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We investigate the interiors of (3þ 1)-dimensional, asymptotically flat charged and rotating black

holes as described by observers who fall into the black holes at late time, long after any perturbations of

the exterior region have decayed. In the strict limit of late infall time, the initial experiences of such

observers are precisely described by the region of the limiting stationary geometry to the past of its inner

horizon. However, we argue that late-infall-time observers encounter a null shock wave at the location of

the would-be outgoing inner horizon. In particular, for spherically symmetric black hole spacetimes, we

demonstrate that freely falling observers experience a metric discontinuity across this shock; that is, a

gravitational shock wave. Furthermore, the magnitude of this shock is at least of order unity. A similar

phenomenon of metric discontinuity appears to take place at the inner horizon of a generically perturbed

spinning black hole. We compare the properties of this null shock-wave singularity with those of the null

weak singularity that forms at the Cauchy horizon.
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I. INTRODUCTION

In Einstein-Hilbert gravity coupled to various matter
fields, the exterior geometry of a (3þ 1)-dimensional,
asymptotically flat black hole (BH) spacetime typi-
cally approaches a stationary solution at late time.
Nonstationary perturbations decay both by falling across
the horizon and by dispersing to infinity, as described by
the ringdown of quasinormal modes followed by power-
law tails. Our purpose here is to explore a corresponding
late-time limit of the associated black hole interiors.
We will argue that, as far as the observations of late
infalling physical observers are considered, the result is
well described by a simple effective geometry which con-
tains the part of the corresponding stationary BH solution
to the past of the inner horizon. However, the regular inner
horizon is replaced by singular components of two differ-
ent types: (i) The ingoing section of the inner horizon—the
Cauchy horizon (CH)—is replaced by a null, weak curva-
ture singularity, and (ii) the outgoing section of the inner
horizon is replaced by an outgoing shock-wave singularity.
The presence of a null, weak curvature singularity at the
CH is a well-known phenomenon since the pioneering
works of Hiscock on the Reissner-Nordström-Vaidya so-
lution [1] and of Poisson and Israel on the mass inflation
model [2] (see also Ref. [3]). It is the second singular
component—the outgoing shock-wave singularity—which
will be our main concern in this paper. Our study is
motivated in part by the picture of extreme black holes at

late time suggested in Ref. [4] and explored further in
Ref. [5]. This picture agrees with the extreme limit of
our results below.
The starting point for our analysis is the large body

of literature studying perturbations of the Reissner-
Nordström (RN) and Kerr interiors. With the assumption
of spherical symmetry, these works establish that perturba-
tions transform at least the initial part of the ingoing inner
horizon (the CH) of RN into a null curvature singularity
often called the mass inflation singularity. This singularity
is weak in the sense that the metric remains continuous at
the singularity, though it is not differentiable. In particular,
the area radius r of the spheres is well defined at this

singularity, taking the value r� ¼ M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � q2

p
near

the point marked iþ on the conformal diagram shown in
Fig. 1 (left) and shrinking toward the future as described
by the Raychaudhuri equation, eventually reaching r ¼ 0.
In the spherical case, at least when the matter content
includes a minimally coupled massless scalar field, it has
been numerically established [6–8] that when r shrinks to
zero, the weak null singularity meets a strong spacelike
singularity,1 along which r ¼ 0. This situation is depicted
in the left panel of Fig. 1. Note that curvature scalars
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1These numerical simulations showed that a transition from a
null to a spacelike singularity occurs in a region which (when
mapped to a collapsing shell spacetime) would correspond to
being outside the shell (i.e., where the electric field is nonzero).
However, when the initial scalar perturbations are sufficiently
weak, the full focusing of the CH to r ¼ 0 will only occur inside
the shell. We strongly expect the formation of a spacelike
singularity in this case as well, and have drawn this scenario
in Fig. 1.
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diverge at both the spacelike and null singularities
described above. While the establishment of a spacelike
singularity is less certain for other forms of matter (e.g.,
perfect fluids), it is nevertheless expected that all future-
directed timelike and null curves inside the black hole
will be incomplete due to reaching a curvature singularity
of some form.

Investigations of nonlinearly perturbed spinning BHs
reveal a similar scenario. Perturbative analyses [9–11]
again indicate the formation of a null, weak scalar-
curvature singularity at the CH (though this time the sin-
gularity is generically oscillatory [11], as opposed to the
monotonic mass inflation singularity in the spherical case).
The presence of such a null singularity is also supported
by an asymptotic local analysis of the Einstein equations
[12], as well as by exact analytical constructions of locally
generic classes of null weak singularities [13]. Yet, to the
best of our knowledge, no numerical verification of this
scenario has yet been carried out in the spinning case.

The results above provide a good (if not yet fully com-
plete) understanding of the internal structure of generic
(charged, rotating, nonstationary) asymptotically flat, iso-
lated (i.e., nonaccreting [14]) black holes in classical

general relativity.2 However, the detailed experiences of
any given observer inside such a black hole will in general
depend on the process by which the black hole was formed
and on the particular perturbations generated. In contrast,
we argue below that the spacetime effectively simplifies
from the point of view of observers who enter the black
hole at late time, which we call late-infall-time (or just
late-infall) observers. The simplified spacetime may be
described by the simple stationary BH solution up to the
inner horizon—and an effective outgoing shock wave at
the outgoing portion of the latter (plus a null, weak singu-
larity at the CH). This structure is depicted in the right
panel of Fig. 1.
Due to the key role it plays in our analysis, it is useful to

describe the notion of late-infall observers in more detail.
We start with a simple demonstration (though not neces-
sarily the most precise or most general one) of this concept.
Recall that perturbations outside the BH decay at late time,
where of course late means relative to the formation of the
black hole and the onset of any significant new perturba-
tions. Therefore, for observers who fall into the BH at
sufficiently late time, the exterior geometry will be well
approximated by the stationary (and axially symmetric)
BH metric. This allows one to associate specific values of
energy E (¼ �ut) and angular momentum L (¼ u’) to the

late-time geodesics. More importantly, owing to the ap-
proximate time translation of the external geometry, from
any ‘‘seed’’ infalling geodesic �0, we may construct a one-
parameter family � of similar geodesics, obtained from �0

by time translation to the future. (We emphasize that in
the present construction, the members of � are exactly
geodesics, all related to �0 by the approximate time trans-
lation.)3 Note in particular that all geodesics in � share
(approximately) the same values of E and L. Now, each
member of � is characterized by the parameter veh, namely
the value of the advanced time v (Eddington’s advanced
null coordinate) at which the geodesic crosses the event
horizon. For any given seed geodesic �0, the late-infall
observers are those members of � characterized by suffi-
ciently large values of veh.
Our main objective in this paper is to characterize the

experience of such late-infall observers who move toward
the outgoing section of the inner horizon in a generically
perturbed charged (or spinning) BH. We shall see that such
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FIG. 1 (color online). Left: A Reissner-Nordström black hole
formed by the collapse of a thin spherical charged shell and
subject to spherical perturbations by a massless scalar field. Two
types of singularities form: A null, weak singularity at the CH
(the diagonal dashed line) and a spacelike r ¼ 0 singularity
(the solid horizontal line, though see footnote 1). Depending
on the strength of the initial perturbation, the spacelike piece of
the singularity might also form much earlier. It may intersect
the worldline describing the shell or even entirely remove the
would-be outgoing inner horizon. Right: Our proposed effective
geometry of the perturbed (but spherically symmetric) collaps-
ing shell spacetime as seen by late-time observers. It consists
precisely of the region of the unperturbed eternal Reissner-
Nordström black hole with r > r�, together with two types of
singularities on its future boundary (at r ¼ r�): The diagonal
dashed line at the upper right represents the mass inflation
singularity, a null, weak singularity located at the CH.
The diagonal solid line at the upper left represents a null
shock-wave singularity, where the metric tensor is effectively
discontinuous.

2See Refs. [15–18] for attempts to incorporate semiclassical
effects.

3The geodesics in � may be constructed as follows: Let x� ¼
ðt; xiÞ be a set of coordinates for the BH exterior, such that at late
time the associated metric functions are approximately indepen-
dent of t. We pick a certain point P0 on the seed geodesic �0

outside the BH, and time-translate it to the future by a certain
amount �t. At the new point, which we denote as P0

0, we set the
four-velocity components u� to be numerically the same as
those of �0 at P0. The geodesic �0

0 which emanates from P0
0

with those initial four-velocity components u� now becomes a
member of the set �.
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observers experience abrupt changes in the amplitude of
various perturbing fields—as well as the metric itself—
while crossing the (would-be) inner horizon. These
changes occur within a short proper time interval, whose
magnitude decreases exponentially with the infall time veh.
For an observer with fixed resolution and sufficiently large
veh, this proper time interval is so tiny that he experiences
the perturbation as an effective shock wave.

The above-mentioned concept of late-infall observers
may be generalized, and reformulated in a somewhat
more precise manner (though we will not attempt a fully
precise definition here). Consider a continuous one-
parameter family of inextendible causal curves labeled
by the advanced time veh at which they cross the event
horizon, with veh taking values in some range (v0;þ1) so
that the family includes curves that enter the black hole at
arbitrarily late times. Note that since perturbations outside
the black hole decay, the advanced time v can indeed be
used as a coordinate along the horizon at sufficiently late
time. We require that, in the limit veh ! 1, the parts of
these curves to the past of the event horizon approach those
of a stationary family of such curves in some stationary
spacetime; i.e., for which curves with different values of
veh are related by the corresponding time translation. We
further require that, for large veh, the parts of our curves to
the future of the event horizon all have the same proper
accelerations when expressed using a reference frame
parallel-propagated along the worldline in terms of the
proper time along the worldline after crossing the event
horizon. One may think of this as the assumption that all
observers in a given family are equipped with identically
preprogrammed rocket ships. Of course, we insist that
these reference frames at the event horizon also be related
by an approximate time translation at large veh. For our
rather qualitative purposes below, it will not be necessary
to specify the precise rate at which these limiting behaviors
are approached, though some such specification will cer-
tainly be needed to derive more precise results.

After a brief review of charged spherical black holes in
Sec. II, we study the experiences of late-time observers
in stationary spacetimes subject to linear perturbations in
Sec. III. Such observers experience no perturbation at all
until they would expect to encounter an inner horizon.
However, they effectively encounter a shock wave at the
outgoing inner horizon. While we include a discussion of
linearly perturbed Kerr black holes, our treatment mainly
focuses on the simpler spherically symmetric case.

Nonlinear perturbations are addressed in Secs. IVand V.
Here we consider only spherical black holes. Section IV
addresses the model of a charged BH perturbed by a self-
gravitating scalar field. We show that the experiences of
freely falling late-time observers again agree with those in
unperturbed Reissner-Nordström up to the point where
they would expect to encounter the (outgoing section of
the) inner horizon. However, instead of finding a smooth

null surface at that point, they effectively encounter a
gravitational shock wave at which the metric is discontinu-
ous. Section V then gives a heuristic argument that the
experiences of more general late-time observers are simi-
lar, and in particular, that they are described by the effec-
tive spacetime shown in the right panel of Fig. 1. The final
discussion in Sec. VI describes possible generalizations to
rotating black holes and to black holes in any dimensions,
and the implications for finite-time observers who fall into
astrophysical black holes. We also discuss several aspects
of the gravitational shock-wave phenomenon which takes
place at the inner horizon.

II. PRELIMINARIES: SPHERICAL CHARGED
BLACK HOLE

The RN solution is the unique spherically symmetric
electrovac geometry. In Schwarzschild coordinates
ðt; r; �; ’Þ, it takes the form

ds2 ¼ �Fdt2 þ F�1dr2 þ r2d�2
2; (2.1)

where F � 1� 2M=rþ q2=r2, and d�2
2 � d�2 þ

sin2ð�Þd’2 is the unit two-sphere. Throughout this
paper we shall consider the nonextreme BH case, namely
0< jqj<M. In this case, FðrÞ vanishes at two r values,

r� � M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � q2

p
. The larger root rþ corresponds to

the event horizon, and the smaller one r� to the inner
horizon. Figure 2 (left) depicts a part of the Penrose
diagram of the eternal, analytically extended RN geometry.
Note that the inner horizon has two separate portions—the
two intersecting null lines denoted as r�.
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FIG. 2 (color online). Left: The eternal Reissner-Nordström
black hole. The vertical lines are singularities at r ¼ 0, while the
diagonal lines describe copies of asymptotically flat future or
past null infinities (Iþ and I�), outer horizons (rþ), and inner
horizons (r�). The full analytically extended solution consists of
a periodic vertical array of copies of the regions shown. Right:
A conformal diagram for the spacetime of a collapsing (but
otherwise unperturbed) spherically symmetric, massive charged
thin shell. The r ¼ 0 curve is a regular origin in the flat region
inside the shell. The Cauchy horizon is also indicated.
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Later, we shall also consider the spherically symmetric
spacetime of a charged collapsing thin shell. The geometry
outside the shell is described by the RN metric [Eq. (2.1)].
Inside the shell, the geometry is flat, i.e., Minkowski.
Figure 2 (right) displays this hybrid spacetime. In this
noneternal BH spacetime, the ingoing portion of the inner
horizon is a CH. The diagram only displays the globally
hyperbolic piece of the spacetime—namely, the region up
to the Cauchy horizon. (The extension beyond the CH will
not concern us in this paper.)

Let us examine the free-fall orbits of observers who
jump into the BH. Throughout this paper we assume, as
usual (and without loss of generality), that the motion is
confined to the equatorial plane. These geodesic orbits are
characterized by two constants of motion: the ‘‘energy’’
E � �ut > 0, and the angular momentum L � u’. They

satisfy the radial equation4

dr

d�
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � ð1þ L2=r2ÞFðrÞ

q
: (2.2)

Of particular importance will be the behavior of these
worldlines in the neighborhood of r ¼ r�, where the last
result becomes

dr

d�
ffi �E: (2.3)

In the analysis below, it will be useful to express the RN
metric in double-null coordinates. A particularly useful
form is given by the Eddington coordinates

u � t� r�; v � tþ r�; (2.4)

where r� is the tortoise coordinate defined by

dr=dr� ¼ FðrÞ: (2.5)

The line element then becomes

ds2 ¼ �FðrÞdudvþ rðu; vÞ2d�2
2; (2.6)

where r is to be regarded as a function of u and v,
determined (implicitly) by setting r� ¼ ðv� uÞ=2 in
Eq. (2.5). Notice that in the region which will mostly
concern us here (the domain r� < r < rþ), u is past
directed. (This choice of sign simplifies many of the
expressions below.)

Note that r� ! þ1 at r ¼ r�, implying that either u or
v must diverge there. It follows that at the ingoing section
of the inner horizon v ! 1 (as u is regular), whereas at the
outgoing section u ! �1 (and v is regular).

Since F vanishes at the inner horizon, in its neighbor-
hood we may approximate FðrÞ ffi �2�ðr� r�Þ, where

� � �ð1=2ÞðdF=drÞr¼r� (note that � > 0). It then

follows5 from Eq. (2.5) that near the inner horizon,

r� r� ffi Me�2�r� : (2.7)

That is, r� diverges logarithmically (in r� r�) at the
inner horizon.
The metric of Eq. (2.6) is singular at the inner horizon

[where detðgÞ vanishes]. To remove this coordinate singu-
larity, we define the inner horizon’s Kruskal-like coordi-
nates, U � �e�u, V � �e��v. With this choice of signs,
both U and V are future directed. Note that V (U) vanishes
at the ingoing (outgoing) section of the inner horizon. The
line element now reads 2gUVdUdV þ r2d�2

2. We shall not
need here the specific form of the metric functions rðU;VÞ
and gUVðU;VÞ ¼ gUVðrÞ. We shall just note that both
functions are regular. Furthermore, gUV turns out to be a
smooth function of r which (unlike F) is nonvanishing at
r�. As a consequence, the Kruskal metric is regular at the
inner horizon.

III. SIMPLE EXAMPLES OF LATE-TIME
PERTURBATIONS: LINEARIZED FIELDS

In this section, we consider several types of linear per-
turbations and explore how these perturbations are experi-
enced by late-time infalling observers.
We shall start our analysis by addressing the simplest

type of perturbation, namely a purely outgoing, spherically
symmetric test scalar field. Then we shall proceed to con-
sider more realistic types of linear perturbations, deferring
nonlinear perturbations to the following sections.

A. Simplest example: Monotonic, outgoing test
scalar perturbations

Consider a free, massless, minimally coupled test scalar
field � on the RN background. The general behavior of
a scalar field of this type inside the BH will be discussed in
the next subsection. Here we focus on a spherically sym-
metric scalar field, restricting our attention to the very
neighborhood of the Cauchy horizon. As it turns out, in
this region, the field becomes purely outgoing, namely6

� ffi PðuÞ. In our first example, we shall further assume for
simplicity that PðuÞ vanishes until a certain value u1; then
it grows monotonically up to u ¼ u2, where it reaches its
final value Pf (and remains constant afterward). While

this type of function PðuÞ is certainly oversimplified, it

4At a certain value of r, r ¼ rbounce < r�, dr=d� flips its sign
(a phenomenon known as ‘‘gravitational bounce’’). In this paper,
however, we focus on the behavior of orbits up to their first
approach to r ¼ r�; hence, dr=d� < 0.

5Equation (2.5) defines r� up to an integration constant. We
use this freedom and choose the convenient prefactor M in the
right-hand side of Eq. (2.7), which fixes this arbitrary constant.

6This simple form follows from the behavior of perturbation
fields inside BHs, which we discuss in the next subsection: In the
very neighborhood of the inner horizon, the outgoing and in-
going modes effectively decouple [see Eq. (3.10)]. Furthermore,
the v-dependent component of � decays as v�n at large v,
leaving us with only the u-dependent component.
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transparently demonstrates the mechanism responsible for
the shock-wave formation.7 Both null lines u ¼ u1;2 are

assumed to reside in the internal range r� < r < rþ. We
shall now explore the behavior of � along the worldline of
the infalling observer, as a function of proper time �,
focusing our attention on late-time observers.

A free-falling observer in a RN spacetime crosses the
inner horizon r ¼ r� through its outgoing section (where v
is finite). Let us denote the values of v as the observer
crosses the event and inner horizons by veh and vih,
respectively. Since we are interested in late-time observers,
we shall assume veh � M.8 Along a timelike worldline, v
increases monotonically; hence in the range between the
two horizons, veh < v< vih.

Obviously, veh and vih depend on the infalling geodesic.
However, for fixed parameters E and L, the difference
�v � vih � veh ¼ �vðE; LÞ will be independent of the
infall time, owing to the time translation symmetry of the
RN metric. �v is typically of order M. (We assume here
that E is of order unity, i.e., not too large or too close to
zero; and jLj is�M or smaller; and similarly, the BH is not
too close to Schwarzschild or to extremality.)

Next, we evaluate the proper times �1;2 at the two events
where the worldline intersects the null lines u ¼ u1;2. For
convenience, we set � ¼ 0 at the worldline’s intersection
with the inner horizon. From the above assumptions (in
particular, veh � M), it immediately follows that r� � M
(and hence r ffi r�) throughout the portion u1 > u> u2 of
the worldline. We can therefore use Eqs. (2.3) and (2.7) in
this domain to obtain

� ffi �E�1ðr� r�Þ ffi �ME�1e�2�r� : (3.1)

Substituting r� ¼ ðv� uÞ=2, we find for �1 and �2

�1;2 ffi �ME�1e�ðu1;2�v1;2Þ; (3.2)

where v1;2, respectively, denote the values of v at the

worldline’s intersections with u ¼ u1;2.
Since v1;2 > veh, we readily find

j�1;2j< ðME�1e�u1;2Þe��veh ; (3.3)

hence, the difference ��12 � �2 � �1 > 0 is bounded by

��12 < ðME�1e�u1Þe��veh : (3.4)

The last inequality tells us at once that the late-time
infalling observers will see a scalar field profile �ð�Þ
which rises from zero (at u1) to its maximal value
Pf > 0 (at u2) within an arbitrarily short proper time

interval, / expð��vehÞ. For a sufficiently large veh, this
proper time interval will presumably be unresolved by an
observer with fixed sophistication. The large-veh observers
will thus experience the scalar perturbation as a sharp
shock wave of finite amplitude. Note that in terms of the
proper time of these observers, the shock wave is detected
effectively at � ¼ 0 [the limit veh ! 1 of Eq. (3.3)]—
namely, just at the crossing time of the (outgoing portion of
the) inner horizon.
It should be emphasized that the two outgoing null lines

u ¼ u1 and u ¼ u2 need not be close to the (outgoing
section of the) inner horizon in any sense. To further clarify
this point, consider the intersection of these two outgoing
rays with an ingoing null geodesic v ¼ const � vcol

located just after the collapse. (To be more specific, within
the shell collapse scenario, we may choose vcol such that it
passes through the intersection point of the collapsing shell
with u ¼ u2.) Let us denote the r values at the two inter-
section points of v ¼ vcol with u1 and u2 by rcol1 and rcol2 ,
respectively. Our point here is that rcol1 and rcol2 need not be
close to r�; rather, they can take values anywhere in the
range r� < rcol2 < rcol1 < rþ. Still, since r� ¼ ðv� uÞ=2, at
a sufficiently large v, both these u ¼ const lines will
necessarily attain r� � M values, and hence r values
arbitrarily close to r�.
It may be instructive to complement Eq. (3.4) with an

actual estimate of (rather than just a bound on) ��12, for
late-infalling observers. Based on Eq. (3.2), we express
��12 as

��12 ffi M

E
ðe�½u1þðvih�v1Þ� � e�½u2þðvih�v2Þ�Þe��vih : (3.5)

Consider now the quantity vih � v1. For fixed parameters
E and L, dv=d� is a well-defined function of r (indepen-
dent of veh). In the late-infall limit, r ! r� when the orbit
reaches u1. The quantity dv=d� at u1 similarly approaches
its inner horizon value, which (for E> 0) turns out to be a
definite finite number, ð1þ L2=r2�Þ=ð2EÞ. In addition,
from Eq. (3.3) it follows that �1 ! 0 in the late-infall limit,
and thus that vih � v1 ! 0. Obviously, exactly the same
argument applies to vih � v2 as well. Using vih � v1;2 ! 0
and vih ¼ veh þ�v in Eq. (3.5), we thus obtain

��12 ffi
�
M

E
ðe�u1 � e�u2Þe���v

�
e��veh : (3.6)

(Note that the prefactor in squared brackets is independent
of the infall time veh.)
The typical behavior of� as a function of the observer’s

proper time is depicted in Fig. 3 for several values of infall
time veh.

7Essentially the same analysis will apply in the more general
(and more realistic) case in which the outgoing field starts right
after the event horizon, and may also continue its growth beyond
the (outgoing portion of the) inner horizon. Also, the function
PðuÞ need not be monotonic (see discussion below). Here we
picked a monotonic function PðuÞ only for the sake of concep-
tual simplicity.

8Within the shell collapse model, we further assume that veh is
sufficiently large that the orbit is confined to the shell’s exterior
throughout the range r > r�. Also, in the case u1 > 0, we further
demand veh � Mþ u1, such that r� � M as u ¼ u1 is
approached.
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Summarizing, the late-time infalling observers will
experience the scalar perturbation as a sharp shock wave
of finite amplitude (�� ¼ Pf), with effectively vanishing

rising time (/ e��veh)—located just at the outgoing section
of the inner horizon.

So far, we have considered the case of a (near-CH)
outgoing field � ffi PðuÞ which varies monotonically
from P ¼ 0 at u ¼ u1 until u ¼ u2, where it saturates at
P ¼ Pf. The extension of the argument to a more general

function PðuÞ (not necessarily monotonic, and not neces-
sarily one with well-defined final saturation value) is
straightforward: It is sufficient to assume that in the near-
CH region, PðuÞ varies over a certain range u1 > u> u2,
from P1 at u1 to some P2 � P1 at u2. Then, the above
analysis yields that for a late-infall observer, the finite jump
�� ¼ P2 � P1 � 0 in the value of � will take place
within an extremely small proper time interval, which
decreases as e��veh . For an observer of given sophistica-
tion, this exponentially small proper time will become
unresolvable at sufficiently large veh. Hence, a late-infall
observer will again experience a kind of effective shock-
wave phenomenon: a finite change in the field, within an
effectively vanishing proper time interval.9

B. More realistic linear perturbations

We turn now to consider more realistic perturbations of a
spherical charged BH. We still assume that in the region of
interest, the perturbations are small, and can therefore be
treated linearly. Again, we would like to explore how these
perturbations will be experienced by late-time infalling
observers.

1. Nonspherical test scalar field

The linearized perturbations—both outside and inside
the BH—may conveniently be toy-modeled by a mini-
mally coupled, massless scalar field �, satisfying

g���;�� ¼ 0 [19]. The perturbation field may be decom-

posed in spherical harmonics Ylm in the usual way:

�ðx�Þ ¼ X
lm

Ylmð�; ’Þ�lmðr; tÞ: (3.7)

The individual perturbation modes �lm all satisfy a hyper-
bolic partial differential equation of the form

d2c lm

dr2�
� d2c lm

dt2
¼ VlðrÞc lm; (3.8)

with c lm � r�lm, and with an l-dependent effective
potential given by

VlðrÞ ¼ F

�
lðlþ 1Þ

r2
þ 2ðM� q2=rÞ

r3

�
: (3.9)

One then finds that outside the BH, all modes�lm decay
to zero at late time [19]. This decay typically proceeds in
two stages: First is the stage of ‘‘quasinormal ringing’’
(i.e., exponentially damped oscillations). Subsequently,
after the ringing has damped, the late-time perturbations
are dominated by inverse-power tails. All modes�lm decay
(along worldlines of constant r) as t�n, with n ¼ 2lþ 3 (or
n ¼ 2lþ 2 for initially static multipoles) [20,21]—the
same inverse-power form as in the Schawarzschild case
[19]. Throughout the rest of the paper, we shall focus our
attention on the inverse-power tails (rather than the quasi-
normal ringing), because it is this component which even-
tually dominates at late time.
Investigations of the dynamics of linearized perturba-

tions inside the BH reveal a behavior which parallels the
external dynamics in many respects, though there also are
some important differences. The infalling power-law tails
lead to a similar inverse-power decay inside the BH. Thus,
along lines of constant r (between the event and inner
horizons), the perturbations still decay as t�n [22]. Note,
however, that this time t is a spacelike coordinate, so what
we face here is spatial rather than temporal decay. (For a
discussion of this issue, see Ref. [23].)
Being proportional to F, the effective potential VlðrÞ

vanishes at r� (exponentially in r�, as it also does at rþ).
As a consequence, in the neighborhood of the inner hori-
zon, the perturbations take the simple form of a superpo-
sition of outgoing and ingoing modes; that is,

�lm ffi PuðuÞ þ PvðvÞ: (3.10)

Hereafter, we omit the subindices l, m from the P coef-
ficients for brevity.
In the asymptotic region u, v � M, both functions Pu

and Pv admit simple inverse-power forms:

PuðuÞ ffi au�n; PvðvÞ ffi bv�n; (3.11)

again with n ¼ 2lþ 2 or n ¼ 2lþ 3 (depending on the
presence or absence of an initial static multipole). The
coefficients a, b are determined by the scattering problem,
and are given in Ref. [22] (see also Ref. [24]).

3.0 2.5 2.0 1.5 1.0 0.5 0.0

0.2

0.4
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0.8
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FIG. 3 (color online). The typical behavior of � as a function
of the observer’s proper time is depicted for several values
of veh.

9A ‘‘classic’’ shock wave typically contains the following
three components: (i) a steady preshock value, (ii) a (different)
steady postshock value, and (iii) a sharp transition between the
two, through a transition region of arbitrarily small width. Here
we use a somewhat generalized notion of shock wave, because
we do have the component (iii), and effectively also (i), but we
don’t necessarily have (ii).
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We consider now a late-infall observer, and examine
how this observer will record the scalar perturbations,
focusing on a particular multipole �lm. We restrict our
attention to the orbit’s section between two hypersurfaces
u ¼ u1 and u ¼ u2 (both residing in the domain between
the event and inner horizons, and satisfying u2 < u1). We
focus on the quantity ��lm � �lmð�2Þ ��lmð�1Þ, where
as before, �1;2, respectively, denote the proper times when

the observer crosses the two hypersurfaces u ¼ u1;2.
For a sufficiently late infall time, the observer will reach

u ¼ u1 only when the orbit is already in the near-CH
region, where Eq. (3.10) applies. Therefore,

��lm ffi ½Puðu2Þ � Puðu1Þ� þ ½Pvðv2Þ � Pvðv1Þ�;
where v1;2 � vð�1;2Þ. Furthermore, since Pv / v�n at

large v (and v2 > v1 > veh), it follows that the second
term in squared brackets vanishes at the late-infall limit.
Thus, for a sufficiently large veh, the expression for ��lm

simplifies to

��lm ffi Puðu2Þ � Puðu1Þ: (3.12)

For generic choices of u1, u2, the RHS is nonvanishing.
(This is most explicitly verified in the case where u1;2 are
both in the early domain, u � M, where Pu / u�n.)10

Yet, the proper time difference��12 ¼ �2 � �1 is still given
by Eq. (3.6), namely ��12 / e��veh . Thus, for sufficiently
late infall, the observer will watch a finite jump ��lm in
the field component �lm during an effectively vanishing
(i.e., physically nonresolvable) proper time interval.

2. Linear electromagnetic and gravitational perturbations

In the RN spacetime, owing to the presence of an electric
field, the (electrovac) gravitational and electromagnetic
perturbations are mutually coupled already at the linear
level. Still, one can write decoupled field equations for a
pair of combined electromagnetic/gravitational variables
(i.e., two specific linear combinations of the electromag-
netic and gravitational variables) [25]. In particular, based
on a formalism developed by Moncrief [26], Gursel
et al. [27] constructed such a pair of electromagnetic/
gravitational field variables Rlm� (for the various angular
modes l, m). These variables satisfy the decoupled
equations

d2Rlm�
dr2�

� d2Rlm�
dt2

¼ Vl�ðrÞRlm� (3.13)

with the effective potential

Vl�ðrÞ ¼ F

�
lðlþ 1Þ

r2
þ�3M� Cþ 4q4=r

r3

�
; (3.14)

where C ¼ ½9M2 þ 4q2ðl� 1Þðlþ 2Þ�1=2. In turn, the
gravitational and electromagnetic perturbations may be

recovered from the fields Rlm� (by certain linear combina-
tions of the latter fields and their derivatives) [25].
The potentials Vl�ðrÞ are again / F, and therefore vanish

at the two horizons; hence, near the CH, each of the fields
Rlm� is decomposed into free ingoing and outgoing compo-
nents, i.e., PuðuÞ þ PvðvÞ, as in Eq. (3.10). Furthermore,
the leading-order behavior of these two components in the
early-CH domain u, v � M was found [27] to be of the
same form as in the scalar case, i.e., Eq. (3.11). As before,
our objective is the proper time variation of the perturbation
fields, as recorded by a late-infall observer. The analysis of
the previous subsections applies herewith nomodifications,
implying that the variables Rlm� undergo finite variations
within proper time intervals/ e��veh . The gravitational and
electromagnetic perturbations (constructed from the varia-
bles Rlm� and their derivatives) are likely to yield a similar
structure of an effective shock wave.

3. Linear perturbations in Kerr spacetime

In this subsection, we very briefly address the case of a
linearly perturbed Kerr BH. The latter’s internal structure
is known to be similar in many respects to that of a RN BH.
In particular, there are two horizons: an event horizon
located at r ¼ rþ and an inner horizon at r ¼ r�, where
r� � M�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
. Not surprisingly, we find that the

effective shock-wave phenomenon takes place in the Kerr
case as well.
We focus here on the gravitational perturbation, which

is apparently the perturbation field of greatest physical
relevance here. (Note that the Kerr background—unlike
the electrovac RN background—admits pure vacuum
gravitational perturbations.)
The behavior of late-time gravitational perturbations

inside a Kerr BH has been analyzed using two different
formulations: (i) Analysis of metric perturbations (MPs),

h�� � g�� � gðkerrÞ�� [9]; (ii) analysis [10,11] of the evolu-

tion of the Teukolsky variables [28], c 0 and c 4. Both
analyses examine the late-time gravitational perturbations,
employing the so-called late-time expansion [10,23,29].11

They both focus on the near-CH behavior and lead to
similar (and mutually consistent) results.
For the sake of the present analysis, the key result may

be summarized as follows: Near the CH (that is, v� u �
M), the linear MPs decouple into a superposition of
outgoing and ingoing components, namely12

10However, a more appreciable ��lm should be achieved when
u2 is not � M (and u1 is not too close to u2).

11Reference [9] also considers nonlinear metric perturbations;
that is, higher-order terms in the nonlinear perturbation expan-
sion (which turned out, however, to be negligible compared to
the linear metric perturbations). Reference [10] also considers
linear electromagnetic perturbations. In this section, however,
we only consider linear gravitational perturbations.
12In the Kerr case, we still define v � tþ r� and u � t� r�,
with r� now defined through dr=dr� ¼ ðr2 � 2Mrþ a2Þ=
ðr2 þ a2Þ (where t and r are the Boyer-Lindquist time and radial
coordinates).
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h�� ffi hu��ðuÞ þ hv��ðvÞ: (3.15)

Furthermore, hv�� decays at v � M as an inverse power

of v; hence, for a late-infall observer, h�� ffi hu��ðuÞ near
the CH.

In the Kerr background (unlike the RN case), infalling
timelike geodesics may intersect the inner horizon r ¼ r�
at either its ingoing or its outgoing section. Here we shall
focus on those orbits intersecting the outgoing section.
(These include, for example, all infalling geodesics with
positive E and aL 	 0.) The effective shock-wave phe-
nomenon will only occur for this class of orbits.

Consider now an observer which falls into the Kerr BH
(and heads towards the outgoing section of the inner hori-
zon) at the late-infall limit. As before, we focus on the
observer’s history while moving between u ¼ u1 and u ¼
u2. Just like in the RN case, both proper times �1;2 scale at
the late-infall limit as / e��veh , and so does their difference
��12. Here � ¼ �ðM;aÞ is a certain positive constant, the
inner horizon’s surface gravity. Again, we find a finite jump
�h�� ¼ hu��ðu2Þ � hu��ðu1Þ in the metric within an effec-

tively vanishing proper time / e��veh ; namely, an effective
gravitational shock wave.

On the other hand, geodesics with aL > 2EMr� will
intersect the ingoing section of r ¼ r�. In the late-infall
limit, these observers will hit the CH at its past boundary.

C. Interpretation in terms of late-time
Eddington frames

We shall provide here a simple interpretation of the
effective shock-wave phenomenon derived above. For
concreteness and simplicity, we present the explicit
argument only for the RN case, but it applies to the Kerr
case as well.

The line element in Eq. (2.6) preserves its form under a
coordinate transformation of the form

u ! ~u ¼ u� �; v ! ~v ¼ v� �; (3.16)

where � is any constant. (This invariance reflects the time-
translation symmetry of RN.) We shall refer to different
sets of Eddington coordinates—corresponding to different
choices of �—as different Eddington frames. (This termi-
nology is borrowed from the analogous notion of Lorentz
frames in Minkowski spacetime.) Note that all tensors
constructed from the metric are unaffected by this trans-
formation. In addition, r� preserves its functional form,
r� ¼ ð~v� ~uÞ=2.

Consider two infalling observers, which move along two
identical worldlines related to each other by a time trans-
lation. These observers cross the event horizon (EH) at

Eddington times v1
eh and v2

eh, respectively (with vð2Þ
eh >

vð1Þ
eh ). Owing to this difference in veh, the two observers

will not share the same function vð�Þ [or uð�Þ]. To bridge
this difference, we equip the second observer with his

own Eddington frame ð~u; ~vÞ, setting � ¼ vð2Þ
eh � vð1Þ

eh in

Eq. (3.16). Since now ~vð2Þ
eh ¼ vð1Þ

eh , it is not difficult to

show that the ~vð�Þ of the second observer will be the
same function as the vð�Þ of the first observer—and the
same relation will apply between ~uð�Þ and uð�Þ.
Consider now some linear perturbation field �ðu; vÞ

on the background spacetime [Eq. (2.6)]. Like all other
tensorial quantities, � is invariant under shifts in the
Eddington frame. We assume that near the CH, � decou-
ples to ingoing and outgoing components (like all linear
fields considered above), and we shall be concerned here
with the field’s outgoing component, which we denote
�uðuÞ.
Pick two u values u1;2, with the only requirement that

��u � �2 ��1 � 0, where �1;2 � �uðu ¼ u1;2Þ. We

shall now examine how the second observer will experi-
ence this variation in �u from �1 to �2 as a function
of its own proper time. To this end, we reformulate the
problem in terms of ~u rather than u. The change from�1 to
�2 thus occurs while the second observer moves from ~u1
to ~u2, where

~u1;2 � u1;2 � � ¼ ½u1;2 � vð1Þ
eh � þ vð2Þ

eh :

Let us now fix vð1Þ
eh , and yet consider the late-infall limit

for the second observer: vð2Þ
eh ! 1. Evidently, in this limit

both ~u1 and ~u2 are pushed toward 1. The corresponding
(second-observer) proper times �ð~u1;2Þ will thus be pushed
to the same (finite) limiting value �ð~u ! 1Þ; that is, the
moment of inner-horizon crossing. In particular, the
proper time difference �ð~u2Þ � �ð~u1Þ will vanish in this
late-infall limit.
We conclude that at the late-infall limit, the finite varia-

tion ��u in the perturbation field � (which takes place
between a certain pair of u values u1;2) occurs within a

vanishing proper-time interval—at a moment which (at the
limit) coincides with that of the inner horizon crossing.
Thus, we recover the effective shock-wave phenomenon
for late-infall observers.

IV. SPHERICALLY SYMMETRIC
NONLINEAR PERTURBATIONS

In this section, we shift our focus from linear perturba-
tions on a RN (or Kerr) background to nonlinearly per-
turbed BHs. The main new ingredient is that now the infall
orbit is disturbed by the MPs, which in turn may influence
the observer’s experience of the perturbations. For simplic-
ity, we shall restrict attention here to a spherically sym-
metric model of a nonlinearly perturbed charged BH. We
shall first present the model and describe the perturbed BH
geometry, and then analyze the experience of late-infall
observers in such a spacetime—demonstrating that the
effective shock-wave phenomenon occurs in nonlinearly
perturbed BHs as well.
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A. Self-gravitating scalar field perturbations
of a charged BH

Let us consider a spherical, charged BH perturbed by a
spherically symmetric, self-gravitating scalar field. This
model was investigated by several authors, primarily nu-
merically [6–8] but also analytically [30,31] (assisted by
insights gained from earlier analytical investigations of the
mass inflation model [2,3]). The model consists of a mass-
less, minimally coupled scalar field �, satisfying the cova-
riant wave equation g���;�� ¼ 0 on the (self-consistently

perturbed) metric of a spherically symmetric, charged BH.
The scalar field energy-momentum tensor

T�� ¼ 1

4	

�
�;��;� � 1

2
g���;��

;�

�
(4.1)

acts as a source term in the Einstein equations (in addition
to the electromagnetic contribution to energy-momentum),
yielding a system of nonlinear field equations for the
metric functions [e.g., rðu; vÞ and fðu; vÞ in Eq. (4.2)
below]. As for initial conditions, we consider here initial
configurations wherein � is initially compactly supported
outside the BH, as in Ref. [8]. (Alternatively, one may
prescribe the initial data for �, including its presumed
inverse-power tails, directly on the EH, as done in
Ref. [7].) Evolving the initial data, one then finds—not
surprisingly—that at late time, perturbations die out, and
the BH settles down asymptotically to a member of the RN
family, with charge q and a certain final massM. The scalar
perturbations decay as inverse-power tails. In particular,
along the EH, � / v�n (typically with n ¼ 3) at late time
[8,19,20]. These radiation tails fall into the BH and perturb
its internal geometry.

The perturbed metric in the BH interior is conveniently
expressed in double-null coordinates. In particular, in
Eddington-like coordinates,13 we write the line element
in the form

ds2 ¼ �fðu; vÞdudvþ r2ðu; vÞd�2
2: (4.2)

The infalling scalar field tail triggers the formation of a
curvature singularity at the CH. This is a direct conse-
quence of the infinite blueshift that takes place at the inner
horizon [32], which leads to (almost) exponential diver-
gence of the gradient of �—and of curvature. It turns out,
however, that this is actually a weak [33,34] curvature
singularity, located exactly at the CH (v ! 1). The metric

tensor (in appropriate coordinates) approaches a finite,
nonsingular limit as v ! 1. For example, we may use
the Kruskal-like coordinates

U � �e�u; V � �e��v (4.3)

with the line element

ds2 ¼ HðU;VÞdUdV þ r2ðU;VÞd�2
2 (4.4)

(with H ¼ ��2fev�u; note that U and V are both future
directed, and correspondinglyH < 0). The CH is located at
V ¼ 0. Both r andH have finite, nonvanishing values at the
CH. Yet @r=@V diverges at V ¼ 0, implying the presence
of a null curvature singularity there (though a weak one).
The scalar field � behaves in a manner similar to r: It is
finite at V ! 0, yet @�=@V diverges at that limit.
Perturbation theory predicts [30] (and numerical simu-

lations [8] confirm) that in the early portion (i.e., u � M)
of the CH, the metric functions deviate only slightly from
their respective values in the unperturbed RN solution. The
domain u, v � M is amenable to perturbative treatment.
Correspondingly, we express r and H as

rðu; vÞ ¼ rRNðu; vÞ þ �rðu; vÞ;
Hðu; vÞ ¼ HRNðu; vÞ þ �Hðu; vÞ;

(4.5)

where the suffix RN denotes the corresponding function in
the unperturbed RN spacetime. The perturbations �r, �H
vanish in the limit u, v ! 1. (This limit corresponds to the
past boundary of the CH, but also to t ! 1 along spatial
lines of constant v� u.) In the domain u, v � M, the
scalar field is dominated by its linear perturbation term,
and the MPs �r, �H by the second-order perturbation, as
described below (see the Appendix).
As was mentioned above, r (likeH and�) is finite along

the CH. It initially starts at u ! 1 with r ¼ rRN ¼ r�,
but subsequently shrinks steadily with time (� u), due
to the focusing induced by the outflux of scalar field
energy-momentum across the CH. At some stage, r shrinks
to zero—at which point the null, weak CH singularity
terminates, and connects to a strong, spacelike r ¼ 0
singularity [6–8].

B. Late-infall orbits

We turn now to investigate the experience of late-infall
observers in this spacetime of a nonlinearly perturbed,
spherical charged BH. We consider (equatorial) infalling
geodesics which are not necessarily radial. The angular
momentum parameter L is conserved in these geodesics,
though E is no longer conserved.
For concreteness, we shall focus here on the behavior of

the metric function r, which the infalling observer probes
as a function of his proper time �. Physically, a rapid
change in r will imply (for a finite-size observer) a rapid
deformation in the tangential directions �, ’. Again, we
choose two u ¼ const hypersurfaces, denoted u ¼ u1;2

13The Eddington-like coordinate v may naturally be defined in
the perturbed spacetime by using characteristic initial value
formulation, and setting rðvÞ and fðvÞ along the outgoing initial
ray (beyond the end of the compact initial support of�) to be the
same functions as in the unperturbed RN spacetime with the
Eddington metric [Eq. (2.6)] (setting F ! f therein). The key
property of v is that it diverges at future null infinity, with f ! 1
on approaching the latter. An analogous procedure may in
principle be applied to define u, yielding an ingoing null coor-
dinate which diverges at the EH.
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(with u1 > u2), requiring that both hypersurfaces intersect
the CH (before r shrinks to zero). While the observer
progresses from u ¼ u1 to u ¼ u2, r changes by the
amount �r � r2 � r1. Hereafter, a quantity with a subin-
dex of ‘‘1’’ or ‘‘2’’ will denote the value of this quantity as
the worldline crosses the hypersurface u1 or u2, respec-
tively. Since along the CH, r is steadily shrinking, one finds
that �r � 0.

Let us now evaluate the proper-time interval �� � �2 �
�1, using

d� ¼
�
�g��

dx�

dU

dx�

dU

�
1=2

dU

¼
�
jHj dV

dU
� r2

�
d’

dU

�
2
�
1=2

dU:

Note that H (like r) is bounded throughout the domain
u1 > u> u2, so we can easily bound �� by

�� < ðHmaxÞ1=2
Z U2

U1

�
dV

dU

�
1=2

dU;

where Hmax denotes the maximal value of jHj in the
worldline’s section between u1 and u2. The integral on
the right-hand side is nothing but the proper-time length
of a timelike curve connecting the two points ðU1; V1Þ and
ðU2; V2Þ in a fiducial two-dimensional spacetime with the
flat metric ds2 ¼ �dUdV. It is bounded above by the
(timelike) geodesic connecting these edge points, whose

length is ð�V�UÞ1=2, where �U ¼ U2 �U1 and �V �
V2 � V1 ¼ e��v1 � e��v2 . Clearly, �V < e��v1 < e��veh ;
therefore

�� < ðHmax�UÞ1=2e��veh=2:

Consider now the late-infall limit, which is the limit
of large veh. In this limit, V1;2 ! 0. Therefore Hmax

approaches Hch
max, which is the maximal value of jHj along

the section u1 > u> u2 of the CH.We obtain our bound on
�� (for late-infall observers) in its final form:

�� < Be��veh=2; (4.6)

where B � ðHch
max�UÞ1=2 is a parameter which depends on

u1 and u2 but not on the orbit’s infall time.
We conclude that late-infall observers will measure a

nonvanishing variation �r in the metric function r, within
a short proper-time difference �� which shrinks exponen-
tially in the infall time veh—which is again an effective
shock-wave phenomenon.

C. Do the late-infall orbits cross the CH?

Our analysis so far did not make use of the perturbative
nature of the metric field (at the early portion of the CH).
We merely assumed that the CH singularity is null and
weak—and more specifically, that H admits a finite limit-
ing value along the CH. Correspondingly, there was no

need to restrict u1 and u2 to the perturbative domain
(u � M): We only required that the surfaces u ¼ u1 and
u ¼ u2 intersect the CH, rather than the spacelike singu-
larity. However, there still was one hidden assumption: We
implicitly assumed that the late-infall observers will make
it all the way from u1 to u2 without intersecting the CH
(that is, with finite v). Once an observer intersects the
CH, we cannot make any concrete statement about his
subsequent experience, because the CH is by definition
the boundary of the domain of unique prediction (for,
e.g., the metric functions).14

We therefore still need to complete this missing piece of
the analysis. We shall show that, as long as u2 is located in
the weakly perturbed domain of the CH (that is, u2 is large
compared to M), the late-infall orbits indeed arrive at
u ¼ u2 with finite v.
The control on the growth of v will be achieved

by monitoring the evolution of the geodesic’s ‘‘energy’’
parameter,

E � �ðuu þ uvÞ: (4.7)

Note that E (unlike L) is no longer conserved, because the
perturbations destroy the exact t-translation invariance of
the RN background. However, following the evolution of E
will enable us to control uv, and thereby the evolution of v
along the orbit.

1. Equation of motion for E

The lower-index covariant geodesic equation, applied to
the Eddington-like metric of Eq. (4.2), reads

_u� ¼ ð1=2Þg��;�u�u� ¼ �ð1=2Þf;�uuuv þ ðL2=r3Þr;�:
Therefore

_E ¼ �ð _uu þ _uvÞ
¼ ð1=2Þðf;u þ f;vÞuuuv � ðL2=r3Þðr;u þ r;vÞ:

To get rid of the term uuuv on the right-hand side, we use
the normalization condition g��u

�u� ¼ �1, which for the

metric of Eq. (4.2) yields

uuuv ¼ ð1þ L2=r2Þ=f: (4.8)

The quantity ðf;u þ f;vÞuuuv then becomes

ð1þ L2=r2Þ½ðlnjfjÞ;u þ ðlnjfjÞ;v�:
Noting that the last term in squared brackets is equal to
ðlnjHjÞ;u þ ðlnjHjÞ;v, we reexpress _E in terms of the

Kruskal-like metric function H:

14Furthermore, owing to the divergence of curvature at the CH
singularity, it is unclear whether a classical extension beyond the
CH will be physically meaningful.
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_E ¼ 1

2

�
1þ L2

r2

�
½ðlnjHjÞ;u þ ðlnjHjÞ;v� � L2

r3
ðr;u þ r;vÞ:

(4.9)

Note that in the background RN metric, bothH and r are
functions of v� u; hence E is conserved. Evolution of E
will thus only result from the MPs �r and �H.

So far, all equations were exact. To proceed beyond this
point, we restrict attention to the early portion of the CH,
where perturbations are presumably small, and carry out
the analysis at the leading order in the MPs.15 Also, since
we are dealing with the orbit’s evolution very close to the
CH, we may replace the background’s functions rRN and
HRN with their corresponding inner-horizon values r� and
H� � HRNðr ¼ r�Þ. We obtain

_E ¼ Að�H;u þ �H;vÞ þ Bð�r;u þ �r;vÞ � Wðu; vÞ;
(4.10)

where A and B are constants:

A ¼ 1

2H�

�
1þ L2

r2�

�
; B ¼ �L2

r3�
:

Recall that H� (like r�) is a finite, nonvanishing constant.

2. Analyzing the evolution of E

We rewrite Eq. (4.10) as

dE=du ¼ Wðu; vÞ=uu; (4.11)

in which we view uu as a (yet unknown) function of the
parameter u along the geodesic. One might choose to
approximate this function uuðuÞ by the corresponding
function for geodesics in the unperturbed RN geometry.
We shall not proceed here in this way, because we do not
want to assume a priori that the accumulating perturba-
tions in the orbital parameters must be small. Instead, we
shall proceed by expressing uu in terms of E. To this end,
we use the contravariant version of Eq. (4.7), namely

uu þ uv ¼ 2E=f:

This, together with Eq. (4.8), constitutes a closed algebraic
system for the two unknowns uu, uv. One can, of course,
write down the exact solution of this algebraic system.
However, it will be more instructive to employ here the
approximate solution, associated with the smallness
of f: We are dealing here with the near-r� region, where16

f / e�ðu�vÞ 
 1. The algebraic system thus yields the

simple approximate solution (to leading order in the small
parameter f)17

uu ffi 2E=f; uv ffi ð1þ L2=r2Þ=ð2EÞ: (4.12)

Substituting this expression for uu in Eq. (4.11), we find

dðE2Þ=du ¼ Wf ¼ ½Að�H;u þ �H;vÞ þ Bð�r;u þ �r;vÞ�f:
(4.13)

Setting f ffi F ffi const� e�ðu�vÞ (where, recall, F�fRN),
we obtain

dðE2Þ
du

¼ ½ ~Að�H;u þ �H;vÞ þ ~Bð�r;u þ �r;vÞ�e�ðu�vÞ;

(4.14)

where we have absorbed the above const (in F) into ~A
and ~B. Note that the right-hand side of this equation is a
prescribed function of u and v (with no reference what-
soever to four-velocity).
At this point, it will be useful to refer to the concrete

form of the MPs �r and �H. We focus here on the early
portion of the CH (i.e., u � M), where the MPs are small
and decay as inverse powers of u and/or v. We denote by
�E the modification in E acquired in the near-CH region,
up to some u2 � M, due to the presence of MPs. Based on
the inverse-power form of the MPs, in the Appendix we
derive the bound

j�Ej<CðvehÞ�ð2nþ1Þ ¼ CðvehÞ�7; (4.15)

where C is a certain parameter (independent of veh). In
particular, we find that for late-infall orbits, j�Ej 
 E.

3. Analyzing the evolution of v

We proceed now to analyze the evolution of v, showing
that it remains finite throughout u � u2 (for any u2 � MÞ.
From Eq. (4.12), we have

dv

du
¼ uv

uu
ffi f

4E2
ð1þ L2=r2Þ: (4.16)

Now, for late-infall orbits, we already found that j�Ej 

E, and hence we may regard E as constant (essentially the
entrance value of E). Also, we may set r ffi r� and take

the near-CH form of f, namely f ffi �e�ðu�vÞ � const.
We obtain

dv

du
ffi � ~Ce�ðu�vÞ; (4.17)

where ~C is some positive constant. Rewriting this as

dðe�vÞ=dðe�uÞ ffi � ~C, we obtain
15That is, we expand the various prescribed background func-
tions (i.e., the functions of u, v obtained from the metric
functions, etc.) to first order in the MPs. However, we do not
linearize the worldline-related quantities, like E, _E, uv, uu, etc.
16Note that �H 
 HRN (valid in the perturbative domain
considered here) also implies that �f (the perturbation in f)
satisfies �f 
 fRN; that is, f ffi F / e�ðu�vÞ.

17The algebraic system also admits a second solution, in which
uu and uv are interchanged. However, since our late-infall
observers enter the r  r� region with large uu, it is the solution
in Eq. (4.12) which actually takes place.
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e�v ffi � ~Ce�u þ const: (4.18)

(Notice that the last two equations are the same as those
describing late-infall geodesics in the unperturbed RN
geometry.) This expression is bounded above (by the const
on the right-hand side). Thus, v remains finite throughout
the range u � M—meaning that the orbit cannot cross the
CH (located at v ! 1) in that domain.

D. Concluding remarks

We found that the late-infall observers cannot cross the
CH in the regime u � M. The analysis in Sec. IVB then
shows that the proper time for these observers to move
from u ¼ u1 to u ¼ u2, for any u1 > u2 � M, decreases
exponentially in the infall time veh. Since r varies during
this range by a finite amount �r < 0, we inevitably face
here the phenomenon of effective gravitational shock
wave: A discontinuity in the metric tensor, which propa-
gates along a null hypersurface (the outgoing section of
the inner horizon, in our case). Physically, this means
that any extended object will undergo a sudden deforma-
tion, by a certain amount, within an effectively vanishing
proper time.

The amplitude of such a gravitational shock wave may
naturally be characterized by the (dimensionless) magni-
tude of the object’s deformation. Specifically, in the spheri-
cal model studied here, the shock’s amplitude may be taken
to be the dimensionless quantity j�rj=r�.

Two additional remarks are in order here:
(1) Since the discussion in Sec. IVC assumed u2 � M

in order to treat perturbations perturbatively, one
might mistakenly conclude that the amplitude of
the gravitational shock wave can be weak (i.e.,
j�rj=r� 
 1). But this is not the case. It is clear
from the above analysis that late-infall geodesics
cannot fall across the CH until after the perturba-
tions grow to be of order 1. We therefore see from
Sec. IVB that late freely falling observers must face
a strong gravitational shock wave whose amplitude
is at least of order 1.

(2) In order to allow a simple discussion of the quantity
E ¼ �ðuu þ uvÞ, which is conserved along geode-
sics in exact RN, we have so far assumed freely
falling worldlines. But let us now consider an accel-
erated late-infall-time observer. We choose the ac-
celeration as a function of proper time to be bounded
and such that, in the unperturbed RN geometry, the
worldline would reach the outgoing inner horizon
before crossing the ingoing inner horizon. Note that,
in the limit of large veh, all of these accelerations
occur before reaching u ¼ u1. As a result, in the
unperturbed spacetime, E becomes some constant
Efinal for all u < u1. Corresponding late-infall-time
observers in the perturbed spacetime may thus be
analyzed just as for the freely falling observers

discussed above, but with the entrance value of E
replaced by Efinal. We conclude that any accelerated
late-infall-time observer who ‘‘would have reached
the outgoing inner horizon in unperturbed RN’’
also experiences a shock wave in the perturbed
spacetime.

V. EFFECTIVE SPACETIMES FOR
LATE-INFALL OBSERVERS

We have seen above that, in the limit of late infall times,
observers who enter a perturbed Reissner-Nordström black
hole experience an effectively unperturbed Reissner-
Nordström geometry up to the point where they would
expect to encounter an inner horizon at r ¼ r�. At this
point, observers who would have reached the outgoing
inner horizon in exact RN then encounter a shock wave
across which the metric changes discontinuously.
Describing the detailed nature of this discontinuity

requires further investigation. While we will not attempt
a precise treatment here, it is natural to expect that the
above shock wave in fact contains a curvature singularity,
as we know that our observers will eventually reach such
a singularity, and we expect that, since they are already
‘‘nearly null’’ in the region described in Sec. IV, all proper
times along their worldlines will be compressed to zero in
the large-veh limit.18

In addition, it is clear that some accelerated observers
will reach the ingoing weak null singularity shown in Fig. 1
(left). For observers who enter the black hole very late, in
the region where perturbations are very small, this may be
accomplished using roughly the same set of accelerations
(as defined in their own reference frame) as would be
required to reach the ingoing part of the inner horizon in
an unperturbed RN black hole. Furthermore, in the limit
of late infall time, such observers arrive at the portion of
the weak null singularity close to iþ in Fig. 1 where the
singularity is extremely weak, so that again such observers
will measure no noticeable departure from unperturbed RN
until r is exceedingly close to r�.
To complement the precise calculations of Secs. III B

and IV, we find it useful to give a brief heuristic argument
that reinforces the above statements. To do so, note that
taking our observer to enter the black hole at late time is
equivalent to considering some fixed infall time and replac-
ing the given spacetime with one in which the black hole
formed (along with its full set of perturbations) at a much
earlier time. As a particular example, we might consider a
scenario which starts with empty Minkowski space in the
interior and where both the matter that forms the black hole
and our observer are dropped in from some large value of r

18Note that this argument is equally valid if, for some kinds of
matter, the spacetimes contain no spacelike singularity. In such
cases the ingoing worldline will reach the weak null singularity,
which is also a curvature singularity.
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at finite advanced times vmatter and vobs, respectively. For
example, the observer might be ejected from a static space
station. The matter could be dropped from a dense network
of such space stations, or simply assumed to cross the r
coordiante associated with the observer’s space station
near the advanced time vmatter. The observer is also given
some particular instructions for executing accelerations as
a function of proper time along his worldline, and we take
the matter to be released as some particular function of
advanced time peaked around some vmatter. Allowing
vmatter to vary leads to a one-parameter family of (isomet-
ric) spacetimes. We wish to study the limit vmatter ! �1,
holding vobs fixed.

It is useful to assume that the perturbed spacetime
preserves spherical symmetry. The advanced time v is
thus a well-defined null coordinate everywhere in the
globally hyperbolic part of the spacetime (shown at the
left in Fig. 1) and the retarded time u is a similarly well-
defined null coordinate in the region outside the event
horizon. Furthermore, it is clear that two spacetimes differ-
ing by a shift of vmatter can be described by essentially the
same metric functions, albeit again with a corresponding
shift of u, v. For example, introducing ~u ¼ u� vmatter and
~v ¼ v� vmatter, we may take the collapsing spacetimes to
be described by the metric

ds2 ¼ �fcolð~u; ~vÞdudvþ r2colð~u; ~vÞd�2
2 (5.1)

for some fixed functions fcolð~u; ~vÞ, rcolð~u; ~vÞ which do not
explicitly depend on vmatter. Similarly, the center of spheri-
cal symmetry is described by some fixed curve ~u ¼ ccolð~vÞ,
and the event horizon is the curve ~u ¼ þ1. The fact that
for any fixed vmatter the spacetime approaches RN as u,
v ! 1 implies that in the formal vmatter ! �1 limit
with u, v fixed, we have rcolðu� vmatter; v� vmatterÞ !
rðu; vÞ and fcolðu� vmatter; v� vmatterÞ ! Fðrðu; vÞÞ,
where FðrÞ and rðu; vÞ are the functions defined in
Sec. II for exact RN.
We would like to find a similar construction for the

region to the future of the event horizon. In that region
the retarded time u cannot be defined simply by tracing
outgoing radial null rays to Iþ. Rather than attempt to find
a physically preferred definition of u, let us therefore
consider any null coordinate u which is smooth inside
the event horizon, has past-directed gradient rau, and for
which the metric again takes the form of Eq. (5.1) on each
member of our family of spacetimes where the functions
fcol, rcol again approach Fðrðu; vÞÞ and rðu; vÞ as defined
in Sec. II in the limit of large u, v with fixed vmatter. Note
that inside the event horizon, ~u will decrease to some
vmatter-independent minimum value umin at the point where
the center of symmetry hits the singularity. We choose this
umin to be finite.
We expect that late-time observers experience an effec-

tive spacetime described by the formal vmatter ! �1 limit

r=0

shell
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i+

r+

r = r-
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FIG. 4 (color online). Left: Some lines of constant u, v drawn on the spherical spacetime describing a collapsing shell perturbed by a
massless scalar field. The long-dashed line (top right boundary) is the mass-inflation singularity. In contrast, the short dashes mark
coordinate lines lying outside the physical spacetime (since r < 0). The vector field @u þ @v is tangent to any surface u ¼ �1 or
v ¼ �1. The arrows indicate the direction of this vector field along such surfaces. The point marked iþ is fixed under the action of
this vector field. Right: The effective geometry for late-time observers obtained by flowing the interior of our spacetime backward
along the vector field @u þ @v, while similarly deforming the boundaries. As with Fig. 1 (right), it consists of the region of the
unperturbed eternal Reissner-Nordström black hole with r > r�, together with certain shock-wave singularities. The shock along the
lower-left boundary descirbes a jump from r ¼ rþ to r ¼ 0 (corresponding to the regular center of spherical symmetry shown in
the left diagram). Though it arises only in the formal late-infall limit, this shock is not actually accessible to any late-infall observer.
In this sense the shock is fictitious. In contrast, the shock along the upper-left boundary is accessible to late-time observers. It contains
the final piece of the shell worldline and describes a jump from r ¼ r� to r ¼ 0 (corresponding to the spacelike singularity shown in
the left diagram).
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(with u, v held fixed) of Eq. (5.1) for some definition of
the internal u coordinate above.19 Moreover, the essential
features of this limit are independent of the particular
definition of u. Indeed, by construction, this limit is
described by fcol ! Fðrðu; vÞÞ and rcol ! rðu; vÞ on the
domain u > umin þ vmatter ! �1. All of the additional
structure has been sent off to u ¼ �1, which of course
nevertheless lies at finite affine parameters along future-
directed geodesics. Thus, as shown in Fig. 4, this limiting
spacetime is just the region of unperturbed RN to the future
of its past horizon and to the past of its outgoing inner
horizon. However, rather than being smooth, the outgoing
null surface u ¼ �1 is a shock wave into which all of the
time-dependent structure of the spacetime has been com-
pressed. We should also recall that, although it is no longer
apparent from the limiting form of the metric, the entire
ingoing surface v ¼ þ1 to the future of iþ is a curvature
singularity (i.e., the mass-inflation singularity) for any
finite value of vmatter.

VI. DISCUSSION

Our work above examined the experiences of observers
who enter classical spherically symmetric, charged,
asymptotically flat black holes subject to both linear and
nonlinear perturbations. We also considered linear pertur-
bations of Kerr black holes. Our emphasis was on the limit
of late infall times, veh ! 1. In this limit, our observers’
observations agree precisely with those of similar observ-
ers in the unperturbed (stationary) black-hole spacetime
up to the point where the latter observers would reach the
inner horizon. At that point, however, those late-infall-time
observers who would have reached the (smooth) outgoing
inner horizon in unperturbed RN instead encounter an effec-
tive gravitational shockwave in the perturbed spacetime. The
shock’s width (expressed in terms of the proper time of
infalling observers) decreases with infall time as e��veh ;
hence, it effectively vanishes for late-infall observers.

This may be thought of fundamentally a time dilation
effect. Recall that the Killing field @t of a stationary black
hole acts like a Minkowski-space boost in the region near
where the ingoing inner horizon meets the outgoing inner
horizon. This is precisely the region in which late-infall
observers encounter any structure present in the black hole
interior. As a result, observers who enter at later and later
times arrive here in more and more highly boosted refer-
ence frames. Thus, they approach at nearly the speed of
light and transit through in vanishing proper time, experi-
encing any structure as a shock wave.

In such a gravitational shock wave, the metric undergoes
a discontinuity and changes by a finite amount20 in vanish-
ing time. An extended physical object hitting this shock
wave will thus undergo a sudden deformation (i.e., shear
and/or contraction) by a finite amount, within an effectively
vanishing proper time. Owing to their short time scale, the
gravitational tidal forces entailed in the shock will presum-
ably dominate over all internal interactions. Thus, each
single nucleon (say) will be deformed by a certain amount
(typically of order 1) while traversing such a shock wave.
We also gave a heuristic argument that the experiences

of late-time observers are described by the simple effective
spacetime shown at the right in Fig. 4, which in particular
reproduces the above exact results. On the basis of this
argument, one expects the outgoing shock wave to contain
a strong curvature singularity,21 with the area radius r
shrinking to zero across the shock wave for the case
described in Fig. 4. However, these final details remain to
be verified by other techniques.
While the explicit nonlinear analysis in Sec. IV was

restricted to the spherically symmetric case, we strongly
expect that the same phenomenon of shock-wave forma-
tion will take place in nonspherical black holes as well, and
particularly in perturbed spinning black holes. This expec-
tation is based on the combination of several pieces of
evidence: the experience of late-infall observers inside a
linearly perturbed Kerr BH (discussed in Sec. III B), the
subdominance of nonlinear perturbations in generically
perturbed spinning black holes (particularly near the early
portion of the CH), and—more generally—on the profound
similarity between the inner structures of charged and
spinning black holes.
It may be interesting to compare the properties of the

two different types of null singularity that develop at the
inner horizon: the shock-wave singularity at the latter’s
outgoing section, and the weak curvature singularity at
the CH. We argue that from the physical point of view,
the shock-wave singularity is the more violent one—
particularly for very late infalling observers. To see this,
consider two representative orbits in the RN geometry:
Orbit (a) hits the ingoing section of r ¼ r�, whereas orbit
(b) hits the latter’s outgoing section. Let us now consider
the experiences of these two observers on their approach to
r ¼ r�, in case the RN spacetime is perturbed—focusing
our attention on the late-infall orbits belonging to the
two families (a, b). Observers of type (a) will hit a true
curvature singularity at the CH. This singularity is weak,
however, and any observer will only experience a finite
integrated deformation up to the CH. Furthermore, this

19For example, if the metric coefficients of such a collapsing
spacetime can be analytic in some null coordinates, then the
action on the interior metric due to a shift of vmatter will be
determined by analytic extension of the action on the exterior
metric, and this interior action can be used to define an interior
null coordinate u that simply shifts with vmatter. It is clear that the
resulting u will have the properties required above near iþ.

20The magnitude of the shock wave may also be infinite in
some cases. In the discussion here, we shall assume it is finite.
21For the case where the perturbations are associated with
a massless scalar field. For more general matter fields, the
shock wave may contain only a weak curvature singularity. See
footnote 18.
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deformation will decrease with increasing veh (as an in-
verse power thereof), and will vanish in the late-infall limit.
On the other hand, observers of type (b) will experience,
on approaching r ¼ r�, a certain amount of deformation
which does not decrease with increasing veh. This is
because the shock’s amplitude approaches a certain limiting
value at largeveh (it is only the shock’s width which evolves
at late time; it decreases exponentially in veh). Thus, at least
as far as the overall tidal deformation is considered, at the
late-infall limit, observers of type (a) will effectively feel no
singularity at the CH, whereas late-infall observers of type
(b) will feel a violent gravitational shock-wave singularity,
whose magnitude is typically of order unity (at least).

While our considerations were completely classical, our
conclusions also suggest properties of quantum black hole
microstates. In particular, the second law of thermodynam-
ics implies that the late-time limit of any black hole space-
time should approximate the typical quantum state of the
relevant ensemble. It is thus natural to conjecture that the
typical state in an ensemble of charged or rotating black
holes corresponds to the geometry displayed in Fig. 4
(right) together with quantum corrections, as opposed to,
say, that shown in Fig. 4 (left).

Some of our results carry over directly to generic (sta-
ble) black holes in any dimension. Indeed, in retrospect our
linear analysis depended only on the general form of a
(future-directed) time translation @t between the inner and
outer horizons of the unperturbed black hole, and in par-
ticular on the pattern of surfaces invariant under its action.
The essential ingredients are just the following: (i) the
(smooth) inner and outer horizons are invariant under @t,
(ii) the point iþright in Fig. 2 (left) is an attractive fixed

point of @t while iþleft is a repulsive fixed point, and

(iii) perturbations in the immediate vicinity of the outgoing
inner horizon decouple into independent u and v compo-
nents.22 Whenever these features arise, late-infall-time
observers who reach the outgoing inner horizon will expe-
rience any given linear perturbation as a shock wave. Note
that, despite our use of Eddington coordinates u, v in the
main text, this more geometric form of the argument is
manifestly coordinate invariant.

At the nonlinear level, the assumption that the perturbed
spacetime approaches a stationary geometry at iþright, which
is an attractive fixed point of @t, again implies that late-
infall-time observers experience an essentially unperturbed
solution up to the point where they would expect to reach
an inner horizon. One is tempted to draw a conformal
diagram similar to that in Fig. 4 (right) and again conjec-
ture that infalling observers experience an effective out-
going shock wave. However, investigating this conjecture

in detail will require more sophisticated methods or, per-
haps, numerical simulations.
Throughout this work, we have considered what one

may call ‘‘test observers,’’ which experience perturbations
of the spacetime but do not source further perturbations.
In contrast, any physical observer who falls into the black
hole may be expected to create additional perturbations
which now typically fall into the black hole at an advanced
time comparable to veh (and thus which cannot generally
be ignored simply by taking the limit of large veh). It would
be interesting to understand what this implies for the
experiences of such physical observers. For example, con-
sider an observer who reaches the would-be ingoing inner
horizon (the CH). Due to the decay of other perturbations
as reviewed in Sec. IVA, for sufficiently large veh the per-
turbations at the relevant part of the CH will generically be
dominated by those sourced by our observer himself. One
would expect him to encounter a null weak singularitywhose
strength (typically tiny, of the order of themass ratio between
the BH and observer) is determined by perturbations of his
owncreation. In contrast, even if our observer instead reaches
the would-be outgoing inner horizon, we see no reason for
perturbations sourced by the observer to destroy the outgoing
shock wave set up by earlier perturbations or to significantly
change the experience described above.
In our work above, we assumed that the spacetime

approaches somenonextreme stationary black hole geometry
near iþ. To simplify the analysis, we assumed ‘‘generic’’
parameter values for this limiting BH, and in particular that it
is not too close to extremality. While extending these results
to nearly extreme black holes is not difficult (see in particular
footnote 26 in the Appendix), the precisely extreme case
remains to be understood. Taking the formal extreme limit
of our late-time results (i.e., first taking veh ! 1 with rþ �
r� and then taking r� ! rþ) agrees with the picture sug-
gested in Ref. [4] (and supported by Ref. [5]), in which late-
time observers experience a singularity which effectively
resides at the final event horizon. This suggests that such
a picture should hold at least for horizons that approach
extremality sufficiently slowly relative to the production of
perturbations (and relative to the time scale set by the surface
gravity). This in particular should apply for large black holes
when the approach to extremality is due to quantum pro-
cesses in cases where the extreme BH is quantum mechani-
cally stable (e.g., with enough supersymmetry). However, a
complete analysis is again left for future work.
To simplify the discussion, our analysis has focussed

on very-late-time observers who enter asymptotically flat
black holes. But let us now comment on the implications
for observers who enter astrophysical black holes at finite
times. So long as the current accretion rate and any effects
from the expansion of the Universe are small (e.g., at the
1% level), and so long as a few light-crossing times have
passed since the black hole experienced a large perturba-
tion (including the initial formation of the black hole),

22At least for scalar fields with the usual kinetic term, one may
derive (iii) from (i) and (ii) by defining ~V ¼ 
V and taking the
limit 
 ! 1 to zoom in on the region near V ¼ 0.
Corresponding results may also hold for higher spin fields.
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a finite-infall-time observer who reaches the would-be
outgoing inner horizon should also experience our effec-
tive shock wave. This can be seen from the following
points: (i) By causality, nothing that enters the black hole
more than a few light-crossing times to the future of our
observer can affect his experience. Thus, the experience of
our observer can be described by modeling the astrophys-
ical black hole as an asymptotically flat black hole with a
small accretion rate. (ii) Although in various parts of this
paper we have focused on the internal structure of the BH
at very late time (after the decay of radiative tails), one
should bear in mind that the process of shock formation is
in fact rather quick: Owing to the exponential decrease of
the shock width, a veh value of only a few light-crossing
times is required for the very narrow shock configuration to
build up. During such a veh interval of, say, 10–20 timesM,
a weak accretion will not have a chance to cause a signifi-
cant modification to the process of shock formation.

For observers who fall into such an accreting BH with
a much larger veh, the accumulating effects of continuing
accretion may possibly be more significant (see, e.g.,
Ref. [14]). Nevertheless, in the limit of weak accretion,
any effects of this accretion can cause only small changes
from the scenario described above. While this might give
our effective shock a finite width (independent of veh) or
perhaps make the effective shock timelike or spacelike
instead of null, in the weak accretion limit, observers
with fixed resolution would still describe their experience
as an encounter with an effective shock. Thus, our scenario
provides a good first approximation to the experiences of
observers who enter weakly accreting astrophysical black
holes at finite times. While it would be interesting to
compute these corrections quantitatively (e.g., by compar-
ing with Ref. [14]), the fact that in many astrophysical
situations the mass accretion rate is far, far less thanM per
light-crossing time23 suggests that this approximation is
quite good indeed.
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APPENDIX: BOUND ON �E IN
SLIGHTLY-PERTURBED RN

In this appendix, we derive a bound on �E based on
Eq. (4.14) and on the inverse-power form of the MPs (at the
early portion of the CH).
For a generic situation of a perturbed charged (or spin-

ning)BH, theMPs are dominated by the linear term,which is
usually a superposition of a term / v�n and a term / u�n,
typicallywith n ¼ 2lþ 3 or possibly n ¼ 2lþ 2, where l is
the multipolar number of the MPmode under consideration.
However, in our case, the situation is different becausewe are
only considering here spherically symmetric perturbations,
and there are no matter-free spherical MPs. Therefore, it is
only the scalar field which is excited at the linear level.
The MPs are in turn sourced by the scalar-field energy-
momentum tensor [Eq. (4.1)], which is quadratic in (deriva-
tives of) �; hence, the MPs will first appear as (and will be
dominated by) second-order perturbations.
Thus, whereas in our case � is dominated by terms /

v�n and / u�n (with n ¼ 2lþ 3 ¼ 3), the MPs will be
dominated by inverse-power terms of overall power �2n
rather than n. Restated in other words, the MPs will be
dominated by a superposition of terms of the form
cjkv

�ju�k, with non-negative integers j, k satisfying jþ
k ¼ 2n ¼ 6, where cjk are certain constants.24

Correspondingly, the term in squared brackets on the right-
hand side of Eq. (4.14)will be dominated by the superposition

of terms c0j0k0v
�j0u�k0 with non-negative integers j0, k0 sat-

isfying j0 þ k0 ¼ 2nþ 1 (with some new constants, c0j0k0).
Let us now restrict our attention to the contribution to

dðE2Þ=du coming from a single such term, c0j0k0v
�j0u�k0 :

dðE2Þ½j0k0�=du � c0j0k0v
�j0u�k0e�ðu�vÞ: (A1)

We can bound this contribution by

jdðE2Þ½j0k0�=duj< ½jc0j0k0 jðvminÞ�j0e��vmin�u�k0e�u; (A2)

where vmin is the minimal value of v in the orbit’s section
under consideration. (vmin is always � veh; later we shall
take vmin to be the value of vwhen the orbit approaches the
neighborhood of the CH.)
The term on the right-hand side of Eq. (A2). is an

explicit function of u. Consider now its integral between
a certain pair of u values ui, uf satisfying ui > uf � M.

We can now set vmin to be vi, namely, the value of v when
the orbit approaches u ¼ ui. Also, since u � M

23The light-crossing time of a stellar mass black hole is of order
10�4 seconds. Even if such a black hole accreted a solar mass per
year, we would have _M & 10�11.

24To be more specific, assuming that � decays as v�n along the
EH, then perturbation analysis reveals [30] that in the neighbor-
hood of the early portion of the CH, �r is dominated by a term
/ v�2n�1 plus another term / u�2n�1, and �H by a term
/ v�nu�n (plus, possibly, additional terms / v�2n and / u�2n,
though these two would be more sensitive to the choice of
gauge). Note that as a consequence, many of the coef-
ficients c0j0k0 (to be defined shortly) actually vanish, though

some of them (for example, c0n;nþ1) do not.
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throughout the relevant domain, over the basic exponential

time scale �u� 1=�, the factor u�k0 does not vary in an
appreciable manner; therefore, it may be pulled out of the
integral. The latter is thus well approximated by just the
integrand—namely, the right-hand side ofEq. (A2)—divided
by � (the error being smaller typically by a factor / M=u).
Thus, denoting the (j0, k0) contribution to the variation in E2

(accumulated between ui and uf) by �ðE2Þ½j0k0�, we find
j�ðE2Þ½j0k0�j< ½��1jc0j0k0 jðviÞ�j0e��vi�½u�k0e�u�uiuf :

Clearly thismaybe further bounded by the contribution at the
upper limit (u ¼ ui), yielding the bound

j�ðE2Þ½j0k0�j< ��1jc0j0k0 jðviÞ�j0 ðuiÞ�k0e�ðui�viÞ: (A3)

The situation which concerns us is the motion of late-
infall observers between two u ¼ const hypersurfaces, u1
to u2 (as described in Secs. III and IV). Our goal here is to
show that the late-infall orbits will not cross the CH before
approaching u ¼ u2 (for any u2 � M). We therefore need
to bound the variation in E2, from the stage where the orbit
approaches the neighborhood of the CH, up to u ¼ u2.
Correspondingly, in the above bounds on �ðE2Þj0k0 we

should in principle set uf ¼ u2 (though uf actually drops

out from our final bound), and choose ui to be the value of
u at which the orbit approaches the CH neighborhood. This
notion of ‘‘approaching the CH neighborhood’’ is most
naturally formulated by means of a certain value of r�,
which we denote as r�0. That is, a particular orbit is said to
have arrived at the CH neighborhood at the point where
r� ¼ r�0, and we set our parameters ui and vi to be the (u,
v) values of that point (this in particular implies vi � ui ¼
2r�0). From Eq. (2.7), r�0 is (roughly speaking) the value of
r� at which e�2�r� becomes 
 1.25

Substituting ui ! vi � 2r�0 in Eq. (A3), the exponent
at the right-hand side reads e�2�r�0 . Also, since we are
concerned here with the late-infall limit, in evaluating the

factor ðuiÞ�k0 ¼ ðvi � 2r�0Þ�k0 we can safely ignore r�0
compared to vi (which is >veh), after which the right-
hand side of Eq. (A3) becomes

��1jc0j0k0 jðviÞ�ðj0þk0Þe�2�r�0 : (A4)

Note, however, that the difference between vi and veh is,
approximately, the quantity �v (defined earlier in
Sec. III A), which is OðMÞ (and independent of infall
time), and hence is 
veh in the late-infall limit.

Therefore, we can further replace ðviÞ�ðj0þk0Þ with

ðvehÞ�ðj0þk0Þ. Also, since e�2�r�0 < 1 (it is in fact 
 1),
we are allowed to entirely drop it from our bound.
Recalling that j0 þ k0 ¼ 2nþ 1, we obtain the bound on
�ðE2Þ½j0k0� in a much simpler form:

j�ðE2Þ½j0k0�j< ��1jc0j0k0 jðvehÞ�ð2nþ1Þ: (A5)

It remains to sum over the relevant pairs of integers j0k0
(recall that these are certain non-negative integers satisfy-
ing j0 þ k0 ¼ 2nþ 1). This summation is trivial, and we
get the bound on �ðE2Þ in its final form:

j�ðE2Þj<C0ðvehÞ�ð2nþ1Þ ¼ C0ðvehÞ�7; (A6)

where C0 ¼ ��1�j0 jc0j0k0 j (setting k0 ¼ 2nþ 1� j0).
Obviously, the constant C0 is independent of veh.
We have thus established that at the late-infall limit,

j�ðE2Þj inevitably becomes 
 E2. Equation (A6) thus
also implies that �E (namely, the modification in E accu-
mulated in the near-CH region up to some u2 � M) is
bounded for late-infall orbits by26

j�Ej<CðvehÞ�ð2nþ1Þ ¼ CðvehÞ�7; (A7)

where C ¼ C0=ð2EÞ.
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