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The spin foam formalism provides transition amplitudes for loop quantum gravity. Important aspects of

the dynamics are understood, but many pressing questions remain. In this paper we address some of them

using a twistorial description, which sheds new light on both classical and quantum aspects of the theory.

At the classical level, we clarify the covariant properties of the discrete geometries involved, and the role

of the simplicity constraints in leading to SU(2) Ashtekar-Barbero variables. We identify areas and

Lorentzian dihedral angles in twistor space, and show that they form a canonical pair. The primary

simplicity constraints are solved by simple twistors, parametrized by SU(2) spinors and the dihedral

angles. We construct a SU(2) holonomy and prove it to correspond to the (lattice version of the) Ashtekar-

Barbero connection. We argue that the role of secondary constraints is to provide a nontrivial embedding

of the cotangent bundle of SU(2) in the space of simple twistors. At the quantum level, a Schrödinger

representation leads to a spinorial version of simple projected spin networks, where the argument of the

wave functions is a spinor instead of a group element. We rewrite the Liouville measure on the cotangent

bundle of SL(2,C) as an integral in twistor space. Using these tools, we show that the Engle-Pereira-

Rovelli-Livine transition amplitudes can be derived from a path integral in twistor space. We construct a

curvature tensor, show that it carries torsion off shell, and that its Riemann part is of Petrov type D.

Finally, we make contact between the semiclassical asymptotic behavior of the model and our construc-

tion, clarifying the relation of the Regge geometries with the original phase space.

DOI: 10.1103/PhysRevD.86.124023 PACS numbers: 04.60.Pp

I. INTRODUCTION

An intriguing relation between loop quantum gravity
and twistors has recently emerged in the literature [1–4].
It relies on a new parametrization of the classical phase
space of holonomies and fluxes. In this paper we push this
representation further and study dynamical properties of
the theory, addressing a number of open questions. Among
these, we show that transition amplitudes for loop quantum
gravity can be written as path integrals in twistor space,
and that torsion is present off shell.

In the first part of the paper, we focus on classical
aspects of the twistorial representation. We review the
results that appeared in Refs. [1–4], and put them together
in a coherent picture. Using the twistorial parametrization,
we identify a pair of canonically conjugated variables, that
corresponds geometrically to an area and a Lorentzian
dihedral angle. We study the algebra of primary simplicity
constraints in twistor space, and show that the constraint
surface is parametrized by SU(2) holonomies and fluxes,
plus the dihedral angle. The simple twistors solution of the
constraints are determined by SU(2) spinors and the dihe-
dral angle. We then argue that solving the secondary con-
straints leads to a nontrivial embedding of SU(2) variables
in the covariant space, a structure that reproduces at the
discrete level what is achieved by the Ashtekar-Barbero
variables. In fact, we also prove that the reduced SU(2)
connection is the (lattice version of the) parallel transport
with respect to the Ashtekar-Barbero connection. Finally,

we give the map from twistors to covariant twisted geome-
tries, and show that the role of the simplicity constraints is
to match the left and right metric structures, precisely as in
the continuum theory.
In the second part of the paper, we use these structures to

derive a series of results for the quantum theory. In Sec. III,
we show that the classical phase space and its algebra of
constraints can be quantized, leading to a Hilbert space of
quantum twistor networks. This is achieved by choosing a
Schrödinger quantization of twistor space, as in Ref. [2].
The resulting states are wave functions on spinors, instead
of cylindrical functions on the group. A basis is given by
the homogeneous functions appearing in the unitary irre-
ducible representations of the Lorentz group. They carry a
representation of the spinorial Heisenberg algebra, that
includes the holonomy-flux algebra, and introduce a new
framework for covariant loop quantum gravity. Treating
the diagonal simplicity constraints as first class, and the
second-class off-diagonal constraints via a master con-
straint technique, we derive what we call simple quantum
twistor networks. These are related to the simple projected
spin networks of Ref. [5], which appear [6,7] as boundary
states of the Engle-Pereira-Rovelli-Livine (EPRL) spin
foam model [8] and its generalizations to arbitrary cell-
ular decompositions [9,10] (see also Refs. [11–19], and
Ref. [20] for a recent introduction). The change of repre-
sentation between the spinorial wave functions and the
cylindrical functions can be given explicitly, and appears
naturally in the construction of the spin foam dynamics.
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The existence of a SU(2)-invariant scalar product and the
equivalence with the Hilbert space of loop quantum gravity
are natural results in our formalism.

In Sec. IV, we use the twistorial parametrization to
rewrite the Liouville measure of the cotangent bundle
T�SLð2;CÞ. This requires a Faddeev-Popov procedure for
the area-matching constraint, which we provide explicitly,
and prove gauge invariance of the path integral. The result
has applications to the spin foam formalism in general.

In Sec. V we derive the EPRL transition amplitudes as a
path integral in twistor space, using the previous results:
the quantized phase space, the Liouville measure, plus a
discretization of the action of BF theory which is bilinear
in the spinors. The result is an independent derivation of
the model, where the wedge amplitude is like the infini-
tesimal step of a Feynman path integral, with the inter-
mediate position eigenstates given by the constrained
states, and a ‘‘straight’’ evolution given by the BF action.
The calculation is based on the properties of the homoge-
neous functions in the boundary states, and involves the
evaluation of a certain complex integral. The final ampli-
tude perfectly coincides with the (generalized) EPRL
model, up to additional face factors that can be indepen-
dently specified, for instance as argued in Refs. [21,22].

The EPRL model has the important property of repro-
ducing the Regge action in the large spin limit [17]
(see also Refs. [18,23–26]). In Sec. VI, we present the
relation between the semiclassical Regge behavior and
the covariant phase space. In doing so, we explain some
key aspects of the large spin asymptotics, which have so far
gone unnoticed. First, some of the saddle point equations
determine a certain subset of the primary simplicity con-
straint surface. Second, the secondary constraints are
solved by the remaining saddle point equations. This key
step rests significantly on the restriction to triangulations
and the assumption of flatness of the 4-simplices, a case in
which a Levi-Civita connection is known from Regge
calculus. We show that the dihedral angles entering the
Regge action are precisely those of our phase space.
We discuss the ‘‘semicoherence’’ of the model, in the sense
that not the whole phase space structure plays a dynamical
role. This shows up, among other things, in the fact that the
areas are purely quantum numbers. We also introduce a
curvature tensor, and show that off shell it has nonvanish-
ing torsional components, consistently with the continuum
formalism. In the conclusions we summarize our results
and discuss some of the new lines of research that this
program proposes.

There are two appendices. The first gives a list of con-
ventions on spinor calculus and useful formulas for the
irreducible unitary representations of the Lorentz group,
while the second appendix contains the explicit evaluation
of an integral entering the derivation of the amplitude.
Further concerning conventions, the papers [1,3,4] use an
index-free notation, whereas Ref. [2] uses the standard

spinorial notation. Here, primi juvenes, we work with
explicit indices. In the Appendix, we provide a translation
to the index-free notation. Accordingly, A; B; C; . . . are
spinor indices in the left-handed representations, and their
complex conjugates (i.e., their right-handed counterparts)
carry bars; i.e., we write �A; �B; �C; . . . . Also, I; J; K; . . .
label internal Minkowski vectors, a; b; c; . . . are abstract
indices in tangent space, and i; j; k; . . . run from one to
three. The metric signature is ð�;þ;þ;þÞ, resulting in
Minkowski vectors corresponding to anti-Hermitian matri-
ces in the irreducible ð12 ; 12Þ representation of SLð2;CÞ.
Brackets ð� � �Þ and ½� � �� surrounding the indices denote
their normalized symmetrization and antisymmetrization
respectively, and �0123 ¼ 1 fixes the normalization of the
internal Levi-Civita tensor.

II. FROM TWISTORS TOTWISTED GEOMETRIES

A. Twistors and T�SLð2;CÞ
Following our previous works [1–4], we begin with an

abstract, oriented graph decorated by a pair of twistors
ðZ; Z∼Þ 2 T2 ’ C8 on each link, and associate Z and Z∼ to
the source and target points respectively. This will be a
general rule for us: ‘‘tilded’’ quantities always belong to
the final point. Each twistor is described as a pair of
spinors, Z ¼ ð!A; �� �AÞ 2 C2 � �C2� ¼: T, where !A is
left-handed, and the right-handed part �� �A lies in the
complex-conjugate dual vector space. We equip the space
T2 with a SLð2;CÞ-invariant symplectic structure, whose
nonvanishing Poisson brackets are

f�A;!
Bg ¼ �B

A ¼ �f�∼A;!∼
Bg; and

f �� �A; �!
�Bg ¼ �

�B
�A
¼ �f ��∼�A; �!∼

�Bg: (1)

We have chosen opposite signs between tilded and untilded
Poisson brackets, but symmetric brackets would work
as well.
As it is well known from the literature [27–29], T and T2

carry a representation of the Lorentz group, preserving the
symplectic structure. The generators of the action are the
left-handed bispinors

�AB ¼ � 1

2
!ðA�BÞ; �∼

AB ¼ 1

2
!∼

ðA�∼
BÞ; (2)

and their right-handed complex conjugates. That is, the
Hamiltonian vector fields of ð�; ��Þ and ð�∼ ; ��∼ Þ generate
the canonical SLð2;CÞ action on Z and Z∼. The proof is a
straightforward application of the brackets (1), but also
needs some additional SLð2;CÞ structures. The first is the
invariant antisymmetric � tensor (its components fixed by
requiring �01 ¼ �01 ¼ 1) mapping contravariant spinors to
their algebraic duals and vice versa,

!A ¼ �BA!
B; !A ¼ �AB!B;

�AC�BC ¼ �B
A ¼ �A

B:
(3)
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The second are the anti-Hermitian slð2;CÞ generators �ABi,
related to the Pauli matrices �i through 2i�i :¼ �i. These
matrices induce a map between slð2;CÞ and C3:

� 2 slð2;CÞ: �A
B ¼ �i�ABi; �i 2 C3: (4)

Then,

f�i;�jg ¼ ��ij
k�k; f�∼ i;�∼ jg ¼ ��ij

k�∼ k;

f�i;�∼ jg ¼ 0; (5)

and the same for their conjugated. These are the Poisson
brackets for (two copies of) the Lorentz algebra, in the
chiral splitting. The chiral generators

�i ¼ 1

2
ðLi þ iKiÞ; �∼ i ¼

1

2
ðL∼ i þ iK∼ iÞ (6)

are complex, with real and imaginary parts, L and K,
generating rotations and boosts respectively. We will later
identify the slð2;CÞ elements � and �∼ with the gravita-
tional fluxes, i.e., the Plebanski 2-form smeared over two-
dimensional submanifolds in the hypersurface of initial data.
If this hypersurface is spacelike, we require �AB�AB � 0,
implying linear independence of the spinors:

�! :¼�AB�
A!B¼�A!

A�0; �
∼
!
∼
�0: (7)

With this restriction, the pair ð�A;!AÞ forms a complete
basis ofC2, just as well as ð�∼A;!∼

AÞ. We introduce the linear
map translating one to the other,

hAB!
B ¼ !∼

A; hAB�
B ¼ �∼

A; (8)

which we will later identify with the holonomy along the
link. For this map to be unimodular, i.e., h 2 SLð2;CÞ, it
must preserve the bilinear generated by �AB; hence

C :¼ �!� �∼ !∼ ¼ 0: (9)

In the following, we will refer to (9) as the (complex) area-
matching constraint. Furthermore, thanks to the restriction
(7), we can uniquely parametrize the holonomy in terms of
the basis spinors as

hAB ¼
!∼

A�B � �∼�
A!Bffiffiffiffiffiffiffiffiffi

�∼ !∼
q ffiffiffiffiffiffiffiffi

�!
p : (10)

The functions �, �∼ and h are related by

�∼ ¼ � �!

�∼ !∼
h�h�1; (11)

and span 14 out of 16 dimensions of T2. They obey the
Poisson brackets

f�i; hg ¼ �h�i; f�∼ i; hg ¼ �ih; (12a)

fhAB; hCDg ¼ � 2C

ð�!Þð�∼ !∼ Þ
ð�AC�BD þ �BD�∼

ACÞ: (12b)

On the constraint hypersurface C ¼ 0, two key properties
hold: Firstly, the adjoint representation relates the fluxes,

�∼ ¼ �h�h�1. Secondly, the components of the holonomy
commute. Hence, we recover the Poisson algebra of
T�SLð2;CÞ with � and �∼ as the (chiral) left- and right-
invariant Hamiltonian vector fields on the group manifold:

f�i;�jg ¼ ��ij
k�k; f�i; hg ¼ �h�i;

f�∼ i; hg ¼ �ih; fhAB; hCDgjC¼0 ¼ 0:
(13)

In fact, we can easily see that this procedure amounts
exactly to a symplectic reduction T�SLð2;CÞ’SLð2;CÞ�
slð2;CÞ’T2==C. On the C ¼ 0 constraint hypersurface,
the Hamiltonian vector field XC ¼ fC; �g generates the
orbits

expðzXC þ �zX �CÞ: ð!;�;!∼ ; �∼ Þ
� ðez!; e�z�; ez!∼ ; e

�z�∼ Þ; z 2 C: (14)

The functions �, �∼ and h are invariant under such gauge
transformations, and thus span the space obtained by
symplectic reduction.
Let us add two more remarks to complete the analysis.

First, the map between twistors and holonomy-flux
variables is 2 to 1, since exchanging spinors as

ð!;�;!∼ ; �∼ Þ � ð�;!;�∼ ; !∼ Þ (15)

leaves both holonomy (10) and flux (2) unchanged. Hence,
to arrive at the reduced phase space, we also have to divide
out this residual Z2 symmetry (15). Second, because of the
restriction �! � 0, the spinorial parametrization cannot
cover the submanifold of ðh;�Þ:�AB�AB ¼ �Tr�2 ¼ 0,
and what we truly find is T�SLð2;CÞ removed from all its
null configurations. The complete isomorphism could be
defined through a suitable treatment of the degenerate
configurations; see e.g., the analogous situation in the
SU(2) case [30]. However, below we will identify �
with the Plebanski field smeared over two-dimensional
surfaces in a t ¼ const slice of initial data. If this hyper-
surface is spacelike, the restriction is automatically ful-
filled, and has no physical consequence for the following.

B. Twistors from the loop quantum gravity action

The interest in the phase space of SLð2;CÞ holonomies
and fluxes comes from loop quantum gravity. We work in
the first-order tetrad formalism, and start from the often-
called Holst action for general relativity. In terms of chiral
variables, it is

SHolst½A; e� ¼ ℏ
‘P

2

�þ i

i�

Z
M
�A

BðeÞ ^ FB
AðAÞ þ cc:; (16)

where ‘P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�ℏGN=c

3
p

is the Planck length, �> 0 is
the Barbero-Immirzi parameter, and ‘‘cc.’’ denotes com-
plex conjugation of everything preceding. See e.g.,
Refs. [31–34] for the case with boundary terms. The action
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(16) is a nonanalytic functional of the left-handed slð2;CÞ
connection A, and the four soldering forms e transforming
in the irreducible ð12; 12Þ representation of SLð2;CÞ.
Curvature FA

B and Plebanski 2-form �A
BðeÞ are uniquely

determined by the equations

FA
BðAÞ ¼ dAA

B þ AA
C ^ AC

B;

�A
BðeÞ ¼ eA

�C ^ eB �C ¼ i

2
�ABi

�
i

2
�ilme

l ^ em þ e0 ^ ei
�
;

(17)

where in the last expression, we have explicitly put the
projector onto the left-handed variables.

In order to read off the symplectic structure, a 3þ 1 split
M ¼ �� R is needed. We take the pullback of the
slð2;CÞ connection onto the spatial hypersurface �t ¼
�� ftg, call this (by a little abuse of notation) Ai

a and
find its conjugate momentum to be

�i
a ¼ � ℏ

‘P
2

�þ i

4i�
~�abc�ibc; (18)

where ~�abc is the spatial Levi-Civita density1 on �t. The
only nonvanishing Poisson brackets are

f�i
aðpÞ; Aj

bðqÞg ¼ �j
i�

a
b
~�ðp; qÞ ¼ f ��i

aðpÞ; �Aj
bðqÞg; (19)

where ~�ðp; qÞ is the three-dimensional Dirac distribution

(a scalar density) on �t, and �a
b, �

j
i are spatial Kronecker

symbols. The Cauchy hypersurface �t ¼ �� ftg of initial
data carries a time normal na, allowing us to define a
Hermitian metric for C2. We work in the time gauge, in
which this normal gives (or rather, is represented by)
the identity matrix, that is, the one corresponding to the
canonical SU(2) subgroup of the Lorentz group:

�A �A :¼ �i
ffiffiffi
2

p
nA

�A ¼ �i
ffiffiffi
2

p
eA

�A
an

a;

time gauge: �0�0 ¼ 1 ¼ �1�1; �0�1 ¼ 0 ¼ �1�0:
(20)

It is this metric with respect to which the Pauli matrices (4)
are Hermitian, and it is this normal with respect to which
the real and imaginary parts of � correspond to rotations
and boosts (6) respectively.

The chiral splitting has led us to a complex phase space.
To guarantee that the metric is real, reality conditions must
be imposed. Using our gauge condition (20) equation (17)
constrains in fact all components of ~�abc�ibc to be real.
This imposes the reality conditions

1

�þ i
�i þ cc: ¼ 0 , Ki þ �Li ¼ 0 , �i ¼ �ei# ��i;

(21)

on the momentum �i. Here we have introduced the angle

ei# ¼ �þ i

�� i
; � ¼ cot#2 : (22)

The intermediate form K þ �L ¼ 0 shows explicitly, as
highlighted in Ref. [35], that the reality conditions amount
to the canonical version of the primary simplicity con-
straints, in their linear version introduced in Ref. [8]. The
final form further shows that they match the two chiral
metric structures induced by SLð2;CÞ, as discussed in
Refs. [36–38].
A complete canonical analysis of the action can be found

e.g., in Refs. [35,39–43]. Preserving the primary con-
straints (21) under Hamiltonian time evolution leads to
secondary constraints, given by the vanishing of the spatial
projection ~�abcDbe

i
c of the torsion 2-form. Once the pri-

mary constraints are solved, the secondary ones imply that
the spatial part of the Lorentz connection is Levi-Civita.2

The system of primary and secondary simplicity con-
straints is second class, and canonical coordinates on the
reduced phase space are provided by Ashtekar-Barbero
variables3 [47–49].
The crucial step towards loop quantization [50,51] is a

certain ‘‘covariant’’ smearing of the continuous gravita-
tional phase space. One introduces a graph � in the spatial
manifold, consisting of oriented links �; �0; . . . , to each of
which we assign a dual, i.e., an oriented surface t; t0; . . . ,
transversally intersecting the corresponding links. We may
think of the graph � as being dual to a cellular decom-
position of the spatial manifold, each node of � dual to a
3-cell. The elementary phase space variables are then
smeared over these lower-dimensional objects, obtaining
a collection of holonomies and fluxes:

SLð2;CÞ 3 h½t� ¼ h� ¼ P exp

�
�
Z
�
A

�
;

slð2;CÞ 3 �½t� ¼
Z
p2t

hq!�ð0Þ�ph�ð0Þ!q:
(23)

Here P exp is the path ordered exponential, and hq!�ð0Þ
denotes the holonomy parallelly transporting from the
integration variable q 2 t along � towards the initial point
�ð0Þ of the link dual to the surface t. Since each surface t
carries an orientation there is also the oppositely oriented
element t�1 which comes along with

1This tensor density is constructed from the four-dimensional
Levi-Civita density ~�dabc via dt~�abc ¼ ~�dabc@dt, where t is the
time coordinate.

2Completing the canonical analysis [35,39] shows also that the
remaining components of the four-dimensional torsion 2-form
vanish, some of them implying evolution equations for the triad
ei on the spatial hypersurface, the others fixing the boost
component of the Lagrange multiplier �i ¼ Aið@tÞ to the value
Imð�iÞ ¼ NaKi

a þ eia@aN, where Ki
a ¼ ImðAi

aÞ is the extrin-
sic curvature and N, Na and @t denote lapse, shift and the time
flow vector field.

3These are defined in the time gauge, but fully covariant
formulations exist [40,44–46]. An alternative parametrization
is suggested by Alexandrov [44].
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h½t�1� ¼ h½t��1; and

�½t�1� ¼ �h½t��½t�h½t��1 � �∼ ½t�:
(24)

Under this smearing, the Poisson structure (19) reduces
precisely to (13) on each link, while variables at different
links commute. See Refs. [50,52] and also Ref. [53] for a
more recent discussion.

The smeared phase space is thus the Cartesian product
of T�SLð2;CÞ associated to each link, which we derived
from a network of twistors supplemented by the complex
area-matching condition (9). Local Lorentz invariance is
imposed as in lattice gauge theories by a closure condition
on the SLð2;CÞ generators at each node, namely Gn ¼P

t2n�½t� ¼ 0 and its complex conjugate. Then, we have
to realize the primary and secondary simplicity constraints,
and find the analogue of the Ashtekar-Barbero variables for
the space of solutions. This is a challenging problem, and a
general solution is still unknown. As pointed out long ago
[54–56], a successful discretization can be found restrict-
ing attention to a 4-simplex, and further assuming that the
interior is flat. In this case we are in the framework of
Regge calculus: the geometry is uniquely described by
edge lengths, and the Levi-Civita connection is known.
In the general case, the situation is different. The primary
constraints remain tractable, as they do not involve the
connection, and can be defined on the boundary of any
4-cell, without assumptions on its interior. The secondary
constraints, on the other hand, lack so far a general treat-
ment. The main difficulty is that outside the framework of
Regge geometries we do not know how to define the Levi-
Civita connection. And in general, even on shell of the
primary constraints, the data on the boundary graph do not
describe Regge geometries, but a generalization going
under the name of twisted geometries [1,30,57], which
we will review below. These (i) are defined for a general
cellular decomposition, (ii) allow for discontinuities in the
metric (possibly related to torsion), and (iii) do not impose
conditions on the interior curvature of the 4-cells. The
Levi-Civita connection is so far not understood in this
framework. We will see in the rest of this section how
the twistor description of the phase space brings new light
to many of these questions.

C. Reality conditions and reduction to SU(2) spinors

Wewill now rewrite the reality conditions in terms of the
spinorial representation, and solve them explicitly. The
result will reduce twistors down to SU(2) spinors, with
the emergence of the SU(2) holonomy of the �-dependent
Ashtekar-Barbero connection. We discretize (21) on both
source and target variables of each link,

8 t: �½t� ¼ ei#�y½t�; �∼ ½t� ¼ ei#�∼
y½t�; (25)

where the Hermitian conjugate is taken according to

ð�yÞAB ¼ �A �A�B �B
��

�B
�A
: (26)

In the spinorial parametrization, the first equation in (25)
reads

!ðA�BÞ ¼ �ei#�A �A�B �B �!ð �A ��
�BÞ: (27)

It apparently gives two equivalent decompositions of �AB

in terms of spinors and their complex conjugate. But the
decomposition of a symmetric bispinor is unique up to
exchange and complex rescaling of the constituents; there-
fore � and!must be linearly related. Furthermore, part of
the complex rescaling is fixed by the phase appearing
explicitly in (27), leaving only the freedom to real rescal-
ings. Hence, we can parametrize the solutions as

�A¼rei
#
2�A �A �!

�A; !A¼�1

r
ei

#
2�A �A ��

�A; r2R�f0g: (28)

The matching of left and right geometries as implied by
(25) immediately translates into the left and right spinors
being proportional. The same conclusion holds in a general
gauge, with a generic normal replacing the identity matrix,
as in (20). Remarkably, the simplicity equations then take
up the same form as Penrose’s incidence relation. It would
be intriguing to explore the existence of a deeper connec-
tion between these two notions. That simplicity implies
proportionality of the spinors is a key result, and was also
derived in Ref. [3]. It means that a simple twistor, i.e., a
twistor satisfying the simplicity constraints, is determined
by a single spinor, plus a real number, whose meaning will
become clear below.
By contractions with ! and �, equation (27) can be

conveniently separated into two parts,

F1 ¼ i

�þ i
!A�A þ cc: ¼ 0;

F2 ¼ iffiffiffi
2

p �A �A�A �! �A ¼ nA
�A�A �! �A ¼ 0:

(29)

Here, F1 is real and Lorentz-invariant, while F2 is complex
but only SU(2) invariant. Following the literature, we will
refer to F1 as the diagonal simplicity constraint, and F2 as
off-diagonal. The constraints Fi, i ¼ 1, 2, the correspond-
ing F∼ i for the tilded spinors, and the area matching C form
a system of constraints on the link space T2 ffi C8. The
algebra can be easily checked to give

fF1;F2g ¼ � 2i�

�2 þ 1
F2; fF2; �F2g ¼ i Imð�!Þ;

fC;F1g ¼ 0; fC;F2g ¼ �F2 ¼�f �C;F2g;
(30)

and the same for tilded quantities.
The system should be supplemented with secondary

constraints coming from a suitable Hamiltonian, and we
will come back to this point below, because it plays an
important role in the identification of the extrinsic curva-
ture. Neglecting any secondary constraints for the moment,
we conclude that the diagonal simplicity constraints F1 and
F∼1 are of first class, as well as C, whereas F2 and F∼2 are
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second class. That some constraints are second class even
in the absence of secondary constraints is a well-known
consequence of the noncommutativity (13) of the fluxes.
The first-class constraints generate orbits inside the con-
straint hypersurface. The orbits of C are given in (14),
whereas those generated by the diagonal simplicity con-
straints are found from

fF1; !
Ag ¼ i

�þ i
!A; fF1; �Ag ¼ � i

�þ i
�A: (31)

We also remark that the system is reducible, since only
three of the four constraints F1, F∼ 1 ReðCÞ and ImðCÞ are
linearly independent. We thus have three independent
first-class constraints, and two complex, second-class
constraints. The reduced phase space has 16� 3� 2�
2� 2 ¼ 6 real dimensions, and we will now prove it to
be T�SUð2Þ. To that end, it is convenient to treat separately
the area-matching and the simplicity constraints, the order
being irrelevant. There are two convenient choices of
independent constraints, depending on the order in which
one solves them. If solving the simplicity first, we can
choose

Cred ¼ C

�þ i
þ cc:; F1; F∼1; F2; F∼2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

F

: (32)

If instead we solve C first, we can take

ReðCÞ; ImðCÞ; D :¼ F1 þ F∼1; F2; F∼2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fred

: (33)

The situation is summarized in Fig. 1.
Let us proceed by solving the simplicity constraints first.

For the untilded quantities, (28) solves all four F ¼ 0
constraints; however the expression is not F1 gauge invari-
ant. For each half-link, gauge-invariant quantities live on
the reduced space T==F ’ C2, and are parametrized by
a single spinor, say zA 2 C2. Since the simplicity con-
straints introduce a Hermitian metric, we have a norm

k!k2 ¼ �A �A!
A �!

�A, and use it to define

J ¼ k!k2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p r; (34)

which satisfies fF1;J g ¼ 0. In terms of J , equation (28)
gives

�A ¼ ð�þ iÞ J
k!k2 �A �A �!

�A; �! ¼ ð�þ iÞJ : (35)

Then, the reduced spinor, F1 gauge invariant, can be taken
to be

zA ¼ ffiffiffiffiffiffiffi
2J

p !A

k!ki�þ1
; kzk ¼ ffiffiffiffiffiffiffi

2J
p

: (36)

Since we are assuming�A!
A � 0, this implies J � 0. We

can further always assume J > 0: In the case J < 0, the

sign is flipped by simultaneously exchanging�with! and
�∼ with !∼ , and we have already seen this operation to be a
symmetry (15) of our spinorial parametrization. Hence,
selecting the sign of J removes the Z2 symmetry of the
reduction.
The same results apply to the tilded quantities. The

reduced space T2==F ’ C2 � C2 is parametrized by the
following spinors,

zA ¼ ffiffiffiffiffiffiffi
2J

p !A

k!ki�þ1
; z

∼
A ¼

ffiffiffiffiffiffiffi
2J
∼

r !∼
A

k!∼ki�þ1
: (37)

Notice that they transform linearly under rotations, but not
under boosts: they are SU(2) spinors. The Lorentzian
structures are partially eliminated by the gauge choice
needed to define the linear simplicity constraints.
To get the Dirac brackets for the reduced SU(2) spinors,

we introduce the embedding � of the F ¼ 0 constraint
hypersurface into the original twistorial phase space, and
compute the pullback of the symplectic potential. This
gives

���¼ ��ð�Ad!
A��∼A

d!∼
Aþ cc:Þ

¼ ��
�
�ðJ þJ

∼
Þdln

�k!k
k!∼k

�
þ�ðJ �J

∼
Þdlnðk!kk!∼kÞ

þ
�
i

J
k!k2�A �A �!

�Ad!A� i
J
∼

k!∼k2
�A �A!∼

�Ad!∼
Aþ cc:

��

¼ i

2
�A �Að�z �AdzA� �z

∼
�Adz

∼
A�cc:Þ: (38)

The induced Dirac brackets are the canonical brackets of
four harmonic oscillators,

f�z �A; zAgD ¼ �i�
�AA ¼ �fz

∼
�A; z

∼
AgD: (39)

This reduction is illustrated in the top horizontal line of
Fig. 1. The next step is to implement the area-matching
condition. As anticipated, part of C ¼ 0 is automatically
satisfied on the surface of F1 ¼ F∼1 ¼ 0. Using (37), the
independent part Cred can be seen to give the real-valued
SU(2) version of the area-matching condition introduced in
Ref. [1], that is,

FIG. 1. Primary constraint structures between twistor and
holonomy-flux spaces. F and C schematically denote the sim-
plicity and area-matching constraints, and arrows include divi-
sion by gauge orbits, when relevant.
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Cred ¼ kzk2 � kz
∼
k2 ¼ 0: (40)

The gauge orbits generated by Cred are U(1) phase trans-
formations z � ei’z, for some angle ’. As proven in
Ref. [1], canonical variables on the reduced phase space
ðC2 � C2Þ==Cred are SU(2) holonomies and fluxes, satisfy-
ing their canonical Poisson algebra. We are thus left with
the phase space T�SUð2Þ, with elements ðU;�Þ 2 SUð2Þ �
suð2Þ parametrized as4 [1]

UA
Bðz; z∼Þ ¼

z
∼
A�B �B �z

�B þ �A �A �z
∼�A
zB

kzkkZ∼k
;

�ABðz; z∼Þ ¼
�‘P

2

ℏ
i

2
zðA�BÞ �B �z

�B:

(41)

This proves that the symplectic reduction of T2 by the area-
matching and simplicity constraints gives T�SUð2Þ.

Let us conclude this section with two important remarks.
The first is the identification of an Abelian pair of canoni-
cally conjugated variables on T�SLð2;CÞ. We introduce the
quantity

� :¼ 2 ln

�k!k
k!∼k

�
: (42)

An explicit calculation shows that at C ¼ 0

fReð�!Þ;�g ¼ 1: (43)

Also, from the second line of the symplectic potential (38),
we immediately see that

fJ ;�g ¼ 1

�
(44)

on the surface of Fi ¼ F∼ i ¼ 0. The conjugated pair corre-
sponds to the (oriented) area and (boost) dihedral angle
associated with the dual face t. In fact, from (18), the
squared area equals

A2½t� :¼ �ij�i½t��j½t� ¼ ‘P
4�2

ℏ2
J 2: (45)

Notice also that the quantity Reð�!Þ appearing in (43)
reduces to the area when the simplicity constraints are
satisfied. As for the dihedral angle, it is defined by the
scalar product between the timelike normals of the two
3-cells sharing the face, that is, n and n∼. These are both
related to the identity matrix by the time gauge (20). The

nontrivial information is then carried by the SO(1,3) hol-
onomy �ðh�Þ between the two. This parallel transport is
needed to evaluate the scalar product in the same frame.
A short calculation then gives

n∼ I�ðh�ÞIJnJ ¼ n∼ A�Ah�
A
B
�h�

�A
��B
nB

�B

¼ � 1

2

1

j�!j2 �A �A�
B �Bð!∼ A�B � �∼

A!BÞ

� ð �!∼
�A ��∼�B

� ��∼
�A!∼�B

Þ

¼ � 1

2

�k!∼k2
k!k2 þ

k!k2
k!∼k2

�
¼ �chð�Þ; (46)

valid on the constraint surface (32). The dihedral angle
between 3-cells describes the extrinsic curvature in Regge
calculus; therefore this Abelian pair captures a scalar part
of the Arnowitt-Deser-Misner Poisson brackets, as we’ll
make clearer in the next section.
The second remark concerns the orbits generated by D.

Let us define the hypersurface of T�SLð2;CÞ solution of
the simplicity constraints. From (33), we see that on the
space reduced by C ¼ 0, that is, T�SLð2;CÞ, the indepen-
dent simplicity constraints are D ¼ F2 ¼ F∼2 ¼ 0. These
equations characterize a seven-dimensional constraint
hypersurface within T2. From the previous construction,
we know that six dimensions are spanned by the SU(2)
holonomy-flux variables, or equivalently by the SU(2)
spinors reduced by (40). Since

fD; zAg ¼ 0 ¼ fD; z
∼
Ag; fD;�g ¼ 4

1þ �2
; (47)

the seventh dimension spreads along the orbits of D, each
of which can be parametrized by the angle�. Accordingly,
we denote the constraint surface T�, and T� ’ T�SUð2Þ �
R. This means that a pair of simple twistors, solutions of
the area-matching and the simplicity constraints, are pa-
rametrized by the SU(2) spinors, plus the dihedral angle.
On T�, the Lorentz fluxes already coincide with the

suð2Þ Lie algebra elements introduced in (41), providing
a discrete counterpart of the continuum equation (18).
For the Lorentz holonomy we find, plugging (37) and
(42) into (10),

hred
A
B � hABjF¼0

¼
e�1

2ði�þ1Þ�z
∼
A�B �B �z

�B þ e
1
2ði�þ1Þ��A �A �z

∼�A
zB

kzkkz
∼
k : (48)

This is still a completely general SLð2;CÞ group element.
If we now choose the specific � ¼ 0 section through the
orbits of D, it reduces to a SU(2) holonomy, and coincides
with the D-invariant holonomy U. The constraint hyper-
surface T� plays an important role, because there we can
distinguish the reduced Lorentz holonomy (48) from the

4With respect to the literature [1,58], we have added the
dimensional coefficients of the physical flux induced from the
action. Also, the holonomy appearing here does not flip
the spinors along the link, consistently with the definition of h.
The alternative choice is to swap !∼ and �∼ in (8). This allows us
to eliminate the opposite sign of the initial Poisson brackets, and
induces an extra � tensor in the twisted geometries parametri-
zation given below.
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SU(2) holonomy (41). The difference is captured by the
orbits of the diagonal simplicity constraint.

D. Ashtekar-Barbero holonomy and extrinsic curvature

Consider the constraint hypersurface T�, and the two
holonomies Uðz; z

∼
Þ and hredðz; z∼;�Þ. While hred describes

the Lorentzian parallel transport, we now show that the
SU(2) holonomy Uðz; z

∼
Þ equals the holonomy of the

real-valued Ashtekar-Barbero connection Að�Þ ¼ �þ �K
(here � and K are the real and imaginary components
of the self-dual SLð2;CÞ connection A ¼ �þ iK); namely,
that

Uðz; z
∼
Þ ¼ U� :¼ P exp

�
�
Z
�
�þ �K

�
: (49)

This identification is very important for the spin foam
formalism, and the understanding of the relation between
covariant and canonical structures. It is needed to match
the boundary states appearing in spin foam models with
the SU(2) spin network states found from the canonical
approach; see e.g., the discussions in Refs. [6,7,59,60].

To prove (49), let us first recall [see equation (23)] that
h is a left-handed group element corresponding to the
parallel transport by the left-handed part of the Lorentz
connection, A ¼ �þ iK, where � represents the intrinsic
covariant 3-derivative. This 3-derivative defines the SU(2)
parallel transport

G� :¼ P exp

�
�
Z

�i�i

�
2 SUð2Þ: (50)

The intrinsic and extrinsic contributions to the holonomies
can be disentangled via an ‘‘interaction picture’’ for the
path-ordered exponentials,5

h� ¼ P exp

�
�
Z
�
�þ iK

�

¼ G� P exp

�
�i

Z 1

0
dtG�1

�ðtÞK�ðtÞð _�ÞG�ðtÞ
�
� G�VK;

(51)

U� ¼ P exp

�
�
Z
�
�þ �K

�

¼ G� P exp

�
��

Z 1

0
dtG�1

�ðtÞK�ðtÞð _�ÞG�ðtÞ
�
� G�V

�
K:

(52)

Both holonomies provide maps C2 � C2 between tilded
and untilded spinors, but while h transports the covariant

!A spinors, U transports the reduced spinors zA. Let us
introduce a shorthand ket notation,

j0i� zA

kzk; j1i��A �A �z �A

kzk ; j0
∼
i�

z
∼
A

kz
∼
k; j1

∼
i�

�A �A �z
∼�A

kz
∼
k : (53)

The holonomies can be thus characterized as the unique
solutions to the equations

j0∼i ¼ eði�þ1Þ�=2hj0i ¼ Uj0i;
j1∼i ¼ eð�i�þ1Þ�=2ðhyÞ�1j1i ¼ Uj1i:

(54)

Next, we recall that the source and target generators of
the Lorentz algebra are related via the holonomy; see (11).
This relation, together with the simplicity constraints,
implies that

� ¼ ei#�y ¼ �ei#ðh�1�∼ hÞy ¼ �hy�∼ ðh�1Þy

¼ hyh�ðhyhÞ�1: (55)

We see that the simplicity constraints automatically lead to
a certain ‘‘alignment’’ between the holonomy and the
generators, that immediately translates into an equation
for the spinors:

ðhyhÞAB!B ¼ e��!A; ðhyhÞAB�B ¼ e��A; (56)

with � given in (42). Inserting (51) in (56), we find

Vy
KVKj0i ¼ e��j0i; Vy

KVKj1i ¼ e�j1i: (57)

For small extrinsic curvature, we have that VK > 0 and

Vy
K ¼ VK such that this eigenvalue equation has just one

solution, given by6

VK ¼ e��=2j0ih0j þ e�=2j1ih1j: (58)

Within the same approximation, we also have

V�
K ¼ ei��=2j0ih0j þ e�i��=2j1ih1j: (59)

Finally, using the interaction picture in (55), as well as
properties (58) and (59), we find

Uj0i ¼ eði�þ1Þ�=2hj0i ¼ GV�
K j0i;

Uj1i ¼ eð�i�þ1Þ�=2ðhyÞ�1j1i ¼ GV�
K j1i;

(60)

and since j0i and j1i are a complete basis, this proves the
desired result (49).
We remark that what we have proved here is valid as an

approximation for small curvature. That is, the precise
statement is that the SU(2) holonomy U provides the
lattice version of the Ashtekar-Barbero connection. As
the phase space on a fixed graph only carries a notion of
holonomy, and not of pointwise connection, our result
is perfectly satisfying. If on the other hand one were

5This can be explicitly proven by looking at the defining
differential equation for the holonomy, which admits a unique
solution for the initial conditions U�ð0Þ ¼ 1 ¼ h�ð0Þ. It is the
same type of equality that appears in the interaction picture used
in time-dependent perturbation theory, with � being the free
Hamiltonian, and K the potential.

6The solution is exact if the extrinsic curvature is covariantly
constant along the link; i.e., G�1

�ðtÞK�ðtÞð _�ÞG�ðtÞ is t independent.
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interested in an exact continuous equivalence, this would
require a projection on the simplicity constraint surface
performed at every point of the graph [6,60]. As pointed
out above, it would be true also in the case of covariantly
constant extrinsic curvature.

The equation (60) provides a discrete counterpart to

Að�Þ ¼ �þ �K ¼ Aþ ð�� iÞK, with � playing the
role of the extrinsic curvature. In this respect, notice also
that from the linearized form of (58), and the continuum
interpretation of VK, we deduce

� 	
Z 1

0
dsRðadÞðG�1

�ðsÞÞijKj
�ðsÞð _�Þni½t�; (61)

where RðadÞðGÞij 2 SOð3Þ is the SU(2) element G in

the adjoint representation. That is, the dihedral angle
approximates the extrinsic curvature smeared over the
dual link, projected down onto the direction ni½t� normal
to the surface. As anticipated earlier, the canonical pairing
(44) between � and the area A½t� nicely describes the
scalar part of the Arnowitt-Deser-Misner phase space of
general relativity, where [50] flux �i

a and extrinsic curva-
ture Ki

a are canonically conjugated.
We conclude that the SU(2) spinors z and z

∼
obtained

from the symplectic reduction parametrize holonomies and
fluxes of the SU(2) Ashtekar-Barbero variables. To prove
this identification, it has been necessary to work on the
covariant phase space, or at least on the constraint hyper-
surface T� ffi T�SUð2Þ � R, where we could disentangle
extrinsic and intrinsic parts of the SU(2) holonomy.
Therefore, to have a full geometric meaning, the SU(2)
variables need to be embedded in T�. This should not come
as a surprise: from the continuum theory we know that one
needs to embed the Ashtekar-Barbero connection into the
space of Lorentzian connections in order to distinguish
intrinsic from extrinsic contributions, and that the second-
ary constraints provide this embedding. Similarly in the
discrete theory, we expect the secondary constraints to
provide a nontrivial embedding of T�SUð2Þ in T�. More
precisely, we expect the secondary constraints, and thus the
embedding, to be defined only at the level of the complete
graph, and not link by link; hence it is more correct to
speak of an embedding of T�SUð2ÞL in T

�
L.

Let us discuss this in more detail. In the continuum

theory, Ashtekar-Barbero variables, (�, Að�Þ ¼ �þ �K),
are canonical coordinates on the reduced phase space, but
are well defined everywhere as functions on the original
phase space. Then, solving the secondary constraints gives
� ¼ �ð�Þ, and provides a specific embedding of the SU(2)
variables into the original phase space. If one forgets about
secondary constraints, and treats the linear primary con-
straints as a first-class system, one ends up with a quotient

space of orbits Að�Þ ¼ const. [because of the brackets
between the Lorentz connection and the reality conditions
(21)], intersecting the constraint hypersurface transversally
(because the Hamiltonian flow of second-class constraints

always points away from the constraint hypersurface).
Then, restoring the secondary constraints provides a non-
trivial section, i.e., a gauge fixing through these orbits, that

is, an embedding mapping any pair ð�; Að�ÞÞ towards a
point (�, A ¼ �þ iK) in the original phase space. Such
treatment of second-class constraints resonates with the
gauge-unfixing ideas [61,62] recently applied to the frame-
work of loop quantum gravity in Refs. [63,64].
At the discrete level, whatever the correct representation

of the secondary constraints may be, it is reasonable to
assume that they have the same effect on the constraint
algebra, making D second class. Solving them, which
typically cannot be done link by link but requires knowing
the graph, should provide a nontrivial section7 through the
orbits (47) of D, that is, a nonlocal function �tðzt; z∼tÞ
where each link dihedral angle is determined by spinors
all over the graph. This idea can be made explicit with the
ubiquitous example of the flat 4-simplex. In this case, a
metric geometry is defined by the ten edge lengths ‘e.
Then, all spinors are functions of these data (modulo
gauges). In particular, both the dihedral angles �t and
the Levi-Civita connection Gt are functions �tð‘eÞ and
Gtð‘eÞ of the edge lengths. Hence, on the graph phase
space T

�
L there is a functional dependence �tðzt; z∼tÞ be-

tween the 10 dihedral angles and the 20 spinors, which
provides the desired nontrivial section of the bundle T

�
L.

The dependence includes all the spinors and is thus non-
local on the graph, because each dihedral angle depends in
general on all edge lengths. The constraint structure in-
cluding the role of the secondary constraints is illustrated
in Fig. 2.
Concerning the explicit form of the secondary con-

straints, we do not investigate them here, but hope to
come back to it in future research. In particular, it has
been argued in Refs. [65,66] that these constraints should
be identified with the shape-matching conditions of
Ref. [67], the ones reducing twisted geometry to Regge

FIG. 2. More detailed constraint structures and the role of the
secondary constraints. In the presence of secondary constraints,
the rightmost part of the diagram becomes irrelevant, as the
orbits of D are no longer pure gauges. In the final step, we have
reintroduced the graph structure, as a proper definition of the
secondary constraints should not be local on the links.

7The trivial section is � ¼ 0.
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geometry. A direct test of this claim would require
commuting the primary constraints with a suitable
Hamiltonian, but this has not been attempted yet. On the
other hand, as mentioned at the end of Sec. II B, we expect
that there should exist a notion of Levi-Civita connection
(that is, a solution of the secondary constraints) even in
the absence of shape-matching conditions. If this is the
case, then the situation would be different from the one
advocated in Ref. [65].

E. Twisted geometries

To complete the classical analysis, let us give the map-
ping between SLð2;CÞ holonomy fluxes and the variables
of the twisted geometries’ parametrization [1,4,30]. These
variables consist of areas and angles associated to a cellular
decomposition dual to the graph, and permit us to interpret
the classical phase space in terms of discrete geometries. In
what follows, we always assume that the complex area-
matching constraint �! ¼ �∼ !∼ hold. We first notice that
we can write the holonomy (10) as h ¼ gð!∼ ; �∼ Þgð!;�Þ�1,
where

gð!;�Þ ¼ 1ffiffiffiffi
�

p !0 �0

!1 �1

 !
: (62)

Following Ref. [4], we use the Iwasawa decomposition for
SLð2;CÞ group elements,

g ¼ nð	ÞT
e
��3 ; ð	; 
;�Þ 2 C3;

nð	Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j	j2p 1 	

� �	 1

 !
; T
 ¼ 1 


0 1

 !
:

(63)

Comparing (62) and (63), we identify

� �	�1 ¼ !0

!1
; � ¼ �2 argð!0Þ þ i ln

k!k2
�!

;


 ¼ h!j�i
�!

e2i argð!0Þ; (64)

where h!j�i :¼ �A �A�
A �!

�A. It is also convenient to define
the angle

� :¼ 2 argð!∼ 0Þ � 2 argð!0Þ þ ��: (65)

We then find

h ¼ nð	
∼
ÞT
∼

eð��þð��iÞ�Þ�3T�1

 n�1ð	Þ: (66a)

Similarly, it is easy to verify that the fluxes (2), in their
matricial form (4), read

� ¼ � i

2
�!nð	ÞT
�3T

�1

 n�1ð	Þ;

�∼ ¼ i

2
�!nð	

∼
ÞT
∼

�3T
�1

∼

n�1ð	
∼
Þ;

(66b)

where the opposite sign is inherited directly from the
opposite sign in (2).

The parametrizations (66) of the covariant holonomy-
flux variables give a map

ð�; hÞ � ð	; 	
∼
; 
; 
∼ ; �;�; �!Þ (67)

in terms of the area of the face, �!, and a collection of
angles, which we dub covariant twisted geometries as in
(4). In these variables, the simplicity constraints (25) are
solved on the family of hypersurfaces


 ¼ 
∼ ¼ 0; �! ¼ ð�þ iÞJ ; (68)

which corresponds to T�. On the trivial section � ¼ 0,
we recover T�SUð2Þ parametrized by twisted geometries
(see Refs. [1,30], adapted to the conventions of this paper),

U¼nð	
∼
Þe���3n�1ð	Þ; �¼�‘P

2

ℏ
i

2
Jnð	Þ�3n�1ð	Þ: (69)

The map between the spinorial parametrization (41) and
the twisted geometry parametrization is

J ¼kzk2
2

; 	¼ �z1

�z0
; �¼2argðz

∼
0Þ�2argðz0Þ; (70)

consistently with (37) and (64).
The twisted geometry variables show explicitly the

nature of the discrete geometries associated with the hol-
onomyflux algebra. First of all, one should consider a
cellular decomposition dual to the graph, and assign a 3D
Cartesian frame within each 3-cell. Gauge invariance at the
nodes, imposed by the closure condition

P
t2n�

i½t� ¼ 0
and its complex conjugate, guarantees that we can apply
Minkowski’s theorem to infer the existence of a unique
convex polyhedron around the node (68). The collection
of polyhedra defines twisted geometries, a generalization
of Regge geometries allowing discontinuous metrics
[30,68,69]. However, the left and right generators � and
�� identify two different geometries. They coincide only
when the simplicity conditions hold, (68). This is precisely
the role of the constraints also in the continuum theory:
they match the left and right metric structures induced by
the two Urbantke metrics [36–38]. Twisted geometries
show that the constraints also have exactly the same role
at the discrete level. At the level of reduced Dirac brackets,
the area becomes conjugated to the angle �,

fJ ; �Þ ¼ 1; (71)

which is now independent of the Immirzi parameter.
Notice the remarkable analogy between (65), relating the
dihedral angle to the class angle of the SU(2) holonomy,
and the canonical transformation in the continuum theory
from the extrinsic curvature to the Ashtekar-Barbero con-

nection, Að�Þ ¼ Aþ ð�� iÞK. Equations (66a) and (69)
make manifest the Ashtekar-Barbero interpretation of U
established in the previous section.
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III. EPRL QUANTIZATION OF
TWISTED GEOMETRIES

The classical phase space of twistors on a link can
be quantized, leading to quantum twistor networks and
quantized twisted geometries. In the following, we choose
a procedure inspired by the EPRL model. We take a
Schrödinger representation, and follow a Dirac procedure,
quantizing first the unconstrained algebra, and then imple-
menting the constraints. Our starting point is an auxiliary
Hilbert space carrying a unitary representation of the
canonical Poisson algebra (1),

½�̂A; !̂
B� ¼ �iℏ�B

A ¼ �½�̂∼A; !̂
∼ B

�: (72)

Since the constraint structure is commutative (see Fig. 1),
let us first study the reduction by the simplicity constraints.
That allows us to focus on a single half-link, and consider
only the untilded quantities. The Schrödinger representa-
tion is given by wave functions fð!Þ 2 L2ðC2; d4!Þ,
where d4! ¼ ð1=16Þðd!A ^ d!A ^ cc:Þ is the canonical
SLð2;CÞ-invariant integration measure8 on C2, and
operators

ð!̂AfÞð!AÞ¼!Afð!AÞ; ð�̂AfÞð!AÞ¼ℏ
i

@

@!A
fð!AÞ: (73)

A ‘‘momentum’’ representation �̂A ¼ �A, !̂A ¼ iℏ@=@�A

is also possible. The two representations are related by the
Fourier transform

fð�Þ ¼ 1

�2

Z
C2

d4! e� i
ℏ�!�cc:fð!Þ;

fð!Þ ¼ 1

�2

Z
C2

d4� eþ i
ℏ�!�cc:fð�Þ;

(74)

whose properties are reviewed in Appendix A. With the
usual physicist’s abuse of notation, we denote the Fourier
transform in the same way as the original function.

Since the constraints involve the Euler dilatation
operator, !A@=@!A, a convenient (generalized) basis is
provided by its eigenfunctions. These are homogeneous

functions fð�;kÞð!Þ, parametrized by a pair (� 2 R,
2k 2 Z), such that

fð�;kÞð!Þ ¼ �k�1þi� �k�1þi�fð�;kÞð!Þ: (75)

In particular, it follows that

!A @

@!A
fð�;kÞð!Þ ¼ ð�k� 1þ i�Þfð�;kÞð!Þ; (76a)

�!
�A @

@ �!
�A
fð�;kÞð!Þ ¼ ðþk� 1þ i�Þfð�;kÞð!Þ: (76b)

The auxiliary Hilbert space L2ðC2; d4!Þ carries a unitary,

reducible action of SLð2;CÞ with generators L̂i and K̂i.
The homogeneous functions span irreducible (infinite-
dimensional) representations, with Casimirs

L̂2 � K̂2 ¼ k2 � �2 � 1; L̂iK̂
i ¼ �k�:

It is a generalized basis, since the homogeneous functions
are distributions in L2ðC2; d4!Þ, and not square integrable.
This is similar to what happens for e.g., the action of the
Euclidean group on L2ðR3; d3xÞ, where the irreducible
representations are labeled by the total energy / ~p2, but
the basis elements, being plane waves expi ~p � ~x, are not
square integrable. A finite, SLð2;CÞ-invariant Hermitian
inner product is provided by a two-dimensional surface

integral on PC2 
 C2, with measure d2! :¼ i=2!Ad!
A ^

�! �Ad �!
�A. An orthonormal basis is then provided by

elements ffð�;kÞj;m g, labeled by spins j ¼ k; kþ 1; . . . and

magnetic numbers m ¼ �j; . . . ; j corresponding to the
canonical SU(2) subgroup of SLð2;CÞ,

hfð�;kÞj;m ;fð�;kÞ
j0;m0 i¼ i

2

Z
PC2

!Ad!
A^ �! �Ad �!

�Afð�;kÞj;m ð!AÞfð�;kÞ
j0;m0 ð!AÞ

¼�jj0�mm0 : (77)

The basis diagonalizes L̂2 and L̂3. See Appendix A and
Refs. [70–72] for more details. Notice that thanks to the
homogeneity of the integrand, (77) is independent of
the way PC2 is embedded into C2. The existence of this
Hermitian product plays a key role in the constraint
reduction.
The representations with ð�; kÞ and ð��;�kÞ are unitary

equivalent. We can thus always restrict ourselves to k > 0,
which agrees with what we have done earlier: The half
integers k are the quanta ofJ ; choosing them to be positive
fits our gauge condition J > 0 introduced above. Reasons
to consider both are given in Ref.[73].

A. Simplicity constraints

Since F1 is first class, it can be imposed strongly.
However, the complex constraint F2 is of second class,
making a different procedure necessary. Motivated by
deriving the EPRL model, we implement F1 strongly and
F2 weakly. This can be done by introducing a master
constraint, a procedure [50] quite common in loop quan-
tum gravity (LQG)

F2 ¼ 0 , M ¼ �F2F2; and fF1;Mg ¼ 0: (78)

The new constraint algebra is Abelian, and both M and F1

can be imposed strongly. Choosing a normal ordering as in
Ref. [2], we find the following quantum constraints:

8We define the complex Lebesgue measure as d2x ¼
ði=2Þd	 ^ d �	 . This normalization is responsible for the various
powers of 2 appearing in later formulas.
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F̂1 ¼ ℏ
�2 þ 1

�
ð�� iÞ!A @

@!A
� ð�þ iÞ �! �A @

@ �!
�A
� 2i

�
;

(79a)

F̂2 ¼ ℏ
i
nA

�A �! �A

@

@!A
; (79b)

M̂ ¼ F̂y
2 F̂2 ¼ ℏ2

4

�
!A @

@!A

@

@ �!
�A
�!
�A � ðL̂2 � K̂2Þ þ 2L̂2

�
:

(79c)

Both F̂1 and M̂ are diagonal on our canonical basis (77),
and the action can be easily evaluated to give

F̂1f
ð�;kÞ
j;m ¼ 2

�2 þ 1
ð��kþ �Þfð�;kÞj;m ¼! 0 , � ¼ �k; (80)

M̂f
ð�;kÞ
j;m ¼1

2
ðjðjþ1Þ�kðkþ1ÞÞfð�;kÞj;m ¼! 0, j¼k: (81)

That is, the non-Lorentz invariant master constraint
selects the lowest spin j labels. The resulting wave

functions are fð�j;jÞj;m ð!AÞ. From Appendix A, we find

them to be

fð�j;jÞj;m ð!AÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j

jþm

 !vuut k ! k2ði�j�j�1Þ

� ð �!�0Þjþmð �!�1Þj�m: (82)

These functions are orthonormal with respect to the
inner product on the Riemann sphere (77), and provide a
map, often denoted as Y map in the literature, from the jth
irrep of SU(2) to the unitary irreducible ð�j; jÞ representa-
tion of SLð2;CÞ:

Y: H j 3 jj; mi � fð�j;jÞj;m 2 H ð�j;jÞ: (83)

In the following, we also use the notation j�; j; mi
for the SLð2;CÞ ket,9 and write h! �!j�; j; mi �
fð�j;jÞj;m ð!AÞ.

At this point, we would like to discuss two subtle aspects
of the quantization. As the action generated by F1 is non-
compact, Dirac’s quantization does not lead to a proper
subspace of the auxiliary Hilbert space L2ðC2; d4!Þ.
Accordingly, the solution space spanned by (82) only
makes sense in terms of distributions, to be integrated
over the previously defined PC2 inner product (77).
The distribution by itself is not a function on the fully
reduced phase space C4==F ’ C2, but depends also on the
F1 orbits,

fF1; f
ð�j;jÞ
j;m g � 0: (84)

We can see this explicitly if we insert the parametriza-
tion (37) in the definition of the wave function (82), which
gives

fð�j;jÞj;m ð!AÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j

jþm

 !vuut ð�z�0Þjþmð �z�1Þj�m

k ! k2k z k2j ; (85)

where the non-F1 invariant quantity k ! k2 appears. On the
other hand, the half-density [39,50,74]

ffiffiffiffiffi
d2

p
fð�j;jÞj;m ð!AÞ ¼

ffiffiffiffiffiffiffiffi
d2z

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j

jþm

 !vuut ð�z�0Þjþmð�z�1Þj�m

k z k2jþ2

(86)

is F1 invariant, thanks to the homogeneity of the measure
d2! on PC2. Hence, it is the half-densities that are properly
defined on the reduced phase space.10

The second remark concerns the case of j ¼ 0. In fact,
j ¼ 0 corresponds classically to the degenerate configura-
tions J ¼ 0, for which the twistorial description of the
phase space breaks down. To complete the quantization,
we need to provide independently the missing state. If we
extrapolate (82) to j ¼ 0 we would find a nontrivial state,

given by ��1=2 k ! k�2 . This choice could pose problems
with cylindrical consistency, so we fix it by hand to be the
trivial state,

fð0;0Þð!AÞ � 1: (87)

An argument in favor of this choice is that the primary
simplicity constraints are all first class when jLij ¼ 0.
Hence, one can identify (87) as the unique invariant state
satisfying (21) as strong operator equations.
A final comment before moving on. The reader may

have also noticed a similarity between the quantum state
(82) and the SU(2) coherent states. In fact, the state

jj; zAi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

�

s Xj
m¼�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j

jþm

 !vuut ðz0Þjþmðz1Þj�m

k z k2j jj;mi;

(88)

in the SU(2) jth irreducible representation, represents a
coherent state peaked on the direction identified by z0=z1

9In the literature, the alternative notation j�j; j; j; mi �
j�; j; mi is often found.

10A toy model may further illustrate this subtlety. Consider a
particle in R3. Our constraint is just the radial momentum
constrained to vanish; that is, F ¼ pr ¼ ~x � ~p=j ~xj ¼ 0. The
auxiliary Hilbert space is just the familiar L2ðR3; d3xÞ. To
make p̂r self-adjoint its quantization is given in terms of the
covariant derivative operator p̂r :¼ �iℏð@r þ r�1Þ. Solutions in
the kernel of the constraint look like 	ðr; #; ’Þ ¼ r�1c ð#;’Þ.
As functions on the original phase space, they fail to be gauge

invariant, since fpr;	g � 0, while the half-densities 	
ffiffiffiffiffiffiffiffi
d3x

p ¼
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin#drd#d’

p
are.

SIMONE SPEZIALE AND WOLFGANG M. WIELAND PHYSICAL REVIEW D 86, 124023 (2012)

124023-12



on PC2 ffi S2, normalized with respect to the measure d2z
on PC2. It is then easy to see that

ffiffiffiffiffi
d2

p
fð�j;jÞj;m ð!AÞ ¼

ffiffiffiffiffiffiffiffi
d2z

p
k z k2 hj; z

Ajj; mi; (89)

which implies that the Y map endows SU(2) coherent states
with the interpretation of functions on the solution space of
the simplicity constraints. For later convenience, we also
give the overlap

h! �!jYjj;zAi¼ Xj
m¼�j

fð�j;jÞj;m ð!AÞhj;mjj;zAi

¼2jþ1

�
k!k2ði�j�1Þ

� hjzi
k!kk zk

�
2j
; (90)

where h!jzi :¼ �A �Az
A �!

�A. Although we are labeling the
SU(2) coherent states with spinors, as e.g., in Ref. [17], it is
only the Hopf section z0=z1 that carries a semiclassical
meaning. The norm and the overall phase of the spinor
have no physical counterparts from the point of view
of SU(2).

B. Area-matching constraints

For the tilded quantities, since we have an opposite sign
in the Poisson brackets (72), it is convenient to take wave

functions ~fð�∼ Þ 2 L2ðC2; d4�∼ Þ, and

ð�̂
∼A

~fÞð�
∼
Þ¼�

∼A
~fð�

∼
Þ; ð!̂

∼
A ~fÞð�

∼
Þ¼ℏ

i

@

@�
∼A

~fð�
∼
Þ: (91)

Solutions to the constraints can be obtained as before,
restricting to the homogeneous functions fð�j;jÞj;m ð�∼ Þ. Later
aspects of the quantum theory make it convenient to work
with a slightly different basis, given by a dual map and an
extra phase ��;j,

~fð�j;jÞ�|; �m ð�∼ Þ :¼ ��;jð�1Þjþmfð�j;jÞj;�m ð�∼ Þ

¼ ��;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j

jþm

 !vuut k�k2ði�j�j�1Þ

� ð ��∼
�0Þj�mð� ��∼

�1Þjþm; (92)

where

��;j :¼ ð i2Þi��jð� i
2Þi�þj �ðjþ 1� i�Þ

�ðjþ 1þ i�Þ : (93)

See Appendix A for details on the SLð2;CÞ dual map. We
will also use a ket notation, as for the untilded wave
functions, and write h�; j; �mj�∼ ��∼ � ¼ ~fð�j;jÞ�|; �m ð ��∼ Þ, where the
square bracket keeps track of the fact that we are working
with the dual basis. The advantage of this choice of basis is
to be related to the following Fourier transform:

h�;j;mj�
∼
��
∼
�� ~fð�j;jÞ�|; �m ð�

∼A
Þ

¼ 1

ð2�Þ2
Z
C2
d4!e

i
2�∼A

!∼
A�cc:

fð�j;jÞj;m ð!
∼
AÞ; (94)

which plays a role in the construction of the spin foam
model. Accordingly, we quantize the phase space T2

by means of a ‘‘mixed’’ Schrödinger representation, with
wave functions Gð!;�∼ Þ 2 L2ðC2 � C2; d4d4�∼ Þ, and
operators (73) and (91).
Since homogeneous functions diagonalize the quantum

area-matching constraint, a solution is immediately pro-
vided by a restriction on the labels,

ðĈfð�;kÞ � f
ð�
∼
;k∼ÞÞð!;�∼ Þ ¼ 0 ) ð�

∼
; k∼Þ ¼ ð�; kÞ: (95)

We recover here the reducibility of the system at the
quantum level, since the constraint is redundant once we
impose both diagonal simplicities. It then amounts to ~|¼ j.
The space of solutions of both simplicity and area-
matching quantum constraints is spanned by the functions

GðjÞ
�m∼ ;m

ð�∼A;!AÞ :¼ ~fð�j;jÞ�|; �m∼
ð�∼AÞfð�j;jÞj;m ð!AÞ

� h�; j; m∼ j�∼ ��∼ �h �!j�; j; mi: (96)

The argument contains position variables at the source,
and momentum variables at the target. They satisfy all
constraints,

F̂1G
ðjÞ
�m∼ ;m

Þð�∼A;!AÞ ¼ 0 ¼ ðF̂∼1G
ðjÞ
�m∼ ;m

Þð�∼A;!AÞ; (97a)

ðM̂GðjÞ
�m∼ ;m

Þð�∼A;!AÞ ¼ 0 ¼ ðM̂∼G
ðjÞ
�m∼ ;m

Þð�∼A;!AÞ; (97b)

ðĈGðjÞ
�m∼ ;m

Þð�∼A;!AÞ ¼ ℏ
i

�
!A @

@!A
� �∼A

@

@�∼A

�

�GðjÞ
�m∼ ;m

ð�∼A;!AÞ ¼ 0; (97c)

and depend only on the reduced phase space variables,
namely

fC;GðjÞ
�m∼ ;m

g ¼ 0 ¼ f �C;GðjÞ
�m∼ ;m

g;�
D;

ffiffiffiffiffiffiffiffiffi
d2!

p ffiffiffiffiffiffiffiffiffi
d2�∼

r
GðjÞ

�m∼ ;m

�
¼ 0: (98)

The first brackets can be established thanks to the pro-
perty GðjÞ

�m∼ ;m
ð!A; �1�∼

AÞ ¼ GðjÞ
�m∼ ;m

ð�∼A;!AÞ8 2 C� f0g,
whereas the second requires the use of half-density as
described in the previous section. As before, the states
are restricted to j � 0, and for j ¼ 0 we independently
fix Gð0;0Þ � 1 for later cylindrical consistency of the spin
foam model.
The boundary state functions carry an irreducible,

unitary representation of the Lorentz group, with scalar
product induced from (77), and the Y map is explicitly
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implemented by the restriction on the irreps. The functions
are very similar to projected spin networks [75], but not
identical: the difference is that we are quantizing on the
twistor vector space, and not on functions on the Lorentz
group. The latter representation, and its basis of simple
projected spin networks will appear below when we study
the EPRL spin foam model.

IV. PATH INTEGRAL MEASURE
IN TERMS OF TWISTORS

In this section, we use the above framework to express
the Liouville measure on the symplectic manifold
T�SLð2;CÞ in a simple and straightforward way in twistor
space. This measure plays an important role in the spin
foam formalism, and will be used below in deriving the
EPRL model.

A. Definition of the integration measure

On twistor space T2 there is a natural integration mea-
sure given by the symplectic volume,

d16� ¼ � ^ �� ^�
Z
^ ��

Z
;

� :¼ d�A ^ d�A ^ d!B ^ d!B:

(99)

We are interested in projecting this measure to the reduced
phase space T2==C of gauge orbits generated by the com-
plex area-matching condition C ¼ 0. The constraint being
first class, this can be done following the Faddeev-Popov
method. However, since the gauge transformations gener-
ated by C are just rescalings (14), the Faddeev-Popov
determinant is trivial; thus a C gauge-invariant 12-
dimensional integral can be written as

R
d14�gf�CðCÞG.

The gauge-fixed measure appearing on the right-hand
side is obtained by taking the interior product of the
Liouville measure (99) with the generator XC ¼ fC; �g of
the gauge orbits,

d14�gfðZ; Z
Z
Þ :¼ i
 ^ �
; 
 :¼ �XC

ð� ^�
Z
Þ: (100)

We now prove that integrating any function on the
reduced phase space T2==C against this measure gives a
C gauge-invariant quantity. Let G be defined on T2==C2;
it is thus constant along the orbits, and fC;Gg ¼ 0 ¼
f �C;Gg. Next, consider two gauge-fixing surfaces D1 and
D2, that can continuously be deformed into each other,
and intersect all gauge orbits exactly once.11 Applying
Stokes’ theorem to the region R bounded by D1 and
D2, we find

Z
D1

d14�gfG�
Z
D2

d14�gfG

¼ i
Z
R
d ^ ð�XC

� ^ �X �C

��GÞ

¼ i
Z
R
ð@þ �@Þ ^ ð�XC

� ^ �X �C

��GÞ; (101)

where

@¼d!A @

@!A
þd�A

@

@�A

þd!
Z

A @

@!
Z

A
þd�

ZA

@

@�
ZA

(102)

is the analytic part of the exterior derivative. But since
� is already an analytic form of highest degree and

LXC
�¼0¼LXC

�
 together with �XC

�� ¼ 0, we imme-

diately get that

i
Z
R
@ ^ ð�XC

� ^ �X �C

��GÞ

¼ i
Z
R
ð@ ^ �XC

Þ ^ ð� ^ �X �C

��GÞ

¼ i
Z
R
ð@ ^ �XC

þ �XC
^ @Þ ^ ð� ^ �X �C

��GÞ

¼ i
Z
R
LXC

ð� ^ �X �C

��GÞ

¼ i
Z
R
� ^ �X �C

��LXC
G

¼ i
Z
R
� ^ �X �C

��fC;Gg ¼ 0;

and equally for the antianalytic part. Therefore the in-
tegral is independent of the gauge section chosen,

if fG;Cg ¼ 0 ¼ fG; �Cg:
Z
D1

d14�gfG ¼
Z
D2

d14�gfG:

(103)

This concludes the proof that (100) is a measure on the
reduced phase space T2==C. Since we have already
recalled that the space is isomorphic to T�SLð2;CÞ ’
T2==C, the measure can also be shown to be equivalent
to the standard measure on T�SLð2;CÞ given by the
product of the Lebesgue measure on the algebra, times
the Haar measure on the group. It is useful to prove this
equivalence explicitly, which we do next.

B. Equivalence with canonical measure on T�SLð2;CÞ
To that end, we use the parametrizations (2) and (10).

Then, an explicit calculation shows that the analytic part of
the Lebesgue measure on the slð2;CÞ reads

d3� :¼ � 2

3
Trðd� ^ d� ^ d�Þ

¼ 1

4
!Ad!

A ^ �Bd�
B ^ dð�C ^!CÞ: (104)

The spinorial decomposition of the analytic part of the
Haar measure is more elaborate. We first introduce a com-
plex basis in slð2;CÞ:

11This is always possible thanks to the Abelianity of the
transformation.
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�AB ¼ � 1

2
�ðA!BÞ; QABþ ¼ !A!B; QAB� ¼ �A�B:

(105)

Next, we work out the analytic part of the Maurer-Cartan
form and find:

��ðh�1dhÞ ¼ ð�!Þ�2��½ð!Ad!
A �!

ZAd!Z
AÞQ�

þ ð�Ad�
A � �

ZAd�Z
AÞQþ

þ 4ð�Ad!
A � �

ZAd!Z
AÞ��; (106)

where we used C ¼ 0, and � is the embedding of the C ¼ 0
hypersurface into T2. With this decomposition, the left-
handed part of the Haar measure gives

d3h :¼�2

3
Trðh�1dh^h�1dh^h�1dhÞ

¼ 4

ð�!Þ3 �
�ðð!Ad!

A�!
∼ A

d!
∼
AÞ

^ð�Bd�
B��

∼B
d�
∼
BÞ^ð�Cd!

C��
∼C

d!
∼
CÞÞ: (107)

Putting the two quantities together one recovers

1

29

Z
T2
gf

d14�gfðZ; Z
Z
Þ�CðCðZ; Z

Z
ÞÞGðhðZ; Z

Z
Þ;�ðZÞÞ

¼
Z
T�SLð2;CÞ

d3� ^ d3h ^ d3 �� ^ d3 �hGðh;�Þ: (108)

Here �ðZÞ and hðZ; Z
Z
Þ are shorthand notations for the

twistorial parametrization (2) and (10). Notice that (107)
provides a definition of the Haar measure in terms of
spinors. Alternative definitions have been given in
Ref. [76] for SU(2), and in Ref. [4] for SLð2;CÞ. They
involve an unconstrained integration, with Gaussian mea-
sures instead of � functions and gauge fixing. Both ap-
proaches work as well, since one is integrating functions
which do not have a dependence along the Gaussian slope.

The result shows that the basic Liouville measure
on T�SLð2;CÞ can be expressed in terms of twistors.
Therefore, any gauge invariant added to it fits into this
framework. In the following, wewill just consider the basic
BF measure to derive the EPRL model, but the reader
should keep in mind that any further nontrivial term,
such as those induced by secondary constraints [77], could
also be described in this language.

V. CONSTRUCTING THE EPRL
SPIN FOAM MODEL

In this section we study a specific way to provide quan-
tum dynamics to this system, which leads us to the EPRL
spin foam model [8]. The dynamics can be derived in three
steps. The first step is a decomposition of the spacetime
manifold into 4-cells, and the assignment of the Hilbert
space of states (96) to the boundary graph of each cell.
The second step is to give dynamics in the bulk with

exponentials of the BF action, suitably discretized in terms
of twistors. This is the framework of the Plebanski action
that describes gravity as BF plus simplicity constraints
[20,36–38]. Finally, we integrate the boundary states
weighted by the BF action against the measure previously
defined. The result reproduces the transition amplitudes of
the EPRL model, and thus provides a new and independent
derivation thereof, based on the twistorial representation of
loop quantum gravity. We will refer specifically to trian-
gulations, with 4-simplices as fundamental cells, but the
results immediately generalize to arbitrary cellular decom-
positions, and what we recover is the generalized EPRL
model of Refs. [9,10].

A. Discretizing the action

The Holst action (16) is equivalent to the following
Plebanski action,

SPlebanski-Holst½�; A;	� ¼ ℏ
‘P

2

�þ i

i�

Z
M
�A

B ^ FB
A½A�

þ	 � Sð�Þ þ cc:; (109)

where 	 is a Lagrangian multiplier imposing the simplic-
ity constraints Sð�Þ. See Refs. [20,36–38] for details. In
particular, the phase space structure is the same [35,41].
This action is particularly advantageous to discretize, since
it does not involve the tetrad, but bivectors which we
know already how to treat as fluxes. The first step to build
the model is a cellular decomposition C of the spacetime
manifold. For simplicity, we will refer to a simplicial
decomposition, but our construction immediately general-
izes to arbitrary decompositions, in which case we recover
the generalization of the EPRL models that appeared in

FIG. 3. In a given 4-simplex two tetrahedra share a triangle t,
that is in turn dual to a wedge wtv. The wedge is bounded by a
loop. Half of the loop lies in the boundary of the 4-simplex,
and connects the two tetrahedra � and �∼, piercing through the
triangle t. The other half enters the bulk and passes through
the center v of the 4-simplex.
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Refs. [9,10]. For the case of a simplicial decomposition, C
is made of 4-simplices, each of which consists of five
tetrahedra and ten triangles. Every triangle t hinges several
4-simplices. Its dual face f subdivides in wedges wtv [78],
each of which intersect one of those simplices. In every
4-simplex a triangle t separates two tetrahedra in the
corresponding 3-boundary. The wedge wtv is now bounded
by a line, that starts at one of these tetrahedra, intersects t
transversally, reaches the other adjacent tetrahedron and
passes through the center of the 4-simplex before finally
closing to a loop. See Figs. 3 and 4 for illustrations. The
orientation of the loop @wtv is fixed by requiring the
relative orientation �ðt; wtvÞ to be positive.

The wedge allows us to bridge between the boundary
and the bulk of each 4-simplex. Half of the wedge bound-
ary coincides with a link in the boundary graph of the
4-simplex, and carries the T2 phase space. We have smeared
fluxes �½tw� and �

∼
½tw� associated with the two tetrahedra

sharing the triangle tw. The wedge label keeps track of the
4-simplex to which the triangle belongs. Reintroducing
physical constants, we have, hiding the wedge labels,

�AB ¼ � ‘P
2

ℏ
2i�

�þ i
�AB ¼ ‘P

2

2ℏ
i�

�þ i
ð!A�B þ!B�AÞ;

(110)

and the same for �
∼
. The other half of the phase space

variables is the holonomy (10) along the boundary link.
Let us also introduce two new holonomies, g and g

∼
parallelly transporting from the center of the 4-simplex to
the two boundary tetrahedra incident to the wedge. In this
way, we can also form a wedge loop holonomy, given by the
product of the phase space holonomy (10), and the auxiliary
bulk holonomies,

hBA½@w� ¼ �gBCg∼
D

C
!∼

D�A � �∼
D!Affiffiffiffiffiffiffiffiffiffiffiffiffi

�E!
E

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
�∼F!∼

F
r : (111)

This holonomy extends from the boundary to the bulk, and it
is a mixed quantity depending on the phase space variables
and the additional bulk holonomies.
Notice that we have introduced the phase space indi-

vidually for each wedge, i.e., for each 4-simplex. Hence,
the same link viewed from adjacent 4-simplices carries
independent copies of the phase space. Using these varia-
bles, we can discretize the BF part of the action as a sum of
wedge contributions,

SBF½�; A� ¼ ℏ
‘P

2

�þ i

i�

Z
M
�A

B ^ FB
A½A� þ cc:

¼	 ℏ
‘P

2

�þ i

i�

X
w

�A
B½tw�hBA½@w� þ cc:

� X
w

Swedge½g∼w; gw;Z∼w; Zw�: (112)

Taking into account the presence of the two fluxes �½tw�
and �

∼
½tw� ¼ �½t�1

w �, each wedge contribution can be
written as

Sw½g
∼
;g;Z

∼
;Z�¼ ℏ

‘P
2

�þ i

2i�
ð�A

B½tw�hBA½@w�

þ�A
B½t�1

w �hBA½@w�1�Þþcc:

¼Nw

2
ðgg

∼
�1ÞABð!∼ B�Aþ�

∼
B!AÞþcc: (113)

where

Nw :¼ 1

2

� ffiffiffiffiffiffi
�!

pffiffiffiffiffiffi
�∼ !∼

p þ
ffiffiffiffiffiffi
�∼ !∼

pffiffiffiffiffiffi
�!

p
�

(114)

equals 1 on the C ¼ 0 constraint surface. Notice the factor
1=2 in (113). Its presence will lead to an extra phase in the
spin foam amplitude, which we decided to reabsorb in
the boundary states via the phase ��;j.

B. The EPRL amplitude

We construct the quantum amplitude taking the BF
action Swedge to propagate the constrained boundary states

(96) along the bulk of the wedge. This leads to the
following path integral:

hGðjÞ
�m∼ ;m

iðg
∼
; gÞ :¼ 1

215�6

Z
T2
gf

d14�gf�CðCÞh�; j; m∼ j�∼ ��∼ �

� e
iSwðg∼;g;Z∼;ZÞh! �!j�; j; mi; (115)

where the numerical factors have been chosen for later
convenience, and we dropped the subscript w in the vari-
ables since we are considering a single wedge at a time.
The integral is over a hypersurface T2

gf of T
2 defining a

gauge section of C, and it is invariant of the gauge chosen
thanks to the invariance properties (98) and (103). The
integral expression is only defined for j � 0, since at the
degenerate value the twistorial description of T�SLð2;CÞ

FIG. 4. Left: A triangle t in the spatial hypersurface bounds
two tetrahedra. Twistors Z and Z∼ are attached to the underlying
spin network graph. Right: The same triangle seen from a four-
dimensional perspective. The triangle t is dual to a spin foam
face f consisting of several wedges wtv, one for each adjacent
vertex v.
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does not work. Therefore, we need to independently fix the
wedge amplitude for j ¼ 0. We do so by requiring cylin-
drical consistency of the final amplitude, which is satisfied

by hGð0Þ
00 ðg∼; gÞi � 1. In the following, we assume that this is

the definition at j ¼ 0.
The structure of (115) resembles the infinitesimal step

of a Feynman path integral, where the position eigenstates
are represented by the constrained boundary states,
propagated by the BF action. The main result of this
section is that the integrals can be explicitly performed
leading to the Wigner matrices of simple projected spin
networks; that is,

hGðjÞ
�m∼ ;m

iðg
∼
; gÞ ¼ �ðjÞDð�j;jÞ

jm∼mjmðg∼g
�1Þ; (116)

where �ðjÞ is an oð1=jÞ overall function. The results also
provide the transformation between quantum twistor net-
work states and SLð2;CÞ cylindrical functions.

Before proving the result, let us briefly review how this
quantity leads to the EPRL spin foam model. First, we
define amplitudes Af, associated with the faces of the

2-complex. These are obtained by taking the product of
wedge amplitudes belonging to the face, and summing
over the intermediate states. This gives a SU(2) trace Trj
on the magnetic quantum numbersm, which automatically
implies that all spins in the face match, and a sum over the
overall j,

AðgÞ ¼ X
j

�fðjÞTrj
�Y
w2f

Dð�j;jÞðg
∼w

g�1
w Þ

�
: (117a)

Finally, we multiply the face amplitudes together and
integrate over the remaining connection variables,

ZC ¼
Z Y

v;�

dgv�
Y
f

AfðgÞ; (117b)

where dg denotes the Haar measure on SLð2;CÞ, and
redundant integrations should be dropped to guarantee
finiteness of the 4-simplex amplitude [79]. This specific
way to express the EPRL partition function through face
amplitudes can be found for instance in Ref. [80], together
with the other equivalent formulations.

In the rest of this section, we prove (116). As a first
step, let us write the C constraint using a Lagrange
multiplier z, and the integral representation of the com-
plex � function

�CðCÞ ¼ i

8�2

Z
C
dz ^ d�z e

i
2zC�cc:; (118)

thus

hGðjÞ
�m∼ ;m

iðg
∼
; gÞ ¼ i

218�8

Z
T2
gf

d14�gf

Z
C
dz ^ d�z

� exp

�
i

2
zCþ i

2
Nwðgg∼

�1ÞAB

� ð!∼ B�A þ �∼
B!AÞ � cc:

�
GðjÞ

�m∼ ;m
ð�∼ ; !Þ:

Next, we introduce spinors at the center of the 4-simplex
obtained by parallel transporting with g and g

∼
,

!
v A ¼ ðg�1ÞAB!B; �

v A ¼ ðg�1ÞAB�B;

!∼
v A ¼ ðg

∼
�1ÞAB!∼ B; �∼

v A ¼ ðg
∼
�1ÞAB�∼B:

(119)

Thanks to the invariance under SLð2;CÞ transformations
of C and the measure, we can change variables in the
integral, from the wedge spinors to the v spinors, and,
dropping the supscript v, we find

hGðjÞ
�m∼ ;m

iðg
∼
; gÞ ¼ i

218�8

Z
C
dz ^ d�z

Z
T2
gf

d14�gf

� e
i
2�Að!∼ Aþz!AÞ� i

2�∼Að!Aþz!∼
AÞ�cc:

�GðjÞ
�m∼ ;m

ððg
∼
�∼ ÞA; ðg!ÞAÞ: (120)

To perform the integrals on T2
gf , we now specify which

particular gauge section the 14-dimensional surface T2
gf

corresponds to. It has to intersect all gauge orbits (14)
exactly once, and the final result is independent of this
choice thanks to the manifest gauge invariance of the
integrand. We set

T2
gf 
 T2: �A;!∼

A; �∼
A 2 C2 arbitrary;

!A 2 PC2:

�!0 ¼ ei’ cos#2

!1 ¼ sin#2

’ 2 ð0; 2�Þ; # 2 ð0; �Þ: (121)

In the coordinates chosen the integration measure de-
composes according to

1

215

Z
T2
gf

d14�gfG ¼ i

2

Z
S
!Ad!

A ^ �! �Ad �!
�A
Z
C2

d4�

�
Z
C2

d4!∼

Z
C2

d4�∼G: (122)

We see in (120) the appearance of a � function from the
d4� integration,

�C2ð!∼ A þ z!AÞ ¼ 1

ð2�Þ4
Z
C2

d4�e
i
2�Að!∼ Aþz!AÞ�cc:

: (123)

Writing this � explicitly, and inserting the expression
(96) of G, (120) reads
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hGðjÞ
�m∼ ;m

iðg
∼
; gÞ ¼ � 1

�4

Z
C
dz ^ d�z

Z
S
!Ad!

A ^ �! �Ad �!
�A
Z
C2

d4!∼

Z
C2

d4�∼�C2ð!∼ A þ z!AÞ

� e
� i

2�∼Að!Aþz!∼
AÞ�cc: ~fð�j;jÞ�|; �m∼

ððg
∼
�∼ ÞAÞfð�j;jÞj;m ððg!ÞAÞ

¼ � 4

�2

Z
C
dz ^ d�z

Z
S
!Ad!

A ^ �! �Ad �!
�A
Z
C2

d4!∼�C2ð!∼ A þ z!AÞfð�j;jÞj;m∼
ððg

∼
ð!þ z!∼ ÞÞAÞf

ð�j;jÞ
j;m ððg!ÞAÞ

¼ � 4

�2

Z
C
dz ^ d�z

Z
PC2

!Ad!
A ^ �! �Ad �!

�Afð�j;jÞj;m∼
ðð1� z2Þðg

∼
!ÞAÞfð�j;jÞj;m ððg!ÞAÞ; (124)

where in the second line we used the Fourier transform
(74), and in the final line we used the � function to
eliminate an integral. Thanks to the homogeneity property
of the canonical basis functions, we can rewrite this
expression as

hGðjÞ
�m∼ ;m

iðg
∼
;gÞ¼�ðjÞ i

2

Z
PC2

!Ad!
A^ �! �Ad �!

�Afð�j;jÞj;m∼
ððg

∼
!ÞAÞ

�fð�j;jÞj;m ððg!ÞAÞ; (125)

where

�ðjÞ :¼ 8i

�2

Z
C
dz ^ d�zð1� �z2Þ�j�1�i�jð1� z2Þþj�1�i�j:

(126)

The integral on the complex projective plane gives pre-
cisely the Wigner matrices for the irreducible unitary
representations of the Lorentz group, as a consequence of
the scalar product (77),

i

2

Z
PC2

!Ad!
A ^ �! �Ad �!

�Afð�j;jÞj;m∼
ðg
∼
!AÞfð�j;jÞj;m ðg!AÞ

¼ Dð�j;jÞ
�| �m∼ jmðg∼g

�1Þ: (127)

The nonanalytic complex integral is explicitly computed in
Appendix B, and gives

�ðjÞ ¼ 4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p 1

�j
ei�ð�;jÞ; (128)

where ei�ð�;jÞ is a phase and quickly converges to 1 as j
becomes large.

This completes the proof of (116), with �ðjÞ given in
(128). Up to this factor, we recover the fundamental structure
of the EPRL model. Our derivation shows that its building
block, the specificWigner matrices appearing in (116), have
the interpretation of path integrals over twistor space.
Concerning the �ðjÞ factors, these come as a direct conse-
quence of the integral over the z Lagrangemultiplier, and are
thus absent in derivations of the model not based on twistor
space. On the other hand, there is the freedom to assign extra
holonomy-independent face amplitudes, and this is typically
exploited to recover a factor of 2jþ 1 needed to guarantee
the convolution property of the transition amplitudes at fixed

graphs [21,22]. If one so wishes, the same freedom can
be exploited here to introduce extra face weights given by
ð2jþ 1Þ=�ðjÞ, thus completing thematchingwith the EPRL
model.

VI. SEMICLASSICAL PROPERTIES

In this section, we study some semiclassical properties
of the model, using the twistorial formalism. We introduce
a notion of curvature and torsion tensors written in terms of
the spinors. Next, we will relate our twistors to the spinors
used in the asymptotic analysis of Barrett et al. [17],
thereby embedding the large spin behavior in the original
phase space.

A. Curvature tensor in terms of spinors

An important application of our construction is that it
allows us to introduce a curvature tensor, and study its
decomposition in terms of irreducible components and its
Petrov classification. To that end, we work with the wedge
spinors at the center of the 4-simplex defined in Eq. (119),
and reintroduce the v superscript. Once we have performed

in (115) the integration over �
v
, there is a Lagrange multi-

plier z in a � function on C2, imposing

!∼
v A ¼ �z!

v B
: (129)

The transformation mapping ð�v ;!v Þ to ð�∼
v A

; !∼
v AÞ must be a

proper SLð2;CÞ element, but �
v
A!
v A

� 0 implying that this
is a complete basis in C2. We can thus decompose �∼

v
into

the �
v
and !

v
spinors to get

�∼
v A ¼ �z�1�

vA � u!
v A

; (130)

where u 2 C is the component of �∼
v
with respect to !

v
;

hence it depends on the bulk holonomies g and g
∼
. If we

now look at the wedge holonomy, we get

hAB½@w� ¼ � 1

�!
½z!v A

�
v
B � ðz�1�

v A þ u!
v AÞ!v B�

	 �A
B þ FA

B½w�; (131)

at first order in the coordinate area of the wedge. Lowering
one index,
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FAB½w� 	 � 1

�!
½ðz� z�1Þ!v ðA�

v
BÞ � u!

v
ðA!

v
BÞ�: (132)

At this point, we can use the spinors to introduce a
(complex) null tetrad in the internal Minkowski space,
analogue to the Newman-Penrose tetrad. This is localized
at the center of the 4-simplex, and can be defined as
follows:

‘I� i�
vA

��
v �A

; kI � i!
v A

�!
v �A

; mI �!
v A

��
v �A

;

�mI�� �!
v �A

�
v A

; ‘2¼k2¼m2¼0;

‘IkI¼mI �mI¼�j�v !v j2:
(133)

Here we used abstract index notation, and XA �A � XI:

XA �A ¼ iffiffi
2

p �A �A
IX

I 2 C2 � �C2. We took capital latin letters

starting at I for internal Lorentz indices, as customary in
spin foam literature. These should not be confused with
spinorial indices, starting at the beginning of the alphabet.
We remark that m and �m identify the plane of the triangle
in the reference frame of the 4-simplex. In fact,

�ðgÞIK�ðgÞJL�KL½t� / im½I �mJ�; (134)

where �IJ / ð1� �?Þ�IJ, and �ðgÞIJ ¼ gAB �g
�A
�B

denotes the proper Lorentz transformation associated to
the bulk holonomy g 2 SLð2;CÞ previously introduced.
Consequently, the bivector ‘½IkJ� spans a timelike plane

orthogonal to the triangle in the flat reference metric. By
construction, the wedge is parallel to this plane. Then, we
can define the following curvature tensor in the internal
Lorentz indices:

FCDIJ½w� :¼ awFCD½w�‘½IkJ�; (135)

where the overall scale factor aw measures the area of the
wedge and depends a priori on all the details of the
geometry of the 4-simplex. The expression (135) defines
a curvature tensor whose only nonvanishing components
lie in the plane of the wedge. This is the usual setup of
Regge calculus and loop quantum gravity, and it is con-
sistent with the tetrahedra bounding the 4-simplex being
flat. In this way, we have achieved something new for the
spin foam formalism, that is, a description of the full
curvature tensor.

Having introduced a (chiral) curvature tensor,12 we
can decompose it into its SLð2;CÞ irreducible parts,
ð	; T;�;�0Þ 2 ð2; 0Þ � ð1; 0Þ � ð0; 0Þ � ð1; 1Þ, using the�
tensor:

FCDIJ � FCDA �AB �B

¼ ½	ABCD þ ðTDB�CA þ TCA�DBÞ
þ�0ð�CA�DB þ �DA�CBÞ� �� �A �B þ �AB�CD �A �B:

(136)

Notice that here the ð0; 0Þ � ð1; 1Þ components are them-
selves chiral, in the sense that they contain the left-handed
projector as in (17). For instance, �0 contains both

�I½K�L�J and �IJKL traces. From the continuum theory,
we know that if the connection is Levi-Civita the curvature
coincides with the Riemann tensor. In this case, 	 is the
(chiral) Weyl tensor, ð�;�0Þ give the Ricci tensor with�0

as its trace, and the algebraic Bianchi identities guarantee
that the ð1; 0Þ component vanishes. Conversely, any non-
zero contorsion contributes to all components.
Applying this decomposition to (135), expressed in

terms of spinors through (132) and (133), we obtain a
spinorial description of the various irreducible compo-
nents. Explicitly,

�0 ¼ �aw
24

ðz� z�1Þj�!j2; (137a)

�CD �A �B ¼ aw
2
½ðz� z�1Þ!v ðC�

v
DÞ � u!

v
ðC!

v
DÞ� ��

v

ð �A �!
v

�BÞ;

(137b)

	ABCD ¼ aw
2

�� �!

�
½ðz� z�1Þ!v ðA!

v
B�
v
C�
v
DÞ

� u!
v
ðA!

v
B!
v
C�
v
DÞ�; (137c)

TAB ¼ aw
8
u �� �!!

v
A!
v
B: (137d)

We see that all components are nonvanishing; hence the
off-shell wedge curvature carries contorsion. This is rather
welcomed: what we have defined is an off-shell quantity,
and in loop quantum gravity the contorsion is an indepen-
dent component of the connection and thus can take any
value off shell.
To further interpret the equations, consider the case of

vanishing torsion. Then the algebraic Bianchi identities
impose

�0¼! ��0; TAB¼! 0; ��AB �C �D¼! �CD �A �B: (138)

Looking at (137), we see that the conditions are fulfilled
provided

z 2! R; u¼! 0: (139)

In this way we are able to identify a component of the bulk
holonomy, u, which describes contorsion. At the same
time, the Lagrange multiplier z picks up a geometric
interpretation on the C ¼ 0 constraint surface, where
ReðzÞ is related to the Riemann tensor, and ImðzÞ to con-
torsion. Finally, let us discuss the algebraic classification of
the resulting Riemann tensor. When (139) are satisfied, we

12The remaining right-handed components are obtained by
complex conjugation.
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see from (137c) that the Weyl part has two principal null
directions. It is thus of Petrov type D, precisely as posited
in Regge calculus [81]. Unlike in ordinary Regge calculus,
we are able to describe additional contorsion components.

In the EPRL model, the on-shell wedge is flat; thus all
components of this tensor vanish. One should then look
at a curvature tensor associated to faces, which can be
also constructed with our methods. They are in fact rather
general; all that is required is the existence of a Lorentzian
phase space structure.

B. Wedge flatness and large spin limit

A key property of the EPRL model is to reproduce
exponentials of the Regge action in the large spin limit
[17]. The proof heavily rests upon the use of spinors, and
an extra input of wedge (i.e., 4-simplex) flatness. What we
want to show in this section is the relation between the
spinors appearing in the semiclassical analysis and the
twistor phase space description of our paper. The starting
point of the semiclassical analysis is the ‘‘propagator’’
(127), associated to each wedge. This can be written either
in terms of the original phase space spinors, or those
transported to the center of the 4-simplex via (119),

P ¼
Z
PC2

d2!
v
fð�j;jÞj;m∼

ðg
∼
!
v AÞ fð�j;jÞj;m ðg!v AÞ

¼
Z
PC2

d2!fð�j;jÞj;m∼
ðg
∼
g�1!AÞfð�j;jÞj;m ð!AÞ: (140)

By direct comparison, we identify !
v

with the spinor
denoted z in Ref. [17]. The Hermitian scalar product
appearing in (127) can be written as a double integral,
over both ! and �, if one uses the dual map given by the
complex structure as shown in Appendix A. Upon doing

so, we can identify ð!v ;�v Þ with the spinor pair denoted
ðz; wÞ in Ref. [17], and bring in the full phase space
structure. However, � plays no role in the semiclassical
analysis in the literature, an aspect we will comment upon
below. Instead, the expression (140) is used, with the help
of a different type of additional spinor. Following
Ref. [13], the traces over the magnetic indices in (117a)
are replaced by resolutions of the identity written in terms
of the spinorial coherent states, that is,

Xm
j¼�m

jjmihjmj ¼
Z
S2
d2�jj; �Aihj; �Aj; (141)

where S2 is parametrized in stereographic coordinates by
the Hopf section �0=�1, and �2id2� ¼ �Ad�

A ^ cc: is the
canonical measure. Here we took the SU(2) spinors of unit
norm, which we can do without any loss of information in
the following. The only semiclassical information con-
tained in these states concerns directions in R3, identified
by the Hopf section, or equivalently

ni½t��ABi ¼
1

2i
�ðA�BÞ �B ��

�B; (142)

and interpreted as unit vectors normal to the triangle in the
frame of the source tetrahedron.
With the resolution of the identity in terms of coherent

states, (140) contains the overlap h! �!jj; �Ai, computed in
(90). Thanks to the factorization property of this overlap,
(140) can be rewritten as the exponential of an action
where the spin appears linearly,

P ¼ 2jþ 1

�

Z
d2!

v expðswÞ
kg!v k2kg

∼
!
v k2

;

sw½!v ; g; g∼;�; �∼� ¼ �j

�
ln
kg!v k2
kg
∼
!
v k2

þ�

�
; (143)

where

� :¼ 2

�
ln

0
@hg!v j�i
kg!v k

h�
∼
jg
∼
!
v i

kg
∼
!
v k

1
A: (144)

Now comes the key input of wedge flatness. If the wedge
is flat, the bulk holonomies add up to the phase space
SLð2;CÞ holonomy, hð!;!∼ ; �; �∼ Þ ¼ g

∼
g�1, and thus

!A ¼ gAB!
v B

; !∼
A ¼ g

∼
A

B

!
v B

: (145)

This immediately leads to

kg!v k2
kg
∼
!
v k2

¼ k!k2
k!∼k2

¼ e�: (146)

We have recovered the quantity identified with the extrin-
sic curvature in the classical study of the phase space
(Sec. II D). Hence, the action in (143) contains the area-
angle term �j�. This is a quite satisfying state of affairs,
as it shows that the model contains the correct structure of
the Regge action with areas �j.
Notice however that the equations of motion of this

action have little in common with discrete general rela-
tivity. What is needed at this point are constraints relating
the connection and area-angle variables between each
other, in order to recover the edge lengths as fundamental
variables, and the specific functional dependence of areas
and dihedral angles upon them. Crucial help in this
direction comes from the large spin limit. The action
(143) is complex and with a negative real part, and in
the large spin limit the path integral (143) is dominated by
configurations where the real part of the action vanishes.
By inspection of (144), these are located at ! propor-
tional to �, that is,
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�A ¼ ei’
!A

k!k ; �
∼
A¼ e

i’
∼
!∼

A

k!∼k
: (147)

Using again the wedge flatness, these equations imply

�
∼
A ¼ e�=2e

�ið’�’
∼
Þðg
∼
g�1ÞAB�B: (148)

Remarkably, the saddle point equations relate the phase
space spinors to the SU(2) boundary spinors in the same
way as the primary simplicity constraints relate them to
the reduced SU(2) spinors (36). However, there is an
important catch, in that the relative phase is not fixed,
as it is instead in (36). Therefore, we can identify the
Hopf sections of the �’s with our z’s, but not the phases.
This is consistent with the fact that the phases of the
SU(2) coherent states carry no semiclassical information.
Notice also from (148) that the �’s are not parallel trans-
ported by the Ashtekar-Barbero holonomy U, as it is for
the z’s. The information about the extrinsic curvature is
not in the boundary spinors, but in the bulk holonomies,
through (146). The actual dependence of the action (143)
on �, a D-dependent quantity, may seem puzzling at first
sight, since the boundary states implement strongly the D
constraint. It is the wedge BF action that breaks the D
symmetry, and so reintroduces a dependence on � in the
path integral.13 This is an important point, because as we
discussed at length, a nontrivial embedding of SU(2) in
the larger space is necessary to properly talk about ex-
trinsic curvature and Ashtekar-Barbero holonomy. So
although the boundary states are insensitive to the extrin-
sic curvature, it enters the picture via the bulk dynamics.

We have shown that in the large spin limit we can embed
the boundary data in the holonomy-flux phase space. The
Hopf sections of the SU(2) coherent states are mapped to
their equivalent of the reduced spinors (36), and the � is
mapped in the integration variables through (146). On the
other hand, the classical areas kztk do not appear in the
action (143) nor in the semiclassical analysis. What is inter-
preted as the areas are purely quantum numbers, the spins jt.

To complete the saddle point analysis, it remains to
impose the vanishing of the gradient of (143). A crucial
ingredient at this point is to restrict attention to foams
given by duals to triangulations. Then, the wedge flatness
implies the flatness of each 4-simplex in the triangulation.
In this case, it was shown in Ref. [17] that the vanishing
of the gradient of (143) can only be satisfied if the
boundary data ðjt; �A

t Þ correspond to a Regge 4-simplex,
ðjtð‘eÞ; �A

t ð‘eÞÞ. At the saddle point, the group elements g
are the Regge-Levi-Civita holonomies, and � ¼ �ð‘eÞ is
the dihedral angle between 4-normals. Notice in particular

that as a consequence, the h holonomies solve the second-
ary constraints at the saddle point.
This gives the right functional dependence in (143), and

the correct Regge dynamics is recovered if the term in �
does not contribute. This was proved in Ref. [17], where it
was put to zero as a phase choice on the boundary of the
4-simplex. In fact, that this term does not contribute can be
shown more generally, face by face on the foam. From
(117a), the action on a face is simply sf ¼

P
wsw. If g∼

g�1

is a pure boost, as at the saddle point, then we immediately
have

P
w�w ¼ 0, and so on each face,

sf ¼ �jð‘eÞ�fð‘eÞ; �f :¼
X
w2f

�w: (149)

The fact that the second term of sw vanishes exactly if the
connection is Levi-Civita makes the expression look very
much like a discrete form of the Holst action.
The discussion shows that the classical interpretation of

the large spin asymptotics is consistent with our phase
space structure. Furthermore, it provides an instance of
how a physical connection, a solution of both primary
and secondary simplicity constraints, provides a nontrivial
embedding of SU(2) in the twistor space. The embedding
depends on the spins, not on the norms of the SU(2)
spinors, because in this model the areas are quantized. In
this sense, the model is ‘‘semicoherent.’’ The directions are
represented by classical quantities in phase space, but the
areas are quantum numbers. This semicoherence shows up
in the way the ��∼ half of the phase space immediately
drops out of the analysis. Their completely auxiliary
role is evident also from the starting point (120), where
we showed that the EPRL wedge amplitude is a path
integral on twistor space: If we interpret the integrand as
the exponential of an action, the latter has no interesting
dynamics, only trivial solutions. Technically, this is due to
the lack of gluing of the phase space spinors, and it is not a
problem for the semiclassical analysis of Ref. [17] because
as explained, it is the spins and the boundary data spinors
that carry the gluing and the classical interpretation of
tetrahedra. The lack of gluing is in turn inherited from
imposing the simplicity constraints as restrictions on the
spin labels of the boundary states, so again it is a sign of the
‘‘semicoherence’’ of the model. A face amplitude respect-
ing all gluing conditions would not involve any boundary
spin labels but would be just an integral over twistors, one
for each tetrahedron adjacent to the spin foam face, and
would not use independent variables on each wedge. Our
formalism provides the means to formulate the LQG dy-
namics directly in these more covariant terms. Amplitudes
obtained in this way should not deviate much from the
EPRL model, but we leave this open for future work. The
basic question here is whether it is possible to formulate a
spin foammodel as a path integral with an action manifestly
discretizing general relativity, thus making the naive
semiclassical limit immediate. This idea has been addressed

13Accordingly, the saddle point equations define a hypersurface
in (the !!∼ polarization of) the original phase space. This
hypersurface depends on the relative phases ’ and ’

∼
, and it is

not invariant under D.
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in various ways in the literature [65,66,77,82–85], and a
similar approach has been developed for the Euclidean
theory in Ref. [86]. We think our twistorial framework
provides tools rich enough to make progress in this direction.

VII. CONCLUSIONS AND PERSPECTIVES

The twistorial description of loop quantum gravity is a
powerful tool to investigate both classical and quantum
aspects of the theory. As previously shown in Refs. [2–4],
twistors can be used to describe the theory’s covariant
phase space on a given graph, that is, holonomies and
fluxes of SLð2;CÞ. This is achieved by assigning a pair of
twistors with equal norms to each link of the graph. In this
way, we embed the nonlinear holonomy-flux algebra in a
much simpler algebra of canonical Darboux form. The first
advantage of doing so shows up in dealing with the sim-
plicity constraints. In the usual path to the quantum theory,
one solves the (primary and secondary) simplicity con-
straints at the continuum level, and then smears the result-
ing SU(2) variables. Here we have shown that swapping
reduction and smearing is also possible. One smears the
covariant SLð2;CÞ variables, and the SU(2) variables are
recovered solving the discretized simplicity constraints. As
in the continuum, the process requires solving the primary
and secondary constraints in successive steps. The primary
constraint surface is a seven-dimensional hypersurface in
T�SLð2;CÞ, parametrized by SU(2) holonomies and fluxes,
plus the dihedral angle � between the normals to the
source and target 3-cells, in the time gauge. In a general
gauge, the picture is unchanged, with an additional boost
on each 3-cell transforming the normal out of its canonical
time gauge. From the twistorial perspective, the constraint
hypersurface is spanned by simple twistors, that are pa-
rametrized by SU(2) spinors and the dihedral angles,
through Eqs. (35) and (42). The familiar notion of simple
bivectors translates elegantly into simplicity of twistors.

We also found that the dihedral angle is a good coor-
dinate along the orbits generated by the diagonal simplicity
constraint. This has important consequences: Assuming
that the secondary constraints turn the diagonal simplicity
constraints into second class, their solution is then pro-
vided by a specific, physical, gauge-fixing section through
the orbits. Whatever the gauge section is, we proved that
the SU(2) holonomy corresponds to the Ashtekar-Barbero
connection, with � measuring the extrinsic curvature pro-
jected along the normal to the face. The proof introduces a

nice discrete counterpart to the continuum formula Að�Þ ¼
Aþ ð�� iÞK. It is given by the relation between the SU(2)
holonomy and the initial Lorentzian holonomy [Eqs. (49)
and (60)], or equivalently by the relation between the
SU(2) class angle and the dihedral angle [Eq. (65)]. The
results show that a consistent symplectic reduction can be
obtained after smearing, without any outsourcing from
the continuum theory, and have important applications

for the interpretation of the theory and the construction
of spin foam models.
It remains to formulate an explicit discretization of the

secondary constraints, and study the gauge sections they
identify. This has been an important open question in the
field for many years. The twistorial formalism offers a way
to address it, and we hope to come back to this in future
research. For the moment, we verified our treatment
of the secondary constraints using the simple case of a flat
4-simplex, which is also the one relevant for the EPRL spin
foam model. Unlike the case of primary constraints, the
solution to the secondary constraints involves a nonlocal
graph structure, and cannot be found on each link separately.
Twistors lead to significant insights also in the quantum

theory. We quantize the phase space and its Poisson algebra
with a Schrödinger picture, and obtain quantum twistor
networks, instead of cylindrical functions on the group.
The new states are the homogeneous functions appearing
as the canonical basis of the unitary representations of the
Lorentz group. They still carry a representation of the
holonomy-flux algebra as a subalgebra, and achieve a sepa-
ration of the source and target structures of the node,which are
entangled in the usual holonomy representation. Proceeding
with Dirac, implementing the diagonal simplicity constraints
strongly and the off-diagonal constraints weakly, selects the
subspace of ‘‘simple’’ irreps (� ¼ �j, k ¼ jÞ). In thiswaywe
obtain a representation for the Hilbert space of loop quantum
gravity, where the argument of the wave function is a
pair of spinors instead of a group element. The representation
is related to the simple projected spin networks [5,75]
that appear as boundary states of the EPRL spin foam model
[5–7]. In fact, we show that the translation between the
spinorial wave functions and the cylindrical functions is pro-
vided precisely by the spin foam wedge amplitude.
A future goal of our research is to evaluate radiative

corrections of quantum gravity transition amplitudes.
These have so far provided very hard to compute, and the
hope is to improve computational power through the
complex analysis methods made available by the twistor
language. To that end, we established some preliminary
results in this paper. The first concerns rewriting the
Liouville measure of T�SLð2;CÞ in terms of twistors.
This is given by Eq. (108). The second is a discretization
of the BF action as a bilinear in the spinors; see (113).
Using these tools we gave an independent derivation of the
EPRL model, where each individual wedge amplitude is a
path integral in twistor space resembling the infinitesimal
step of a Feynman path integral, with the position eigen-
states replaced by the quantum states solution to the con-
straints, propagated with the BF action along the bulk of
the wedge. We then investigated some of the semiclassical
properties of the EPRL model. We defined a Newman-
Penrose frame through the spinors, and used it to compute
the curvature tensor. We computed its irreducible compo-
nents, and found two interesting results. The first is the
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presence, in the off-shell formalism, of torsional compo-
nents. This is important for the consistency of the theory,
because the models are meant to be a quantization of first-
order gravity. After imposing a condition of vanishing
torsion through the Bianchi identities, we identified the
Weyl and Ricci components of the (now Riemannian)
curvature tensor, and showed the latter to be of Petrov
type D, as it is in Regge calculus. In the EPRL model,
the on-shell value of the wedge curvature is zero, and it is
the face curvature tensor that carries the dynamical infor-
mation. This can also be studied with our techniques. The
flatness of the wedge is also crucial in deriving the well-
known asymptotic behavior of the EPRL model [17,18]: In
the large spin limit, the amplitude on a 4-simplex repro-
duces exponentials of the Regge action. An interesting
question concerns the relation between the Regge behavior
and the phase space. We answered the question showing
explicitly that (i) the saddle point equations capture the
spinorial version of the simplicity constraints, and (ii) the
secondary constraints are solved by the Levi-Civita connec-
tion of Regge calculus. This defines an embedding of the
SU(2) variables in the covariant phase space, with a nontrivial
section of the dihedral angles, �ðjtÞ. The embedding is a
function of the Regge data jt, that is, the areas of the
triangles. As a particular feature of the model, these areas
are quantized, and not classical quantities. This reflects the
semicoherence of the boundary states, which are semiclassi-
cal in the directions, but sharp on the areas, and it also shows
up in the lack of a real dynamical role for the momentum �.
In this respect, it would be interesting to look at a version of
the path integral where the areas are classical data. The
construction of such a path integral, and its precise relation
to the EPRL model, we leave for future work.
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APPENDIX A: SPINORS, THE LORENTZ GROUP
AND ITS UNITARY REPRESENTATIONS

In this appendix we review and collect properties of the
Lorentz group and its representations that were used in the
paper. Further details can be found in Refs. [70–72].

1. Index-free notation

We used explicit spinorial indices in most of the for-
mulas. It is also convenient to introduce a ket notation and
dispose of the indices. We define

j!i ¼ !A; h!j ¼ j!iy ¼ �A �A �!
�A;

jj!jj2 ¼ h!j!i;
(A1)

where, again, the Hermitian conjugate is taken with respect
to the time normal introduced in (20) and it is SU(2)
invariant but not SLð2;CÞ invariant. A further SU(2) quan-
tity is the complex structure J (or ‘‘parity’’), which allows
us to introduce the dual spinor ðJ!ÞA, which we denote j!�
for brevity:

j!� :¼ ��j �!i ¼ ��A �B �� �B �A �!
�A;

½!j ¼ !A ¼ !B�BA;

½�j!i ¼ �AB�
A!B ¼ �!:

(A2)

The latter bilinear is related to the SU(2)-invariant norm by
the SU(2) complex structure,

½�j!i ¼ hJ�j!i: (A3)

In the index-free notation, the holonomy-flux variables are

�i¼½!j�ij�i; h¼
j!
∼
i½�j�j�

∼
i½!jffiffiffiffiffiffiffiffiffiffiffiffiffi½�j!ip ffiffiffiffiffiffiffiffiffiffiffiffiffi½�

∼
j!
∼
iq ; (A4)

and the simplicity constraints are

½�j ¼ rei
�
2h!j: (A5)

The papers [3,4,58] use the index-free notation, but with
different conventions. Among these, the left-handed spinor
!A is denoted as jti, as here, while �A is written as huj, so
that the Lorentz bilinear reads hujti.

2. Unitary representations

We will give here a short overview over the unitary
irreducible representations of the Lorentz group, key for
understanding the EPRL model. Further reading may be
found in Refs. [70–72]. The representation

SLð2;CÞ 3 g: ! 2 C2 � g! � gAB!
B (A6)

of SLð2;CÞ on C2 is already irreducible, but not unitary.
The induced representations on functions f: C2 ! C, with
the natural L2ðC2; d4!Þ inner product is unitary though
reducible. This immediately follows from the homogeneity
and unimodularity of the transformation. Irreducible uni-
tary representations are then built just from homogenous
functions on C2.
For the principle series, the weights of homogeneity are

parametrized by a half integer 2k 2 Z and some � 2 R.
That is, we are dealing with functions

8  � 0;

!A 2 C2 � f0g: fð!AÞ ¼ �k�1þi� �þk�1þi�fð!AÞ:
(A7)

From this formula we can easily see for if the pair ð�; kÞ
label an irreducible unitary representation, its complex
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conjugate is labeled by ð��;�kÞ. A canonical basis in
this infinite-dimensional space is given by the following
functions,

f
ð�;kÞ
j;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jþ 1

�

s
k!k2RðjÞðU�1ð!ÞÞjm; (A8)

where j � k and m ¼ �j; . . . ; j, and

RjðUÞmn ¼ hj; mjRðjÞðUÞjj; ni;

for Uð!Þ ¼ 1

k ! k
!0 � �!

�1

!1 �!
�0

 !
2 SUð2Þ;

(A9)

are the entries of the spin j Wigner matrix for the SU(2)
element Uð!Þ constructed from the spinor. The basis
elements (A8) diagonalize a complete set of commuting
operators:

ðL̂2 � K̂2Þfð�;kÞj;m ¼ ðk2 � �2 � 1Þfð�;kÞj;m ;

L̂iK̂
if

ð�;kÞ
j;m ¼ �k�f

ð�;kÞ
j;m ;

(A10a)

L̂2fð�;kÞj;m ¼ jðjþ 1Þfð�;kÞj;m ;

L̂3f
ð�;kÞ
j;m ¼ mfð�;kÞj;m ;

(A10b)

where L̂i and K̂i are the quantization of the generators
earlier.

It is quite convenient to introduce a multi-index notation
to group the pair ðj; mÞ into a single index �. We will also
use the notation �� to keep track of the complex conjugate
representation, and use Einstein’s summation convention
for the � indices. With our choices, the matrix representa-
tion of the group is the right action, defined according to

ðDðgÞfð�;kÞ� Þð!AÞ :¼ fð�;kÞ� ððg�1ÞAB!BÞ ¼ fð�;kÞ� ð�!BgB
AÞ

¼ Dð�;kÞðgÞ��fð�;kÞ� ð!AÞ: (A11)

Since the representation is unitary, it admits an
SLð2;CÞ-invariant Hermitian inner product. This is defined
as a surface integral on PC2 
 C2,14

hfð�;kÞ� jfð�;kÞ� i¼ i

2

Z
PC2

!Ad!
A^ �! �Ad �!

�Afð�;kÞ� ð!AÞfð�;kÞ� ð!AÞ
¼� ���; (A12)

its value being independent of the way PC2 is embedded
into C2 thanks to the homogeneity of the integrand.

The SLð2;CÞ group locally represents the group of
special orthochronous transformations. To recover the
full Lorentz group we also need parity

ðPfð�;kÞ� Þð!AÞ ¼ fð�;kÞ� ð�A �A �! �AÞ; (A13)

and time reversal

ðTfð�;kÞ� Þð!AÞ ¼ �
��

 ��f

ð�;kÞ
� ð�A �A �! �AÞ; (A14)

both of which have recently gained [73] some interest in
LQG. From (A7) we can realize parity and time reversal
map the irreducible unitary representation of labels ð�; kÞ
to those of ð�;�kÞ and ð��; kÞ respectively.
In each representation space there are two invariants: the

first one is the Hermitian inner product (A12) introduced
above; the second one is the � invariant

½fð�;kÞ� jfð�;kÞ� i :¼ k� i�

4�

Z
PC2�PC2

!Ad!
A ^ �! �Ad �!

�A

^ �Ad�
A ^ �� �Ad ��

�Að�A!
AÞk�1�i�

� ð �� �A �!
�AÞ�k�1�i� � fð�;kÞ� ð�AÞfð�;kÞ� ð!AÞ

¼ ���: (A15)

Its matrix elements are

�ðj;mÞðj0;m0Þ ¼ ð�1Þk�m�j;j0�m;�m0
�ðkþ 1� i�Þ
�ðkþ 1þ i�Þ

� �ðjþ 1þ i�Þ
�ðjþ 1� i�Þ ; (A16)

where Euler’s � function appears. Though infinite dimen-
sional, each of the invariants comes with an inverse, and

�� �
�� �
 ¼ �
�
� ¼ ��
��
; �� �� ¼ �� ��;

��� ¼ �� �
�� �� �� �
 ��; and ��� ¼ ð�1Þ2k���:
(A17)

Thanks to the completeness of the basis, (A15) and
(A12) imply for each irreducible subspace ð�; kÞ a relation
between the ket and its dual,

½f�j ¼ �

i�� k
����

� �
hf
j: (A18)

Since both �� �� and ��� are invariant this map commutes

with the group action, and implicitly shows the represen-
tation labeled by ð�; kÞ is unitarily equivalent to its com-
plex conjugate, that is, the ð��;�kÞ representation.
The map (A18) allows us to relate the bilinear invariant

(A15) to the Hermitian inner product (A12), which we used
in Sec. VI B to compare our formulas to those of Ref. [17].
This is analogous to the finite-dimensional case [see (A3)],
except that now both quantities are SLð2;CÞ invariant.
The dual vector can be obtained also by Fourier trans-

form, up to a phase, as was used in the main text in (94). In
fact, we have

fð�;kÞ�� ð�AÞ :¼ 1

�2

Z
C2
d4!ei�A!

A�cc:fð�;kÞ� ð!AÞ

¼ e�i�k�ðkþ1� i�Þ
�ðkþ1þ i�Þ�� ���

��fð�;kÞ� ð�AÞ; (A19)

which defines an antilinear map from the ð�; kÞ represen-
tation onto itself, whereas complex conjugation maps the
ð�; kÞ towards the ð��;�kÞ representation, implicitly

14Because of the homogeneity, integrating over all of C2 would
lead to divergences.
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showing that ð�; kÞ and ð��;�kÞ are unitarily equivalent.
We will give a detailed proof of this integral elsewhere, but
let us mention the basic strategy behind it: First, thanks to
the SLð2;CÞ invariance of the integral, one can realize the
left-hand side equals the right-hand side up to a constant.
This constant can only depend on the labels � and k. Next,
one shows, this constant has unit norm. Calculating the
integral for the states of spin labels k ¼ j ¼ m eventually
gives the phase appearing in (A19).

APPENDIX B: THE INTEGRAL
DETERMINING �ðjÞ

In Sec. V we encountered an integral over the complex
plane that contributes to the loop quantum gravity face
amplitude. In this appendix, we present the details of
its evaluation, as well as the explicit form of the phase
�ð�; jÞ. The integral of interest is

I�;j ¼ i

2

Z
C
dz ^ d�zð1� z2Það1� �z2Þb;

for:

�
a ¼ �i�jþ j� 1;

b ¼ �i�j� j� 1;
(B1)

and 2j 2 Nþ. Although the integrand is not holomorphic,
the integral can be manipulated to a contour integral using
Stokes’ theorem. To do that, we write

ð1� z2Þa ¼ 1

2

@

@z
½zFð�a; 12;

3
2; z

2Þ�; (B2)

where [87]

Fða;b;c;zÞ¼ �ðcÞ
�ðbÞ�ðc�bÞ

Z 1

0
dttb�1ð1� tÞc�b�1ð1� tzÞ�a;

ReðcÞ>ReðbÞ>0; (B3)

is the hypergeometric function. (B2) can be verified usingZ x

0
dtð1� t2Þa ¼ x

2

Z 1

0
dtt�1

2ð1� x2tÞa: (B4)

Hence,

I�;j ¼ i

4

Z
D
dz ^ d�z

@

@z

�
zF

�
�a;

1

2
;
3

2
; z2

��
ð1� �z2Þb

¼ i

4

Z
D
d ^

�
d�zzF

�
�a;

1

2
;
3

2
; z2

�
ð1� �z2Þb

�
: (B5)

The hypergeometric function Fð�; �; �; z2Þ is analytic (hence
differentiable) unless z2 2 fx 2 Rjx � 1g, where there is a
branch cut, so the integration domain D denotes the com-
plex plane cut along the real x axis from �1 to x ¼ �1
and x ¼ 1 to x ¼ 1. Applying Stokes’ theorem, we find

I�;j ¼ i

4
lim
�&0

lim
R!1

�Z
hþR;"

þ
Z
h�R;"

þ
Z
kR;"

�
d�zzF

�
�a;

1

2
;
3

2
; z2

�
� ð1� �z2Þb; (B6)

where h1;" are Hankel contours encircling the points 1,
while kR;0 denotes a circle of radius R around the origin.

Orientation and shape of the contour are fixed in Fig. 5.
The contribution from the integral around the circle at
infinity vanishes. To prove it, we use [87]

Fða; b; c; zÞ ¼ �ðcÞ�ðb� aÞ
�ðbÞ�ðc� aÞ
� ð�zÞ�aFða; 1� cþ a; 1� bþ a; z�1Þ

þ �ðcÞ�ða� bÞ
�ðaÞ�ðc� bÞ

� ð�zÞ�bFðb; 1� cþ b; 1� aþ b; z�1Þ:

For j > 0 and a ¼ �i�jþ j� 1 we find the limits

lim
z!0

F

�
�a;� 1

2
� a;

1

2
� a; z

�
¼ 0

¼ lim
z!0

F

�
1

2
; 0; aþ 3

2
; z

�
:

Since Reðaþ bþ 1Þ ¼ �1< 0 and Reð2bþ 1Þ ¼
�2j� 1< 0 we get

lim
R!1

								
Z
kR;0

d�zzF

�
�a;

1

2
;
3

2
; z2

�
ð1� �z2Þb

								 � lim
R!1

Z �

��
d’jR2bþ2j

�
1

j2aþ 1j jR
2aj
								F

�
�a;� 1

2
� a;

1

2
� a; R�2e�2i’

�

�
								þ�ð32Þj�ð�a� 1

2Þj
j�ð�aÞj R�1

								F
�
1

2
; 0; aþ 3

2
; R�2e�2i’

�								
�
¼ 0:

FIG. 5. The integration domain is bounded by a Hankel con-
tour around the branch cuts in the complex plane.
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Therefore, in the limit R ! 1 only the Hankel contours
hþ";1 and h�";1 can contribute to the integral I�;j. A moment
of reflection reveals them to be equal:Z

h�";R
d�zzF

�
�a;

1

2
;
3

2
; z2

�
ð1� �z2Þb

¼
Z
hþ";R

d�zzF

�
�a;

1

2
;
3

2
; z2

�
ð1� �z2Þb: (B7)

The problem when trying to evaluate these integrals is that
Fð�; �; �; zÞ is generally not single valued for z real and
z > 1. However there is now a remarkable identity relating
the hypergeometric function around the branch cut to those
regions where it behaves perfectly regular; it reads [87]

Fða;b;c;zÞ¼�ðcÞ�ðc�a�bÞ
�ðc�aÞ�ðc�bÞ
�Fða;b;aþb�cþ1;1�zÞþð1�zÞc�a�b

��ðcÞ�ðaþb�cÞ
�ðaÞ�ðbÞ

�Fðc�a;c�b;c�a�bþ1;1�zÞ: (B8)

We insert this identity into I�;j, and eventually get

I�;j ¼ i

2
lim
"&0

Z
hþ�;1

d�zzð1� �z2Þb

�
�
�ð32Þ�ðaþ 1Þ
�ðaþ 3

2Þ
F

�
�a;

1

2
;�a; 1� z2

�

þ� 1

2aþ 2
ð1� z2Þaþ1F

�
3

2
þ a; 1;aþ 2; 1� z2

��
(B9)

In the limit� ! 0 the second part of this equationvanishes: If
a� b 2 Z, the function ð1� �zÞbð1� zÞaþ1Fð; ; ; 1� zÞ is
single valued (though not analytic) around the branch cut. But
we can split theHankel contour into twoparts, one lying in the
upper half of the complex plane, the other one in the lower
half. Since the integrand is single valued around the cut and
both contributions appear with opposite signs, they cancel in
the limit of � ! 0. Concerning the first part of (B9),

F

�
�a;

1

2
;�a; 1� z2

�
¼ F

�
1

2
;�a;�a; 1� z2

�
¼ ðz2Þ�1

2: (B10)

Hence

I�;j ¼ i

4

�ð12Þ�ðaþ 1Þ
�ðaþ 3

2Þ
lim
"&0

Z
hþ";1

d�zð1� �z2Þb

¼ � i

4

�ð12Þ�ðaþ 1Þ
�ðaþ 3

2Þ
lim
"&0

Z
hþ";1

dzð1� z2Þb: (B11)

Wehave thus reduced our original integral (B1) to an ordinary
analytic line integral. This we calculate by the usual methods
and find

lim
"&0

Z
hþ";1

dzð1� z2Þb ¼ �2i sinð�bÞ�ð�
1
2 � bÞ�ðbþ 1Þ

�ð12Þ
:

(B12)

With �ðzÞ�ð1� zÞ sin�z ¼ �we further simplify and even-
tually get

for j > 0: I�;j ¼ � i�

�� i

1

4j

� �ð�i�jþ jÞ�ðþi�jþ jþ 1
2Þ

�ðþi�jþ jÞ�ð�i�jþ jþ 1
2Þ

¼ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p 1

4j
ei�ð�;jÞ: (B13)

In the large spin limit we can use Stirling’s asymptotic
formula to approximate the ratio of gamma functions by
ð1þ i�Þ1=2=ð1� i�Þ1=2, and

I�;j 	 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p 1

4j
; for j � 1: (B14)

The integral (B1) is ill defined for j ¼ 0. This is not
directly relevant for the spin foam model, where the
amplitude at j ¼ 0 is assigned independently, requiring
cylindrical consistency. Nonetheless, the integral can be
regularized to vanish at this singular value. Let us first
introduce polar coordinates, and perform a partial fraction
expansion to find

I�;0 ¼ i

2

Z
C
dz ^ d�z

1

ð1� z2Þð1� �z2Þ ¼
Z �

��
d’

Z 1

0
dr

r

ð1� r2e2i’Þð1� r2e�2i’Þ
¼ 1

2

Z �

��
d’

Z 1

0
dr

1

ðe�i’ � rÞðei’ � rÞ ¼ � 1

2

Z �

��
d’

Z 1

0
dr

1

ei’ � e�i’
½ðei’ � rÞ�1 � ðe�i’ � rÞ�1�

¼ 1

2

Z �

��

d’

ei’ � e�i’
½lnðei’ � rÞ � lnðe�i’ � rÞ�1r¼0 ¼

1

2

Z �

��

d’

ei’ � e�i’
½2i�signð’Þ � 2i’�: (B15)

The last two integrals can readily be performed. Set x ¼ cos’ to get
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Z �

��
d’

signð’Þ
ei’ � e�i’

¼ �2i
Z 1

0

dx

1� x2
: (B16)

The second integral goes around the unit circle. We recognize the integrand is analytic along this path unless it reaches the
point z ¼ �1, and can thus smoothly deform the integration domain to find

Z �

��
d’

’

ei’ � e�i’
¼ �

I
jzj¼1

dz
lnz

z2 � 1

¼ �lim
"&0

�Z 1

0
dx

lnð�1þ x� i"Þ
ð1� xÞ2 � 1

�
Z 1

0
dt
lnð�1þ xþ i"Þ
ð1� xÞ2 � 1

þ i
Z �

��
d’"ei’

lnð"ei’Þ
"2e2i’ � 1

�

¼ 2i�
Z 1

0
dx

1

ð1� xÞ2 � 1
¼ �2i�

Z 1

0

dx

1� x2
: (B17)

We put the branch cut for the complex logarithm on the
negative real axis, got for any 0< x< 1 that

lim
"&0

lnð�1þ x i"Þ ¼ i�; (B18)

and used that the integral around the small semicircle
vanishes due to lim"!0" ln" ¼ 0. Hence, in both (B16)
and (B17) there appears the very same integral. Each
integral diverges logarithmically at its upper bound x ¼ 1:

2
Z 1

0

dx

x2�1
¼½lnjx�1j� lnjxþ1j�1x¼0¼�1: (B19)

But, if we were to take the limit x ! 1 in both (B16) and
(B17) equally fast, both contributions would sum up to
zero. We can thus put the regularized integral to vanish:

I�;0 ¼reg 0: (B20)
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