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Inhomogeneous quantum cosmology is modeled as a dynamical system of discrete patches, whose

interacting many-body equations can be mapped to a nonlinear minisuperspace equation by methods

analogous to Bose—Einstein condensation. Complicated gravitational dynamics can therefore be de-

scribed by more-manageable equations for finitely many degrees of freedom, for which powerful solution

procedures are available, including effective equations. The specific form of nonlinear and nonlocal

equations suggests new questions for mathematical and computational investigations, and general

properties of nonlinear wave equations lead to several new options for physical effects and tests of the

consistency of loop quantum gravity. In particular, our quantum cosmological methods show how sizeable

quantum corrections in a low-curvature Universe can arise from tiny local contributions adding up

coherently in large regions.
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I. INTRODUCTION

One of the main problems in deriving a reliable Planck-
regime scenario in canonical quantum cosmology is the
question of how to include inhomogeneity. While homo-
geneous models can easily be quantized, inhomogeneous
degrees of freedom severely complicate mathematical
evaluations. Even the formulation of consistent evolution
equations, subject to the anomaly problem, remains incom-
plete: no consistent and covariant version of inhomogene-
ous modes valid at high density and including all relevant
quantum effects is available at present.

As possible solutions, two approaches have been devel-
oped so far, mainly with the methods of loop quantum
cosmology [1,2]. First, effective equations have been suc-
cessful in addressing the anomaly problem [3,4] and in
including all relevant quantum effects in sufficiently gen-
eral form. (For details, see Ref. [5]). Potentially observable
phenomena have been uncovered, showing physical
consequences of discrete quantum geometry [4,6–13] and
making the theory falsifiable [14,15]. At high density, the
implications of quantum space-time can be dramatic:
general properties of effective constrained systems show
the presence of signature change, turning Lorentzian space-
time into a quantum version of 4-dimensional Euclidean
space [16–19]. Bounces, as they had often been envisaged
as nonsingular versions of cosmology [20], and formulated
in quite some detail [21] in homogeneous models of loop
quantum cosmology, are then replaced by acausal pieces of
4-dimensional space devoid of deterministic evolution.

Regarding specific field equations and details of the tran-
sition, however, present calculations remain incomplete
because not all quantum effects could yet be implemented
consistently at high density. Moreover, although state prop-
erties can be derived by canonical effective equations,
finding full quantum states is difficult in this setting.
One of the alternatives is so-called hybrid quantization

[22], in which one combines a loop-quantized homogene-
ous background model with Fock-quantized inhomogene-
ous modes. Wave functions can then be solved for and
evolved, at least numerically and with certain truncations
[23]. However, using a Fock quantization for inhomoge-
neous modes, one does not directly deal with the discrete-
ness of space-time. Moreover, the hybrid method does not
address the anomaly problem; like related approaches
[24–27], it rather avoids dealing with the problem by fixing
the gauge or using deparametrization, choosing a time
variable before quantization. With these additional steps,
it is unlikely that the correct space-time picture is obtained
in covariant form, and in fact the models evaluated so far
have missed the signature change at high density.
In this article, we introduce a new way of incorporating

effects of inhomogeneity in loop quantum cosmology,
dealing directly with wave functions. Adapting ideas of
condensed-matter physics used to describe Bose—Einstein
condensates [28], some effects of inhomogeneity will
not be described by individual degrees of freedom but
rather by nonlinearity of wave equations for homogeneous
models. The relationship between difference equations of
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loop quantum cosmology [32,33] and certain integrable
nonlinear Schrödinger equations has been noted in
Ref. [34], providing additional motivation. The aim of
the present article is to lay down the main ideas and to
point out several new consequences for quantum cosmol-
ogy. We find that tiny quantum corrections from inhomo-
geneous contributions to a large Universe can add up
coherently to produce sizeable effects on average, to be
included in minisuperspace models [35].

II. PRODUCT STATES

We start with a common way of dealing with inhomoge-
neity, viewing quantum space at a given time (a spatial slice
used in canonical quantum gravity) as a collection of small
homogeneous parts. As one moves between spatial slices,
the geometry evolves, resembling a many-body system of
‘‘interacting’’ elementary building blocks. Each building
block (called a patch) has a quantum geometry described
by a wave function of one of the well-known homogeneous
models of quantum cosmology, and they all interact dynami-
cally according to the quantized gravitational Hamiltonian.

A. Classical model

For simplicity, in this article, we will assume isotropic
patch geometries, determined classically by a volume degree
of freedomVi;j;k per patch, labeled by integers i, j, k to count

patches in each spatial direction. A given spatial slice

� ¼ SN 1=3

i;j;k¼1 V i;j;k—a differentiable manifold with a local

atlas of coordinates—is then the union ofN patchesV i;j;k,

orN 1=3 in each spatial direction. (Had we used anisotropic
but still homogeneous patches, we would, in general, have
three independent factors in N ¼ N 1N 2N 3.) For now,
we will assumeN to be constant, which should be good for
sufficiently brief evolution times. In more realistic models,
the numberN of patches should change in time, either by a
fundamental process of discrete geometries being refined
[36,37] or by an approximation procedure akin to adaptive
mesh refinement that maintains the decomposition into iso-
tropic patches as a good model. (A time-dependent number
of degrees of freedom is a general problem, studied, for
instance, in Refs. [38–42].)

For simplicity, we choose coordinates in space such that
each patch has the same coordinate volume

R
V i;j;k

d3x ¼
‘30, with ‘30 ¼ V0=N in terms of the total coordinate vol-

ume V0 of � (or of a large compact subset). The geomet-
rical volume of each patch is then determined by the spatial
metric which, if it is inhomogeneous, gives rise to dif-
ferent patch volumes Vi;j;k. We assume that the metric is

close to the one of a spatially flat, isotropic model with a
longitudinal scalar mode, hab¼aðtÞ2�abþ2Lðt;x;y;zÞ�ab.
(We will use a lapse function corresponding to proper
time, N ¼ 1� 2L=a2.) The patch volumes then take the
values

Vi;j;k ¼
Z
V i;j;k

d3x
ffiffiffiffiffiffiffiffiffi
deth

p ¼ a3
Z
V i;j;k

d3xð1þ 2L=a2Þ3=2

� a3‘30 þ 3a
Z
V i;j;k

d3xL � V

N
þ 3aLðxi;j;kÞ‘30 (1)

with the total volume V ¼ a3V0 ¼ a3‘30N . In the two

approximations in the second line of this equation, we
have first expanded the root and then replaced the patch-
integrated L by its value at a point xi;j;k 2 V i;j;k, such as

the center. Since we assume the patches to be nearly
isotropic and smaller than the variation scale of the pertur-
bative inhomogeneity, L, both approximations are well-
justified. Solving Eq. (1) for L, we can, therefore, replace
the continuum function L by deviations of the discrete
variables Vi;j;k from the total volume V ¼ N a3‘30:

Lðxi;j;kÞ ¼
Vi;j;k � V=N

3a‘30
: (2)

The dynamics of the Vi;j;k as functions of time is gov-

erned by a discretized version of the Hamiltonian constraint

Hgrav þHmatter ¼ 0 (3)

of general relativity, with contributions from the gravita-
tional field and from matter. At this point, one will even-
tually have to face the problem of time and the anomaly
problem [43]. In this article, however, we focus on laying
out the details of the new model, and, therefore, circumvent
these difficult problems by formulating the dynamics in a
specific gauge. With this choice, we may be blind to the
complete quantum space-time structure, but new qualitative
effects should still become visible. To proceed and to be
specific, we assume matter to be dust, with Hamiltonian
Hmatter ¼ pt=a

3, where pt is a momentum variable conju-
gate to a matter degree of freedom t that will play the role of
time. The role of time is made clear if we rewrite the
Hamiltonian constraint equation as

pt ¼ �a3Hgrav ¼ � V

‘30
Hgrav: (4)

The variable pt then appears formally as an energy, or a
canonical Hamiltonian that generates evolution with
respect to t. (More generally, we could assume matter to

contribute to the Hamiltonian constraint by Hmatter ¼
pt0=a

3ð1þwÞ if there is a perfect fluid with equation-of-state
parameter w. A time variable t0 different from t then
parameterizes evolution.)
To derive the dynamics in detail, we start with the

classical Hamiltonian constraint of general relativity and
write it in discrete canonical variables Vi;j;k together with

their momenta �i;j;k, related to _Vi;j;k. In the Arnowitt-

Deser-Misner formulation of canonical gravity, the spatial
metric hab is canonically conjugate to
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�ab ¼
ffiffiffiffiffiffiffiffiffi
deth

p
16�G

ðKab � Kc
ch

abÞ: (5)

(See Ref. [50] for an introduction to canonical gravity.) We
compute the canonical variables in our perturbed situation
by writing hab ¼ �h�ab þ �hab and �ab ¼ ð ��=V0Þ�ab þ
��ab, split into background variables �h ¼ a2 and ��
(spatial constants) and inhomogeneity �hab and ��ab.
We divide �� by V0 in �ab to ensure that the symplectic

term
R
� d3x _hab�

ab ¼ _�h ��þ . . . assumes the canonical

form in its background term. For scalar modes in longitu-
dinal gauge, �hab ¼ 2L�ab and ��ab ¼ ���ab.

To avoid overcounting of degrees of freedom, we require
the inhomogeneity �f of any field f ¼ �fþ �f to satisfyR
� d3x�f ¼ 0 when integrated over all of space. (We turn

inhomogeneities of tensor fields such as �hab into scalars
using the background metric �ab.) As a consequence,
�f ¼ R

� d3xf is indeed the spatial average. At this stage,

we do not assume that �f is of first or any specific order in
perturbation theory; we have simply rearranged our
degrees of freedom by splitting them into background
variables and inhomogeneity. The symplectic structure,
our current interest, only refers to degrees of freedom but
not to orders of perturbation theory: higher perturbative
orders do not introduce new degrees of freedom. We will
introduce the perturbative expansion when we prepare our
Hamiltonian for a derivation and analysis of equations of
motion.

Any terms linear in �hab or ��
ab in the Hamiltonian or

symplectic term
R
� d3x _hab�

ab therefore vanish. Inserting

the inhomogeneous metric hab ¼ ða2 þ 2LÞ�ab in (5)
(with vanishing shift and longitudinal lapse in Kab) results
in the inhomogeneous momentum

�ab ¼ � 1

8�G

�
_aþ a

�
L

a2

���
�ab; (6)

from which we read off the momentum of �h ¼ a2 as
�� ¼ � _aV0=8�G with the total coordinate volume V0,
and the momentum of �hab ¼ 2L�ab as ��ab ¼
�ðaðL=a2Þ�=8�GÞ�ab. By a canonical transformation,
we can switch to volume variables as defined in our patch
model: we have momenta

�V ¼ � 1

12�G

_V

V
and �i;j;k ¼ � 1

12�G

�N Vi;j;k

V

��
(7)

of V and Vi;j;k.

For small inhomogeneity, it is sufficient to expand the
Hamiltonian constraint to second order in �hab (or L) and
its time and space derivatives. Starting from

Hgrav ¼ 1

16�G

Z
�
d3xNðKabKab � K2 � 3RÞ ffiffiffiffiffiffiffiffiffi

deth
p

¼
Z
�
d3xH grav;

(with the lapse function N which we set equal to one in our
gauge), we obtain

H grav � � 3

8�G

�
a _a2 þ _L2 � 4ð _a=aÞ _LLþ 4ð _a=aÞ2L2

a

þ a�3
X3
b¼1

��
@L

@xb

�
2 � 4

3
L

�
@2L

@xb
2

���
:

In the HamiltonianHgrav ¼
R
� d3xH grav, we can integrate

by parts in spatial derivatives, replacing second-order de-
rivatives by first-order ones. (Boundary terms will play no
role in what follows.) Moreover, it turns out that the
time derivatives of L can be written more compactly if
we use L=a2, a combination of variables that is also more
convenient when expressed by patch volumes: _L2 �
4ð _a=aÞ _LLþ 4ð _a=aÞ2L2 ¼ ððL=a2Þ�Þ2. The Hamiltonian
density we use will, therefore, be

H grav ¼ 3a3

8�G

��
_a

a

�
2 þ

��
L

a2

���2

þ 7

3

1

a2
X3
b¼1

�
@ðL=a2Þ
@xb

�
2
�
: (8)

We then introduce our background momentum _a=a ¼
�4�G�V and the patch momenta ðL=a2Þ�!�4�G�i;j;k

after replacing the integral by a sum over patches,R
� d3xH grav �

P
i;j;kH i;j;k. Our discretized Hamiltonian

then is

Hdisc
grav ¼ �6�GV

�
�2

V þ 1

N

X
i;j;k

�2
i;j;k þ . . .

�
(9)

where the dots indicate the derivative terms after
discretization.
We have quadratic single-patch Hamiltonians in the first

two terms, analogous to harmonic 1-particle Hamiltonians
of our many-body problem. Spatial derivatives of L must
be discretized before they can be expressed in terms of the
Vi;j;k. The discretization procedure is a matter of choice

and, to some degree, convenience; we will make use of

@

@xb
Lðxi;j;kÞ

a2
! Vði;j;kÞþ~b � Vði;j;kÞ�~b

6‘0ðV=N Þ ; (10)

indicating by ~b the unit vector in the b direction [51].
Quadratic expressions of spatial derivatives in Eq. (8)

then provide interaction terms that can be written as
depending on either the patch geometries in product
form, such as Vði;j;kÞþ~bVði;j;kÞ�~b, or more conveniently, the

difference ðVði;j;kÞþ~b � Vði;j;kÞ�~bÞ in discrete minisuper-

space. The latter version is closer to interactions of
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many-body systems depending on the distance between
particles.

In addition to interactions between neighboring
patches, each patch volume interacts with the average
volume V because it appears in some factors in the
Hamiltonian. These variables are not independent but sat-
isfy

P
i;j;kVi;j;k ¼ V. In order to focus on the self-

interaction of inhomogeneity, we will treat V as an external
parameter for the dynamics of the Vi;j;k, corresponding to

the common approximation in cosmology that ignores
backreaction of inhomogeneity on the background.

B. Quantization

Each patch of volume Vi;j;k and expansion rate related to

�i;j;k is isotropic and may be quantized as a single minis-

uperspace model, corresponding to the 1-particle Hilbert
space of a many-body system. One may follow either
Wheeler–DeWitt quantization or loop quantization, both
with volume representations in which Vi;j;k becomes a

multiplication operator. In the former case, one deals
with wave functions c ðVi;j;kÞ in L2ðRþ; dVi;j;kÞ and the

momenta act by �̂i;j;k ¼ �iℏd=dVi;j;k; in the latter, c Vi;j;k

is an element of the nonseparable sequence space ‘2ðRÞ,
and exponentials of momenta, rather than momenta them-
selves, are quantized:

expði d�i;j;k �i;j;k=ℏÞc Vi;j;k
¼ c Vi;j;kþ�i;j;k

(11)

for real numbers �i;j;k (whose values are to be fixed as part

of quantization choices) [52]. The action of

expði d�i;j;k �i;j;k=ℏÞ on the sequence space is not continu-

ous in �i;j;k, and a derivative by �i;j;k, which would other-

wise result in an operator for �i;j;k, does not exist.

[A second difference between the quantizations is that
Vi;j;k in Wheeler—DeWitt models is usually taken as the

(positive) volume, while loop quantum cosmology is based
on triad variables in which Vi;j;k is the oriented volume,

which can turn negative if the orientation is reversed. We,
therefore, use the full real line R in the sequence space,
rather than Rþ. Note that this resolves self-adjointness
issues of derivative operators on L2ðRþ; dVi;j;kÞ.]

Both representations are well-defined but not unitarily
related to each other; they lead to different physics.
Especially at high curvature, where �i;j;k is large, effects

of the loop quantization can differ significantly from those
of the Wheeler—DeWitt quantization. The discreteness
inherent in shift operators (11) relating derivatives is then
important, in addition to the discreteness implemented by
our treatment of inhomogeneity.

If inhomogeneity is small, the patches evolve nearly
independently of one another without strong correla-
tions, and the evolved state remains a product state
�ðV1; V2; . . .Þ ¼ c 1ðV1Þc 2ðV2Þ . . . of the individual
patch wave functions c i if the initial state is of such a

form. Each single-patch wave function evolves according
to a differential (Wheeler—DeWitt [54]) or difference
(loop quantum cosmology [32,33]) equation if inhomoge-
neity can be ignored. With inhomogeneity included, inter-
action terms between the individual wave functions occur
on superspace, complicating the dynamics. If inhomoge-
neity is sufficiently small, however, the interactions can be
treated by approximation, such as perturbation theory.
Small inhomogeneity at the level of quantum geometry

also implies that the individual wave functions are very
similar to one another, so that the full state can approxi-
mately be written as�ðV1; V2; . . .Þ ¼ c ðV1Þc ðV2Þ . . . with
a single wave function c to be solved for. This form of
product states allows one to map many-body dynamics to
1-particle dynamics in a specific potential, described by a
wave equation that turns out to be nonlinear. At this stage,
standard techniques to describe matter condensates, in
which individual wave functions of different particles are
exactly equal to one another, can be applied.

C. Condensate

By our preceding considerations in cosmology, we have
realized a mathematical formulation with all the ingre-
dients used in the description of Bose—Einstein conden-
sation. We interrupt our discussion of cosmology to recall
salient features of this important system in condensed-
matter physics. In this example, � is a many-body state,
and c the 1-particle wave function common to all constit-
uents of the condensate. Taking the same c is not an
assumption because condensed particles have exactly the
same wave function.
Assuming pointlike interactions between the particles,

described by a delta-function potential of strength �, we
have the many-body Hamiltonian

Ĥ ¼ Xn
i¼1

�
1

2m
p̂2
i þ Vðx̂iÞ

�
þ 1

2
�
X
i�j

�ðx̂i � x̂jÞ (12)

for n particles of mass m in individual potentials VðxiÞ.
With a product state �ðx1; x2; . . .Þ ¼ c ðx1Þc ðx2Þ . . . for
the condensate, we compute the expectation value of the
Hamiltonian as

hĤi� ¼ nhp̂2=2mþ Vðx̂Þic þ 1

2
nðn� 1Þ�

Z
d3xjc ðxÞj4:

(13)

The first term just adds up the 1-particle expectation values
computed for the wave function c . The second term is not
equal to a 1-particle expectation value. However, we can
formally interpret it as the expectation value of a ‘‘poten-
tial’’ jc ðxÞj2 depending on the wave function. Accordingly,
the 1-particle dynamics and energy spectra are governed by
a nonlinear Schrödinger equation, the Gross—Pitaevski
equation
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iℏ
@c

@t
¼ � ℏ2

2m

@2c

@x2
þ VðxÞc þ 1

2
ðn� 1Þ�jc ðxÞj2c :

(14)

For a full and rigorous derivation, see Refs. [55,56].
Interacting many-body dynamics of the condensate wave

function can, therefore, be mapped to nonlinear 1-particle
dynamics.

III. NONLINEAR DYNAMICS
IN QUANTUM COSMOLOGY

With the preparations presented in the preceding section,
we propose a new method to deal with small cosmological
inhomogeneity, making use of the same ideas and initial
constructions employed to describe matter condensates.
Well-established methods then provide a tractable approxi-
mate description by nonlinear dynamics of a homogeneous
model.

A. Equation of motion

Except for the differences in the conceptual nature,
regarding, for instance, the approximations and assumptions
used, our model for inhomogeneous quantum cosmology so
far resembles those of matter condensates rather closely.
The main mathematical difference lies in the interaction
potential. For particles in a condensate, a delta function of
the distance between particles is a good approximation for
nearly pointlike interactions, which can be smeared out to
more-complicated functions for realistic systems. The inter-
action potential we obtain in cosmology, expanding and
discretizing the gravitational Hamiltonian constraint, is a
quadratic polynomial in the distances in minisuperspace.
Although the single-patch wave equation we obtain is still
nonlinear, as in the presence of any kind of interactions, it is
more complicated than in the Gross-Pitaevski equation.

Another difference between the models is the discrete-
ness of the quantum representation used in a loop quanti-
zation, in addition to the discretization of space by patches
V i;j;k. Not only space but also superspace is then discrete.

As a consequence, wave equations in loop quantum cos-
mology are difference equations, and with our method to
include inhomogeneity, we will be dealing with some
version of a discrete nonlinear Schrödinger equation, one
example given by

iℏ
@c n

@t
¼ ðc nþ1 � 2jc nj2c n þ c n�1Þ: (15)

However, since we are not dealing with pointlike interac-
tions in superspace, modeled by delta functions, but rather
with polynomials, the nonlinearity will be different. In fact,
our equation will not only be nonlinear but also nonlocal
but, nevertheless, as it turns out, well-suited to canonical
effective methods.

Using the same starting point as in Bose—Einstein
condensation, the key step is to evaluate the expectation

value of the interaction Hamiltonian in a product state. To
illustrate the main consequence, we consider just two var-
iables V1 and V2 interacting with each other via a potential
WintðV1; V2Þ ¼ �ðV1 � V2Þ2=V2 as in a discretized Eq. (8).
We divide by the total volume squared, treated as an
external but time-dependent parameter, in order to have
the correct scaling behavior of the Hamiltonian under a
change of the spatial region. The expectation value of the
quantized Wint then produces a term

hŴ inti� ¼ �

V2

Z
dV1dV2jc ðV1Þj2jc ðV2Þj2ðV1 � V2Þ2

¼ �

V2

Z
dV1jc ðV1Þj2

Z
d�Vjc ðV1 þ �VÞj2ð�VÞ2

(16)

where we introduce �V :¼ V2 � V1.
We can perform the second integration independently of

the first over V1. It depends on the wave function, but if we
assume that c is sharply peaked around the expectation

value hV1i, the dominant contribution to hŴ inti� comes
from values of V1 for which the second integrationZ

d�Vjc ðhVi þ �VÞj2ð�VÞ2 ¼ ð�VÞ2 (17)

equals the quantum fluctuation of V in the state c ðVÞ.
Instead of a nonlinearity potential depending on c ðVÞ or
c n as in Eq. (15), we have a nonlinearity potential that
depends on the wave function via moments such as �V.
For instance, following the preceding arguments and not-
ing that the minisuperspace V is quantized to a discrete
parameter n, we need to consider an equation of the form

iℏ
@c n

@t
¼ c nþ1 � 2

�
1� 1

2
�
ð�nÞ2c
n2

�
c n þ c n�1: (18)

We note that Eq. (18) is not only nonlinear but also
nonlocal: the coefficient ð�nÞ2c ¼ P

nðn� hnic Þ2jc nj2
depends on all values of c n. Moreover, the equation as
written is meaningful only for n � 0. At n ¼ 0, the volume
vanishes, and we encounter a cosmological singularity. By
inverse-triad corrections [57], loop quantum cosmology
resolves this singularity in such a way that 1=n is replaced
by a bounded function. For simplicity, we will not discuss
these terms here and instead focus on evolution at large n.
We must ensure that our assumption of a sharply peaked

state remains true for the approximation to be valid. If the
state is not sharply peaked or if the approximation is to be
driven to higher orders, we can use a derivative expansion
of c . Writing

jc ðV1 þ �VÞj2 ¼ jc ðhVi þ �V þ ðV1 � hViÞÞj2

and expanding by V1 � hVi, we obtain

hŴ inti� ¼
Z

dV1jc ðV1Þj2WnonlinðV1Þ
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with the nonlinearity potential

WnonlinðVÞ ¼
X1
j¼0

1

j!
ð�VÞ2

�ðjÞ ðV � hViÞj; (19)

where the moment ð�VÞ2
�ðjÞ is the V fluctuation computed

with the ‘‘distribution’’ �ðjÞ, defined as the jth derivative of
�ðVÞ ¼ jc ðVÞj2. Note that these derivatives need not be
normalized or positive, so that we do not have probability
distributions and fluctuations in the statistical sense.
Nevertheless, the resulting numbers are well-defined as
parametrizations of the nonlinearity potential.

We continue with a discussion of the leading-order
equation (18).

B. Solution procedures

An inverse scattering transform is the method of choice
to solve nonlinear discrete or differential Schrödinger
equations [58]. However, the equation we obtain here,
Eq. (18), is not only nonlinear but also nonlocal.
Standard techniques are, therefore, not readily available.

Nonlocal equations can sometimes be treated by replac-
ing the nonlocal coefficient by new auxiliary degrees of
freedom, as in Ref. [59] in the context of the nonlinear
Schrödinger equation. If the new degree of freedom is
subject to a differential or difference equation with a
source term given by the original wave function c , its
general solution is a nonlocal expression in c (integrating
its product with the Green’s function of the auxiliary
equation). If the right equation is chosen, the general
solution for the auxiliary variable may provide the nonlocal
coefficient, ð�nÞ2 in our case. Here, however, such a treat-
ment is not obvious.

Instead, canonical effective methods [60] based on the
dynamics of moments of a state provide solution techniques
well-suited for equations such as Eq. (18). The nonlocal
coefficient is a second-order moment of the wave function;
using equations for the moments instead of c n itself then
provides a reformulation of the problem in variables in
which the nonlocality disappears. Morally, this procedure
is a version of introducing new degrees of freedom related
to the wave function nonlocally, for moments [61] such as
�ðnaÞ :¼ P

nðn� hniÞajc nj2 with the expectation value
hni ¼ P

nnjc nj2 are nonlocal in c n. However, in quantum
physics, the moments are not auxiliary variables but rather
variables of prime physical interest. For a ¼ 2, we have
quantum fluctuations, and higher moments with a > 2 pro-
vide additional statistical information about the state.

For linear discrete or differential Schrödinger equations,
canonical effective techniques [60] amount to a systematic
expansion of Ehrenfest’s equations, used not just to derive
the semiclassical limit in rigorous terms [62] but also to
compute quantum corrections to any desired order in ℏ. For
our purposes, we need to generalize these methods to
nonlinear equations as encountered here.

In quantum mechanics, a set ofN basic operators Ĵi with
closed linear commutators

½Ĵi; Ĵj� ¼
X
k

Cij
kJk (20)

(perhaps including the identity operator if some commu-
tators are constants) provides a closed algebra for expec-
tation values under Poisson brackets

fhĴii; hĴjig ¼
h½Ĵi; Ĵj�i

iℏ
: (21)

If the operators are complete, any observable can be

expressed as a function of the expectation values hĴii and
moments

�

�Y
i

Jaii

�
:¼

�Y
i

ðĴi � hĴiiÞai
�
symm

(22)

with operator products in totally symmetric ordering. Using
linearity and the Leibniz rule for Poisson brackets, these
expectation values and moments form a Poisson manifold.
Their dynamics is determined by the Hamiltonian flow

generated by the expectation value HQ :¼ hĤi of the

Hamiltonian constraint, another observable interpreted as
a function of expectation values and moments. Hamiltonian
equations of motion usually couple infinitely many
moments to the expectation values, but a semiclassical
expansion to some finite order in ℏ results in finitely
coupled equations which can be solved at least numerically.
Computer-algebra codes exist to automate the generation of
equations to rather high orders [63] (so far restricted to
canonical commutators).

Writing Ĵi ¼ hĴii þ ðĴi � hĴiiÞ in the quantum

Hamiltonian HQ ¼ hHðĴiÞi and performing a formal ex-

pansion in ðĴi � hĴiiÞ, the Hamiltonian flow is generated by

HQ ¼ HðhĴiiÞ þ
X
ai

1

a1!
. . .

1

aN!

� @a1þ...aNHðhĴjiÞ
@hĴ1ia1 . . . @hĴNiaN

�

�Y
i

Jaii

�
: (23)

The first term is the classical Hamiltonian evaluated in
expectation values, and the series includes quantum correc-
tions of progressing order

P
iai. Equations of motion follow

from Poisson brackets.
These constructions rely on commutators of linear

operators and cannot be used directly for nonlinear
Schrödinger-type equations. Nevertheless, a closely related
procedure can be followed for equations such as Eq. (18) in
which the nonlinearity comes from nonlocal coefficients
depending on the moments. As one can readily confirm by
computing time derivatives of expectation values directly
using Eq. (18) for wave-function factors, the evolution of
moments is now governed by a quantum Hamiltonian (23)
in which one initially treats the moments that appear in the
nonlocal coefficients as external functions; because they do
not come from a linear operator, they do not appear in
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commutators or in Poisson brackets of the moments when
equations of motion are derived. In the equations of mo-
tion, once derived, these variables are to be equated to the
moments they signify, providing additional coupling terms
between moments compared with a linear Hamiltonian.

In our case, the Ĵi are given by three basic operators, a
multiplication operator by n (the volume operator) and two

shift operators ĥ and ĥy that change n by �1, implement-
ing Eq. (11) with � ¼ 1. In terms of canonical variables
ðn; PÞ, we can write shift operators as quantizations of h ¼
expðiPÞ. The commutators

½n̂; ĥ� ¼ �ℏĥ; ½n̂; ĥy� ¼ ℏĥy; ½ĥ; ĥy� ¼ 0 (24)

then define the basic algebra (20) of our loop-quantized
theory, and correspondingly the Poisson brackets of expec-
tation values and moments of n and h. Moreover, since
we introduced complex variables, the reality condition

ĥĥy ¼ 1 as well as analogs for the moments (such as
�ðhh�Þ ¼ 1� hh�) must be satisfied.

We can realize the linear part of Eq. (18) as the

Schrödinger equation with Hamiltonian operator ĥþ ĥy �
2, resulting in the quantum Hamiltonian Hlin

Q ¼ hþ h� �
2 depending only on expectation values but not on
moments. Adding the nonlinearity, we have an extra term

� 1
2�Ahdn�2i with A treated as a constant to be set equal to

A ¼ ð�nÞ2 in equations of motion, and hdn�2i to be
expanded by moments as in Eq. (23). For the difference
equation (18), we then have the quantum Hamiltonian

HQ ¼ hþ h� � ð2� �Ahdn�2iÞ
¼ hþ h� � 2þ �Að3n�4ð�nÞ2 � 20n�5�ðn3Þ þ . . .Þ

(25)

with the nonlocal coefficient A treated for now as an
external parameter. (Instead of the inverse of n, which is
ill-defined at n ¼ 0, modifications due to inverse-triad
corrections in loop quantum cosmology should be used at
small n [57].)

We obtain the equations of motion from Poisson brack-
ets, in which we then set A ¼ ð�nÞ2:

_n ¼ iðh� h�Þ (26)

_h ¼ 12i�
h

n

�
�n

n

�
4 � 6i�

ð�nÞ2�ðnhÞ
n4

þ . . .
dð�nÞ2

dt

¼ 2ið�ðnhÞ � �ðnh�ÞÞ (27)

and so on for further moments. Instead of €n ¼ 0 as in the
linear case, we can combine the first two equations to obtain

€n¼ ið _h� _h�Þ

¼�24�
ð�nÞ2
n4

�
Reh

n
ð�nÞ2�1

2
Reð�ðnhÞÞ

�
þ . . . : (28)

Nonzero moments imply acceleration of the volume
expansion [which is negative unless correlations
nRe�ðnhÞ=ðð�nÞ2 RehÞ are large].

C. Interpretation

Irrespective of the precise form of nonlinearity, its pres-
ence has several general consequences of potential impor-
tance for quantum cosmology. An obvious and seemingly
problematic implication is a loss of unitarity: wave func-
tions evolved by the nonlinear equation do not have pre-
served scalar products with other evolved states. There is
no linear operator that could serve as a Hamiltonian whose
adjointness properties one could analyze by standard tech-
niques. Still, a straightforward direct calculation shows
that the norms hc jc i of states (but not scalar products
h�jc i of different states) are preserved. However, the
original many-body system is clearly unitary, and, there-
fore, nonunitarity is a consequence of the reductions and
approximations used. In order to interpret the nonlinearity
correctly, we should, therefore, look back on the construc-
tions used to descend from many-body dynamics to a
1-particle equation.
For a matter condensate, we obtain the nonlinear wave

equation (14) in a rather indirect way:We do not reduce the
many-body wave equation for � directly, but rather com-
pute the expectation value of the Hamiltonian (13), rewrite
it in terms of the 1-particle wave function c , and recognize
the extra term as a formal analog of a potential depending
on the wave function. This potential, inserted in the stan-
dard Schrödinger equation, then provides Eq. (14), a step
which is again only formal. Experience shows that the
resulting nonlinear equation nevertheless captures crucial
properties of the many-body problem, and rigorous proofs
have been provided [55,56].
One can avoid the last formal step by forgoing wave

equations and instead using the expectation value (13) to
compute the spectrum of the many-body Hamiltonian, for
instance, by variational methods applied to the 1-particle
wave function c on the right-hand side of Eq. (13). If the
spectrum of the Hamiltonian is known, evolution properties
then followwithout directly using the nonlinear equation (14).
Similarly, effective canonical equations in quantum mechan-
ics refer to expectation values of the Hamiltonian, such as
Eq. (13), rather than wave equations, and are, therefore, less
sensitive to the apparent loss of unitarity.
The physics of the system, therefore, does not suffer

from a lack of unitarity. Moreover, since the norm is still
preserved, the probability interpretation of a single state
remains meaningful. Instead of using Eq. (14) as a fun-
damental wave equation for some function c in a Hilbert
space, the equation models other dynamical effects, such
as the evolution of particle distributions or the approach
and possible interaction of superposed states. Properties
such as the overlap of superposed states or the distance
between different distributions can be determined from
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moments of a single wave function for the superposition
and are independent of scalar products of the wave
function with other states; they can be analyzed with a
formal equation lacking unitarity. These are also the
properties that effective equations are sensitive to. In
quantum cosmology, such questions are usually of most
interest because the exact state or wave function of quan-
tum space is not accessible by observations available now
or in the foreseeable future. Our model with the analog
(18) of the Gross-Pitaevski equation (14) is therefore
reasonable.

IV. DISCUSSION

We have introduced a new model for inhomogeneous
quantum cosmology, aiming to capture essential features
of the interacting dynamics of different parts of quantum
space. The processes we describe, therefore, provide
the dynamics of structure formation at a fundamental
level. Using several approximations, justified when inho-
mogeneity is sufficiently small, and importing ideas of
condensed-matter physics, we have been able to map the
complicated many-body dynamics to a nonlinear minis-
uperspace equation [64].

In addition to the approximate nature, several differ-
ences with the condensate model occur:

(i) In the cosmological model, ‘‘interactions’’ between
different patches are realized in superspace, not in
actual space. Patches do not interact depending on their
spatial distance, but depending on what their geome-
tries are: The gravitational Hamiltonian depends on
inhomogeneous modes, or on deviations of patch ge-
ometries from the spatial average.

(ii) There is no delta-function potential (for pointlike inter-
actions) but rather a polynomial potential, obtained by
expanding the gravitational Hamiltonian as a function
of patch geometries. As a consequence, the nonlinear-
ity is realized nonlocally in the configuration space of
wave functions.

(iii) While the many-body Hamiltonian of a conden-
sate is well-known but difficult to deal with, a
consistent version of an inhomogeneous gravita-
tional Hamiltonian in quantum gravity is still
lacking. In particular, covariance conditions and
the related problem of anomalies have not been
evaluated in sufficient detail [69–73]. (But see
Refs. [74–78] for recent progress.)

In this situation, having an approximate description of
incompletely known dynamics, we cannot expect to de-
rive detailed quantitative cosmological scenarios. (This
statement does not only apply to our new method, but
to all derivations possible in quantum cosmology so far.)
Effective techniques, as used in our solution procedure for
nonlinear nonlocal equations, provide means to parame-
trize ambiguities and ignorance, and to discuss anomalies,
but no details are available yet. We, therefore, focus our

discussion on new qualitative features suggested by the
nonlinearity of the homogeneous model.
Nonlinear wave equations provide new forms of minis-

uperspace effects that capture crucial properties of aver-
aged inhomogeneity. These terms need not require high,
near-Planckian densities to be significant because they
could potentially be large when many patch contributions
are added up, even if each of them is tiny. All leading
contributions have the same sign because they come from
volume fluctuations, required to be positive. No cancella-
tions happen when one sums over all patches, potentially
giving large effects. For certain behaviors of quantum
fluctuations as functions of time or the volume, our non-
linearity can be interpreted as a cosmological-constant
term, which turns out to be negative. (Again, the sign is
determined because quantum fluctuations are always posi-
tive.) It remains to be seen whether more-refined models,
including those with anisotropic patches, or higher orders
in the moments in Eq. (19), not all of which are restricted
by positivity, as well as perturbed Hamiltonians beyond
second order can turn the sign to provide an overall posi-
tive cosmological constant.
An interesting feature of nonlinear wave equations is the

existence of a particular type of solutions: solitons. These
are sharply peaked wave packets which evolve without
changing shape. Moreover, if solitons occur in superposi-
tion, moving in different directions, they may occasionally
overlap but do not influence each other. After they have
moved through the same spot, they retain their old shapes.
Such states are a promising candidate for new dynamical
coherent states in quantum cosmology. In contrast to kine-
matical coherent states (or Gaussians) commonly used in
such cases, solitons are adapted to the dynamics and, in the
indirect way that employs nonlinear wave equations, cap-
ture properties of inhomogeneity; in fact, their existence as
solutions relies on deviations from exact homogeneity.
The existence of solitons and the integrability of equa-

tions, together with the associated possibility of chaos,
depends sensitively on the form of discrete equation [79].
The discreteness, in turn, is related to quantization and
regularization ambiguities in canonical quantum gravity.
The strong sensitivity of some physical features may allow
one to find tight restrictions on ambiguities.
We end by mentioning another, more speculative con-

sequence. In quantum cosmology, solitons in superposition
would correspond to different universes superposed in the
same state. Solitons may overlap but do not affect each
other’s motion; they always form separate contributions to
the total state. Solitons and the nonlinear wave equations
they solve could, therefore, play a role in the description
and analysis of multiverse models.
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