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Standard fundamental equations of motion for point particles are of second order in the time derivative.

Here we are exploring the consequences of fundamental equations of motion with an additional small even

higher order term to the standard formulation. This is related to two issues: (i) higher order equations of

motion will have influence on the definition of the structure of possible interactions and in particular of the

gravitational interaction, and (ii) such equations of motion provide a framework to test the validity of

Newton’s second law which is the basis for the definition of forces but which assumes from the very

beginning that the fundamental equations of motion are of second order. We will show that starting with our

generalized equations of motions it is possible to introduce the space-time metric describing the gravitational

interaction by means of a standard gauge principle. Another main result within our model of even higher

order derivatives is that for slowly varying and smooth fields the higher order derivatives either lead to

runaway solutions or induces a zitterbewegung. We confront this higher order scheme with experimental data.

DOI: 10.1103/PhysRevD.86.124017 PACS numbers: 04.20.Cv, 04.20.Fy

I. INTRODUCTION

The most basic approach to the mathematical descrip-
tion of nature is provided by Newton axioms [1]. The most
important of them state that (i) there are inertial systems,
(ii) the acceleration of a body with respect to an inertial
system is given by

m €x ¼ Fðx; _x; tÞ; (1)

where m is the (inertial) mass of the body, €x its accelera-
tion, and F the force acting on the body which may depend
on the position and the velocity of the particle, and that (iii)
actio equals reactio [2].

Leaving aside the fundamental and still unresolved prob-
lem of how to really define an inertial system (see, e.g.,
Ref. [3]), the second Newton axiom is a tool to explore the
forces and, thus, tomeasure the fields acting on particles. The
electromagnetic field, for example, can be explored and
measured through the observation of the acceleration of
charged particles under different conditions (different initial
conditions, different charges, etc.). Thus, by means of the
dynamics of the form (1) the electromagnetic interaction and,
in principle, all other interactions are defined. In many cases
one uses quantum equations of motion like the Schrödinger
orDirac equationwhich, via the path integral approach or the
Ehrenfest theorem, for example, are also based on (1). All
these considerations extend to relativistic equations of mo-
tion. And all this is also the basis of the introduction of
interactions through a gauge formalism which is basic for
the theoretical description of the standard model.

From this observation it is clear that what one defines as
interaction or as the corresponding force field depends on

the basic structure of the equation of motion. If, for ex-
ample, the equation of motion is of higher than second
order in the time derivative, then interactions could be
introduced in a different way and, thus, can have a different
structure as we will show below. As a consequence, it is
very important (i) to explore the structure of interactions
and in particular of the gravitational interaction in the case
of higher order fundamental equations of motion, and
(ii) to develop a theoretical framework for the description
of experiments testing the order of the equations of motion.
Equations of motion of higher order are related to a

different initial value problem: one needs more initial
values beyond the initial position and initial velocity. In
physical terms this means that with respect to the time
coordinate the equation of motion is more nonlocal than
the ordinary second order equations. The extreme case that
(formally) an infinite number of initial values are needed is
related to equations of motion with memory as, e.g., gen-
eralized Langevin equations where the force equation pos-
sesses an additional term of the form

R
t
0 Cðt� t0Þ _xðt0Þdt0,

see, e.g., Ref. [4].
Also within quantum gravity scenarios it might be

expected that the effective equation of point particles
may contain small higher order time derivatives. In fact,
since space-time fluctuations in the sense of, e.g., fluctua-
tions of the metrical tensor, yield Langevin-like equations
of motion also quantum gravity scenarios naturally are
expected to lead to effective higher order equations of
motion where the additional higher derivatives probably
scale with, e.g., the Planck length.
Higher order derivatives in equations of motion occur in

effective equations which take backreaction into account.
One example for that is the Abraham-Lorentz equation for
charged particles taking into account the electromagnetic
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waves radiated away [5] or the radiation damping equation
in gravity where the emitted gravitational waves are taken
into account, [6]. In the electromagnetic case the leading
term is a third time derivative which leads to unphysical
runaway solutions which still is an unresolved problem.
However, these equations discussed in relation with radia-
tion damping are no fundamental equations, they are ef-
fective equations emerging from the fact that one no longer
regards the particles as test particles. Here we are only
interested in the fundamental equations of motion.

Since spin is some element of nonlocality it is not aston-
ishing that also the dynamics of spinning particles effectively
can be described by means of a higher order theory [7].

Pais and Uhlenbeck [8] studied higher order mechanical
models as a toy model for discussing properties of higher
order field theories where higher order derivatives came in
naturally in noncommutative models [9] or are introduced
in order to eliminate divergences; see, e.g., Ref. [10].
Recently, it has been shown in Ref. [11] that the energy
of the Pais-Uhlenbeck oscillator is bounded from below, is
unitary and is free of ghosts; see also Ref. [12] for further
studies in this direction.

In the following we will consider fundamental equations
of motion of even higher order which can be derived from a
variational principle. In order to be able to confront these
modified equations of motion with experimental data, one
first has to investigate the structure of interactions. This
will be done by using a gauge principle for a second order
Lagrange formalism (which in principle can be applied
to Lagrangians of all orders). The solutions of the equa-
tions of motion coupled to these generalized gauge fields
give—according to the chosen sign of the additional
even higher derivative term—only runaway solutions or a
zitterbewegung showing that in the latter case the standard
equations of motion are rather robust against addition of
higher order terms. We also discuss the experimental pos-
sibilities to search for effects related to such higher order
time derivatives. As an interesting by-product of the cor-
responding higher order gauge formalism we obtain the
standard space-time metric as an ordinary gauge field.

II. LAGRANGE FORMALISM

First we will use the Lagrange formalism in order to
introduce interactions into a theory containing higher order
derivatives. We introduce interactions by means of a gauge
principle. We set up our notation by repeating shortly the
standard first order formalism and then apply the gauge
principle to a second order Lagrange formalism.

A. First order formalism

A Lagrange function of first order,

L ¼ L0ðt; x; _xÞ; (2)

yields the Euler-Lagrange equation of motion,

0 ¼ rL� d

dt
r _xL: (3)

We obtain the same equation of motion from two
Lagrange functions if they differ by a total time derivative
only,

Lðt;x; _xÞ!L0ðt;x; _xÞ¼L0ðt;x; _xÞþ d

dt
fðt;xÞ; (4)

where the function f is allowed to depend on t and x only.
We can expand the total time derivative,

L0ðt;x; _xÞ¼L0ðt;x; _xÞþ@tfðt;xÞþ _x �rfðt;xÞ: (5)

We are now invoking the gauge principle which pre-
scribes the replacement,

@tfðt; xÞ ! �q�ðt; xÞ; rf ! qAðt; xÞ; (6)

where q is the coupling parameter (charge). The new
functions �ðt; xÞ and Aðt; xÞ are the scalar and vector
potential of the Maxwell theory. Then the Lagrangian
coupled to these potentials reads

L0ðt;x; _xÞ¼L0ðt;x; _xÞ�q�ðt;xÞþq _x �Aðt;xÞ: (7)

With the choice L0ðt; x; _xÞ ¼ 1
2m _x2 we obtain the standard

Lorentz force equation of a charged particle moving in an
electromagnetic field.
Now we generalize this approach to higher order

Lagrange functions.

B. Second order formalism

In the second order formalism we consider Lagrange
functions of the form

L ¼ L0ðt; x; _x; €xÞ (8)

from which we obtain the fourth order equation of
motion,

0 ¼ rL� d

dt
r _xLþ d2

dt2
r €xL

¼ rL� d

dt

�
r _xL� d

dt
r €xL

�
; (9)

where ra denotes the gradient with respect to the variable
a. Also in this case we obtain the same equation of motion
from another Lagrange function if it differs from the
original one by a total time derivative of a function f
only. This function, however, now may depend on the
velocities _x:

Lðt; x; _x; €xÞ ! L0ðt; x; _x; €xÞ ¼ L0ðt; x; _x; €xÞ þ d

dt
fðt; x; _xÞ:

(10)
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The expansion of the total time derivative gives

L0ðt; x; _x; €xÞ ¼ L0ðt; x; _x; €xÞ þ @tfðt; x; _xÞ
þ _x � rfðt; x; _xÞ þ €x � r _xfðt; x; _xÞ: (11)

The question now is how to employ the gauge principle.
If we replace, e.g., @tfðt; x; _xÞ by a function �ðt; x; _xÞ then
this function cannot describe an external field since it
would depend on the velocity. A given external field should
be given per se and should not depend on the state of
motion of a particle. The properties of the external field
should be independent of whether the particle is moving
through it or not.

One way to introduce functions depending on time and
position only is to assume that the function fðt; x; _xÞ is
polynomial in the velocity. That means for some finite
number N,

fðt; x; _xÞ ¼ XN
n¼0

fi1...inðt; xÞ _xi1 � � � _xin : (12)

In this case we can regard the functions fi1...inðt; xÞ ¼
fði1...inÞðt; xÞ as gauge functions of an externally given in-

teraction. For this setting we obtain for the new Lagrange
function the same equations of motion

L0ðt; x; _x; €xÞ ¼ L0ðt; x; _x; €xÞ þ
XN
n¼0

@tfi1...inðt; xÞ _xi1 � � � _xin

þ XN
n¼0

@ifi1...inðt; xÞ _xi _xi1 � � � _xin

þ XN
n¼1

nfi1...inðt; xÞ €xi1 _xi2 � � � _xin : (13)

The gauge principle now allows one to replace these gauge
functions by the gauge fields,

@tfi1...inðt; xÞ ! �qn�i1...inðt; xÞ; (14)

@ifi1...inðt; xÞ ! qnAii1...inðt; xÞ; (15)

nfi1...inðt; xÞ ! qnc i1...inðt; xÞ; (16)

where the qn are the coupling parameters to these nth rank
potentials. The symmetries of these gauge fields are

�i1...inðt; xÞ ¼ �ði1...inÞðt; xÞ; (17)

Aii1...inðt; xÞ ¼ Aðii1...inÞðt; xÞ; (18)

c i1...inðt; xÞ ¼ c ði1...inÞðt; xÞ; (19)

that is, all gauge fields are totally symmetric. These fields
transform under the generalized gauge transformations as

qn�i1...inðt; xÞ ! qn�
0
i1...in

ðt; xÞ
¼ qn�i1...inðt; xÞ � @tfi1...inðt; xÞ;

qnAii1...inðt; xÞ ! qnA
0
ii1...in

ðt; xÞ
¼ qnAii1...inðt; xÞ þ @ðifi1...inÞðt; xÞ;

qnc i1...inðt; xÞ ! qnc
0
i1...in

ðt; xÞ
¼ qnc i1...inðt; xÞ þ nfi1...inðt; xÞ: (20)

For n ¼ 0 they reduce to the ordinary Maxwell gauge
transformations.
As a consequence we obtain the Lagrangian of a particle

coupled to the new interaction gauge fields:

L0ðt; x; _x; €xÞ ¼ L0ðt; x; _x; €xÞ �
XN
n¼0

qn�i1...inðt; xÞ _xi1 � � � _xin

þ XN
n¼0

qnAii1...inðt; xÞ _xi _xi1 � � � _xin

þ XN
n¼1

qnc i1...inðt; xÞ €xi1 _xi2 � � � _xin : (21)

The last term can be rewritten as, modulo a total time
derivative,

� XN
n¼1

1

n
qn

@

@t
c i1...inðt; xÞ _xi1 _xi2 � � � _xin

� XN
n¼1

1

n
qn@ic i1...inðt; xÞ _xi _xi1 _xi2 � � � _xin ; (22)

so that we effectively have the Lagrangian

L0ðt; x; _x; €xÞ ¼ L0ðt; x; _x; €xÞ

� XN
n¼0

qn ~�i1...inðt; xÞ _xi1 _xi2 � � � _xin

þ XN
n¼0

qn ~Aii1...inðt; xÞ _xi _xi1 _xi2 � � � _xin ; (23)

where

~Aii1...inðt; xÞ :¼ Aii1...inðt; xÞ �
1

n
@ðic i1...inÞðt; xÞ; (24)

~�i1...inðt; xÞ :¼ �i1...inðt; xÞ þ
1

n

@

@t
c i1...inðt; xÞ: (25)

The equations of motion read
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0¼ @jL0� d

dt

@L0

@ _xj
þ d2

dt2
@L0

@ €xj
�XN

n¼0

qnð@j ~�i1...inðt;xÞ�n@i1
~�ji2...inðt;xÞ�ð@j ~Aii1...inðt;xÞ�ðnþ1Þ@i ~Aji1...inðt;xÞÞ _xiÞ _xi1 . . . _xin

þXN
n¼0

qnn
@

@t
~�ji2...inðt;xÞ _xi2 . . . _xin �

XN
n¼0

ðnþ1Þqn @@t
~Aji1...inðt;xÞ _xi1 . . . _xin

þXN
n¼0

qnnðn�1Þ ~�ji2...inðt;xÞ €xi2 _xi3 . . . _xin �
XN
n¼0

ðnþ1Þnqn ~Aji1...inðt;xÞ €xi1 _xi2 . . . _xin : (26)

The additional gauge interaction adds a time derivative of
second order. The principal part of the differential equation
remains unaffected.

Below we use the most simple second order Lagrangian
without interaction

L0ðt; x; _x; €xÞ ¼ m

2
_x2 � �

2
€x2; (27)

which leads to a fourth order equation of motion. The
parameter � has the dimension mass� time2. If one
assumes that this additional term has emerged from influ-
ences of quantum gravity then it might be natural to identify
��MPlT

2
Pl � 10�95 kg s2 which is extremely small (the

product of the mass and the square of the Compton time
gives for an electron �10�71 kg s2, for a proton we get
�10�74 kg s2, and for a typical atom �10�77 kg s2).

III. NOETHER THEOREM

Also for higher order Lagrangians conservation laws can
be obtained from the variational principle if we allow
nonvanishing variations at the initial and final points. The
variations are as usual,

�t ¼ tþ �ðtÞ; (28)

�xð�tÞ ¼ xðtÞ þ �xðtÞ: (29)

One should bear in mind that here the x need not be
variables of the configuration space. For these general
variations, the variation of the action is

�S ¼ �S� S

¼
Z �t2

�t1

Lð �xð�tÞ; _�xð�tÞ; €�xð�tÞ; �tÞd�t

�
Z t2

t1

LðxðtÞ; _xðtÞ; €xðtÞ; tÞdt: (30)

Proceeding as in the first order case described in textbooks
we arrive at

�S ¼
Z t2

t1

�
rL� d

dt
r _xLþ d2

dt2
r €xL

�
�xdt

þ
�
r €xL � d

dt
ð�x� � _xÞ

þ
�
r _xL� d

dt
r €xL

�
� ð�x� � _xÞ þ �L

�
t2

t1

: (31)

If the equations of motion are fulfilled, and if the action is
invariant under the variations (27) and (28), then we obtain
the conserved quantity

p2 � ddt ð�x� � _xÞ þ ðp1 � _p2Þ � ð�x� � _xÞ þ �L

¼ const; (32)

where we defined the momenta

p1 ¼ r _xL and p2 ¼ r €xL: (33)

If the action does not vanish but, instead, changes with a
total time derivative of a function FðxðtÞ; _xðtÞ; tÞ, then the
equations of motion in terms of the Euler-Lagrange equa-
tions do not change and we have a modified conserved
quantity,

p2 � ddt ð�x� � _xÞ þ ðp1 � _p2Þ � ð�x� � _xÞ þ �L� F

¼ const: (34)

From this general Noether theorem we derive the following
conserved quantities.

A. Momentum conservation

At first we consider the transformations �ðtÞ ¼ 0 and
�xðtÞ ¼ const. We obtain the conserved momentum

P ¼ p1 � _p2 ¼ const: (35)

For the Lagrangian (26) we get

P ¼ m _xþ �x
:::¼ const: (36)

This may also directly be inferred from the Euler-Lagrange
equations of motion (9).

B. Energy conservation

Next we consider the transformations �ðtÞ ¼ �0 and
�xðtÞ ¼ 0. The corresponding conserved energy is

E ¼ p � €xþ ðp1 � _p2Þ � _x� L ¼ p2 � €xþ P � _x� L

¼ const: (37)

For the Lagrangian (26) we obtain
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E ¼ 1

2
m _x2 þ 1

2
�ð2x::: � _x� €x2Þ: (38)

C. Angular momentum conservation

In the next example we assume that the action is invari-
ant under the transformations �ðtÞ ¼ 0 and �x ¼ �’� x.
This corresponds to a rotation and the corresponding con-
served angular momentum is

L ¼ x� ðp1 � _p2Þ þ _x� p2 ¼ x� P þ _x� p2

¼ const: (39)

For the Lagrangian (26) we obtain the conserved angular
momentum

L ¼ x� ðm _xÞ þ �ðx� x
:::� _x� €xÞ ¼ x� P � � _x� €x

¼ const: (40)

D. Proper Galileo transformation

At last we consider the Galileo transformations �ðtÞ ¼ 0
and �x ¼ �vt for the Lagrangian (26), where �v is
assumed to be very small. The term 1

2m _x2 changes by a

total differential of mx � �v so that we obtain the con-
served quantity

C ¼ p2 þ ðp� _p2Þt�mx ¼ const (41)

from which we deduce a uniform motion

x ¼ p2

m
þ p� _p2

m
tþ x0: (42)

IV. THE MOST SIMPLE GAUGE MODEL, N ¼ 0

A. Equation of motion

The most simple case with nontrivial dynamics is given
for the special case that f in (12) is a function of t and x
only, which means N ¼ 0. Then we have

L0ðt;x; _x; €xÞ¼L0ðt;x; _x; €xÞ�q�ðt;xÞþq _xiAiðt;xÞ: (43)

For L0 from (26) the equations of motion read

�x
:::: þm €x ¼ qEðt; xÞ þ q _x� Bðt; xÞ; (44)

where E and B are the electric and magnetic field derived
as usual from the scalar and vector potentials � and A.
This equation of motion is the standard one with a small
additional fourth order term.

For a fist discussion we may simplify further by taking a
vanishing magnetic field, B ¼ 0 and a constant electric
field EðxÞ ¼ E0 ¼ const,

�x
:::: þm €x ¼ qE0: (45)

This is the equation we would like to solve.

B. Particle motion

The first two time integrations are easily performed
and give

� €xþmx ¼ q

2
E0ðt� t0Þ2 þ aðt� t0Þ þ b; (46)

where a and b are integration constants. Next we introduce
a new function �x through x0 ¼ xþ � �x with x0 ¼
q
2mE0ðt� t0Þ2 þ 1

maðt� t0Þ þ 1
mb which represents the

solution of the corresponding equation of motion without
the fourth order term. Here we assume that � is very
small, since no deviation from Newton’s second law has
been observed, so far. The differential equation for �x then
reads

€�xþm

�
�x ¼ � q

m�
E0: (47)

A further substitution x̂ ¼ �xþ �
m

q
m�E0 yields the equation

for a particle in a harmonic potential,

€̂xþm

�
x̂ ¼ 0; (48)

which, according to the sign of m
� , possesses the solution

x̂ ¼ A cosð!tÞ þB sinð!tÞ for
m

�
> 0; (49)

x̂ ¼ A1 coshð!tÞ þA2 sinhð!tÞ for
m

�
< 0; (50)

for some amplitudes A, B, A1, and A2 and with

! ¼ ffiffiffiffiffiffiffiffiffiffi
m=�

p
.

As a consequence, for m=� > 0 we arrived at the
solution

xðtÞ ¼ q

2m
E0ðt� t0Þ2 þ 1

m
aðt� t0Þ þ 1

m
b

þ �A cosð!tÞ þ �B sinð!tÞ � �

m

q

m
E0; (51)

that turns to the standard solution in the limit � ! 0.
For m=� < 0 the solutions become exponentially grow-
ing runaway solutions which are in contradiction to
physical observations. Accordingly, we have to choose
m=� > 0. Since, by convention, m> 0 we then have
� � 0. (In principle it is possible to choose the inertial
mass to be negative by definition. This then may induce
modified sign conventions for coupling constants.)
The velocity is

_xðtÞ ¼ q

m
E0ðt� t0Þ þ 1

m
a� ffiffiffiffiffiffiffi

m�
p

A sinð!tÞ
þ ffiffiffiffiffiffiffi

m�
p

B cosð!tÞ; (52)

which also approaches the standard expression for � ! 0.
The acceleration

HIGHER ORDER EQUATIONS OF MOTION AND GRAVITY PHYSICAL REVIEW D 86, 124017 (2012)

124017-5



€xðtÞ ¼ q

m
E0 �mA cosð!tÞ �mB sinð!tÞ; (53)

however, has a large fluctuating term of order 0 which does
not disappear for � ! 0.

For very small positive � the additional term in the path
(50) is a very small but fast oscillating zitterbewegung. One
may turn the above result into a positive statement: At least
within a Lagrangian approach and assuming that higher
order terms are small, the paths originating from a corre-
sponding higher order modification are rather inert against
these modifications. The mean orbits behave like orbits
given by second order equations of motion. Wewill present
some ways to experimentally search for these fundamental
oscillations in Sec. VI.

This result may be extended to the case of slowly vary-
ing arbitrary electromagnetic fields. The equation of mo-
tion for an arbitrary electromagnetic field (43) may be
attacked through the substitution x ¼ � �xþ x0, where x0
is assumed to solve the equation of motion without the
fourth order term. If we assume that the force FðxÞ ¼
qEðxÞ þ qv�BðxÞ is very smooth and that the deviation
� �x is very small (that is, if �x � rF � m €x0 and can be
neglected), then we obtain

x
::::

0 þ � �x
:::: þm€�x ¼ 0: (54)

This can be integrated twice,

€x0 þ �€�xþm �x ¼ atþ b; (55)

where a and b are two integration constants. Inserting the
equation for €x0 yields

€�xþm

�
�x ¼ � 1

m�
Fðx0Þ þ 1

�
atþ 1

�
b: (56)

With a newvariable x̂ ¼ �x� 1
matþ 1

mb� 1
m2 Fðx0Þwehave

€̂xþm

�
x̂ ¼ 0: (57)

Then again x̂ is a fast oscillating term which adds to the
standard solution. The total solution then is

xðtÞ¼x0ðtÞþ�

�
x̂ðtÞþ 1

m
at� 1

m
bþ 1

m2
Fðx0ðtÞÞ

�
: (58)

This solution consists of the standard solution x0ðtÞ which is
the main motion and additional small terms: a small fast
oscillating term, a kind of zitterbewegung and a small
position-dependent displacement, a small offset term, and a
small linearly growing term. In order to be compatible with
observations we choose a ¼ 0 and b ¼ 0 so that the last two
mentioned terms disappear.

C. Conserved energy

The conserved energy in this most simple model reads

E ¼ m

2
_x2 þ �

2
ð2x::: � _x� €x2Þ þ q�; (59)

which also can be obtained by multiplying the equation of
motion by _x and partial integration. Insertion of the solu-
tion xðtÞ verifies the constancy of this expression. The
energy is not definite.

V. THE NEXT GAUGE MODEL, N ¼ 1

A. The equation of motion

Now we would now like to explore the model where f is
a function which is polynomial of first order in the veloc-

ities, that is, fðt; x; _xÞ ¼ fð0Þðt; xÞ þ fð1Þi ðt; xÞ _xi. Then the
corresponding gauged Lagrange function reads

Lðt; x; _x; €xÞ ¼ L0ðt; x; _x; €xÞ � q0�þ q0 _x
iAi

� q1 _x
i�i þ q1 _x

i _xjAij þ q1 €x
ic i; (60)

where all functions depend on t and x. Here q0 is the

coupling related to fð0Þ, and q1 the coupling related to fi.
Beside the usual scalar and vector potential, � and Ai we
have in addition two vector potentials �i and c i and a
tensorial potential Aij. The gauge transformations are

given by

q0�
0 ¼ q0�� @tf

ð0Þ; q0A
0
i ¼ q0Ai þ @if

ð0Þ;

q1�
0
i ¼ q1�� @tf

ð1Þ
i ; q1c

0
i ¼ q1c i þ fð1Þi ;

q1A
0
ij ¼ q1Aij þ @ðif

ð1Þ
jÞ :

(61)

The corresponding Euler-Lagrange equation is

0 ¼ @L0

@xi
� d

dt

@L0

@ _xi
þ d2

dt2
@L0

@ €xi
(62)

� q0@i�� q0@tAi þ q1@t�i þ q1@
2
t c i (63)

þ _xjð@iðq0Aj � q1�jÞ � @jðq0Ai � q1�iÞ
þ 2q1@t@½jc i�Þ (64)

� 2q1

�
€xj ~Aij þ 1

2
ð@k ~Aij þ @j ~Aik � @i ~AjkÞ _xj _xk

�
� 2q1@t ~Aij _x

j; (65)

where we defined ~Aij :¼ Aij � @ðic jÞ. The first line (61) is
the (still unspecified) equation of motion of the free parti-
cle, the second line (62) describes a force due to

two electric fields Eð0Þ :¼ �r�� @tA and Eð1Þ :¼
@t�þ @2t c , the third line (63) describes the standard

magnetic field Bð0Þ :¼ r�A as well as an additional

magnetic field Bð1Þ :¼ r� ð��þ @tc Þ, hence these
last two lines together look like a generalized Lorentz
force, where the fields are all gauge invariant. The fourth
line (64) resembles the form of covariant derivative with a

connection based on a second rank tensor ~Aij.

For the Lagrangian L0 from (26) we obtain the fourth
order equation of motion,

CLAUS LÄMMERZAHL AND PATRICIA RADEMAKER PHYSICAL REVIEW D 86, 124017 (2012)

124017-6



�x
::::j�ij þmgijðD _x _xÞj þm@tgij _x

j

¼ q0E
ð0Þ
i þ q1E

ð1Þ
i þ ð _x� ðq0Bð0Þ þ q1B

ð1ÞÞÞi; (66)

where we introduced an effective 3-metric

gij ¼ �ij þ 2
q1
m

~Aij; (67)

and where the covariant derivative D _x is formulated with a
Christoffel symbol based on gij. This metric is invariant

under the gauge transformations (60). The second and third
term on the left-hand side can be regarded as equation of
motion arising from the variation of

R
gijðt; xÞ _xi _xjdt. If in

(65) we let � ! 0 then only the fourth order derivative term
will vanish; the other terms, in particular those containing
the metric, remain.

One should note that by means of our second order
gauge principle we were able to introduce the gravita-
tional interaction in terms of a space metric by means of
an ordinary gauge field. Together with this metric gauge
field we also introduced an interaction with an electro-
magnetic gauge field. Therefore, by means of one gauge
procedure we introduced the interaction with a gravita-
tional field as well as with an electromagnetic field. By
omitting the n ¼ 0 part of this gauge formalism, or
equivalently, by setting q0 ¼ 0, we have a combined
gauge formalism for the metric and an electromagnetic

field. We also can choose Eð1Þ ¼ 0 and Bð1Þ ¼ 0 while

keeping ~Aij � 0, Eð0Þ � 0, and Bð0Þ � 0. This latter

choice introduces the electromagnetic field and the space
metric independently.

The structure of the above equation of motion (65) is

�x
:::: þm €x ¼ Kðt; x; _xÞ; (68)

where Kðt; x; _xÞ is a polynomial of order two in the veloc-
ities which slightly generalizes (43). As a consequence, for
ordinary situations (smooth forces) and small � we again
obtain some zitterbewegung resulting from the inclusion of
higher order derivatives. Again, the main (mean) motion is
described by the second order part of the equation of
motion.

B. The conserved energy

We assume that all fields do not depend on time and
determine the conserved energy. Then again we obtain an
expression where the space metric appears at the right
place. Applying (36) yields

E ¼ 1

2
mgij _x

i _xj þ q0�þ 1

2
�ð2x::: � _x� €x2Þ: (69)

As expected, the effective metric (66) enters the conserved
energy.

C. Relativistic formulation

It is clear from €xic i ¼ � _xi d
dt c i ¼ � _xi@tc i �

_xj _xj@jc i which holds modulo a total time derivative,

that

� q1 _x
i�i þ q1 _x

i _xjAij þ q1 €x
ic i

¼ �q1 _x
ið�i þ @tc iÞ þ q1 _x

i _xjðAij � @jc iÞ: (70)

This explains the definitions of Eð1Þ and Bð1Þ.
Furthermore, with xa ¼ ðt; xiÞ, a ¼ 0; . . . ; 3, and the
3þ 1 splitting

q0Aa _x
a þ q1Aab _x

a _xb ¼ q0A0 þ q1A00 þ ðq0Ai þ 2q1Ai0Þ _xi
þ q1Aij _x

i _xj; (71)

we can reproduce, with redefinitions, the gauge ansatz
(59) above. Therefore, the gauge field part in the
Lagrangian (59) can be written in 4-covariant form:

L0ðt;x; _x; €xÞ ¼ L0ðt;x; _x; €xÞ � q0Aa _x
a þ q1Aab _x

a _xb: (72)

It is the last term quadratic in the velocities which,
when interpreted as gauge field, requires the second
order Lagrangian.

VI. COMPARISON WITH EXPERIMENTS

We would like to describe possible experiments which
may be sensitive to the higher order modifications in the
equations of motion. We take situations where a charged
particle is placed in a constant electric field, e.g., within a
capacitor. In standard theory the charged particle will be
accelerated and the final velocity depends on the voltage
only, not on the spacing between the plates of the capacitor.
This will be different in our model. To make the situation
as simple as possible we consider a one-dimensional prob-
lem and take as an initial condition that the particle is at
absolute rest at t0 ¼ 0.
We take our general solution (50) (in one dimension and

with t0 ¼ 0)

xðtÞ ¼ q
2mE0t

2 þ 1
m atþ 1

m bþ �A cosð!tÞ þ �B sinð!tÞ
� �

m

q

m
E0; (73)

_xðtÞ ¼ q

m
E0tþ 1

m
a� A

ffiffiffiffiffiffiffi
m�

p
sinð!tÞ þ B

ffiffiffiffiffiffiffi
m�

p
cosð!tÞ;

(74)

€xðtÞ ¼ q

m
E0 � Am cosð!tÞ � Bm sinð!tÞ; (75)

x
:::ðtÞ ¼ �A

�
m

�

�3
2
sinð!tÞ � �B

�
m

�

�3
2
cosð!tÞ; (76)

and determine the parameters in terms of the initial con-
ditions xð0Þ ¼ 0, _xð0Þ ¼ 0, €xð0Þ ¼ 0, and x

:::ð0Þ ¼ 0. We
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obtain B ¼ 0, a ¼ 0, A ¼ q
m2 E0, and b ¼ 0. The solution

then reads

xðtÞ ¼ q

m
E0

�
1

2
t2 þ �

m
ðcosð!tÞ � 1Þ

�
; (77)

and we also have

_xðtÞ ¼ q

m
E0

�
t�

ffiffiffiffi
�

m

r
sinð!tÞ

�
; (78)

€xðtÞ ¼ q

m
E0ð1� cosð!tÞÞ; (79)

x
:::ðtÞ ¼ q

m
E0

ffiffiffiffi
m

�

r
sinð!tÞ: (80)

The appearance of the zitterbewegung is connected with
the external field E0. Free particles do not perform such
a motion.

Now we discuss three different measurements whose
outcome depend on �: (i) the time of flight in an accelera-
tor, (ii) measurement of the acceleration by atomic inter-
ferometry, (iii) noise in electronic circuits. We always
calculate first order effects.

A. Determination of time of flight

In standard theory (� ¼ 0) we have the solution xðtÞ ¼
q
2mE0t

2. For a charged particle being accelerated through

its motion through an accelerator of length L we have

L ¼ q
2m

��
L t2, where �� is the potential difference the

particle traverses. Then t2 ¼ 2m
q��L

2 so that t is propor-

tional to the spacing L and the final velocity does not
depend on the distance L. This will be different for our
higher order theory.

We determine the time the particle needs to traverse
the length L. For that we first have to calculate t from
L ¼ xðtÞ:

L ¼ q

m
E0

�
1

2
t2 þ �

m
ðcosð!tÞ � 1Þ

�
; (81)

which is a transcendental equation. For � ¼ 0 we have

t ¼ t0 ¼
ffiffiffiffiffiffiffi
2mL
qE0

q
. Therefore we make the approximative

ansatz t ¼ t0 þ t1, where t1 � t0 and t1 is of the order �.
Solving for t1 gives the time of flight to first order correc-
tion in � so that

t ¼
ffiffiffiffiffiffiffiffiffiffi
2mL

qE0

s
�

ffiffiffiffiffiffiffiffiffiffi
qE0

2mL

s
�

m

0
@cos

0
@!

ffiffiffiffiffiffiffiffiffiffi
2mL

qE0

s 1
A� 1

1
A: (82)

We use this time in order to calculate the velocity at
xðtÞ ¼ L and obtain

_xðLÞ ¼ _x0

0
@1þ �

4m

_x20
L2

0
@1� cos

0
@!

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mL2

2q��

s 1
A
1
A

þ
ffiffiffiffiffiffiffi
�

4m

r
_x0
L

sin

0
@!

ffiffiffiffiffiffiffiffiffiffiffiffi
2mL2

q��

s 1
A
1
A; (83)

where we substituted E0 ¼ ��
L and also inserted the veloc-

ity of the standard theory _x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2q��

m

q
. In the standard

theory _xðLÞ does not depend on L. Here, by varying L we
get oscillations in the velocity due to the sin and cos terms,

and also a small offset �
4m

_x3
0

L2 .

Since � is assumed to be small, then a change in L
will result in fast oscillations which probably cannot be
resolved. Therefore, averaging over a small L interval
yields

h _xðLÞi ¼ _x0

�
1þ �

4m

_x20
L2

�
: (84)

Therefore in the mean the velocity after traversing the
capacitor is a bit larger.
Rewriting the above result as relative velocity

deviation

h _xðLÞi � _x0
_x0

¼ �

4m

_x20
L2

; (85)

it is clear that one obtains good estimates for � for large
velocities _x0, short L and smallm. Taking, e.g., an electron
with final energy of 10 MeV, a traversed distance of
L ¼ 1 m, an accuracy to measure the relative velocity of
1%, and assuming that no effect is observed, then we arrive
at an estimate � � 10�50 kg s2.

B. Interferometry

Acceleration can be measured directly with, e.g., atomic
interferometry. This has been proposed first by Bordé [13]
and today’s best performance gives an uncertainty of the
measured acceleration of �€x 	 10�8 m=s2 [14]. However,
while this accuracy is valid for a constant acceleration, in
our case we have a fast varying acceleration.
We use the phase shift

�� ¼ Að!Þk €xT2; (86)

where k is the wave vector of the laser beam acting as
beam splitter and T is the time between the laser pulses.
For the acceleration we take (78). Since that part of our
acceleration we are interested in and which we like to
detect this way is fluctuating, we have to amend the stan-
dard phase shift for a dc acceleration, �� ¼ kgT2, by a
transfer function Að!Þ which has been determined in
Ref. [15]. As an example, we use as charged particle
ionized helium and take typical values for the laser wave-
length � ¼ 780 nm, a pulse spacing time of T ¼ 100 ms,
and an electric field strength of E0 ¼ 1010 V=m. An
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experimentally reachable accuracy of the phase measure-
ment is �� ¼ 10�3 rad.

We are interested in the largest ! which we are able
to detect. With the specifications given we can determine
that ! from the condition Að!Þ ¼ 10�25. This gives
! ¼ 1012 Hz which is the maximum frequency whose
effect on the phase shift we are able to detect. If we assume
that nothing is detected this gives an estimate of

� � m

!2
¼ 10�50 kg s2: (87)

C. Electronic noise

Another situation where a kind of zitterbewegung of
a charged particle may induce an effect is electronics.
As a most simple model we may assume that the particle
under consideration is located within a capacitor. An
oscillation of this particle will induce an electronic noise
in the electric circuit. This electronic noise can be
estimated by

ChU2i ¼ mh _x2i; (88)

where U is the voltage. Using only the oscillating terms in
the velocity we obtain

ChU2i ¼ 1

2
�

�
q

m
E0

�
2
: (89)

Therefore, a modified dynamics will induce an electronic
noise—beside other noise like Nyquist noise or a shot
noise. However, due to its different characteristics, it might
be disentangled from the other noise sources. Our noise
should be a fundamental noise not depending on tempera-
ture, the finite number of charged particles in the electric
circuit, etc. A good cryogenic noise limit is of the order

1 nV=
ffiffiffiffiffiffi
Hz

p
[16] in a wide frequency range, that is 1 nV for

a measurement of duration 1 s. Taking as granted that no
fundamental noise of this kind has been seen under the
conditions of a molecular vacuum and cryogenic tempera-
ture, we may get a first estimate � � 10�68 kg s2, where we
took a capacitance of 0.48 pF, a distance between the
capacitor plates of 15 �m, a voltage of 1000 V. Taking
into account a bandwidth of 1 GHz, we get a more realistic
estimate � � 10�50 kg s2.

VII. CONCLUSION AND OUTLOOK

We studied the physics resulting from a hypothetically
given higher order equation of motion substituting standard
Newton’s law. In order (i) to investigate the consequences
of such models and (ii) to confront such a model with
experiments we employed a gauge principle to couple
these equations to external forces. This procedure we
carried through in the framework of higher order
Lagrangian formalism. The resulting gauge fields have a
richer structure than in the ordinary first order Lagrange
formalism. Beside the ordinary gauge fields usually

obtained in the zeroth order formalism, we obtained
for the first order gauge model the standard space-time
metric carrying the gravitational interaction in terms of a
gauge field.
Then we discussed physical consequences of equations

of motion with an additional small even higher order time
derivative, coupled to smooth and slowly varying gauge
fields up to our first order gauge formalism. We solved the
equation of motion for the simplest case and deduced
observational consequences in three experimental situ-
ations. Leaving aside runaway solutions which are con-
nected with a certain choice of the sign of the additional
higher derivative term and which are contradicting any
observation, a small even higher order term influences
the time of flight of accelerated particles, yields an accel-
eration fluctuation accessible in atomic interferometry, and
also induces a fundamental noise in electronic devices.
Until now no deviation from Newton’s second law has
been observed. Very rough and preliminary estimates for
the parameter characterizing the higher order term could be
derived. However, a comparison with the Planck scale
version of this parameter shows that the experimental
estimates are far away from reaching the corresponding
quantum gravity scale.
The next step is to implement a higher order theory

for point particles in a relativistic context. A possible

Lagrange function to start with might be L0 ¼
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ab _x

a _xb þ ��ab €x
a €xb

p
, where the dot is the derivative

with respect to some parameter along the path. We would
also like to implement our principle in higher order field
theory, e.g., for scalar field Lagrange densities of the type
L ¼ �ab@a�


@b�þ��ab�cd@a@c�

@b@d�. A further

step would be to set up some field equations for the new
gauge fields. A first guess might be to have the usual
Maxwell equations for the Aa and the Einstein field equa-
tions for the gab.
For gauge models with N > 1 one obtains equations of

motion with an acceleration which is multiplied with coef-
ficients which depend on the velocity; see Eq. (25). Also all
other terms are polynomials of thevelocity of degreeN þ 1.
Altogether, the equation of motion takes a form reminding
one of the equation of motion in Finsler geometry. For a
recent discussion of a class of Finsler space-times and Solar
system tests, see Ref. [17].

ACKNOWLEDGMENTS

We would like to thank Ch. Bordé, D. Giulini, E.
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