
number of GW sources per frequency bin with residuals
above 1 ns (a very ambitious and futuristic threshold) is
well below 100 in every bin. Thus, even in the rather
ambitious and futuristic case in which the PTA can detect
GW sources with timing residuals as small as 10 ns, if the
PTA contains * 35 quiet pulsars, it will be sensitivity
limited rather than confusion limited, even in its lowest
frequency bins. And even in the very ambitious and futur-
istic case in which the PTA can detect GW sources with
timing residuals as small as 1 ns, if the PTA contains* 350
quiet pulsars (see e.g. [6]), it will be sensitivity limited
rather than confusion limited, even in its lowest frequency
bins. (Let us put these numbers in some context. At the
moment, there are about 20 pulsars with rms timing resid-
uals less than 1 	s, and a few pulsars with rms timing
residuals as small as 100 ns [4]. In the nearer term, the
Parkes Pulsar Timing Array is aiming to monitor an array
of 20 pulsars, each with rms residuals better than 100 ns
over a 5 yr time scale [40]. And in the future, the Square
Kilometer Array project could detect more than 20 000
pulsars, including hundreds of pulsars with rms timing
residuals that match or surpass the best few pulsars cur-
rently available [6,17,41].) Thus, it is a very plausible
possibility that future PTAs will be sensitivity limited,
rather than confusion limited, even at their lowest frequen-
cies. In this case, the traditional picture of a PTA as a
stochastic background detector will be incorrect, and there
will be a significant advantage to analyzing the data via
matched filtering (as is done in other gravitational wave
experiments such as LIGO [42]) and thinking of the PTA as
a point source telescope, rather than analyzing it as if it
were detecting a stochastic background.

In the previous sections, we have attempted to clarify the
limits on the capabilities of PTAs and, in particular, how
these limits depend on factors such as the SNR distribution
of the GW sources, the number and angular distribution of
the pulsars relative to the GW sources, the distances to the
pulsars and the precisions of those distances. Our results
for the angular resolution were obtained by Fisher matrix
methods, assuming Gaussian, stationary noise. For this
reason, we must remember that in general these results
must be interpreted as bounds on (rather than estimates of)

the angular resolution. For high-SNR sources, these
bounds will be saturated and may be reinterpreted as actual
estimates; for moderate-SNR sources they will still provide
useful quantitative guidelines; but for low-SNR sources, it
is especially important to remember that our formulas
represent bounds rather than estimates, since the Fisher
bounds will become increasingly ‘‘loose’’ (i.e. nonsatu-
rated) in the low-SNR regime [22]. (Note that the relevant
SNR here is the total SNR of the source in the PTA, which
can be high even if the SNR per pulsar is not.)
In addition to the analytical formulas presented and

interpreted earlier, it is worth mentioning one other rule
of thumb to keep in mind when estimating the angular
resolution of a PTA. Generically, since most pulsars tend to
be located in the Galactic plane, one expects the spatial
resolution to be best for GW sources near the Galactic pole
if pulsar distances are accurately known and best for GW
sources in the Galactic plane if pulsar distances are poorly
known.
This paper has focused on the angular resolution of a

PTA in the regime where the GW sources are not confused
and on the conditions that need to be satisfied in order to be
in this regime. In the opposite (fully confused) regime, the
gravitational wave signal may be treated as a Gaussian
random field; this situation has been extensively studied in
the literature. The intermediate regime in between these
two limits is also very interesting, but clearly more com-
plicated than either limit, and will be left for future work.
Other interesting problems for future work include

(i) ‘‘tightening’’ the angular resolution limits at low
SNR, beyond the limits obtained by Fisher matrix methods
[22]; (ii) extending this work to GW point sources that are
near enough that their wavefront curvature is significant
[20]; (iii) determining the circumstances in which pulsar
distance determination by GW fitting can compete with
more traditional methods (i.e. very-long-baseline interfer-
ometry, cyclic spectroscopy or timing parallax)—see [21];
(iv) clarifying the statistics of GW sources which are
anomalously well characterized because they are fortui-
tously located relative to one or several pulsars on the sky;
(v) quantifying the gain from matched filtering (with qua-
sisingular filters in particular) compared to traditional sto-
chastic correlation analysis, even when the PTA appears
source confused; (vi) understanding the predicted distribu-

tion of frequency derivative _f among the GW sources
relevant to PTAs and the implications of this distribution
for PTA GW telescopes.
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