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We study field theories in two spacetime dimensions invariant under a chiral scaling symmetry that acts

only on right-movers. The local symmetries include one copy of the Virasoro algebra and a U(1) current

algebra. This differs from the two-dimensional conformal group but in some respects is equally powerful

in constraining the theory. In particular, the symmetries on a torus lead to modular covariance of the

partition function, which is used to derive a universal formula for the asymptotic density of states. For an

application we turn to the holographic description of black holes in quantum gravity, motivated by the

fact that the symmetries in the near-horizon geometry of any extremal black hole are identical to those

of a two-dimensional field theory with chiral scaling. We consider two examples: black holes in warped

AdS3 in topologically massive gravity and in string theory. In both cases, the density of states in the

two-dimensional field theory reproduces the Bekenstein-Hawking entropy of black holes in the

gravity theory.

DOI: 10.1103/PhysRevD.86.124018 PACS numbers: 11.10.�z, 04.70.Dy, 11.25.Tq

I. INTRODUCTION

The structure of conformal field theories (CFTs) in two
spacetime dimensions is rich enough to determine many
properties of the underlying theories. An important ex-
ample is the number of states at high energy, which is fixed
by conformal symmetry and depends only on the central
charges in a unitary theory. This result is especially power-
ful given that in two dimensions, scale invariance implies
conformal invariance: any unitary theory with a discrete
spectrum and invariant under two-dimensional transla-
tions, Lorentz transformations and scalings has an enlarged
global symmetry group given by SLð2; RÞ � SLð2; RÞ and
local symmetries given by two copies of the Virasoro
algebra [1]. If we add the requirement of modular invari-
ance for consistency on a torus, we obtain the following
famous Cardy result for the entropy of a CFT [2]:

SCFT ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffi
cR
6
L0

r
þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffi
cL
6

�L0

r
: (1)

This universal result helped uncover the deep connection
of CFTs to black hole microphysics, a manifestation of
gauge/gravity duality, or more specifically the AdS/CFT
correspondence [3–5]. The entropy of asymptoticallyAdS3
black holes, as well as that of higher-dimensional black
holes with an AdS3 near-horizon geometry, can be calcu-
lated by identifying two copies of the centrally extended
Virasoro algebra in the asymptotic symmetries [6]. The

states of the corresponding quantum theory, if it exists,
must form representations of that algebra, hence the theory
is a two-dimensional CFT. Using the Cardy formula (1) to
count the degeneracy of states at high energy reproduces
the Bekenstein-Hawking area law for the black hole
entropy [7]. Though striking, this derivation does not allow
for a precise identification of the corresponding micro-
scopic degrees of freedom, although this can be achieved
by a detailed string theory treatment in special circum-
stances [8,9].
It is, of course, of interest to extend holography to other

spacetimes that are not asymptotically anti–de Sitter
(AdS). Much effort has been dedicated to the study of
flat (see Refs. [10–19] for example) and de Sitter (see
e.g., Refs. [20–26]) spacetimes, of clear importance for
physical applications. Interesting cases studied recently in
connection with condensed matter applications are Lifshitz
geometries [27,28] and hyperscaling violating geometries
[29]. Unfortunately, in most of these cases, little is known
about the putative dual field theory, so it is of interest to
find non-AdS examples where we have more information
about the structure of the dual.
In this paper we consider two-dimensional quantum

field theories with a chiral scaling symmetry that acts
only on right-movers, x� ! �x�. In contrast to CFTs,
which have a second, independent scaling symmetry
xþ ! ��xþ, we require only translation invariance on the
left. A field theoretic study of these symmetries was per-
formed in Ref. [30], generalizing the results of Ref. [1] and
leading to the following conclusion: a two-dimensional,
translation-invariant theory with a chiral scaling symmetry
must have an extended local algebra. There are two mini-
mal options for this algebra. One is the usual CFT case
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with two copies of the Virasoro algebra. The other possi-
bility is one Virasoro algebra plus a Uð1Þ Kac-Moody
algebra.1 This case, which we call a warped conformal
field theory (WCFT), is the focus of this paper. (The
nonminimal case, which has two Virasoro algebras and a
Kac-Moody algebra, may also be interesting, but the geo-
metric action of the symmetries may differ, so our results
do not apply directly.)

In the first part of this paper, we study WCFTs from a
purely field theoretic viewpoint. The symmetries impose
powerful constraints on the theory, much like in CFT. This
may seem surprising, because the global symmetries of
a WCFT are SLð2; RÞ �Uð1Þ, a subset of those in CFT.
However, the local symmetries include two arbitrary func-
tions worth of freedom in coordinate transformations,

x� ! fðx�Þ; xþ ! xþ � gðx�Þ: (2)

These symmetries are used to derive a new type of
modular transformation on the torus. Applied to the finite-
temperature partition function, the modular transformation
relates thermodynamic quantities at slow rotation to those
at high rotation. This leads to constraints on the spectrum
of a WCFT and the following universal result for the
asymptotic entropy:

SWCFT¼�4�iP0P
vac
0

k

þ4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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�s
: (3)

Here L0 is the charge associated to the SLð2; RÞ zero mode,
P0 is the Uð1Þ charge, c and k are the central extensions of
the Virasoroþ Kac-Moody algebra, and ‘‘vac’’ labels the
vacuum state. This is analogous to the Cardy formula (1) in
an ordinary CFT but is not the same and does not rely on
conformal invariance. While the i in the formula above
might seem puzzling, we will see that in the examples we
will consider that S is manifestly real.

Despite this universal result, little is known about these
theories in detail, and no nontrivial field theory example
is known to have a chiral scaling symmetry.2 For this
reason, in the second part of the paper when we consider
examples, we will focus on holographic constructions of
WCFTs, which do exist. The global symmetries of a
WCFT, SLð2; RÞ �Uð1Þ, are precisely the isometries that
appear in the near-horizon geometry of every extremal

black hole, in any number of dimensions. This hints at a
role for WCFTs in the holographic description of black
holes beyond the realm of AdS.
We will restrict ourselves to the specific example of

black holes in warped AdS3 (WAdS3). This spacetime is
a deformation of AdS3 that changes the asymptotics but
preserves SLð2; RÞ �Uð1Þ isometries, so it is a simple
testing ground for the holographic construction of WCFTs.
Warped AdS is also ubiquitous in extremal black hole
geometries; for example, the near-horizon geometry of the
extremal four-dimensional Kerr black hole at fixed polar
angle isWAdS3. This spacetime is non-Einstein, so one of
the simplest theories in whichWAdS3 appears is topologi-
cally massive gravity (TMG), three-dimensional gravity
with a gravitational Chern-Simons term. Black holes in
this theory have been constructed and their entropy calcu-
lated [31–34]. The result is surprising, as it matches the
Cardy formula, even though the full conformal symmetry
is not apparent [35].
Further investigation into this matter led to the calcula-

tion of the asymptotic symmetry group of this spacetime
[36–40]. The result, in general, may depend on the choice
of boundary conditions, but for the only choice that is
known to be consistent, it was shown that the symmetries
consist not of two copies of the Virasoro algebra, but of
one Virasoro algebra and a Uð1Þ current algebra extending
the exact isometries. This suggests that the dual theory
to WAdS3, if it exists, should exhibit these symmetries,
seemingly at odds with the proposal in Ref. [35] that the
dual is a CFT. In stringy realizations of WAdS3, world-
sheet results corroborate the asymptotic symmetry group
analysis [41,42]. Apparently, if a second Virasoro algebra
exists, then it must be hidden in the standard representation
of the bulk fields [43].
On the field theory side, it was argued that the holo-

graphic duals to these theories can be constructed by flow-
ing to the IR of a dipole-deformed field theory [44,45],
introducing a degree of nonlocality in the picture. However,
it is unknown how to characterize the theory in the IR.
We will take a complementary approach, exploring the

conjecture that the dual field theory is a WCFT. This is not
a microscopic definition of the field theory, but because of
the powerful constraints imposed by WCFT symmetries,
it does allow nontrivial checks. In particular, we show that
(3) the universal entropy formula of WCFT equals the
Bekenstein-Hawking entropy of warped black holes in
TMG and in a stringy realization of WAdS3.
Perhaps this can be used to shed light on the proposed

Kerr/CFT correspondence, in which extremal black holes
are related to a two-dimensional CFT [46] (see Ref. [47]
for a recent review). In that case, the Cardy formula (1)
reproduces the black hole entropy, despite the fact that the
SLð2; RÞ � SLð2; RÞ global symmetry is absent, and modu-
lar invariance has no obvious bulk analogue. Although we
will not address Kerr directly, we compare the WCFT

1While holomorphic (i.e., chiral) CFTs containing a current
exhibit this algebra, the Uð1Þ does not correspond to a spacetime
translation. We’ll have more comments to make about the
connection between these theories below, but they are inequiva-
lent, and the theories considered here do not need to be
holomorphic.

2A trivial example might be constructed by the relevant
deformation of a CFT by a current operator. Notice, however,
that this deformation is topological and, therefore, does not
change the local physics.
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entropy formula to the Cardy formula and show how
they are naturally related by a nonlocal reparametrization
of the WCFT algebra. This partially resolves the puzzle
mentioned above—that in warped AdS, TMG behaves like
a CFT [35], while the readily available symmetries are
those of a WCFT. It also resolves a second puzzle in TMG
that appears for Kerr as well—matching to the Cardy
formula in the microcanonical ensemble requires seem-
ingly arbitrary shifts in the zero mode charges. In the
WCFT picture, these shifts are fixed unambiguously.

It is worth mentioning, in passing, that this type of
approach might prove useful in the analysis of higher
spin theories. Here, the presence of more general con-
served currents forces us to study the problem in a way
in which they are all considered equally. In fact, a WCFT
can be viewed as a sort of geometrization of Uð1Þ current
algebra; in higher spin theory, gauge currents and geometry
are also mixed by gauge transformations and should be
treated on an equal footing. This type of approach may be a
useful way to understand the modular properties of parti-
tion functions in these theories, as studied in Refs. [48,49].

The layout of this paper is the following. In Sec. IIwe
give a precise definition of what we mean by a warped
conformal field theory. We discuss its algebra and unitary
representations. Furthermore, we show how the currents
transform under finite changes of coordinates. In Sec. III
we discuss the partition functions of these theories and
show how they transform nicely under modular transfor-
mations. We use this result to obtain an expression for the
entropy at large values of the charges (i.e., the asymptotic
density of states). In Sec. IV we discuss a slight general-
ization of this result to other ensembles and relate this to
a nonlocal modification of the WCFT symmetry algebra.
It turns out this is the relevant framework to understand
certain examples of WCFTs that appear as holographic
duals of three-dimensional gravitational models and string
theory. In Sec. V we study the specific case of topologically
massive gravity. We review the relevant results from the
literature and show that the Bekenstein-Hawking entropy
of these theories is reproduced by our general expression.
Furthermore, we argue these theories cannot be unitary
(in the range of couplings we consider and with the stan-
dard boundary conditions). In Sec. VI we discuss a better
behaved example coming from string theory. In particular,
we discuss the example recently discussed in Ref. [42]
obtained by T-duality–shift–T-duality (TsT) transforma-
tions of AdS3 � S3 Neveu-Schwartz–Neveu-Schwartz
backgrounds [45]. Section VII provides a discussion of our
results. Finally, Appendix A outlines the derivation of the
Cardy formula in ordinary CFT, while Appendix B sets
conventions by defining charges in TMG.

II. SYMMETRIES

We take as a definition of a WCFT the nontrivial mini-
mal case corresponding to the symmetry structure present

in a two-dimensional Lorentzian theory with SLð2; RÞR �
Uð1ÞL global invariance. The results obtained in Ref. [30]
imply the existence of both a right-moving energy momen-
tum tensor and a right-moving Uð1Þ Kac-Moody current.
The zero modes generate the global SLð2; RÞR and Uð1ÞL.
It might seem peculiar that a right-moving current can
generate a left global symmetry, but this is precisely the
outcome of the calculations in Ref. [30] and has also been
understood from the gravity and string theory perspective
in Refs. [38,42].

A. The algebra

If we consider the theory on the plane, the commutators
of these operators are given by [30]:

i½T�; T� � ¼ T�0��� 0� þ c

48�

Z
dx�ð�00� 0 � � 00�0Þ

i½P�; Pc � ¼ k

8�

Z
dx�ð�0c � c 0�Þ

i½T�; P�� ¼ P��0�;

(4)

where we have defined

T� ¼ � 1

2�

Z
dx��ðx�ÞTðx�Þ

P� ¼ � 1

2�

Z
dx��ðx�ÞPðx�Þ;

(5)

and Tðx�Þ and Pðx�Þ are the usual local operators in the
plane. We associate right-moving with x� and left-moving
with xþ. We furthermore demand that the ground state of
the theory is invariant under the action of the global
symmetries.
We will be mostly interested in putting this theory on

the cylinder. We can describe the cylinder by a complex
change of coordinates from the plane. At this point, the
cylinder theory is Lorentzian with real coordinates, and we
don’t claim that any analytic continuation relates the plane
to the cylinder. We will describe the correct relation further
on. Let us then consider the change of coordinates

x� ¼ ei�: (6)

Using the new coordinate � and picking test functions
�n ¼ ðx�Þn ¼ ein�, we can compute

½Ln; Lm� ¼ ðn�mÞLnþm þ c

12
nðn� 1Þðnþ 1Þ�nþm

½Pn; Pm� ¼ k

2
n�nþm ½Ln; Pm� ¼ �mPmþn

(7)

with Ln ¼ iT�nþ1
and Pn ¼ P�n

.

In what follows, we will perform changes of coordinates
to obtain the vacuum energy and charge of a theory and
also to manipulate the partition function by modular

WARPED CONFORMAL FIELD THEORY PHYSICAL REVIEW D 86, 124018 (2012)

124018-3



transformations. With this in mind, we need to track the
way the anomalies show up in the transformations of T and
P. What’s more, we need to be able to do this for finite
transformations. The procedure is analogous to the one that
yields the Schwarzian derivative in standard CFTs.

The commutation relations imply the following infini-
tesimal transformations of the energy momentum tensor
and current:

��Tðx�Þ ¼ ��ðx�Þ@�Tðx�Þ � 2@��ðx�ÞTðx�Þ � c

12
@3��

�	Tðx�Þ ¼ �@�	ðx�ÞPðx�Þ
��Pðx�Þ ¼ ��ðx�Þ@�Pðx�Þ � @��ðx�ÞPðx�Þ
�	Pðx�Þ ¼ k

2
@�	ðx�Þ;

(8)

where we have defined

��þ	 ¼ �� þ �	 ¼ �i½T�; �� � i½P	; ��: (9)

B. Finite transformations

Notice that while Tðx�Þ generates infinitesimal general
coordinate transformations in x�, Pðx�Þ generates gauge
transformation in the gauge bundle parametrized by xþ.
We can think of both these transformations as coordinate
transformations of the form

x� ¼ fðw�Þ xþ ¼ wþ þ gðw�Þ (10)

for arbitrary functions f, g. These reduce to �w� ¼
��ðw�Þ and �wþ ¼ �	ð!�Þ when the transformation is
infinitesimal. By requiring that the finite transformation
laws reduce to these infinitesimal versions and that they
also compose appropriately, we can uniquely fix

P0ðw�Þ ¼ @x�

@w�

�
Pðx�Þ þ k

2

@wþ

@x�

�
(11)

and

T0ðw�Þ ¼
�
@x�

@w�

�
2

2
4Tðx�Þ � c

12

8<
:

@3w�
@x�3

@w�
@x�

� 3

2

 
@2w�
@x�2

@w�
@x�

!
2
9=
;
3
5

þ @x�

@w�
@xþ

@w� Pðx�Þ � k

4

�
@xþ

@w�

�
2
: (12)

Notice that Pðx�Þ transforms as a þ� tensor as one might
have imagined. Let us stress the curious appearance of the
current anomaly k in the finite transformation law for
Tðx�Þ. While this term vanishes to linear order and, thus,
does not appear in the algebra (7) and (8), it is unavoidable
once Pðx�Þ mixes with Tðx�Þ.

Let us now be more specific and specialize this result
to a case of interest to us, the mapping from x� to �

coordinates. Furthermore, we can add an arbitrary tilt 
.
The change of coordinates is

x� ¼ ei� xþ ¼ tþ 2
�: (13)

We will return to the fact that this is complex below, but
note that in an ordinary CFT, the analogous mapping from
the Lorentzian plane to the Lorentzian cylinder is also a
complex coordinate transformation. Using the expressions
above we get

P
ð�Þ ¼ ix�Pðx�Þ � k
 (14)

and

T
ð�Þ ¼ �x�2Tðx�Þ þ c

24
þ i2
x�Pðx�Þ � k
2: (15)

We can define modes on the cylinder as

P

n ¼ � 1

2�

Z
d�P
ð�Þein�;

L

n ¼ � 1

2�

Z
d�T
ð�Þein�:

(16)

In terms of the original modes, this is

P

n ¼ Pn þ k
�n;

L

n ¼ Ln þ 2
Pn þ

�
k
2 � c

24

�
�n:

(17)

We can clearly appreciate that (17) is nothing other than
the usual shift proportional to the central charge when
doing an exponential mapping combined with a spectral
flow transformation given by the tilt parameter 
.
A related transformation that will be relevant at finite

temperature is

x� ¼ � 1

2�TR

e�2�TR�; xþ ¼ tþ 2
�: (18)

In this case,

P0ð�Þ ¼ �2�TRx
�Pðx�Þ � k


T0ð�Þ ¼ ð2�TRx
�Þ2Tðx�Þ � 4�TR
x

�Pðx�Þ
� k
2 � c

6
�2T2

R: (19)

Finally, further on it will be useful to understand the
relation between two sets of coordinates on the cylinder in
which we change the size and tilt parameter. This is

� ¼ �0

�
t ¼ t0 þ 2

	

�
�0: (20)

Using once again the expression for the finite transforma-
tions (12) and (11), we obtain
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P0ð�0Þ ¼ 1

�
½Pð�Þ � k	�

T0ð�0Þ ¼
�
1

�

�
2½Tð�Þ þ 2	Pð�Þ � k	2�:

(21)

In particular, this implies the following relation for
the generator of translations with respect to the above
coordinates:

Q½@t0 � ¼ Q½@t� þ k	;

Q½@�0 � ¼ 1

�
ðQ½@�� þ 2	Q½@t� þ k	2Þ:

(22)

It is very interesting to interpret the meaning of (22). The
above formula is just capturing the anomalous terms in
the change of coordinates (20). Looking at the generators
of symmetries we see that the change of coordinates acts
like an ordinary transformation of partial derivatives, plus
anomalous terms that need to be calculated as above.
This will be of importance when discussing the properties
of partition functions of these theories under modular
transformations.

C. Unitary representations

Now let us study the unitary representations of the
WCFT algebra. If we want to demand that T
ð�Þ and
P
ð�Þ should be Hermitian, we must require

L�n ¼ Ly
n P�n ¼ Py

n : (23)

We will follow the above convention. Alternatively, one
could fix the sign of k and derive the necessary Hermiticity
conditions compatible with unitarity.

Define primary states as

Pnjp;hi¼0 n>0 Lnjp;hi¼0 n>0 (24)

and

P0jp; hi ¼ pjp; hi L0jp; hi ¼ hjp; hi: (25)

Positivity of the states L�njp; hi, P�njp; hi, and P0jp; hi
requires

c > 0; k > 0; h � 0; p 2 R: (26)

These are not the only constraints coming from unitarity.
One can define another energy momentum tensor T0ðx�Þ
where one subtracts the contribution coming from the
Sugawara construction of the Uð1Þ current. In terms of
modes, define

L0
n ¼ Ln � 1

k

X
m

: PnþmP�m :; (27)

where :: indicates normal ordering. It is easily checked that
the L0

ns are Hermitian if the Lns and Pns are. Furthermore,
they commute with Pns and obey the Virasoro algebra

½L0
n; L

0
m� ¼ ðn�mÞL0

nþm þ c� 1

12
nðn� 1Þðnþ 1Þ�nþm:

(28)

If we now calculate the norm of L0�njp; hi, we find the
requirements

h � p2

k
; c � 1: (29)

In summary, we have: k > 0, p 2 R, c � 1 and h � p2

k

in order for representations to be unitary with the conven-
tions (23). Note that, except in this subsection, we do not
assume unitarity, and in fact the explicit applications will
be to nonunitary theories.

D. States and vacuum energies

It may happen that on the cylinder, P0 � 0 in the vac-
uum state. By computing the norms of Ln and Pn descend-
ants, now using the cylinder algebra, we can conclude that
in a unitary theory,

L0 � P2
0

k
� c

24
: (30)

Therefore, it might seem natural to guess that the charges
of the vacuum state saturate this bound and can be parame-
trized as

P
;vac
0 ¼ k
 L
;vac

0 ¼ k
2 � c

24
: (31)

We will now make a more precise statement, and in the
process argue that (31) is true even in nonunitary theories
as long as the vacuum state is associated to the unit
operator.
So far we have been a bit vague about the connection

between the theory on the cylinder and the plane and how
to interpret the complex change of coordinates (13). We
want to define states of a WCFT on the cylinder parame-
trized by the coordinates � and t. We will do this by
analytically continuing � at t ¼ 0. This means that in
(13), we can replace the coordinate x� by z in this new
complex plane, capping off the Lorentzian cylinder with a
Euclidean disk, and insert an operator at the origin. The
vacuum charge of the current P can be interpreted as the
fact that the holomorphic theory on the z plane has a
nontrivial magnetic flux through the origin. This implies
directly that we are forced to consider spectral flowed
representations, as generated by the tilt in (13), fixing the
value of
 above. The upshot is that states in our WCFTare
created by the insertion of spectral flowed operators in
a holomorphic (i.e., chiral) CFT containing a current P.
The chiral CFT must be very special to ensure locality in
the Uð1Þ direction.
An important point is that a general spectral flow

transformation does not leave the spectrum invariant. In
particular, if we start with a theory with a neutral vacuum

WARPED CONFORMAL FIELD THEORY PHYSICAL REVIEW D 86, 124018 (2012)

124018-5



state in the plane, we expect it to pick up background
charges. This is nothing other than the effect of a magnetic
flux inside the cylinder. Furthermore, because Pðx�Þ is the
current associated with xþ translations, we expect the
spectrum of P0 to be continuous and bounded below. In
this case, the spectral flow always maps the vacuum into
the vacuum and does not recover the original spectrum for
any 
. This is clearly different from the usual case of a
compact Uð1Þ.

Having said this, we are in a position to calculate the
charges of the vacuum state on the cylinder using (17).
If we assume that the identity operator L0 ¼ P0 ¼ 0 in our
Euclidean chiral CFT is associated to the vacuum state, we
obtain (31) as we predicted. The spectral flow parameter 

is a property of the theory on the cylinder.

III. ENTROPY

Consider a WCFTwith coordinates ðt; �Þ chosen so that
the symmetries are

� ! fð�Þ; t ! t� gð�Þ: (32)

Let us put this theory on a circle of unit radius

���þ 2�; (33)

at finite temperature and angular potential. It can be shown,
using the same symmetries that will prove useful in this
section, that an arbitrary choice of slicing on which we
define states can be taken into a circle aligned with the
action of L0 in this way.3

The partition function at inverse temperature � and
angular potential � is

Zð�; �Þ ¼ Tre��P0þi�L0 ; (34)

where the energy and angular momentum are charges
generating the translations

P0 ¼ Q½@t�; L0 ¼ Q½@��: (35)

Thermal correlators are periodic under the complex shift

ðt; �Þ � ðtþ i�;�þ �Þ: (36)

We are in Lorentzian signature, so this identification
should be interpreted as shorthand for the statement that
real-time correlators have the specified periodicity as ana-
lytic functions of the coordinates. The arguments in this
section can also be made in Euclidean signature, with the
same results.

A. Asymptotic density of states

Using the Virasoro and Kac-Moody symmetries, we can
derive a universal formula for the asymptotic density of
states of a WCFT, analogous to the Cardy formula in
ordinary CFT. Motivated by the usual derivation of the
Cardy formula (reviewed in this language in Appendix A),
we seek a transformation of the form (32) that exchanges
the thermal cycle with the angular cycle. This will play the
role of a modular transformation. Take the ansatz

�0 ¼ ��; t0 ¼ t� 2	�: (37)

The new periodicities are

thermal: ðt0; �0Þ � ðt0 þ i�� 2	�;�0 þ ��Þ;
angular: ðt0; �0Þ � ðt0 � 4�	;�0 þ 2��Þ: (38)

Now, choosing

	 ¼ i�

2�
; � ¼ 2�

�
; (39)

we find the new identifications

ðt0;�0Þ�ðt0;�0 þ2�Þ�ðt0 þ i�0;�0 þ�0Þ; (40)

where

�0 ¼ � 4�2

�
; �0 ¼ 2��

�
: (41)

Therefore, the partition function is invariant—up to an
anomaly—under the ‘‘warped modular transformation’’
(41). The anomaly arises because (37) is not among the
global symmetries SLð2Þ �Uð1Þ. It can be computed by
applying (21),

Tð�Þ ¼ 4�2

�2
T0ð�0Þ � 2�i�

�2
P0ð�0Þ þ k�2

4�2
: (42)

The operator i
R
�
0 d�Tð�Þ, defined by integrating over the

thermal cycle of the original torus, becomes the evolution
operator on the new torus. Thus the modular transforma-
tion, including the anomaly, is

Zð�; �Þ ¼ Tr exp

�
� 2��

�
P0 � 4�2

�
iL0 þ ik

�2

4�

�

¼ eik
�2

4�Z

�
2��

�
;� 4�2

�

�
: (43)

We have dropped the primes as the spectrum of the primed
operators coincides with the original spectrum. We can
now derive the density of states at small imaginary �,
because in this slowly rotating regime the warped modular
transformation projects the trace onto the state of minimal
L0 (for real � and P0, the first term is just a phase),

Zð�; �Þ � exp

�
� 2��

�
Pvac
0 � 4�2

�
iLvac

0 þ ik
�2

4�

�
; (44)

3There is one degenerate case that constitutes the only ex-
ception to this statement. If we try to define states at the � ¼ 0
surface, this amounts to a form of discrete light-cone quantiza-
tion, as the t coordinate is always lightlike. In this case one can
show by the same arguments of this section that the entropy is
independent of the L0 charge. Curiously, this case might be
connected with the understanding of Kerr/CFT [46].

DETOURNAY, HARTMAN, AND HOFMAN PHYSICAL REVIEW D 86, 124018 (2012)

124018-6



where ‘‘vac’’ means the state with minimal L0 (and we
have assumed this state has no macroscopic degeneracy).
Obviously this makes sense only if L0 is bounded below,
although we will consider another possibility in the follow-
ing section.4

Using the thermodynamic formula S¼ð1��@��
�@�ÞlogZ, the entropy is

S ¼ 2�i

�
Pvac
0 � 8�2

��
Lvac
0 ; (45)

where the angular potential is related to the angular veloc-
ity � by

� ¼ i��: (46)

In the microcanonical ensemble,

S ¼ � 4�iP0P
vac
0

k
þ 4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�
Lvac
0 � ðPvac

0 Þ2
k

��
L0 � P2

0

k

�s
:

(47)

To go any further, we would need to determine Lvac
0 , Pvac

0 ,

which may depend on the particular theory. We have
argued in (31) that under reasonable assumptions, the
vacuum state of a WCFT can be usefully parametrized
by spectral flowing from the trivial vacuum. Plugging in

Pvac
0 ¼ q; Lvac

0 ¼ q2

k
� c

24
; (48)

the entropy becomes

S ¼ �4�i
qP0

k
þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

6

�
L0 � P2

0

k

�s
: (49)

This Cardy-like formula is one of our main results. Below,
we will compare to WCFTs defined holographically and
use this formula to reproduce the black hole entropy. The
entropy formula is valid in the slowly rotating regime

c � ��;
�gap

��
� 1; (50)

where �gap is the dimension of L0 where the theory starts

to have a large number of operators. One might expect
�gap � 1=c in a typical theory, which gives the sufficient

condition 1
�� � c * 1, but more generally, the precise

domain of validity depends on the spectrum of L0.
In the derivation of (49), we assumed that L0 is bounded

below, but we did not assume Hermiticity of P0 or that the
theory is unitary. If P0 is Hermitian, then q must vanish so
the first term does not appear. If the theory is not unitary,

then strictly speaking this is not an entropy since the
partition function has negative contributions, but S still
measures the asymptotic behavior of Z.

B. SLð2; ZÞ
The warped modular transformation together with other

symmetries of the warped CFT actually generate SLð2; ZÞ.
To see this, define

 ¼ �

2�
(51)

and note that we have the transformations

S:  ! � 1


T:  ! þ 1; (52)

where S is the warped modular transformation and T
comes from adding the angular circle to the thermal circle.
Together these generate SLð2; ZÞ. Under S, the partition
function transforms as

Z

�
� 1


;
�



�
¼ e�ik �2

8�Zð; �Þ: (53)

This is the transformation rule for a weak Jacobi form,
familiar in the context of superconformal field theory from
the transformation of the elliptic genus, see, e.g., Ref. [50].

IV. OTHER ENSEMBLES AND
NONLOCAL ALGEBRAS

In this section, we consider a modified algebra where the
central term in the Uð1Þ algebra is charge dependent,
½ ~Ln; ~Lm� ¼ ðn�mÞ ~Lnþm þ c

12
ðn3 � nÞ�nþm

½ ~Ln; ~Pm� ¼ �m ~Pmþn þm ~P0�nþm

½ ~Pn; ~Pm� ¼ 2n ~P0�mþn:

(54)

The motivation will become apparent when we reach the
holographic examples in Secs. V and VI. This form of the
algebra also makes it easier to connect our Cardy-like
formula (49) to the actual Cardy formula in an ordinary
CFT. It is related to the original algebra (7) by redefining
charges as

~Pn ¼ 2

k
P0Pn � 1

k
P2
0�n;

~Ln ¼ Ln � 2

k
P0Pn þ 1

k
P2
0�n:

(55)

For states with vanishing Pn�0, this amounts to a nonlocal
reparametrization of the theory where the time coordinate
is rescaled by the total energy,

xþ ¼ kt

2P0

þ�; x� ¼ �: (56)

Indeed, (54) cannot be written as the variations of local
currents. Notice that the above algebra looks like spectral

4Note that if L0 and P0 have real spectra, then for imaginary �,
the original expression for the partition function (34) is mani-
festly real. Comparing to (43), this implies that P0 eigenstates
come in positive and negative pairs. On the other hand, if P0
does not come in pairs, then it must have a complex spectrum.
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flow by an amount proportional to P0 as far at the ~Ln’s go,
but it involves a rescaling of the current as was pointed
out above. This construction is very reminiscent of the
Sugawara construction of a Virasoro algebra from qua-
dratic combinations of Kac-Moody generators. Indeed, if
one looks at (54) for the cases where the anomalous terms
contribute (i.e., nþm ¼ 0), the above algebra coincides
with two copies of commuting Virasoros. On the other
hand, for nþm � 0 it agrees with the Virasoro-Kac-
Moody algebra. The reason we chose this algebra is
because it appears naturally from gravity where the
Killing vectors of the metric yield the classical Uð1Þ con-
tribution to the commutators, while the quantum anomalies
of the associated charges make it look like a Virasoro.
Notice that if we had picked the Sugawara representation,
classical-looking terms in the commutators appear as a
consequence of the anomalous Uð1Þ current contribution
and can’t be associated with the algebra of Killing vectors.

Let us now analyze this case along the lines of
Secs. II and III. Consider the infinitesimal tilt,

�xþ ¼ ��	

2
x�: (57)

The zero modes transform as

� ~L0 ¼ 0; � ~P0 ¼ ~P0�	: (58)

Note that the anomaly in ½ ~Ln; ~Pm� has completely can-
celed the classical term, leaving ~L0 invariant under Uð1Þ
transformations. If we also include the rescaling�0 ¼ ��,
the generators of translations transform as

~Q½@þ0� ¼ e	 ~Q½@þ�; ~Q½@�0� ¼
~Q½@��
�

: (59)

This is analogous to Eq. (22), modified to include a charge-
dependent level. It differs in an important way: under a
shift in xþ, the charge ~P0 is rescaled. Unlike (22), this does
not take the form of a simple tensor transformation plus
anomalous shifts. This means that we must be careful in
how we interpret coordinate transformations in this theory,
as the anomaly plays a crucial role. In fact, the (active)
finite transformation of ~P0 mimics the (passive) coordinate
transformation t ! e	t. We will see that this second scal-
ing leads to CFT-like behavior of the partition function.

Now consider the theory at finite temperature in the
ensemble

Zð�L;�RÞ ¼ Tr e��L
~P0��R

~L0 ; (60)

on the circle

ðxþ; x�Þ � ðxþ þ 2�; x� þ 2�Þ: (61)

Notice that the identification on the circle is implemented

by the operator e2�ið ~P0þ ~L0Þ, which in terms of the original
charges (7) and (8) is nothing other than e2�iL0 . We are
considering the same circle. The ensemble is different,
however, as in terms of the original charges

Z ¼ Tr exp

�
��L

�
P2
0

k

�
� �R

�
L0 � P2

0

k

��
: (62)

We would like to repeat the steps of Sec. III leading
to the entropy formula, taking care of the anomaly. The
answer should be the same, because the microcanonical
entropy does not depend on a choice of ensemble, but this
derivation will be valid where the previous one was not,
including when L0 is not bounded below. The strategy,
phrased in operator language, is to find a symmetry trans-
formation that turns the initial evolution operator in (60)
into an angular generator of length 2�. Then, the old
angular generator is used as the new evolution operator.
The first step is achieved by choosing

� ¼ � 2�i

�R

; e�	 ¼ � 2�i

�L

: (63)

Now the generator that enforces the angular identification,
integrated over the (original) thermal circle becomes the
evolution operator

e
�4�2

�L
~P0�4�2

�R
~L0 : (64)

Therefore, the partition function can be rewritten on the
transformed torus as

Zð�L;�RÞ ¼ Z

�
4�2

�L

;
4�2

�R

�
: (65)

This result is exactly as one would have obtained in the
usual CFT case! Notice, however, that all currents are
right-moving in this theory, and the classical algebra con-
tains a Kac-Moody part instead of a left-moving Virasoro.
To finalize the argument, and as before, we can take the

small�R;L limit and project the right-hand side of (65) onto

the vacuum state,

Zð�L;�RÞ � exp

�
� 4�2

�L

~Pvac
0 � 4�2

�R

~Lvac
0

�
: (66)

From this expression the entropy can be calculated and the
Cardy result can be obtained,

S ¼ �8�2

� ~Pvac
0

�L

þ ~Lvac
0

�R

�
: (67)

In terms of charges this is

S ¼ 4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ~Pvac

0
~P0

q
þ 4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ~Lvac

0
~L0

q
: (68)

This agrees with (47). This is to be expected, as the
degeneracy of states in the Hilbert space is independent
of the particular ensemble we are considering. Notice,
however, that to project onto the vacuum, we only need to
have ~L0 and ~P0 bounded below. Therefore, this derivation
applies to cases where the L0 operator considered in the
previous section is unbounded. We will see this is the case
in the gravitational theory.
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Finally, let us conclude this section with the following
remark. It is inevitable to notice the similarity of (68) and
the usual Cardy formula. In order to make this concrete, we
define the following quantities:

cR ¼ �24 ~Lvac
0 ; cL ¼ �24 ~Pvac

0 ; (69)

so we recover the familiar form

S ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffi
cL
6

~P0

r
þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffi
cR
6

~L0

r
: (70)

In terms of the vacuum values of the charges L0 and P0

displayed in (31), we obtain

cR ¼ c; cL ¼ �24
q2

k
: (71)

Notice that while cR is connected with the actual central
charge of the algebra, cL is just the amount of spectral
flow.5 In the next section, we’ll find that cL and cR are
precisely the parameters one naturally finds in gravitational
theories with warped black hole solutions.

V. A HOLOGRAPHIC EXAMPLE:
TOPOLOGICALLY MASSIVE GRAVITY

The action of TMG in three dimensions is [51,52]

STMG¼ 1

16�

Z
d3x

ffiffiffiffiffiffiffi�g
p ðRþ2Þ� 1

96��

�
Z
d3x

ffiffiffiffiffiffiffi�g
p

�����r
��

�
@��

�
r�þ2

3
��
��

r
�r

�
: (72)

Any solution of Einstein gravity is also a solution of TMG,
but the gravitational Chern-Simons term allows for inter-
esting new classes of solutions. These include warped AdS
(WAdS) and associated ‘‘warped black holes.’’ Warping is
a deformation that changes the asymptotics and reduces the
isometry group to SLð2; RÞ �Uð1Þ, so these backgrounds
do not fall under the usual AdS/CFT correspondence. The
boundary conditions can be chosen so that the symmetries
enhance to Virasoro plus a Uð1Þ Kac-Moody algebra, gen-
erating diffeomorphisms near the boundary in the sense of
Brown and Henneaux, suggesting that the holographic dual
is a warped CFT.

Warped CFTs with a microscopic field theory definition
are not known except in some limiting cases, so potential
holographic examples are a good testing ground for the
technology developed above. In this section we will show
that warped CFT reproduces the thermodynamics of the
warped black holes. Under the assumption that the dual

theory exists and has a spectrum that satisfies a property
analogous to the gap condition in AdS/CFT, the density
of states in the quantum field theory accounts for the
Bekenstein-Hawking entropy of the warped black holes.

A. Warped AdS

We take � > 0 and generally follow the notation and
terminology of Ref. [35].6 The following solutions of TMG
with SLð2; RÞ �Uð1Þ local isometries are of interest to us:

1. Global spacelike WAdS

The metric is

ds2 ¼ 1

�2 þ 3

�
�cosh2�d2 þ d�2

þ 4�2

�2 þ 3
ðduþ sinh�dÞ2

�
; (73)

with the coordinates unrestricted. When � ¼ 1, the isome-
tries enhance to SLð2; RÞ � SLð2; RÞ, and this becomes
AdS3 written as a Hopf fibration over AdS2. Generally, the
fiber is warped; for � < 1 it is squashed, and for � > 1 it is
stretched. All four isometries are globally preserved and
the spacetime is geodesically complete [53].

2. Timelike WAdS

This can be written in similar global coordinates by
taking u ! i,  ! iu, or as

ds2 ¼ �dt2 þ dr2

rðð�2 þ 3Þrþ 4Þ � 2�rdtd�

þ r

4
ð3ð1� �2Þrþ 4Þd�2; (74)

with ���þ 2�. These coordinates cover the global
spacetime. For � > 1, there are closed timelike curves at
large r.

3. Poincaré spacelike WAdS

The metric is

ds2 ¼ dt2 þ dr2

r2ð�2 þ 3Þ � 2�rdtd�þ 3

4
ð�2 � 1Þr2d�2

(75)

with � unidentified. This covers a patch of the global
spacetime (73).

4. Spacelike stretched black holes

Finally, for � > 1 there are the warped black holes.
These are locally spacelike stretched WAdS (73) but differ
globally by an identification that breaks the isometries to

5It is true, however, that once a current algebra is found, one
can build a twisted energy momentum tensor through the
Sugawara construction. In this case the twisting can shift the
vacuum value of the zero mode while changing the central
charge of the algebra. It is then a matter of choice whether cL
appears or not in the algebra of generators. The entropy formula
(70) is, of course, invariant under this twisting.

6The sign convention for the Chern-Simons action in (72) has
been flipped compared to [35]. Our choice leads to L0 ¼þQ½@�� below, allowing for a simpler comparison to the WCFT.
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Uð1Þ �Uð1Þ. Thus, these are the warped analogues of the
Banados-Teitelboim-Zanelli (BTZ) black holes in AdS3.
The metric in Schwarzschild coordinates is

ds2 ¼ dt2 þ dr2

ð�2 þ 3Þðr� rþÞðr� r�Þ
�
�
2�r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr�ð�2 þ 3Þ

q �
dtd�þ r

4

�
3ð�2 � 1Þr

þ ð�2 þ 3Þðrþ þ r�Þ � 4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr�ð�2 þ 3Þ

q �
d�2;

(76)

where���þ 2�. When rþ ¼ r� ¼ 0, the charges van-
ish and this becomes an identification of Poincaré WAdS.

B. Asymptotic symmetries and thermodynamics

It is possible to impose boundary conditions in WAdS
that allow for a right-moving Virasoro algebra or a left-
moving Virasoro algebra in the asymptotic symmetries,
but no consistent boundary conditions have been found
that allow two Virasoro algebras simultaneously. We will
impose the boundary conditions of Ref. [36], which extend
SLð2; RÞ �Uð1Þ to a Virasoro-Kac-Moody Uð1Þ algebra.
Let us emphasize that this is a choice that defines the theory
under consideration, and there may be other consistent
choices with different interpretations.

The generators of asymptotic diffeomorphisms allowed
by the boundary conditions are [36]

�n ¼ ein�@� � inrein�@r �n ¼ ein�@t: (77)

These satisfy the Lie bracket algebra

i½�n; �m�Lie ¼ ðn�mÞ�nþm;

i½�n; �m�Lie ¼ �m�nþm:
(78)

The corresponding charges (see Appendix B),

Ln ¼ Q½�n�; Pn ¼ Q½�n�; (79)

satisfy the Virasoro-Kac-Moody Uð1Þ algebra (7) under
Dirac brackets, with central extensions

c ¼ 5�2 þ 3

�ð�2 þ 3Þ ; k ¼ ��2 þ 3

6�
: (80)

By rescaling t one can also rescale the level k, but charges
are rescaled accordingly so that expressions of the form
PP=k are unchanged.

The charges and thermodynamics of the black hole
take a simple form expressed in terms of c, k, and the
parameters

TL¼�2þ3

8�

�
rþþr��1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr�ð�2þ3Þ

q �
(81)

TR ¼ �2 þ 3

8�
ðrþ � r�Þ: (82)

For now, these are just useful parametrizations of the black
hole and have no obvious interpretation as temperatures.
The black hole massM and angular momentumL, includ-
ing contributions from the Chern-Simons term, are

M :¼Q½@t� ¼ �

3
TL

L :¼�Q½@�� ¼ � 1

k
M2 � �2

6
cT2

R:

(83)

The inverse Hawking temperature and angular potential are

� ¼ � 2�

3k
ð1þ TL=TRÞ �� ¼ 1=TR: (84)

The black hole entropy (which also includes a Chern-
Simons contribution) is

Sbh ¼ �

3�
þ �2

3��

�
cþ 2

3k

�
: (85)

In the microcanonical ensemble,

Sbh ¼ � 2�

3k
Mþ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

6

�
�L�M2

k

�s
: (86)

In the rest of this section, the goal is to reproduce this
formula from warped CFT.

C. The ensemble

To compare the black hole thermodynamics to a warped
CFT, we must decide what ensemble to use. In other words,
what is the black hole dual to? The answer should be a
thermal state, but different types of thermal states were
considered in Secs. III and IV. Charge-dependent coordi-
nate changes suggest different ensembles, since nonlinear
redefinitions of the charges lead to inequivalent partition
functions.
In the bulk, the thermal properties of the black hole are

summarized by the complex coordinate identifications

ðt; �Þ � ðtþ i�;�þ i��Þ: (87)

The zero modes of the algebra are

P0 ¼ M; L0 ¼ �L; (88)

so this suggests the thermal ensemble studied in Sec. III,
tre��P0þi�L0 . However this is problematic since L0 is
not bounded below, and we will argue for a different
interpretation.
To derive the ensemble, we can use the fact that different

black holes are related to each other by a coordinate trans-
formation. To clarify the logic, we first review the analo-
gous argument for BTZ black holes in the AdS3=CFT2

correspondence, made in Ref. [54]: The coordinate trans-
formation from Poincaré AdS3 to the BTZ black hole is

w	 � e2�T	ð�	tÞ near the boundary. The thermal identifi-
cation on t, � is trivial in the w	 plane, so the black hole
corresponds to the Minkowski vacuum in w	 coordinates.
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The exponential coordinate transformation covers the
Rindler wedge, producing a thermal state in t, � coordi-
nates; therefore, the black hole is dual to a thermal

ensemble tre��M���L.
Now we return to the warped black holes and repeat

the same steps. Starting with coordinates ðt; r; �Þ on the
warped black hole (76), let

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� rþÞðr� r�Þ

q
e2�TR�

�0 ¼ 2

3þ�2

rþþ r��2r

ðrþ� r�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr� rþÞðr� r�Þ

p e�2�TR�

t0 ¼ tþ2

k
M�þ �

3þ�2
log

�
r� rþ
r� r�

�
:

(89)

The metric in the primed coordinates is Poincaré WAdS
(75), i.e., the L0 ¼ P0 ¼ 0 black hole. Near the boundary,
this coordinate transformation that creates a black hole is

�0 ¼ � 1

2�TR

e�2�TR� þOð1=r2Þ

t0 ¼ tþ 2

k
M�þOð1=rÞ:

(90)

The energy and angular momentum measured in �, t
coordinates come from anomalous transformations of L0

and P0. Applying (19) with 
 ¼ M=k, the anomalies
produce

L0 ¼ c

6
�2T2

R þ k
2 ¼ �L (91)

P0 ¼ k
 ¼ M (92)

in agreement with (83).
In the t0, �0 plane, the thermal identification (87) acts as

ðt0; �0Þ � ðt0 þ i�0; �
0Þ; (93)

where

�0 ¼ � 2�

3k
: (94)

From this we conclude that the black hole ensemble is
defined by starting in the plane at temperature �0 and
performing the coordinate change (90). To understand the
resulting state, define

�00 ¼ � 1

2�TR

e�2�TR�;

t00 ¼ 1

2�TL

exp

�
2�TL

�
k

2M
tþ�

��
:

(95)

The black hole corresponds to the Minkowski vacuum in
the �00, t00 plane. The exponential coordinate changes are
just the usual map to Rindler space, so this produces a
thermal state, but the appearance of M in the transforma-
tion means that t is an inconvenient coordinate to define the
ensemble. In terms of the more natural coordinates

tR ¼ �; tL ¼ k

2M
tþ�; (96)

the exponential map turns on temperatures TL;R conjugate

to the charges Q½@L;R�. The infinitesimal charges obey

�Q½@L� ¼ 2M
k

�M; �Q½@R� ¼ ��L� 2M
k

�M:

(97)

Integrating,

Q½@L� ¼ P2
0

k
; Q½@R� ¼ L0 � P2

0

k
: (98)

Therefore, the black hole is dual to the thermal ensemble

Zbh ¼ Tr exp

�
��R

�
L0 � P2

0

k

�
� �L

P2
0

k

�
: (99)

This is the quadratic ensemble studied in field theory terms
in Sec. IV, with

�L;R ¼ T�1
L;R: (100)

D. BTZ-like coordinates

The coordinates tL;R that appeared naturally in the deri-

vation of the ensemble are actually coordinates on a
deformed BTZ black hole. Define new coordinates
ðtb; �b; rbÞ by

�b� tb
‘b

¼ tR¼�

�bþ tb
‘b

¼ tL¼ k

2M
tþ�

r2b¼3M
�
2r�1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþr�ð�2þ3Þ

q �
þ4‘bJBTZ;

(101)

where JBTZ is defined below and

‘2b ¼
4

3þ �2
: (102)

The resulting metric can be written in the form

ds2 ¼ ds2BTZ þ
1

48
ð�2 � 1Þ����dx

�
b dx

�
b: (103)

The first term here is the BTZ black hole in AdS3 of
radius ‘b,

ds2BTZ ¼
�
8MBTZ � r2b

‘2b

�
dt2b þ

dr2b

�8MBTZ þ r2
b

‘2
b

þ 16J2BTZ
r2
b

� 8JBTZdtbd�b þ r2bd�
2
b; (104)

where the BTZ mass and angular momentum are related to
the warped black hole parameters by

WARPED CONFORMAL FIELD THEORY PHYSICAL REVIEW D 86, 124018 (2012)

124018-11



M ¼ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðMBTZ � JBTZ=‘bÞ

q

L ¼ �MBTZ

3�
� 1þ 3�2

�ð�2 þ 3Þ
JBTZ
‘b

:

(105)

The second term in (103) is a deformation by the Killing
vector

� ¼ 1

M
ð‘b@tb þ @�b

Þ; (106)

with the index on �� lowered using the undeformed BTZ
metric. These coordinates have the advantage that the
ensemble is defined with potentials conjugate to @tb and

@�b
. However, they have the disadvantage that the leading

asymptotics of the metric are M dependent, for instance
for JBTZ ¼ 0,

4

3ð�2 � 1Þ ðds
2 � ds2BTZÞ

¼ ðr2b � 8‘2bMBTZÞ2
8‘2bMBTZ

dt2b þ 2‘b

�
r2b �

r4b
8‘2bMBTZ

�
dtbd�b

þ r4b
8MBTZ

d�2
b: (107)

This complicates the task of defining charges and comput-
ing asymptotic symmetries as compared to Schwarzschild
coordinates, but the result is simply given by the map (55).

E. Entropy from warped CFT

Finally, we are ready to compare the entropy of warped
CFT to the black hole entropy (86). The warped CFT
entropy formula (47) requires the charges of the ‘‘ground
state,’’ so we must identify the appropriate state in TMG.
The choice of the quadratic ensemble does not affect the
microcanonical formula for the entropy, but it means that
the ground state is defined by minimizing the shifted

charge L0 � P2
0

k .

As described in Sec. II, we expect the ground state to
have global isometries SLð2; RÞ �Uð1Þ and charges

Pvac
0 ¼ q; Lvac

0 ¼ � c

24
þ q2

k
; (108)

where the vacuum charge q (or rather the invariant combi-
nation q2=k) is a parameter of the theory. Therefore, we
seek a smooth solution of TMG with these properties.
Given the relation to the BTZ black hole described above,
a natural guess for the ground state is to take the deforma-
tion of global AdS rather than BTZ. The global AdS metric
is ds2BTZ with MBTZ ¼ � 1

8 , JBTZ ¼ 0. Plugging this into

(105) indeed gives the relations (108) with

qTMG ¼ Mvac ¼ � i

6
;

Lvac
0 ¼ �Lvac ¼ � c

24
� 1

36k
:

(109)

Furthermore, the full metric (103) is smooth for this
value of the parameters—in fact, it is timelike warped AdS
(74)—and minimizes L0 � P2

0=k among known smooth

solutions. Therefore, this is the ground state. Plugging
into the entropy formula (47) and comparing to (86),
we find

Sbh ¼ Swcft: (110)

Some comments are in order. In the original ðt; r; �Þ
coordinates, the warped black hole metric is complex in the
ground state (109), which corresponds to

rþ ¼ � 4i

3þ �2
; r� ¼ 0: (111)

Nonetheless, it has a natural interpretation: continuing
r ! ir, t ! �it gives the global timelike warped AdS
metric (77). The complex metric in ðt; r; �Þ coordinates
reflects the M-dependent rescalings necessary to define
the ensemble and change to BTZ-like coordinates. In BTZ-
like coordinates the metric remains real everywhere in
phase space. The fact that the vacuum has complex P0 is
related to the appearance of closed timelike curves (CTCs)
in the bulk. This indicates that the theory is not unitary but
is exactly what is needed to match the entropy.
The warped CFT entropy was derived in the limit � ! 0

but correctly matches the classical entropy for arbitrary
black holes. This implies that the spectrum of a warped
CFT dual to TMG must be special to ensure that the
entropy formula applies outside its generic regime of
validity. This is analogous to the fact that in AdS3=CFT2,
the Cardy formula matches the black hole entropy even for
black holes well outside the generic Cardy regime (see
Ref. [55] for a discussion). In string theory realizations,
this is achieved by having a large gap in operator dimen-
sions in the CFT. A similar condition is sufficient in the
warped case.

VI. AN EXAMPLE IN STRING THEORY

We now turn to an embedding of warped black holes in
string theory. Using a series of transformations that relate
this solution to an ordinary BTZ black hole, it was argued
in Refs. [44,45] (see also Refs. [42,56,57]) that the dual
field theory is the IR limit of the dipole-deformed D1-D5
field theory. In principle, this defines the dual theory, but in
practice, little is known about the IR limit after the dipole
deformation. We will take a complementary approach,
using the symmetries to motivate the conjecture that the
warped black holes in string theory have a warped CFT
description. As evidence for this conjecture, we show that
the density of states in warped CFT reproduces the entropy
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of the warped black holes. There are some peculiar features
to this construction that we will not attempt to address—
the black hole has closed timelike curves unless the angle
is unwrapped, and for related reasons the interpretation of
which states are being counted is unclear—so this should
not be considered a full microscopic derivation of the
entropy, but it is nonetheless suggestive.

A. Lightlike dipole background

The bulk theory is a consistent truncation of IIB super-
gravity to six dimensions with four scalars and two 2-forms
[58]. With a constant dilaton, and three scalars that play no
role in our discussion set to zero, the relevant part of the
action is

S ¼ 1

16�

Z
d6x

ffiffiffiffiffiffiffi�g
p �

R� 1

12
e�2�H2 � 1

12
F2

�
; (112)

with 3-form field strengths H ¼ dB, F ¼ dA. We will
focus on the finite-temperature lightlike dipole background
(following the notation in Ref. [44]),

e�ds2¼ T2þdy2

1þ�2T2þ
þ 2rdydt

1þ�2T2þ
þdt2

�
T2�� �2r2

1þ�2T2þ

�

þ dr2

4ðr2�T2þT2�Þ
þ 1

4ð1þ�2T2þÞ
ðdc þcos�d�Þ2

þ1

4
ðd�2þsin2�d�2Þ

B¼ �

2ð1þ�2T2þÞ
ðT2þdyþrdtÞ^ðdc þcos�d�Þ

A¼ rdy^dtþ1

4
cos�dc ^d�

e�2�¼1þ�2T2þ: (113)

This can be obtained from BTZ� S3 by performing a TsT
transformation with shift �. The metric is squashed AdS3
times squashed S3. Defining

t ¼ xþ ; y ¼ x� ; (114)

the angular identification of the original BTZ is along x.
We previously limited ourselves to the stretched case � > 1
because squashed black holes have CTCs. Therefore, in
this case, we will unwrap the circle and compute charges
per unit length in the x direction.

The inverse Hawking temperature � and angular veloc-
ity � are related to the parameters T	 by

T	 ¼ �

�ð1	�Þ ; (115)

and the entropy per unit length is

S ¼ �3

�ð1��2Þ : (116)

The asymptotic symmetries include Virasoroþ Ûð1Þ gen-
erated by

�n ¼ eintð@t � inr@rÞ �n ¼ eint@y; (117)

with corresponding charges ~Ln ¼ Q½�n�, ~Pn ¼ Q½�n� and
zero modes

~L0 ¼ �

4
T2�; ~P0 ¼ ��

4
T2þ: (118)

The level and central charge, computed by the standard
method, are

c ¼ 3�

2
; ~k ¼ ��T2þ: (119)

Note that we have set ‘ ¼ G ¼ 1.

B. Entropy

The asymptotic algebra suggests that there is a warped
CFT description. We will now show that the warped CFT
can also be used to reproduce the entropy. In (119), ~P0

appears on the right-hand side of the algebra, so the coor-
dinates (113) are similar to the coordinates of Sec. VD,
where the leading terms in the metric include the charges.
To eliminate this complication, define

u ¼ t; v ¼ Tþðy� tÞ: (120)

In these coordinates, the algebra takes the standard form
(7), with

k ¼ ��; P0 ¼ ��

2
Tþ; L0 ¼ ~L0 þ ~P0: (121)

To derive the entropy fromWCFT, we temporarily identify
x� xþ 2� (later we can put the theory back on the plane;
the same step would be necessary to derive the entropy of
an ordinary CFT per unit length). The angular and thermal
identifications are then

ðu; vÞ � ðuþ 2�; vÞ � ðuþ �þ i�; v� 2iTþ�Þ; (122)

where � ¼ �i��. The shift in (120) was chosen so that
the first identification acts only on the SLð2; RÞ coordinate,
since this tilt was assumed in the derivation of the entropy
formula in field theory.
Applying the WCFT entropy formula (45) using the

potentials in (122), we find

S ¼ � 8�2

�ð1��ÞL
vac
0 þ 4�2

�ð1��2Þ iP
vac
0 : (123)

The correct bulk entropy (116) is obtained for

Lvac
0 ¼ 0; Pvac

0 ¼ � i

4
�: (124)

The solution with these charges is the timelike vacuum,
just as for TMG discussed in Sec. V. Therefore, assuming
this geometry contributes to the partition function, the
WCFT entropy formula agrees with the Bekenstein-
Hawking entropy.
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It is important to stress that (116) is obtained by calcu-
lating an entropy per unit length in a timelike direction
(although it is spacelike in the original BTZ black hole
before performing the TsT transformation). This is the
same quantity that was reproduced from the ordinary
Cardy formula in Ref. [45]. How such a quantity should
be interpreted in terms of states in the quantum theory is
unclear, so the imaginary charge and negative level that we
encountered do not contradict unitarity.

VII. DISCUSSION

In this work we have studied two-dimensional field
theories that, while lacking Lorentz invariance, possess
enough structure so that their global symmetries can be
extended to an infinite-dimensional local algebra [30]. We
have shown that this algebra constrains the asymptotic
density of states of these so-called WCFTs in a similar
fashion to the standard Cardy argument [2] for CFTs. The
former theories have a form of modular invariance that
can be used to obtain concise expressions for their entropy,
which resemble the well-known Cardy formula. This is the
main result of our work.

Given the lack of examples in a field theory context, we
decided to turn to some known proposals for holographic
duals. In this context, we used our result to explain the
entropy of warped black holes in TMG. It is shown that
the Bekenstein-Hawking entropy exactly matches our field
theory prediction. It is worth mentioning that we are able to
do this without invoking the presence of a hidden second
Virasoro algebra. This gives some evidence that the dual
field theory to this gravitational setup is a WCFT, while the
more familiar CFT structure needs not be present.

In passing we have shown that it does not seem to be
possible to have a fully consistent (i.e., unitary) quantum
theory of gravity for the warped solutions of TMG with
� > 1 and the standard choice of boundary conditions.
While it is true that spacelike stretched black hole solutions
do not present CTCs, it seems one is forced to include
the timelike deformed solutions in the spectrum if the
symmetries of the theory are to be preserved. In this case
CTCs appear and unitarity is lost. This may explain why,
in microscopic constructions, only squashed AdS has
appeared.

We also studied the better-behaved example of lightlike
dipole deformed backgrounds in string theory. These solu-
tions can be obtained by TsT transformations of the usual
AdS3 � S3 solution in Type IIB string theory and, there-
fore, have a consistent UV completion. The theory admits
black string type solutions where the angular direction of
the BTZ parent background is unwrapped. Nevertheless,
a formula for the Bekenstein-Hawking entropy per unit
length of these solutions is known, and we show it agrees
with the predictions of WCFT. Once again, no reference
to a second hidden Virasoro algebra is needed to prove
the result.

It is interesting to point out, nonetheless, that while
WCFTs possess a Virasoro-Kac-Moody algebra, there is
a sense in which the current mimics the presence of a
second Virasoro algebra. It was shown in Sec. VC. that
the ensemble that naturally describes the gravitational
setups leads us to consider a nonlocal algebra, described
in Sec. IV, that shares some properties of a second scaling
symmetry. Even more, we can mention the following
curious fact. Let us focus on the nonlocal U(1) algebra
given by

½ ~Pn; ~Pm� ¼ 2n ~P0�mþn: (125)

This algebra can be obtained by a nonlocal contraction of a
Virasoro algebra. Let us define

~P0 ¼ �2L0; ~Pn ¼ �Ln for n � 0: (126)

Then, the commutators (125) can be obtained from the
Virasoro algebra by taking � ! 0.
There is, of course, another related way in which a

second Virasoro algebra appears. This is simply by con-
sidering the Sugawara construction of Virasoro generators
from a Kac-Moody algebra. At the level of zero modes, this
is identical to our nonlocal algebra, but the full Sugawara
generators seem difficult to realize as asymptotic symme-
tries. Furthermore, for a Uð1Þ algebra this leads to a
Virasoro central charge c ¼ 1 (although this can be rem-
edied by twisting, at the expense of adding a new free
parameter [39]).
Whether any of these remarks is connected with the

presence of a second hidden Virasoro algebra remains an
open question that is of particular interest for the under-
standing of the Kerr/CFT correspondence. Although we
have not focused on this particular case, it is of clear
interest to extend the ideas discussed in this work to the
study of Kerr and other black holes. An interesting piece of
information in this direction was mentioned in Sec. III. The
near-horizon extremal Kerr (or NHEK) geometry at fixed
polar angle is warped AdS3, but with the angular identi-
fication purely in the Uð1Þ direction. This is a degenerate
case where the spatial circle cannot be rotated to align with
the SLð2; RÞ zero mode, so the results of Sec. III do not
apply directly. This case in TMG, known as the self-dual
solution, is included in our entropy formula, but only as a
limit where one temperature is taken to zero.
This line of thought could also be generalized to maxi-

mally rotating black holes in four-dimensional de Sitter
space [59], whose near-horizon geometry contains a
warped dS3 factor instead of WAdS3 but nevertheless
exhibits a similar symmetry structure [60,61].
More generally, every extremal black hole has

SLð2; RÞ �Uð1Þ isometries in the near horizon. This
comes from the appearance of an AdS2 factor; it would
be interesting to compare our construction to gravity in
AdS2, along the lines of Refs. [62–64]. Even away from
extremality, a large class of black holes in flat space has
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entropies that resemble the Cardy formula. This fact has
been partially understood for Kerr from a hidden confor-
mal symmetry in the linearized equations of motion [65],
but without some notion of a modular transformation, the
entropy remains a puzzle. Every black hole has a torus,
of course, so the proliferation of Cardy-like entropy for-
mulas hints that perhaps symmetries can be used to swap
the thermal and angular cycles in other cases as well.

Another useful test of holographic dualities, especially
because it can be applied without a microscopic definition
of the field theory, is the comparison of scattering ampli-
tudes [66] or quasinormal modes [67]. The scattering cross
sections of various fields on Kerr black holes have been
matched to a CFT [68] (see also the review [47]), but in the
CFT approach this required adding a current algebra and
imposing a constraint of the form L0 ¼ J0. Similar analy-
ses have been performed for theWAdS3 [69–73] andWdS3
black holes [74]. The symmetries of WCFT also constrain
correlation functions [30], so it would be interesting to
revisit these computations.

One interesting aspect of WCFTs is that they force us to
consider Tðx�Þ and Pðx�Þ on equal footing. As mentioned
in the introduction, maybe this is a toy example that might
help us understand higher spin theories. If one is to under-
stand the modular properties of partition functions of
these more sophisticated theories, this feature cannot be
overlooked.

Lastly let us comment on the importance of understand-
ing the meaning of holography in other asymptotic space-
times. While the most interesting cases are de Sitter and
flat space in higher dimensions, which are sure to be differ-
ent, historically much has been learned from the study of
the very symmetric cases associated with two-dimensional
field theories. Hopefully, other structures as powerful as
the one described here can be uncovered for other cases of
interest.
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APPENDIX A: DERIVATION OF THE CARDY
FORMULA IN ORDINARY CFT

The Cardy formula is a universal result on the high-
temperature density of states in an ordinary two-
dimensional CFT [2]. In this appendix, we review the
derivation in the same Lorentzian language used in
Sec. III. (See also Ref. [75] for a clear discussion on the
role of vacuum charges in the Cardy formula.) The parti-
tion function is defined as

Zð�; �Þ ¼ Tr e��H�i�J ¼ Tr qL0 �q
�L0 ; (A1)

where

q ¼ e2�i; 2� ¼ �þ i� (A2)

and 2� � ¼ �� i�. Finite temperature correlators are
periodic under

ðt; �Þ � ðt; �þ 2�Þ � ðtþ i�;�þ �Þ: (A3)

Defining

x	 ¼ �	 t; (A4)

the periodicities are

ðxþ;x�Þ�ðxþþ2�;x�þ2�Þ�ðxþþ2�;x�þ2� �Þ:
(A5)

In ordinary CFT, the symmetries allow independent rescal-
ings of x	. Therefore, we seek a transformation of the form

xþ ! �þxþ; x� ! ��x� (A6)

that interchanges the thermal and spatial cycles. This can
be achieved by setting

�þ ¼ �1=; �� ¼ �1= �; (A7)

so that the new periodicities are

ðxþ;x�Þ�ðxþþ2�0;x�þ2� �0Þ�ðxþ�2�;x��2�Þ
(A8)

with

0 ¼ �1=: (A9)

Therefore, we have derived invariance of the partition
function under the S modular transformation

Zð; �Þ ¼ Zð�1=;�1= �Þ (A10)

or

Zð�; �Þ ¼ Z

�
4�2 �

�2 þ �2
;�4�2 �

�2 þ �2

�
: (A11)

At high temperatures, this projects the trace onto the state
of minimal H, i.e., the vacuum, so

Zð�; �Þ � exp

�
� 4�2�

�2 þ �2
Hvac þ 4�2�

�2 þ �2
iJvac

�
: (A12)
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This implies the microcanonical entropy

SCFT ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðHvac þ JvacÞðH þ JÞ

q
þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðHvac � JvacÞðH� JÞ

q
: (A13)

This is as far as we can go in a completely general CFT.
(This version of the Cardy formula, written in terms of
vacuum charges rather than central charges, has proved
useful in holographic applications where the ground state
is not ordinary AdS3 [76,77].) In a unitary CFT, the unit
operator on the plane provides the vacuum state on the
cylinder, so we can compute the vacuum charges from the
conformal transformation to the cylinder,

Hvac ¼ L0 þ �L0 ¼ � cL þ cR
24

;

Jvac ¼ L0 � �L0 ¼ � cL � cR
24

:

(A14)

Plugging in gives the usual Cardy formula,

SCFT ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffi
cL
6
L0

r
þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffi
cR
6

�L0

r
: (A15)

APPENDIX B: CHARGES IN TOPOLOGICALLY
MASSIVE GRAVITY

In this appendix we collect formulas from
Refs. [33,36,78,79] for the conserved charges in topologi-
cally massive gravity. In the covariant formalism [80–82],
the infinitesimal charge associated to an asymptotic Killing
vector � is

�Q½�� ¼ 1

16�

Z
k½�; h; g�; (B1)

integrated over the boundary of a fixed-time surface. Here
h�� ¼ �g�� is a linearized solution to the equations of

motion, and the integrand can be written

k½�; h; g� ¼ ����ðk��
grav½� ; h; g� þ k

��
cs ½� ;h; g�Þdx�: (B2)

The Einstein contribution is

k
��
grav½� ;h; g� ¼ ��ðD�h�D�h

��Þ þ ��D
�h��

þ 1

2
hD��� � h��D��

�

þ 1

2
h��ðD��� þD��

�Þ (B3)

and the Chern-Simons term contributes

k��
cs ½�; h; g�
¼ 1

3�
k
��
grav½�;h; g� � 1

6�
��ð2�����ðG�

�Þ � �����GÞ

þ 1

6�
����

�
��h

��G�� þ 1

2
h

�
��G

�
� þ 1

2
��R

��
;

(B4)

where �� ¼ 1
2 �

���D���. (We have discarded a

‘‘supplemental term’’ in the Chern-Simons contribution
[36] that vanishes for Killing vectors and does not contrib-
ute to any of the charges computed in this paper.) Finite
charges are computed by integrating the variation (B1)
from one solution to another.
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