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We study the cosmology of Galileon modified gravity models in the linear perturbation regime. We

derive the fully covariant and gauge invariant perturbed field equations using two different methods,

which give consistent results, and solve them using a modified version of the CAMB code. We find that, in

addition to modifying the background expansion history and therefore shifting the positions of the

acoustic peaks in the cosmic microwave background power spectrum, the Galileon field can cluster

strongly from early times, and causes the Weyl gravitational potential to grow, rather than decay, at late

times. This leaves clear signatures in the low-l cosmic microwave background power spectrum through

the modified integrated Sachs-Wolfe effect, strongly enhances the linear growth of matter density

perturbations and makes distinctive predictions for other cosmological signals such as weak lensing

and the power spectrum of density fluctuations. The quasistatic approximation is shown to work quite well

from small to the near-horizon scales. We demonstrate that Galileon models display a rich phenomenol-

ogy due to the large parameter space and the sensitive dependence of the model predictions on the

Galileon parameters. Our results show that some Galileon models are already ruled out by present data

and that future higher significance galaxy clustering, integrated Sachs-Wolfe, and lensing measurements

will place strong constraints on Galileon gravity.
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I. INTRODUCTION

The accumulated evidence for the present-day acceler-
ated expansion of the Universe, driven by what is generi-
cally referred to as ‘‘dark energy’’, is now overwhelming
[1–3]. The simplest explanation for the nature of dark
energy is a simple cosmological constant but, despite the
good agreement with the observational data so far, such an
explanation is plagued with serious fine-tuning and coin-
cidence problems. This has motivated the proposal of
alternative models to explain the observations, the majority
of which fall into two classes. The first one assumes the
existence of a dynamical dark energy field (often of scalar
type) which dominates the energy density today and has a
negative pressure to accelerate the Universe [4,5]. The
other considers that the standard law of gravity, general
relativity, fails on cosmological scales and must be com-
pleted by modifications capable of accelerating the
Universe [6]. Models in the second class have attracted a
lot of research interest recently, and significant progress
has been made in both the theoretical modeling [7,8] and
numerical simulations [9–11].

One notable example of a modified gravity model which
has been the subject of many recent papers is the Galileon
model [12,13]. Here, the deviation from general relativity is
mediated by a scalar field ’, dubbed the Galileon, whose
Lagrangian is invariant under the Galilean shift symmetry
@�’!@�’þb� (hence the name), where b� is a constant

vector. Such a field appears, for instance, as a brane-bending

mode in the decoupling limit of the four-dimensional
boundary effective action of the Dvali-Gabadadze-Porrati
(DGP) braneworldmodel [14–16]whichwas proposedwell
before the Galileon model. However, in spite of being
theoretically appealing, the self-accelerating branch of the
DGP model, which is of interest to the cosmological com-
munity, is plagued by the ghost problem [17–19] (i.e., there
is not a well-defined minimum energy). Taking the DGP
model as inspiration, it was shown in Ref. [12] that in four-
dimensional Minkowski space there are only five Galilean
invariant Lagrangians that lead to second-order field equa-
tions, despite containing highly nonlinear derivative self-
couplings of the scalar field. The second-order nature of the
equations of motion is crucial to avoid the presence of
Ostrogradski ghosts [20]. In Refs. [13,21], it was shown
how these Lagrangians could be generalized to curved
spacetimes. These authors concluded that explicit cou-
plings between the Galileon field derivatives and curvature
tensors are needed to keep the equations of motion up to
second order. Such couplings however break the Galileon
symmetry which is only a symmetry of the model in the
limit of flat spacetime [22]. The couplings of the Galileon
field and the curvature tensors in the equations of motion
change the way in which spacetime responds to matter
distributions, which is why the Galileon model is a subclass
of modified gravity theories.
Since the equations of motion are kept up to second

order, it means that the Galileon model is a subclass of the
more general Horndeski theory [23–25]. The Horndeski
action is the most general single scalar field action one can
write that yields only second order field equations of*a.m.r.barreira@durham.ac.uk
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motion of the metric and scalar fields. Besides the Galileon
model, it therefore encompasses simpler cases such as
quintessence, k-essence [4] and fðRÞ [26,27] models as
well as other models which also involve derivative cou-
plings of the scalar field that have recently generated some
interest such as kinetic gravity braiding [28–30], Fab-Four
[31–35], k-mouflage [36] and others [37–39]. An important
difference between the Galileon model and some other
corners of Horndeski’s general theory is that in the
Galileon model there are no free functions since the
functional form of the Lagrangian is fixed by the shift
symmetry (see however Ref. [40]).

In any viable modified gravity theory, it is crucial
that deviations from standard gravity get suppressed
(or screened) in high matter-density regions where general
relativity has been tested to high accuracy [41,42]. In the
case of Galileon gravity, such a screening is realized via the
Vainshtein mechanism [43], which relies on the presence
of the nonlinear derivative self-couplings of the Galileon
field. Here, far away from gravitational sources, the
nonlinear terms are subdominant and the Galileon field
satisfies a linear Poisson equation (as the Newtonian
potential), so that the extra (fifth) force mediated by it
can be sizable and proportional to standard gravity, effec-
tively renormalizing Newton’s constant. Near the sources,
on the other hand, the nonlinear terms become important,
which strongly suppress the spatial variations of the
Galileon field compared to that of the Newtonian potential
and ensure that the extra force, which is the gradient of the
Galileon field, is not felt on scales smaller than a given
‘‘Vainshtein radius.’’ In certain respects, this is very similar
to the chameleon screening [44,45], which operates for
instance in fðRÞ gravity models [26,27,46,47]. However,
in the chameleon case the self-interaction of the scalar field
depends on the field value (through a nonlinear interaction
potential) rather than its derivatives, and the nonderivative
coupling of the scalar field to matter makes its behavior
highly sensitive to the environmental matter density—in
high density regions the field value, rather than merely its
gradient, becomes extremely small so that the extra force is
suppressed.

It is therefore evident that one has to go beyond the local
environment to look for possible deviations from general
relativity and distinct signatures of the different modified
gravity models. In particular, a promising way is to look at
the cosmic expansion and the formation of structure in the
Universe: different screening mechanisms in different
modified gravity models can lead to very different predic-
tions as to when, where, and how the various cosmological
observables are affected.

The effects of Galileon gravity models on the back-
ground cosmological expansion have already been studied
in the literature in great detail [48–53]. It has been shown
that in these models there is a stable de Sitter point that can
be reached after the radiation and matter dominated eras,

thus yielding a viable cosmological expansion history.
Conditions to avoid the ghosts and other theoretical insta-
bilities have also been derived by considering the linear
perturbations [50,52].
To improve our understanding of the cosmological

effects of Galileon gravity models and make direct com-
parisons with observational data, a proper investigation of
the evolution of density fluctuations and formation of
large-scale structure is necessary. Here, as an initial step,
we consider the regime in which the density fluctuations
are small such that their evolution is well described by
linear perturbation theory. This regime is relevant for
several important cosmological observables, such as the
power spectrum of the cosmic microwave background
(CMB) temperature fluctuations and its polarizations, the
growth of matter density perturbations, the weak gravita-
tional lensing of distant galaxies and the CMB map, and
the integrated Sachs-Wolfe (ISW) effect and its cross
correlation with the galaxy distribution. The rich informa-
tion contained in this regime therefore warrants a detailed
study of the Galileon effects, which is precisely the topic of
this paper. The nonlinear regime of structure formation can
in principle contain further interesting information, but its
study is beyond the scope of the current paper.
The layout of this paper is as follows. We start by briefly

presenting the Galileon model and the Galileon and metric
field equations of motion in Sec. II. The perturbation
equations are derived and presented in a covariant and
gauge invariant (CGI) way in Sec. III using the method
of 3þ 1 decomposition. In Appendix B we present an
alternative and considerably simpler derivation of the per-
turbation equations which is particularly suitable for the
Galileon model as it takes advantage of the fact that the
Lagrangian density is fixed by the Galilean shift invariance
and that there are no derivatives higher than second order.
We present and discuss the results for the CMB, lensing
and linear matter power spectra in Sec. IV which we obtain
using a version of the CAMB code [54] which we have
modified. In Sec. IV we also discuss the time evolution of
the gravitational potential, Galileon field perturbation and
Galileon density contrast and the validity of the quasistatic
limit. We conclude in Sec. V.
Throughout this paper we will use the unit c ¼ 1 and

metric convention ðþ;�;�;�Þ. Greek indices run over 0,
1, 2, 3 and we will use 8�G ¼ � ¼ M�2

Pl interchangeably,

where G is Newton’s constant and MPl is the reduced
Planck mass.

II. THE MODEL

The covariant uncoupled Galileon action can be written
as [13]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

16�G
� 1

2

X5
i¼1

ciLi �Lm

�
; (1)
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where g is the determinant of the metric, R is the Ricci
scalar, and c1–5 are dimensionless constants. The five
covariant terms in the Lagrangian densities, which are
fixed by the Galilean invariance in flat spacetime, @�’ !
@�’þ b�, are given by

L1 ¼ M3’;

L2 ¼ r�’r�’;

L3 ¼ 2

M3
h’r�’r�’;

L4 ¼ 1

M6
r�’r�’½2ðh’Þ2 � 2ðr�r�’Þðr�r�’Þ

� Rr�’r�’=2�;
L5 ¼ 1

M9
r�’r�’½ðh’Þ3 � 3ðh’Þðr�r�’Þðr�r�’Þ

þ 2ðr�r�’Þðr�r�’Þðr�r�’Þ
� 6ðr�’Þðr�r�’Þðr�’ÞG���; (2)

where ’ is the Galileon field and M3 � MPlH
2
0 with H0

being the present-day Hubble expansion rate. Note that the
derivative couplings to the Ricci scalar R and the Einstein
tensor G�� in L4 and L5, respectively, break the shift

symmetry.
Besides the terms which appear in the Galileon

Lagrangians, Li, we are also allowed to introduce a
derivative coupling of the form Lcoupling �G��r�’r�’

with the equations remaining up to second order
[52,55–60]. In Ref. [52] this term was considered in the
context of the covariant Galileon model where it was
shown that in the weak field limit, where the curvature is
not too high, this coupling term in the Jordan frame can be
cast in the form of an explicit coupling to matter fields in
the Einstein frame.

In the rest of the paper we will choose to work in the
Jordan frame adding to Eq. (1) the Lagrangian density

L G ¼ �cG
MPl

M3
G��r�’r�’; (3)

where cG is a dimensionless constant which determines
the strength of the coupling. We will be interested in the
cases where the acceleration is due only to the field kinetic
terms and therefore we will set the potential term c1 to
zero.

The modified Einstein equations and the Galileon equa-
tion of motion are obtained by varying the action, S, with
respect to g�� and ’, respectively. Our derivation agrees

with those present in the literature [13,52] although we
explicitly write the Riemann tensor in terms of the Ricci
and Weyl tensors, whenever it leads to the cancellation of
some terms and hence to a slight simplification of the final
expressions. We show these equations in Appendix A.

III. THE PERTURBATION EQUATIONS

A. The perturbed equations in general relativity

In this section we derive the covariant and gauge invari-
ant perturbation equations in Galileon gravity. This will be
done in detail below but before that let us outline the main
ingredients of 3þ 1 decomposition and their application to
general relativity for ease of later reference.
The main idea of 3þ 1 decomposition is to make

spacetime splits of physical quantities with respect to the
4-velocity u� of an observer. The projection tensor h�� is

defined by h�� ¼ g�� � u�u� and can be used to obtain

covariant tensors which live in three-dimensional hyper-
spaces perpendicular to u�. For example, the covariant

spatial derivative r̂ of a tensor field T�...�
�...	 is defined as

r̂ 
T�...�
�...	 � h
�h

�
� . . . h

�
�h

�
� . . . h

�
	r�T�...�

�...�: (4)

The energy-momentum tensor and covariant derivative
of the 4-velocity are decomposed, respectively, as

T�� ¼ ��� þ 2qð�u�Þ þ �u�u� � ph��; (5)

r�u� ¼ ��� þ$�� þ 1

3
�h�� þ u�A�; (6)

where ��� is the projected symmetric and trace-free

(PSTF) anisotropic stress, q� is the heat flux vector, p

is the isotropic pressure, � is the energy density, ���

the PSTF shear tensor, $�� ¼ r̂½�u�� the vorticity,

� ¼ r
u
 ¼ 3 _a=a ¼ 3H (a is the mean expansion scale
factor) the expansion scalar and A� ¼ _u�; the overdot

denotes a time derivative expressed as _
 ¼ u
r

,
brackets mean antisymmetrization and parentheses sym-
metrization. The normalization is such that u
u
 ¼ 1. The
quantities ���, q�, � and p are referred to as dynamical

quantities and ���, $��, � and A� as kinematical quanti-

ties. Note that the dynamical quantities can be obtained
from Eq. (5) using the relations

� ¼ T��u
�u�; p ¼ � 1

3
h��T��;

q� ¼ h��u
�T��; ��� ¼ h��h��T�� þ ph��:

(7)

Decomposing the Riemann tensor and making use of
Einstein equations, we obtain, after linearization, five
constraint equations [61]:

0 ¼ r̂
ð���

�u

�$��Þ; (8)

�q� ¼ � 2r̂��

3
þ r̂���� þ r̂�$��; (9)

B �� ¼ ½r̂
��ð� þ r̂
$�ð����Þ�
�u�; (10)
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r̂ �E�� ¼ 1

2
�

�
r̂���� þ 2

3
�q� þ 2

3
r̂��

�
; (11)

r̂ �B�� ¼ 1

2
�½r̂
q� þ ð�þ pÞ$
�����


�u�; (12)

and five propagation equations:

0 ¼ _�þ 1

3
�2 � r̂ � Aþ �

2
ð�þ 3pÞ; (13)

0 ¼ _��� þ 2

3
���� � r̂h�A�i þ E�� þ �

2
���; (14)

0 ¼ _$�� þ 2

3
�$�� � r̂½�A��; (15)

0 ¼ �

2

�
_��� þ 1

3
����

�
� �

2
½ð�þ pÞ��� þ r̂h�q�i�

� ½ _E�� þ �E�� � r̂
B�ð���Þ�

�u��; (16)

0 ¼ _B�� þ �B�� þ r̂
E�ð���Þ�

�u�

þ �

2
r̂
��ð���Þ�


�u�: (17)

Here, ���
� is the covariant permutation tensor, E�� and

B�� are, respectively, the electric and magnetic parts of the

Weyl tensor W ��
�, defined by E�� ¼ u
u�W �
�� and

B�� ¼ � 1
2u


u���

��W ����. The angle brackets mean

taking the trace-free part of a quantity and r̂ � v ¼ r̂
v
,
where v is an arbitrary vector.

Besides the above equations, it is useful to express the

projected Ricci scalar R̂ into the hypersurfaces orthogonal
to u� as

R̂ ¼ 2��� 2

3
�2: (18)

The spatial derivative of the projected Ricci scalar,

�� � ar̂�R̂=2, is given as

�� ¼ �ar̂��� 2a

3
�r̂��; (19)

and its propagation equation given by

_�� þ 2�

3
�� ¼ � 2a�

3
r̂�r̂ � A� a�r̂�r̂ � q: (20)

Finally, there are the conservation equations for the
energy-momentum tensor:

_�þ ð�þ pÞ�þ r̂ � q ¼ 0; (21)

_q� þ 4

3
�q� þ ð�þ pÞA� � r̂�pþ r̂���� ¼ 0: (22)

In this paper we will always consider the case of a
spatially-flat Universe and, as a result, the spatial curvature

vanishes at the background level. Thus, setting R̂ ¼ 0 in
Eq. (18), we obtain the first Friedmann equation

�2

3
¼ ��: (23)

Note that at the background level only the zeroth-order
terms contribute to the equations. The second Friedmann
equation and the energy-conservation equation are
obtained by taking the zeroth-order parts of Eqs. (13) and
(21), as

_�þ 1

3
�2 þ �

2
ð�þ 3pÞ ¼ 0; (24)

_�þ ð�þ pÞ� ¼ 0: (25)

In what follows, we will only consider scalar modes of
perturbations, for which the vorticity, $��, and the mag-

netic part of the Weyl tensor, B��, are at most of second

order [61] and will be neglected from our first-order study.

B. The perturbation quantities in Galileon gravity

In the effective energy-momentum tensor approach, the
field equations (8)–(25) above preserve their forms, but the
dynamical quantities �, p, q� and ��� should be replaced

by the effective total ones �tot¼�fþ�G, ptot ¼ pf þ pG,

qtot� ¼ qf� þ qG�, and �tot
�� ¼ �f

�� þ �G
��, in which the

superscripts G and f identify the contributions from the
Galileon field and the rest of the matter fluid (including
cold dark matter, baryons, photons and neutrinos), respec-
tively. From here on, we shall drop the superscript tot for
ease of notation.
Before using Eq. (7) to calculate �G, pG, qG� and �G

��

from the components of the Galileon energy-momentum
tensor shown in Appendix A, we need an explicit expres-
sion for the Ricci tensor R�� in terms of the kinematical

quantities. For this let us expand the symmetric rank-2
tensor R�� in the following general way:

R�� ¼ �u�u� þ�h�� þ 2uð���Þ þ ���; (26)

in which �� is a four-vector and ��� a PSTF rank-2

tensor, both of which live in the three-dimensional hyper-
space perpendicular to the observer’s four-velocity
(u��� ¼ u���� ¼ 0). � and � are scalar quantities.

Then, using the modified Einstein field equations

R�� � 1

2
g��R ¼ �Ttot

�� ¼ �Tf
�� þ �TG

��; (27)

one gets

� ¼ 1

2
�ð�þ 3pÞ ¼ �

�
_�þ 1

3
�2 � r̂ � A

�
; (28)

� ¼ � 1

2
�ð�� pÞ ¼ � 1

3
½ _�þ �2 þ R̂� r̂ � A�; (29)
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�� ¼ �q� ¼ � 2r̂��

3
þ r̂���� þ r̂�$��; (30)

��� ¼ ���� ¼ �2

�
_��� þ 2

3
���� � r̂h�A�i þ E��

�
;

(31)

where we have used Eqs. (9), (13), (14), and (18). Notice that
the first lines are expressed in terms of total dynamical quan-
tities and the second lines in terms of kinematical quantities.
With the above useful relations and after some tedious

but straightforward calculations, the Galileon contribution
to the energy-momentum tensor up to first order in per-
turbed quantities can be identified as

�G ¼ c2

�
1

2
_’2

�
þ c3

M3
½2 _’3�þ 2 _’2ĥ’� þ c4

M6

�
5

2
_’4�2 þ 4 _’3�ĥ’þ 3

4
_’4R̂

�
þ c5

M9

�
7

9
_’5�3 þ 5

3
_’4�2ĥ’þ 1

2
_’5�R̂

�

þMPl

M3
cG

�
_’2�2 þ 4

3
_’�ĥ’þ 1

2
_’2R̂

�
þ higher order terms; (32)

pG¼c2

�
1

2
_’2

�
þ c3
M3

½�2 €’ _’2�þ c4
M6

�
�4 €’ _’3�� _’4 _��1

2
_’4�2�4 €’ _’2ĥ’�4

9
_’3�ĥ’þ _’4r̂:Aþ 1

12
_’4R̂

�

þ c5
M9

�
�5

3
€’ _’4�2�2

3
_’5 _���2

9
_’5�3�2

9
_’4�2ĥ’�8

3
€’ _’3�ĥ’�1

2
€’ _’4R̂�2

3
_’4 _�ĥ’þ2

3
_’5�r̂ �A

�

þMPl

M3
cG

�
�4

3
€’ _’��2

3
_’2 _��1

3
_’2�2þ2

3
_’2r̂ �A�4

3
€’ĥ’�4

9
_’�ĥ’þ1

6
_’2R̂

�
þhigher order terms; (33)

qG�¼c2½ _’r̂�’�þ c3
M3

½2 _’2�r̂�’�2 _’2r̂� _’�þ c4
M6

�
�4 _’3�r̂� _’þ2 _’3�2r̂�’� _’4r̂��þ3

2
_’4r̂
��
þ3

2
_’4r̂
$�


�

þ c5
M9

�
�5

3
_’4�2r̂� _’þ5

9
_’4�3r̂�’�2

3
_’5�r̂��þ _’5�r̂
��
þ _’5�r̂
$�


�

þMPl

M3
cG

�
�4

3
_’�r̂� _’þ2

3
_’�2r̂�’�2

3
_’2r̂��þ _’2r̂
��
þ _’2r̂
$�


�
þhigher order terms; (34)

�G
�� ¼ c4

M6

�
� _’4ð _��� � r̂h�A�i � "��Þ �

�
6 €’ _’2 þ 2

3
_’3�

�
r̂h�r̂�i’

�
6 €’ _’3 þ 4

3
_’4�

�
���

�

þ c5
M9

�
�ð _’5 _�þ _’5 _�2 þ 6 €’ _’4�Þ��� � ð _’5�þ 3 €’ _’4Þ _��� �

�
4 €’ _’3�þ _’4 _�þ 1

3
_’4�2

�
r̂h�r̂�i’

þ ð _’5�þ 3 €’ _’4Þr̂h�A�i � 6 €’ _’4E��

�
þMPl

M3
cG

�
�
�
2 €’ _’þ 2

3
_’2�

�
��� �

�
2

3
_’�þ 2 €’

�
r̂h�r̂�i’þ 2 _’2E��

�

þ higher order terms; (35)

in which ĥ � r̂�r̂�.
Following the same procure, the Galileon field equation of motion (see Appendix A) is given by

0 ¼ c2½ €’þ ĥ’þ _’�� þ c3
M3

�
4 €’ _’�þ 8

3
_’�ĥ’þ 4 €’ ĥ’þ 2 _’2�2 þ 2 _’2 _�� 2 _’2r̂ � A

�

þ c4
M6

�
6 €’ _’2�2 þ 4 _’3 _��þ 2 _’3�3 þ 8 €’ _’�ĥ’þ 26

9
_’2�2ĥ’� 4 _’3�r̂ � Aþ 4 _’2 _� ĥ’þ 3 €’ _’2R̂þ 1

3
_’3�R̂

�

þ c5
M9

�
5

9
_’4�4 þ 20

9
€’ _’3�3 þ 5

3
_’4 _��2 þ 8

9
_’3�3ĥ’þ 1

2
_’4 _� R̂þ 1

6
_’4�2R̂� 5

3
_’4�2r̂ � Aþ 4 €’ _’2�2ĥ’

þ 8

3
_’3 _��ĥ’þ 2 €’ _’3�R̂

�
þMPl

M3
cG

�
2

3
€’�2 þ 4

3
_� ĥ’þ 2

3
�2ĥ’þ 4

3
_’ _��þ 2

3
_’�3

� 4

3
_’�r̂ � Aþ €’ R̂þ 1

3
_’�R̂

�
þ higher order terms: (36)

As a consistency test, we checked that Eqs. (32)–(35) satisfy the conservation Eqs. (21) and (22).

LINEAR PERTURBATIONS IN GALILEON GRAVITY MODELS PHYSICAL REVIEW D 86, 124016 (2012)

124016-5



C. Perturbed equations in k space

For the purpose of the numerical studies presented in
this paper, we need to write the perturbed quantities de-
rived in the last subsection in terms of k-space variables.
This is achieved with the aid of the following harmonic
definitions:

r̂�’ � X
k

k

a
�Qk

�; r̂�� � X
k

k2

a2
ZQk

�;

A� � X
k

k

a
AQk

�; r̂�� � X
k

k

a
�Qk

�;

��� � X
k

�Qk
��; ��� � X

k

k

a
�Qk

��;

�� � X
k

k3

a2
�Qk

�; E�� � �X
k

k2

a2

Qk

��;

(37)

in which Qk is the eigenfunction of the comoving spatial

Laplacian a2ĥ satisfying

ĥQk ¼ k2

a2
Qk; (38)

and Qk
� and Qk

�� are given by Qk
� ¼ a

k r̂�Q
k and by

Qk
�� ¼ a

k r̂h�Q�i, respectively.

In terms of these harmonic expansion variables, Eqs. (9),
(11), (14), (16), (19), and (20) can be rewritten as

2

3
k2ð��ZÞ ¼ �qa2; (39)

k3
 ¼ � 1

2
�a2½kð�þ �Þ þ 3Hq�; (40)

kð�0 þH�Þ ¼ k2ð
þ AÞ � 1

2
�a2�; (41)

k2ð
0 þH
Þ ¼ 1

2
�a2½kð�þ pÞ�þ kq��0 �H��;

(42)

k2� ¼ ��a2 � 2kHZ; (43)

k�0 ¼ ��qa2 � 2kHA; (44)

respectively, where H ¼ a0=a and a prime denotes a
derivative with respect to conformal time � (ad� ¼ dt,
with t the physical time). From Eqs. (32), (34), and (35)
one obtains the k-space variables �G, qG and �G:

�G ¼ c2
1

a2
ð’0�0 þ ’02AÞ þ c3

M3

1

a4
ð½18’02H�0 þ 18’03HA� þ k½2’03Z� þ k2½2’02��Þ

þ c4
M6

1

a6

�
½90’03H 2�0 þ 90’04H 2A� þ k½15’04HZ� þ k2

�
12’03H�þ 3

2
’04�

��

þ c5
M9

1

a8
ð½105’04H 3�0 þ 105’05H 3A� þ k½21’05H 2Z� þ k2½15’04H 2�þ 3’05H��Þ

þMPl

M3
cG

1

a4
ð½18’0H 2�0 þ 18’02H 2A� þ k½6’02HZ� þ k2½4’0H�þ ’02��Þ; (45)

qG ¼ c2
k

a2
ð’0�Þ þ c3

M3

k

a4
ð6’02H�� 2’02�0 � 2’03AÞ þ c4

M6

1

a6
ðk½�12’03H�0 � 12’04HAþ 18’03H 2��

þ k2½’04�� ’04Z�Þ þ c5
M9

1

a8
ðk½�15’04H 2�0 � 15’05H 2Aþ 15’04H 3�� þ 2k2½�’05HZþ ’05H��Þ

þMPl

M3
cG

1

a4

�
k½�4’0H�0 � 4’02HAþ 6’0H 2�� þ 2

3
k2½’02�� ’02Z�

�
; (46)

�G ¼ c4
M6

1

a6
ðk½�’04�0 þ 3’04H�� 6’00’03�� þ k2½4’03H�� 6’00’02�þ ’04A� ’04
�Þ

þ c5
M9

1

a8
ðk½�3’05H 0�þ 12’05H 2�� 15’00’04H�� 3’00’04�0� þ k2½�12’00’03H�þ 12’04H 2�

� 3’04H 0�þ 3’00’04Aþ 6’00’04
� 6’05H
�Þ þMPl

M3
cG

1

a4
ðk½�2’00’0�� � 2k2½’00�þ ’02
�Þ: (47)

Note that the spatial derivative of the isotropic pressure p in k space is not needed in the CAMB code, which is why we do
not write it here. Finally, in k space, the perturbed Galileon field equation of motion, Eq. (36), reads
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0 ¼ c2
a3

ðk½�00 þ 2�0H þ ’0A0 þ ’0HAþ 2’00A� þ k2’0Zþ k3�Þ þ c3
M3

1

a5
ðk½12�00’0H þ 12’02HA0

� 18’02H 2Aþ 36’00’0HAþ 12’00H�0 þ 12’0H 0�0 þ 18’02H 0A�k2½6’02HZþ 2’02Z0 þ 4’00’0Z�
þ k3½4’0H�� 2’02Aþ 4’00��Þ þ c4

M6

1

a7
ðk½54’02H 2�00 � 108’02H 3�0 þ 54’03H 2A0 � 198’03H 3A

þ 216’00’02H 2Aþ 108’00’0H 2�0 þ 108’02HH 0�0 þ 144’03HH 0A� þ k2½�6’03H 2Zþ 36’00’02HZ

þ 12’03H 0Zþ 12’03HZ0�k3½�10’02H 2�� 12’03HA� 4’03H�þ 24’00’0H�þ 12’02H 0�

þ 6’00’02��Þ þ c5
M9

1

a9
ðk½�240’03H 4�0 � 345’04H 4Aþ 60’03H 3�00 þ 60’04H 3A0 þ 300’00’03H 3A

þ 180’00’02H 3�0 þ 180’03H 2H 0�0 þ 225’04H 2H 0A� þ k2½�45’04H 3Zþ 60’00’03H 2Zþ 15’04H 2Z0

þ 30’04HH 0Z�k3½�36’03H 3�� 12’04H 2�� 15’04H 2Aþ 3’04H 0�þ 36’00’02H 2�þ 24’03HH 0�

þ 12’00’03H��Þ þMPl

M3

cG
a5

ðk½6H 2�00 þ 6’0H 2A0 � 18’0H 3Aþ 12’00H 2Aþ 12HH 0�0 þ 24’0HH 0A�
� k2½6’0H 2Zþ 4’00HZþ 4’0HZ0 þ 4’0H 0Z� þ k3½2H 2�� 4’0HAþ 4H 0�þ 2’00��Þ: (48)

As another consistency test, we have checked that the
conservation Eqs. (21) and (22) in k space,

�0 þ ðkZ� 3HAÞð�þ pÞ þ 3H ð�þ �pÞ þ kq ¼ 0;

(49)

q0 þ 4Hqþ ð�þ pÞkA� k�p þ 2

3
k� ¼ 0; (50)

are satisfied by the k-space perturbed expressions derived
above.

1. Synchronous and Newtonian gauge equations

Here, we present the recipe to write the CGI perturba-
tion equations in the synchronous and in the Newtonian
gauge [62].

The perturbed Friedmann-Robertson-Walker line
element in the synchronous gauge is written as

ds2S ¼ a2ð�Þ½d�2 � ð�ij þ hSijÞdxidxj�: (51)

Latin indices run over 1, 2 and 3, �ij is the delta function

and the spatial perturbed metric hSij � hSijðx; �Þ is given by

hSij ¼
Z

d3keikx
�
k̂ik̂jh

Sðk; �Þ þ 6

�
k̂ik̂j � 1

3
�ij

�
�Sðk; �Þ

�
;

(52)

where a superscript S denotes quantities in the synchronous

gauge, x is the spatial position vector and k̂ ¼ k=k is the
unit vector mode in the k direction. The CGI and the
synchronous gauge quantities are related by means of
the following relations:


 ¼ 1

4k2
½6�00S þ h00S� � 1

4
�S; A ¼ 0;

� ¼ �2�S; Z ¼ h0S

2k
; � ¼ 1

2k
ð6�0S þ h0SÞ:

(53)

The line element in the Newtonian (also known as
longitudinal) gauge is diagonal, described by two scalar
potentials � and �, and reads

ds2N ¼ a2ð�Þ½ð1þ 2�Þd�2 � ð1� 2�Þdxidxi�: (54)

Written in this way, the perturbed line element is only
applicable to the study of the scalar modes of the metric
perturbations. The two potentials are related to the Weyl
potential 
 as

� ¼ 
� 1

2

�
a

k

�
2
��; � ¼ �
� 1

2

�
a

k

�
2
��; (55)

and the other CGI quantities are given by

A ¼ ��; � ¼ 2�;

Z ¼ 3

k
ð�0 ��H Þ; � ¼ 0:

(56)

We do not present the full perturbed field equations in
the synchronous and Newtonian gauges because they are
not used in our modified CAMB code. However, note that
CAMB works in the cold-dark-matter frame where A ¼ 0,
which is equivalent to the synchronous gauge written in a
slightly different formalism.

IV. RESULTS

In this section we present and discuss our results, which
were obtained using a version of the CAMB code [54]
suitably modified by us to follow Galileon gravity models.
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A. Background

We compute the evolution of the cosmological back-
ground using the Friedmann equation, Eq. (24), and the
background Galileon equation of motion given by taking
the zeroth-order terms of Eq. (36):

0 ¼ c2½ €’þ _’�� þ c3
M3

½4 €’ _’�þ 2 _’2�2 þ 2 _’2 _��

þ c4
M6

½6 €’ _’2�2 þ 4 _’3 _��þ 2 _’3�3�

þ c5
M9

�
5

9
_’4�4 þ 20

9
€’ _’3�3 þ 5

3
_’4 _��2

�

þMPl

M3
cG

�
2

3
€’�2 þ 4

3
_’ _��þ 2

3
_’�3

�
: (57)

The value of the Galilean background energy density ��’;i

at the starting redshift, which we take to be zi ¼ 106, is
determined through the zeroth-order part of Eq. (32),

��’ ¼ c2

�
1

2
_’2

�
þ c3

M3
½2 _’3�� þ c4

M6

�
5

2
_’4�2

�

þ c5
M9

�
7

9
_’5�3

�
þMPl

M3
cG½ _’2�2�; (58)

by the initial values of the field time derivative _’i and the
expansion rate �i, the latter being given by the fixed matter
and radiation components via Eq. (23) (the Galileon back-
ground energy density is negligible at early times). We
specify �i using	m0 ¼ 0:265 and	r0 � 8� 10�5 for the
present-day values of the fractional energy density of
matter and radiation, respectively [63,64]. Since we are
assuming a spatially flat Universe we need the evolution of
the Galileon field to be such that 	’0 � 1�	m0 �
0:735. This can be done by choosing appropriately the
value of the c2 parameter by a trial and error approach.
As a consistency test, we have checked that Eqs. (23) and
(25) are satisfied by the numerical solution we obtain from
CAMB. Moreover, we have also checked that the back-
ground expansion solution from CAMB agrees very well
with those in the literature [48–53] and from an indepen-
dent code written in PYTHON by us.

In this paper we focus on four different sets of Galileon
parameters which we list in Table I. In Ref. [52] (to which
we refer the reader for further details on the background
evolution of these models) it was shown that these choices

of parameters are free of ghost and Laplace instabilities for
initial conditions with �’;i=�m;i � 10�5. Here we shall use

this and other choices of initial conditions which have not
shown any theoretical instabilities of the scalar perturbations
throughout the entire expansion history yielding therefore
viable cosmological evolutions. In Table II we list all these
initial conditions with the values of the c2 parameter and age
of the Universe. The initial conditions were chosen to span
over a wide range of different behaviors of the Galileon
model. It would be interesting to investigate the theoretical
motivation and naturalness of these initial conditions
although such an investigation is beyond the scope of the
present work (see e.g., Refs. [29,65]).
Figure 1 shows the time evolution of the ratio of the

Hubble expansion rates, H ¼ �=3, of the Galileon and

CDM models and of the Galileon field equation-of-state
parameter, w ¼ �p’= ��’, where

�p’ ¼ c2

�
1

2
_’2

�
þ c3

M3
½�2 €’ _’2�

þ c4
M6

�
�4 €’ _’3�� _’4 _�� 1

2
_’4�2

�

þ c5
M9

�
� 5

3
€’ _’4�2 � 2

3
_’5 _��� 2

9
_’5�3

�

þMPl

M3
cG

�
� 4

3
€’ _’�� 2

3
_’2 _�� 1

3
_’2�2

�
; (59)

TABLE I. The model parameters for the Galileon models
studied in this paper. The c2 parameter is tuned to yield the
required amount of dark energy today and its exact value
depends on the choice of the initial Galileon energy density �’;i.

Models c3 c4 c5 cG

Galileon 1 12.8 �1:7 1.0 0

Galileon 2 6.239 �2:159 1.0 0

Galileon 3 5.73 �1:2 1.0 0

Galileon 4 5.73 �1:2 1.0 �0:4

TABLE II. The values of the parameter c2 and of the age of the
Universe for all the initial conditions used in this paper. The age
for 
CDM is 13.738 Gyr.

�’;i=�m;i c2 Age (Gyr)

Galileon 1

10�4 �27:00 13.978

10�5 �27:49 14.317

10�6 �27:56 14.366

10�7 �27:58 14.374

10�8 �27:59 14.375

Galileon 2

10�4 �12:600 13.614

10�5 �12:846 14.256

5� 10�6 �12:857 14.286

10�6 �12:885 14.357

10�7 �12:891 14.372

10�8 �12:892 14.375

Galileon 3

10�4 �14:760 13.854

10�5 �15:122 14.296

10�6 �15:179 14.363

10�7 �15:188 14.373

10�8 �15:189 14.375

Galileon 4

10�4 �14:186 13.833

10�5 �14:519 14.285

5� 10�6 �14:539 14.312
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is the background pressure [the zeroth-order part of
Eq. (33)].

Figure 1 shows that, depending on the initial condition,
the expansion rate can be faster or slower than in 
CDM
for different times during the evolution. Another notewor-
thy aspect of the background evolution is the possibility of
having ghost-free phantom dynamics, w<�1 [28,29,66].
The initial values of �’;i can have a great impact on the

evolution of w: the lower �’;i the more negative the values

of w will be. The reason is that lower values of �’ in the

past will force the energy density to grow more drastically
(w<�1) closer to today when the field starts to be
driven towards the de Sitter attractor evolution [50,52,67]
(see Refs. [51,53] for expansion history observational con-
straints). However, for �’;i & 10�5, the strong dependence

of w on the initial conditions does not propagate into the
expansion rate which is only sensitive to changes in w
for times sufficiently close to today when dark energy is
non-negligible.

FIG. 1 (color online). Evolution of the ratio of the Hubble expansion rates of the Galileon and 
CDM models, H=H
CDM (H ¼
�=3), and of the Galileon field equation of state parameter w. The evolutions are shown for the four models of Table I for different
initial conditions. In the Galileon 1, Galileon 2 and Galileon 3 panels, on the left-hand side from top to bottom and on the right-hand
side from right to left, the lines correspond, respectively, to �’;i=�m;i ¼ f10�4; 10�5; 10�6; 10�7; 10�8g. The same applies for the

Galileon 4 panels but for �’;i=�m;i ¼ f10�4; 10�5; 5� 10�6g.

FIG. 2 (color online). CMB temperature power spectra for the
Galileon3modelwith twodifferent initial conditions and for
CDM
(dashed black), together with the WMAP 7-year (squares) [2] and
ACT (circles) [68] data. From top to bottom, at l ¼ 500, theGalileon
lines (solid) correspond to �’;i=�m;i ¼ f10�4; 10�5g, respectively.
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B. Linear perturbation results

We now look at the physical predictions of the full
linear perturbation equations derived in the previous sec-
tions. We always use the best fit parameters from the
WMAP 7-year data results [63]: 	m0 ¼ 0:265, ns ¼
0:963, H0 ¼ 100h km=s=Mpc (h ¼ 0:71), 	k ¼ 0, where
ns and 	k are the spectral index and the fractional energy
density associated with the spatial curvature. These values
are obtained for a
CDMmodel but may be modified once
a Galileon gravity cosmology is assumed. However, for the
purposes of our analysis of linear perturbations, it is suffi-
cient to consider these values and we will provide a revised
fit of the WMAP 7-year data in Galileon cosmology in a
future work. The amplitude of the primordial curvature
perturbations is �2

Rðk0Þ ¼ 2:43� 10�9 at a pivot scale

k0 ¼ 0:002 Mpc�1. We set the initial conditions of the
Galileon perturbation � and its time derivative to be
zero, and have checked that the evolution of � is insensitive
to the exact initial values.

As a consistency test of the results that follow,
we checked that the perturbed quantities we obtain
from CAMB satisfy the k-space conservation equations,
Eqs. (49) and (50).

1. CMB

In Fig. 2 we plot the CMB power spectrum for the
Galileon 3 model and 
CDM together with the WMAP
7-year [2] (squares) and ACT [68] (circles) data. Figure 3 is
the same as Fig. 2 but for the four models of Table I with a
log-scaled x axis which highlights the low-l region. The
effect of the Galileon field in the CMB power spectrum is
mainly twofold.
First, the modifications of the expansion rate can shift

the positions of the CMB acoustic peaks. The value of the
initial condition has an impact on the background expan-
sion rate and hence on the distance to the surface of last
scattering, which translates into different positions for the
peaks. For sufficiently small values of �’;i=�m;i & 10�5

FIG. 3 (color online). CMB power spectra for the four Galileon models for different initial conditions and 
CDM, together with the
WMAP 7-year data (squares) [2] and ACT (circles) [68] data. In the Galileon 1 and Galileon 3 panels, from top to bottom, at l ¼ 10,
the lines correspond, respectively, to �’;i=�m;i ¼ f10�4ðnot visibleÞ; 10�5; 10�6g, 
CDM. The same for the Galileon 2 and Galileon 4

panels, but for l ¼ 2 and for �’;i=�m;i ¼ 10�4ðnot visibleÞ, 
CDM, �’;i=�m;i ¼ f�10�6; 10�5; 5� 10�6; 10�6g, and �’;i=�m;i ¼
f10�4ðnot visibleÞ; 10�5; 5� 10�6g, 
CDM, respectively.
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(not plotted in Fig. 2 since they are indistinguishable from
the �’;i=�m;i ¼ 10�5 case) the Galileon 3 curves have

essentially the same peaks as a result of the almost iden-
tical expansion rate (cf. Fig. 1). The same applies for the
other models Galileon 1, Galileon 2, and Galileon 4.

Second, the late time evolution of the gravitational
potential can be also different from 
CDM, resulting in
a modified signal of the ISW effect on the largest angular
scales (low l in Fig. 3). For instance, the choice
�’;i=�m;i ¼ 10�4 is completely ruled out for all the models

shown, since the spectrum at low l is larger than the
observational data by several orders of magnitude. In this
case, the ISWeffect is so pronounced that it dominates over
the first acoustic peak and can also have an impact on the
second and third ones.

Lowering the initial amount of dark energy helps to
reconcile the models with the data. However, for
Galileon 4 there is still too much power on large
scales. Note that this model differs from Galileon 3
by having a nonvanishing value of cG and it is impos-
sible to keep lowering the initial Galileon density

(�’;i=�m;i�5�10�6) as theoretical instabilities start to

appear. This may be a hint that the strength of the
derivative coupling cG can have a crucial impact on
the predictions. For all the other models (Galileon 1 to
Galileon 3), for sufficiently small values of �’;i=�m;i, the

dependence on the initial conditions become less pro-
nounced and the fit to the CMB improves. There are still
differences from the best fit 
CDM model and from the
data at low l but since the errorbars are also larger due to
cosmic variance, Galileon 1 to Galileon 3 models are
still compatible with the observations.
It is interesting to note that the CMB power spectrum

for the Galileon 1 and Galileon 3 models can be quite
similar although their c3 and c4 parameters are different.
This shows that there are, to some extent, degeneracies in
the Galileon model parameter space. On the other hand,
changing only one of the Galileon parameters can also
change considerably the CMB predictions. For instance,
in the top-right panel we plot the CMB power spectrum
of a model sharing all the parameters of Galileon 2 in
Table I except that c4 ¼ �1:659, for �’;i=�m;i ¼ 10�6

FIG. 4 (color online). Time evolution of the Weyl gravitational potential 
 for the four Galileon models and 
CDM (dashed) for
k ¼ f1:0; 0:1; 0:01 and 0:001g hMpc�1. All the models have the initial condition �’;i=�m;i ¼ 10�5. At a ¼ 0:1, for the k ¼
f1:0; 0:1; 0:01g hMpc�1 panels, and at a ¼ 0:4 for the k ¼ 0:001 hMpc�1 panel, from top to bottom the lines correspond, respectively,
to 
CDM, Galileon 1, Galileon 3, Galileon 2, and Galileon 4.
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(dashed red). Note that c2 also differs because it is tuned
to yield the required amount of dark energy today, giving
c2 ¼ �14:968. We see that by changing only c4 the
predicted CMB spectrum gets considerably closer to
the data for the lowest values of l. It is also interesting
to note that all the models have the value of c5 fixed and
we expect a richer phenomenology if we allow this
parameter to vary as well.

To further understand the CMB predictions of the
Galileon model at low l, we plot in Fig. 4 the time
evolution of the Weyl potential, 
, which is the relevant
quantity for the ISW effect. We show the evolution for
different values of k for the initial condition �’;i=�m;i ¼
10�5. The variety of evolutions can be very rich within the
parameter space of the Galileon model and depends on
the scale under consideration. The evolution of 
 agrees,
to some extent, with the 
CDM model during the radia-
tion dominated era. However, in the matter era, while 
 is
constant in the 
CDM model, that is not the case for
Galileon gravity and the gravitational potential does

evolve with time. In particular, we note a very pronounced
variation with time of 
 for Galileon 4 during the matter
era and today which explains why there is so much
power at low l in this model (cf. Fig. 3). Moreover, for
the models shown, the gravitational potential suffers an
overall deepening with time [52,65,67,69], in clear con-
trast with the 
CDM model where the gravitational
potential gets shallower with the onset of the accelerated
expansion.

2. Weak lensing power spectrum

The weak lensing signal of the CMB anisotropies is
determined by the lensing potential c , which is an effec-
tive potential obtained by integrating the Weyl potential,

, from today to the time of last scattering [70] (see also
Ref. [71] for a concise description and application to
modified gravity theories).
The angular power spectrum of c is plotted in

Fig. 5 for the four Galileon models and we see that it
can be noticeably larger than the 
CDM result on all

FIG. 5 (color online). Angular power spectrum of the weak lensing potential c for the four Galileon models with different initial
conditions and 
CDM (dashed). In the Galileon 1, Galileon 2, and Galileon 3 panels, from top to bottom, the lines correspond,
respectively, to �’;i=�m;i ¼ f10�5; 10�6; 10�7g and 
CDM (the two smallest initial conditions are nearly indistinguishable in the

Galileon 1 and Galileon 3 panels). The same for the Galileon 4 panel but for �’;i=�m;i ¼ f10�5; 5� 10�6g and 
CDM.
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scales, as a consequence of the pronounced time variation
of 
 in these models (cf. Fig. 4). The Galileon 4 model
is the one where the gravitational potential deepens the
most with time and it is therefore the model with the
most lensing power. The initial conditions also have an
impact on the result, especially for �’;i=�m;i * 10�6. For

instance, for the case �’;i=�m;i ¼ 10�4 (which is not plot-

ted) the power is higher by several orders of magnitude for
all the models.

This is an important result and it shows that weak
lensing measurements have the capability to place strong
constraints on the Galileon gravity model. In particular, the
Galileon 1 to Galileon 3 models, which have CMB
temperature power spectrum predictions similar to that of

CDM for �’;i=�m;i ¼ 10�6 (red line), nevertheless have

very distinctive predictions for the power spectrum of the
lensing potential.

3. Matter power spectrum

Figure 6 shows the linear matter power spectrum pre-
dicted in the different models. We have chosen to plot the
power spectra at redshift �zLRG ¼ 0:31, which is the median
redshift of luminous red galaxies (LRGs) in DR7 from the
Sloan Digital Sky Survey [72]. A recent estimate of the
power spectrum of LRGs is shown by the points with
errorbars reproduced in each panel [1]. By plotting the
matter power spectrum at the same redshift as the mea-
surement, there is no need to make any adjustment for the
growth factor to compare theory to observation. However,
since we are plotting the prediction of linear perturbation
theory in real space, there are three effects which could be
responsible for any discrepancies between the theoretical
spectra and the measurement: (1) Galaxy bias.—This is
generally modeled as a constant shift in the amplitude of
the power spectrum on large scales, though simulations

FIG. 6 (color online). Matter power spectrum at redshift �zLRG ¼ 0:31 for the four Galileon models with different initial conditions
and 
CDM (dashed), together with the SDSS-DR7 LRG host halo power spectrum [1]. �zLRG is the mean redshift of the LRG sample.
In the Galileon 1 and Galileon 3 panels, from top to bottom, the lines correspond, respectively, to �’;i=�m;i ¼ f10�4; 10�5; 10�6g and

CDM. The same for the Galileon 2 and Galileon 4 panels but for �’;i=�m;i ¼ f10�4; 10�5; 5� 10�6; 10�6g, 
CDM and �’;i=�m;i ¼
f10�4; 10�5; 5� 10�6g, 
CDM, respectively.
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show that the bias is scale dependent, particularly
for highly clustered objects [73]. (2) Redshift-space
distortions.—Using peculiar velocities to infer the radial
distance to a galaxy introduces a systematic shift in
the clustering amplitude. Again, this can be scale de-
pendent [74]. (3) Nonlinear effects.—This includes the
familiar mode coupling between fluctuations on differ-
ent scales, but also, in the case of the Galileon models,
possible screening effects which could introduce scale
dependent departures from the linear perturbation theory
predictions.

There are different lines of evidence which point to
LRGs being biased tracers of the dark matter distribution.
Interpretations of the measured clustering of LRGs in
terms of empirical halo occupation distribution models
suggest that these galaxies reside in massive dark matter
haloes, with an effective host halo mass of � 1014M	
[75–77]. At the median redshift of the LRGs, this suggests
a linear bias factor of b� 2. Measurements of the three
point correlation function of LRGs can be used to infer
their bias, and also return b� 2 [78,79]. For such a high

bias, the amplitude boost from redshift distortions on large
scales is expected to be modest. LRGs are therefore
expected to have a clustering amplitude that is approxi-
mately 4 times higher than that of the dark matter on large
scales. The measured power spectrum plotted in Fig. 6 is an
estimate of the power spectrum of the haloes which host
LRGs, and is not directly comparable with the estimates of
the LRG bias factor outlined above. Reid et al. [1] processed
the LRG density field by ‘‘collapsing’’ LRGs in common
dark matter haloes, to reduce the small-scale ‘‘fingers of
God’’ redshift space distortion. Hence, massive haloes
which host more than one LRG are given the same weight
as a halo which hosts one LRG. Therefore, the effective bias
of a sample of haloes weighted in this way will be smaller
than the effective bias when retaining the weighting of the
number of LRGs observed. If we compare the 
CDM
power spectrum to the measurement in Fig. 6, we see that

the effective bias of this sample is closer to b� ffiffiffi
2

p
.

Nevertheless, despite this complication, it seems
reasonable to demand that in a viable model, the observed
power spectrum of LRG host haloes should have a higher

FIG. 7 (color online). Time evolution of the linear density contrast of dark matter (DM, solid lines), �DM ¼ �DM= ��DM � 1, baryonic
matter (B, dotted lines), �B ¼ �B= ��B � 1, and Galileon field (dashed lines), �’ ¼ �’= ��’ � 1, for the four Galileon models for

k ¼ f1:0; 0:1; 0:01 and 0:001g hMpc�1. All the models have initial condition �’;i=�m;i ¼ 10�5. All the models behave more or less in

the same way for all the scales. In the k ¼ 0:001 hMpc�1 panel, the DM and B lines are indistinguishable.
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amplitude than the linear theory matter power spectrum.
This simple requirement puts many of the Galileon model
power spectra plotted in Fig. 6 at odds with the observed
power spectrum. For these models, the success of the
comparison with the data depends sensitively on the value
of �’;i=�m;i. For instance, the initial condition �’;i=�m;i ¼
10�4 has an excess of power clearly incompatible with the
observations, as it would require a bias parameter b 
 1.
Lowering �’;i=�m;i allows a better match to the observa-

tions to be obtained and the results become less sensitive to
the initial conditions (lower initial conditions have nearly
the same prediction as �’;i=�m;i ¼ 10�6). However, all the

models still produce an excess of power when compared to

CDM indicating that the formation of linear structure can
be highly enhanced by the modifications of gravity in the
Galileon model, a conclusion in agreement with previous
linear perturbation studies in the literature [52,67,69,80].
The Galileon 4 model is the one with the worst fit, even for
the lowest initial condition �’;i=�m;i ¼ 5� 10�6 (recall

that in this model lower initial conditions lead to the
appearance of instabilities). This indicates once again
that the cG parameter can have a critical impact on the
results. For k & 0:05 hMpc�1, all the other models would
agree very well with the data if b ¼ 1 and �’;i=�m;i &

10�5. However, considering b > 1 will increase the power
on all scales, which could in principle be used to place
strong observational contraints on Galileon models.
We should stress, however, that when comparing the

Galileon model with 
CDM and clustering data one
should be cautious about the validity of linear perturbation
theory since the scale at which the Vainshtein screening
effect becomes important is not well known. For example,
numerical simulations have shown that in other modified
gravity models such as the fðRÞ and dilaton [81–83], linear
perturbation theory can fail even on scales as large as k�
0:01 hMpc�1 because of the screening [11,83]. As a result,
a detailed study of the effects of the Vainshtein screening is
necessary for a more complete comparison of the theory

FIG. 8 (color online). Time evolution of the k-space Galileon field perturbation � (dashed) along with the corresponding quasistatic
limit (solid), for the four Galileon models for k ¼ f1:0; 0:1; 0:01 and 0:001g hMpc�1. All the models have initial condition �’;i=�m;i ¼
10�5. For the k ¼ 1:0 hMpc�1 and k ¼ 0:1 hMpc�1 panels at a ¼ 0:2, from top to bottom, the lines correspond to the models
Galileon 4, Galileon 2, Galileon 3, and Galileon 1, respectively. For the k ¼ 0:01 hMpc�1 panel at a ¼ 1:0, from top to bottom the
lines correspond to Galileon 2, Galileon 3, Galileon 1, and Galileon 4, respectively. For the k ¼ 0:001 hMpc�1 panel at a ¼ 1:0, from
top to bottom, the lines correspond to Galileon 2, Galileon 4, Galileon 3, and Galileon 1, respectively.
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predictions against the observations. This is beyond the
scope of the present paper and will be left for future work
(see however Refs. [84–90] for work already taken in this
direction).

4. Clustering of the Galileon field

We now turn the attention to the time evolution of
the linear density contrast of the Galileon field �’ ¼
�’= ��’ � 1. This is plotted in Fig. 7 for the initial condi-

tion �’;i=�m;i ¼ 10�5. We see that the Galileon density

contrast (dashed lines) can be large, being comparable
with the dark matter (solid lines) and baryonic matter
(dotted lines) density contrasts throughout most of the
evolution. This happens for all the scales considered
including small scales such as k ¼ 1:0 hMpc�1.

This strong clustering of the Galileon field has a large
impact on the evolution of the Weyl gravitational potential

 which directly determines many observables such as the
ISW effect (cf. Fig. 3), weak lensing (cf. Fig. 5), and
clustering of matter (cf. Fig. 6).

One can also note that the Galileon density contrast
starts to decrease with time close to the present day. This
could be due to the rapid growth of the Galileon back-
ground density at those times (w<�1) which leads to a
decrease of �’ ¼ �’= ��’ � 1.

5. Quasistatic limit approximation

In Fig. 8 we plot the time evolution of the k-space
Galileon perturbation, � (dashed), along with the corre-
sponding solution obtained in the quasistatic limit (solid).
The quasistatic limit is the limit in which the spatial
derivatives of the field are dominant over the time deriva-
tive ones. Practically, this means neglecting all terms in the
field equations that are suppressed by H 2=k2 or ’0=k2.

As for the evolution of the density contrast �’ and the

Weyl potential 
, here there is also a strong scale depen-
dence. Moreover, we see that even for near-horizon scales
such as k ¼ 0:001 hMpc�1 the quasistatic limit can be a
good (though not perfect) approximation to the full solu-
tion. In particular, in the Galileon 2 curves with k ¼
0:01 hMpc�1, one can see that the quasistatic approxima-
tion agrees quite well with the full solution despite the
oscillations in the latter.

The quasistatic limit appears therefore to be valid for
many cases in the Galileon model, especially when one is
interested in subhorizon scales. However, it breaks down
on superhorizon scales and can lead to inaccurate predic-
tions of the ISWeffect and weak lensing signals. Moreover,
as we can see from the lower-right panel of Fig. 8, on near-
horizon scales with k ¼ 0:001 hMpc�1, the error of this
approximation can be a few percent, which is much larger
than the numerical error of the CAMB code (which is at
subpercent level). For these reasons, we prefer to use the
full numerical solution in the modified CAMB code.

V. CONCLUSION

We have studied the cosmology of Galileon gravity
models at the linear perturbation level. For this we derived
the full CGI perturbation equations using two independent
methods: the normal procedure of linearizing the full
field equations and an alternative derivation that is particu-
larly suitable for models like Galileon gravity, where the
shape of the Lagrangian is fixed by certain symmetries
[e.g., there are no free functions such as the potential in
quintessence and fðRÞ gravity models] and the field equa-
tions only contain up to second-order derivatives. The
second derivation is particularly appealing because it is
much simpler than the first one, which is very lengthy and
complicated for the full Galileon model. We checked that
the two methods give the same set of perturbation equa-
tions, and then solved these equations using a modified
version of the CAMB code, which we tested by performing
several successful consistency tests.
Our code also solves the background expansion history

in Galileon models and our results agree with those in the
literature. We find that the expansion rate in Galileon
cosmology can depend sensitively on the initial value of
the Galilean energy density, especially if the latter is not
small, e.g., if �’;i=�m;i * 10�5. Throughout the evolution,

the expansion rate can be faster or slower than in 
CDM
and the Galileon equation-of-state parameter can cross the
phantom line (w<�1) in a way which is free of ghostlike
instabilities.
The modified background expansion translates into a

different age of the Universe and distance to last scattering,
which leads to a visible shift in the positions of the acoustic
peaks of the CMB temperature power spectrum. The stron-
gest effect of the Galileon field on the CMB temperature
power spectrum, however, appears to be on the largest
angular scales (low values of l), where the full power
receives a significant contribution from the integrated
Sachs-Wolfe effect, which is due to the late-time evolution
of the gravitational potential 
. Indeed, we found that in
Galileon models the gravitational potential evolves even
during the matter dominated era and can undergo an over-
all deepening at late times. This is very different from the
standard 
CDM prediction that the gravitational potential
is constant during matter domination and becomes
shallower when the expansion of the Universe starts to
accelerate. The origin of the abnormal evolution in the
gravitational potential can be traced back to the pressure
perturbation and anisotropic stress of the Galileon field,
which cause it to cluster strongly (comparable to the
clustering of dark and baryonic matter species) on all
scales.
The evolution of the gravitational potential influences a

number of cosmological observables, both directly and
indirectly. In addition to the ISW effect, it also has strong
impact on the growth of matter density perturbations (and
therefore the linear and nonlinear matter power spectra),
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weak gravitational lensing and their cross correlations. In
particular, we have shown that the Galileon model can
predict considerably more power than 
CDM for the
weak lensing power spectrum at all scales, even if their
predictions for the CMB power spectrum more or less
agree. Galileon models might also have distinctive predic-
tions for the cross correlation of the ISW effect with the
galaxy distribution. These are important observational sig-
natures in the linear perturbation regime that can in prin-
ciple help to distinguish the Galileon models from the
standard 
CDM paradigm.

On the other hand, the sensitive dependence of the
Galileon behavior on the model parameters makes the
phenomenology of the Galileon cosmology especially
rich. For example, by tuning the parameters in the
Galileon Lagrangian, one can get a CMB power spectrum
which is very close to the 
CDM prediction and therefore
hard to distinguish by looking at very large scales.

On subhorizon scales, we have seen that the linear
growth of matter density perturbations can be significantly
enhanced with respect to the
CDM results, even for those
model parameters that lead to similar CMB power spec-
trum. However, in Galileon models, the Vainshtein screen-
ing mechanism is at play and its potential influence on the
clustering of matter is still to be properly understood. As an
analogy, in other modified gravity models such as the fðRÞ
gravity, the chameleon screening effect has been shown to
make the linear perturbation theory a poor approximation
even on scales as large as k ¼ 0:01 hMpc�1. We therefore
conclude that a better understanding of the true impact of
the Vainshtein screening is necessary, before attempting a
more rigorous confrontation of the predicted matter power
spectrum with measurements of galaxy clustering. Such a
study will be left for future work.

Finally, we have seen that the quasistatic approximation
for the evolution of the Galileon field perturbation serves as
a good approximation on subhorizon scales for the models
we have shown in this paper. It works reasonably well on
near-horizon scales such as k ¼ 0:001 hMpc�1, with an
error of the order of a few percent. However, for accuracy
considerations we solve the full evolution equation of the

Galileon perturbation in our code, which does not take
much longer anyway.
In conclusion, we have shown that the detailed study of

the full perturbation equations unveils a rich phenomenol-
ogy in Galileon gravity models. The full cosmological
parameter space increases considerably in Galileon grav-
ity. Even with current data, the indications are that strong
constraints can be placed on this parameter space. In a
future project we will use our modification to the CAMB
software to carry out a formal study of the Galileon
parameter space.
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APPENDIX A: THE COVARIANT FIELD
EQUATIONS IN GALILEON GRAVITY

The modified Einstein field equations and the Galileon
field equation of motion can be obtained by varying the
action with respect to g�� and’, respectively. The Einstein

field equations are given by

G�� ¼ �½Tf
�� þ Tc2

�� þ T
c3
�� þ Tc4

�� þ T
c5
�� þ T

cG
���; (A1)

where

Tc2
�� ¼ c2

�
r�’r�’� 1

2
g��r
’r
’

�
; (A2)

Tc3
�� ¼ c3

M3
½2r�’r�’h’þ 2g��r
’r�’r
r�’

� 4r	’rð�’r�Þr	’�; (A3)

Tc4
�� ¼ c4

M6
g��

�
ðh’Þ2r	’r	’� 1

12
Rðr
’r
’Þ2 þ 4h’r
’r�’r
r�’� 4r	r
’r	r�’r
’r�’

�r	’r	’r
r�’r
r�’� R
�r
’r�’r	’r	’� þ c4
M6

½2ðh’Þ2r�’r�’þ 2r	’r	’r�’R�ð�r�Þ’

� 8h’r	’r	rð�’r�Þ’� 2r
r�’r
r�’r�’r�’þ 8r	’r�r	’r�rð�’r�Þ’

� 2h’r	’r	’r�r�’� 4r
r�’r
’r�’r�r�’� 2

3
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T
c5
�� ¼ c5

M9
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The Galileon field equation of motion is given by
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The usual equations presented in the literature ([13,52], e.g.,) are related to ours via the following Riemann tensor
expansion:
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R��
� ¼ 1

2
ðg�
R�� þ g��R�
 � g��R�
 � g�
R��Þ

þW ��
� � 1

6
Rðg�
g�� � g��g�
Þ; (A8)

which cancels some of the terms originally derived in
Ref. [13]. In Eq. (A7) we did not write the term propor-
tional to c5R�
��R�


�� using Eq. (A8) as in this particular
case the expansion would make the equations longer.

APPENDIX B: ALTERNATIVE DERIVATION OF
THE PERTURBED EQUATIONS

In this Appendix we present an alternative derivation of
the perturbed equations in Galileon gravity. This method
requires only the knowledge of the Galileon equation of
motion and the assumption that all the field equations do
not contain derivatives higher than second order, the latter
being satisfied by the theory of Galileon gravity by
definition.

If the above requisites are satisfied, then it is easier to
derive the perturbed components of the Galileon energy-
momentum tensor using the new method rather than from
the complicated Galileon Lagrangian. In the latter case,
one has to first derive the full expressions of the energy-
momentum tensor (see Appendix A), which itself could be
a considerable amount of work.

The spirit of this derivation follows the general
method introduced in Ref. [91] and generalized later by
Refs. [92–95]. However, here we work within the frame-
work of covariant and gauge-invariant perturbations, and
consequently the mathematical description looks different
from those works.

To lighten the notation, in this Appendix we neglect the
superscript G in the dynamical quantities for the Galileon
field.

1. The method

As we have seen above, the quantities �, p, q� and ���

have contributions from both normal matter and the
Galileon field ’. Here, let us first look at the most general
forms that �, p, q� and ��� for the Galileon field can take.

The arguments are as follows:
(1) Equation (18) contains time derivatives up to first

order (in �) and spatial derivatives up to second

order (in R̂). If we want to keep this property, the

Galileon energy density � can contain �, R̂, _’ and

ĥ’, but not their time derivatives or gradients. It

cannot contain quantities such as r̂�r̂����, which

involve higher order derivatives. If it contains r̂ � A,
then according to Eq. (21) p must contain ðr̂ � AÞ�
which involves third-order derivative and hence it is
not allowed.

(2) According to Eq. (21), the Galileon pressure p can

contain _�, �, _’, R̂, €’. It can also contain r̂ � A
without changing the structure of Eq. (13).

Quantities such as _̂R, ðr̂ � AÞ� and r̂�r̂����

are not allowed as they contain higher-order
derivatives.

(3) The Galileon field peculiar velocity q� can contain

r̂��, r̂����, r̂�$��, r̂�’ and r̂� _’, but not their

time and spatial derivatives. If it contains A�, then

Eq. (22) cannot hold without involving derivatives

higher than second order. It cannot contain r̂�R̂

because this has third-order derivatives. €’ and _�
are not allowed because otherwise either p or ���

has to contain third-order time derivatives, accord-
ing to Eq. (22).

(4) The Galileon anisotropic stress tensor ��� can con-

tain ���, _���, E��, r̂h�r̂�i and r̂h�A�i, but not
their time and spatial derivatives.

Based on the above analysis, we can decide which terms
can appear in the expressions of �, p, q�, ��� for the

Galileon field. More explicitly, up to first order in linear
perturbations, we have

� ¼ A� _’a�b þ B� _’a�b�2R̂þ C� _’a�1�b�1ĥ’; (B1)

p ¼ Ap €’ _’a�1�b�1 þ Bp _’a _��b�2 þ Cp _’a�b

þDp €’ _’a�2�b�2ĥ’þ Ep _’a�1 _��b�3h’

þ Fp _’a�1�b�1ĥ’þGp €’ _’a�1�b�3r̂ � A
þHp _’a _��b�4r̂ � Aþ Ip _’a�b�2r̂ � A
þ Jp €’ _’a�1�b�3R̂þ Kp _’a _��b�4R̂þ Lp _’a�b�2R̂;

(B2)

q� ¼ Aq _’a�1�b�1r̂� _’þ Bq _’a�1�br̂�’

þ Cq _’a�b�2r̂��þDq _’a�b�2r̂����

þ Eq _’a�b�2r̂�$��; (B3)

��� ¼ A� _’a�b�2E�� þ B� €’ _’a�1�b�3E�� þ C� _’a _��b�4E�� þD� _’a�b�2 _��� þ E� €’ _’a�1�b�3 _���

þ F� _’a _��b�4 _��� þG� _’a�b�1��� þH� €’ _’a�1�b�2��� þ I� _’a _��b�3��� þ J� _’a�b�2r̂h�A�i

þ K� €’ _’a�1�b�3r̂h�A�i þ L� _’a _��b�4r̂h�A�i þM� €’ _’a�2�b�2r̂h�r̂�i’

þ N� _’a�1�b�1r̂h�r̂�i’þO� _’a�1 _��b�3r̂h�r̂�i’; (B4)
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in which A�;p;q;�; B�;p;q;�; . . . are constant coefficients and
a, b are dimensionless constant power indices. Note that to
write down the above equations we have used the fact that

(1) all terms in the expressions must have the same mass
dimension and

(2) the power of ’ (with _’, €’ and ĥ’ counted in) must
be the same in all terms,

which must be true if the dynamical quantities are to be
derived from the Lagrangian densities L1–L5 that are
specified in Eq. (2).

When using the above expressions, we require that all
terms must not contain negative powers of � (which will
never appear when varyingL1–5 with respect to the metric
g��). For example, if b ¼ 3, then Kp should be set to zero.

2. Application of the method: The c4 term

Here we illustrate the application of our method for the
particular case of the c4 term. The Lagrangian L4 is
sufficiently complicated to highlight how much simpler
this method can be. For this term, we know from the

background expression of the energy density (or equiva-
lently the Galileon equation of motion) that a ¼ 4, b ¼ 2,
and so we can write

� ¼ A� _’4�2 þ B� _’4R̂þ C� _’3�ĥ’; (B5)

p ¼ Ap €’ _’3�þ Bp _’4 _�þ Cp _’4�2 þDp €’ _’2ĥ’

þ Fp _’3�ĥ’þ Ip _’4r̂ � Aþ Lp _’4R̂; (B6)

q� ¼ Aq _’3�r̂� _’þ Bq _’3�2r̂�’þ Cq _’4r̂��

þDq _’4r̂���� þ Eq _’4r̂�$��; (B7)

��� ¼ A� _’4E�� þD� _’4 _��� þG� _’4����

þH� €’ _’3��� þ J� _’4r̂h�A�i

þM� €’ _’2r̂h�r̂�i’þ N� _’3�r̂h�r̂�i’: (B8)

Substituting these into the conservation equations (21) and
(22), we find

ð4A� þ ApÞ €’ _’3�2 þ ð2A� þ BpÞ _’4 _��þ ðA� þ CpÞ _’4�3 þ
�
4B� €’ _’3 þ

�
1

3
B� þ Lp

�
_’4�

�
R̂

þ
�
ð3C� þDpÞ €’ _’2�þ C� _’3 _�þ

�
2

3
Aq þ Bq þ Fp þ C�

�
_’3�2

�
ĥ’þ ðAq þ C�Þ _’3�ðĥ’Þ�

þ
�
4

3
B� þ Cq

�
_’2ĥ�þ

�
Aq þ Ip � 4

3
B�

�
_’4�r̂ � Aþ ðDq � 2B�Þ _’4r̂�r̂����

þ ðEq � 2B�Þ _’4r̂�r̂�$�� ¼ 0; (B9)

ðAq � ApÞ _’3�ðr̂� _’Þ� þ
�
3ðAq � ApÞ €’ _’2�þ ðAq � 4BpÞ _’3 _�þ

�
Bq þ 4

3
Aq � 4Cp � 1

3
Ap

�
_’3�2

�
r̂� _’

þ Bq½3 €’ _’2�2 þ _’3�3 þ 2 _’3 _���r̂�’þ ðA� � 12LpÞ _’4r̂�E�� þ ðDq þD� � 6LpÞ _’4ðr̂����Þ�

þ ðEq � 6Lp � J�Þ _’4ðr̂�$��Þ� þ
�
ð4Dq þH�Þ €’ _’3 þ

�
4

3
Dq þ 1

3
D� þG� � 4Lp

�
_’4�

�
r̂����

þ
�
ð4Eq þM�Þ €’ _’3 þ

�
4

3
Eq þ N� � 4Lp � J�

�
_’4�

�
r̂�$�� þ ðA� � Bq þ CpÞ _’4�2A�

þ ðCq � BpÞ _’4ðr̂��Þ� þ
�
ð4Cq � ApÞ €’ _’3 þ

�
4

3
Cq � 2Cp � 1

3
Bp

�
_’4�

�
r̂��

�
�
Ip � 4Lp � 2

3
J�

�
_’4r̂�r̂ � A�

��
Dp � 2

3
M�

�
€’ _’2 þ

�
Fp � 2

3
N�

�
_’3�

�
r̂�ĥ’ ¼ 0: (B10)

From the background expression of � and p (or equiva-
lently the background Galileon equation of motion to-
gether with the energy conservation equation) for the c4
term, we find

A� ¼ 5

2
	; Ap ¼ �4	;

Bp ¼ �	; Cp ¼ � 1

2
	;

(B11)

in which 	 � c4=M
6. This can be done by equating the first

three terms of Eq. (B9) to the background Galileon equa-
tion of motion

3 €’ _’�2 þ 2 _’2 _��þ _’2�3 ¼ 0; (B12)

which can also be used to eliminate the terms containing
r̂�’ in Eq. (B10).
Because we have already used the Galileon equation of

motion in Eq. (B10), the remaining terms on the left-hand
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side of this equation must cancel amongst themselves. In
addition, for Eq. (B9) to not contain higher-order deriva-

tives, we must set the coefficients of ðĥ’Þ�, ĥ�, r̂�r̂����

and r̂�r̂�$�� to zero. This gives us

C� ¼ �Dp ¼ �Aq ¼ 4	;

Cq ¼ �Ip ¼ �	; Bq ¼ 2	;

H� ¼ M� ¼ �6	; Dq ¼ Eq ¼ 2B� ¼ 3

2
	;

and

Lp ¼ 1

6
D� þ 1

4
	; A� ¼ 2D� þ 3	;

G� ¼ 1

3
D� � 	; N� ¼ � 1

3
D� � 	;

F� ¼ � 2

9
D� � 2

3
	:

(B13)

Unfortunately, some coefficients cannot be fixed unam-
biguously, and here we have expressed all those coeffi-
cients in terms of D�. This indicates that perhaps the
Galileon model is not the only one which gives the per-
turbed energy-momentum tensor as in Eqs. (B1)–(B4). To
solve this problem, we can use the perturbed Galileon
equation of motion to fix the free parameter. Of course,
this does not necessarily mean that we have to write down
the full perturbed equation of motion. Indeed, we only need
to know the coefficient Lp or Fp.

The Galileon equation of motion can be read from the
remaining terms of Eq. (B9), from which we find that the

ratio of the coefficients of €’ _’3�2 and _’4�R̂ is 1=12þ
D�=ð36	Þ. On the other hand, the value of this ratio can
also be easily calculated by explicitly perturbing the
Galileon equation of motion where we find it to be 1=18.
As a result, D� ¼ �	 and all the coefficients are now
fixed. The components of the energy-momentum tensor
of the c4 term are

� ¼ c4
M6

�
5

2
_’4�2 þ 3

4
_’4R̂þ 4 _’3�ĥ’

�
; (B14)

p ¼ c4
M6

�
�4 €’ _’3�� _’4 _�� 1

2
_’4�2 � 4 €’ _’2ĥ’

� 4

9
_’3�ĥ’þ _’4r̂ � Aþ 1

12
_’4R̂

�
; (B15)

q� ¼ c4
M6

�
�4 _’3�r̂� _’þ 2 _’3�2r̂�’� _’4r̂��

þ 3

2
_’4r̂�ð��� þ$��Þ

�
; (B16)

��� ¼ c4
M6

�
_’4E�� � _’4 _��� þ _’4r̂h�A�i

� 4

3
_’4���� � 6 €’ _’3���

� 6 €’ _’2r̂h�r̂�i’� 2

3
_’3�r̂h�r̂�i’

�
; (B17)

and the fully perturbed Galileon equation of motion
becomes

0¼6 €’ _’2�2þ4 _’3 _��þ2 _’3�3�4 _’3�r̂ �A
þ
�
3 €’þ1

3
_’�

�
_’2R̂þ

�
8 €’ _’�þ4 _’2 _�þ26

9
_’2�2

�
ĥ’;

(B18)

which is in agreement with the c4 terms in Eqs. (32)–(36),
respectively.
We have applied the same method to all other terms,

and for all of them the resulted equations agree with
Eqs. (32)–(36).1 Note that in this new method the different
terms of the Galileon field can be worked out in a unified
way, which further reduces the computational effort. With
certain modifications, the method should be applicable to
the generalized Galileon model [40] as well.
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