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We obtain the self-interaction for a point charge in the space-time of a cylindrical thin-shell wormhole

connecting two identical locally flat geometries with a constant deficit angle. Although this wormhole

geometry is locally indistinguishable from a cosmic string background, the corresponding self-forces are

different even at the qualitative level. In fact, in the cosmic string geometry the force is always repulsive

while for the wormhole background we find that the force may point outward or toward the wormhole

throat depending on the parameters of the configuration. These results suggest that the study of the

electromagnetic fields of charged particles is a useful tool for testing the global properties of a given

background.
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I. INTRODUCTION

Wormholes are space-time geometries with a nontrivial
topology so that two regions of the Universe are connected
by a traversable throat; the throat is a surface where the
geodesics open up. Following the first work by Morris and
Thorne [1], traversable wormholes have received consid-
erable attention [2] because they would imply some no-
table consequences, as, for example the possibility of time
travel [3]. However, the necessity of exotic matter (i.e.,
matter not fulfilling the energy conditions), which seems
unavoidable within the framework of general relativity, is a
central objection against the actual existence of worm-
holes. This point has been carefully studied for wormholes
of the thin-shell class [2,4], which are mathematically
constructed by cutting and pasting two manifolds so that
exotic matter is restricted to a layer located at the throat.

The geometrical aspects of topological defects as cosmic
strings have been the object of a detailed study over the
past three decades mainly because they could have played
an important role in structure formation in the early
Universe; it was also noted that they could be observed
by their gravitational lensing effects (see Ref. [5]). On the
other hand, strings are the objects most seriously consid-
ered by present theoretical developments as the fundamen-
tal building blocks of nature. Therefore, interest in the
gravitational effects of both fundamental and cosmic
strings has been renewed in the last years (for example,
see Ref. [6]). As a natural consequence, cylindrically sym-
metric wormhole geometries, as those associated to cosmic
strings, have been recently considered [7]. Thin-shell

wormhole configurations associated to local and global
cosmic strings have been studied in Refs. [8,9]. In particu-
lar, the case of a cylindrical locally flat wormhole geometry
with a deficit angle, associated to a straight gauge string,
was treated in Ref. [8].
For any thin-shell wormhole beyond the throat, the

geometry is locally indistinguishable from the metric
from which the mathematical construction starts. For ex-
ample, the space-time of the cylindrical wormhole studied
in Ref. [8] is locally the same as a cosmic string metric and
only the possibility to probe the global properties of the
geometry would allow an observer to decide between both
topologically different manifolds. Our proposal is that, for
any thin-shell wormhole such a test of the global behavior
of the geometry can be provided by the electrostatics of
such a simple system as a point charge: A gravitational
field changes the electric field of a point charge so that a
finite self-force appears. Even though the equivalence
principle states that for a freely falling observer near a
point charge theMaxwell equations of flat space-time hold,
this does not mean that the solution of these equations must
be locally the same for flat space-time: Such a solution
would not fulfill the correct boundary conditions in the
infinity; it would not have the asymptotic behavior which
results from the space-time curvature. Hence, the solution
which is asymptotically well behaved is locally different
from that of flat space-time. In particular, the field is no
more symmetric around the charge and this leads to the
existence of a self-force. Now, the field is determined by
the whole background geometry; hence, the topology that
is the existence or not of a wormhole throat must be
revealed by the associated electrostatic self-force.
The calculation of the self-interaction starts from

the Maxwell equations for curved space-time [10] (with
c ¼ 1):
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ðF�� ffiffiffiffiffiffiffi�g
p Þ;� ¼ 4�j�

ffiffiffiffiffiffiffi�g
p

F��¼ A�;� � A�;�

j� ¼ X
a

qaffiffiffiffiffiffiffi�g
p �ðx� xaÞ dx

�

dx0
; (1)

where � ¼ ð0; 1; 2; 3Þ, g is the determinant of the metric,
A� is the four-potential, j� is the four-current, and qa are

the associated charges. For only one rest charge q located
at the point x0 we simply have

ðF0k ffiffiffiffiffiffiffi�g
p Þ;k ¼ 4�q�ðx� x0Þ; (2)

where k ¼ ð1; 2; 3Þ. The first case considered of a
self-force of physical interest was a charge in a
Schwarzschild metric; it was shown that the self-force on
a point charge q is repulsive and has the form

f�Mq2

r3
; (3)

where M is the mass of the spherical source and r is the
usual Schwarzschild radial coordinate of the probe charge.
This result was first obtained within linearized general
relativity [11] and was later confirmed working in the
framework of the full theory (see Refs. [12,13]). After
these works, the study of the self-interaction of a charge
was then extended to many geometries. In particular, the
self-force on a charge in the locally flat geometry of a
straight cosmic string was found by Linet [14]; the force
points outwards and has the form

f��q2

r2
; (4)

where� is the mass per unit length of the string and r is the
distance from the string to the charge. This nonvanishing
force, which is associated to the deficit angle, illustrates
how the global properties of a manifold are manifested by
electrostatics. The problem of a charge in the nontrivial
topology of wormhole geometries was recently addressed
in a set of works [15] which, in general, agree in an
interesting result of an attractive force, i.e., a force towards
the wormhole throat. Here we will consider a cylindrical
thin-shell wormhole which connects two identical locally
flat geometries with a constant deficit angle. As pointed out
above, this space-time is locally indistinguishable from the
geometry around a gauge cosmic string. We will obtain the
self-interaction for a point charge in such a wormhole
geometry, thus providing a tool to probe the space-time
beyond its local properties; the result would allow an
observer to decide whether the topology is trivial (as it
would be in the case of a cosmic string) or that it includes a
throat, thus showing the existence of a cylindrical thin-
shell wormhole.

II. EVALUATION OF THE SELF-FORCE

The calculation of the self-force on a charge in the
space-time of a cylindrical thin-shell wormhole connecting

two cosmic string geometries is best understood by pro-
ceeding in successive steps: We first illustrate how to
obtain the electrostatic potential in Minkowski space-
time working in cylindrical coordinates. Then, we consider
the cosmic string case. Finally, we study the charge in the
wormhole geometry; this allows us to easily separate the
finite and divergent parts of the potential, which is a central
point of the evaluation of the self-interaction and to clearly
understand the difference between the cosmic string and
the wormhole results.

A. Charge in Minkowski space-time

Minkowski space-time in cylindrical coordinates
ðt; r; �; zÞ is described by the line element

ds2M ¼ �dt2 þ dr2 þ r2d�2 þ dz2; (5)

where the ranges of the coordinates are

�1< t <þ1; r � 0;

0 � � � 2�; �1< z <þ1:

The Maxwell equations for a static point charge located at
ðr0; �0; z0Þ in Minkowski space-time give

�A0 ¼ � 4�q

r
�ðr� r0Þ�ð�� �0Þ�ðz� z0Þ; (6)

for the zero component A0 ¼ VM of the four-potential,
where � � gklrkrl, while the other components of the
four-potential vanish. Hence, in the Minkowski back-
ground we have the Poisson equation

�VM ¼
�
@2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@�2
þ @2

@z2

�
VM

¼ � 4�q

r
�ðr� r0Þ�ð�� �0Þ�ðz� z0Þ: (7)

The solution of Eq. (7) can be expanded in terms of a
complete set of orthogonal functions of the coordinates �
and z as follows:

VM ¼ q
Z þ1

0
dk cos½kðz� z0Þ�

� Xþ1

n¼0

an cos½nð�� �0Þ�gnðr; r0Þ; (8)

where n�N0, and

an ¼
� 2
� if n ¼ 0;
4
� if n > 0:

(9)

Then gnðr; r0Þ must satisfy the nth order inhomogeneous
modified Bessel equation�

@2

@r2
þ 1

r

@

@r
�

�
k2 þ n2

r2

��
gnðr; r0Þ ¼ ��ðr� r0Þ

r
; (10)

with the requirement to be finite at r ¼ 0 and vanish at
r ! 1, i.e.,
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gnðr; r0Þ ¼
�
Knðkr0ÞInðkrÞ if r � r0;
KnðkrÞInðkr0Þ if r � r0:

(11)

In (11), KnðkrÞ and InðkrÞ are the usual modified Bessel
functions; two independent solutions of the homogeneous
version of Eq. (10).

B. Cosmic string

The gauge cosmic string space-time in cylindrical coor-
dinates ðt; r; �; zÞ has the metric [5,16]

ds2CS ¼ �dt2 þ dr2 þ!2
0r

2d�2 þ dz2; (12)

where the constant !0 such that 0<!0 � 1 is determined
by the mass � per unit length of the string; as is common,
we neglect the core radius and consider a string associated
to an energy-momentum tensor T�

� ¼ diagð�; 0; 0; �Þ
�ðxÞ�ðyÞ so that the ranges of the coordinates are

�1< t <þ1; r > 0;

0 � � � 2�; �1< z <þ1:

The Poisson equation for the electrostatic potential VCS

associated to a pointlike charge q located at ðr0; �0; z0Þ in
the cosmic string manifold is

�ð!0ÞVCS ¼
�
@2

@r2
þ 1

r

@

@r
þ 1

!2
0r

2

@2

@�2
þ @2

@z2

�
VCS

¼ � 4�q

!0r
�ðr� r0Þ�ð���0Þ�ðz� z0Þ: (13)

Changing to a coordinate � � !0�, the equation for the
potential becomes

�ð!0ÞVCS ¼
�
@2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@�2
þ @2

@z2

�
VCS

¼ � 4�q

r
�ðr� r0Þ�ð�� �0Þ�ðz� z0Þ; (14)

which is the usual equation in the space-time covered by
the coordinate system ðt; r; �; zÞ with 0 � � � 2�!0 and
for a point charge located at r ¼ r0, �0 ¼ !0�

0, and z ¼ z0.
The electrostatic potential must satisfy

VCSðr; z;� ¼ 0Þ ¼ VCSðr; z; � ¼ 2�!0Þ;
@VCS

@�
ðr; z;� ¼ 0Þ ¼ @VCS

@�
ðr; z; � ¼ 2�!0Þ: (15)

The solution of Eq. (14) can be expanded in a complete set
of orthogonal functions of the coordinates � and z as

VCS ¼ q

!0

Z þ1

0
dk cos½kðz� z0Þ�

� Xþ1

n¼0

an cos½�ð�� �0Þ�g�ðr; r0Þ; (16)

where � ¼ n=!0, n�N0 and

an ¼
8<
:

2
� if n ¼ 0;

4
� if n > 0:

(17)

So for the cosmic string space-time, the radial part of the
expansion of the potential is given by

g�ðr; r0Þ ¼
�
K�ðkr0ÞI�ðkrÞ if r � r0;
K�ðkrÞI�ðkr0Þ if r � r0; (18)

where now K�ðkrÞ and I�ðkrÞ are the modified Bessel
functions of order � ¼ n=!0.
In the neighborhood of the point charge, the electrostatic

potential can always be written as

VCSðr;�; zÞ ¼ VMðr;�; zÞ þHCSðr; �; zÞ: (19)

HCS is solution of the homogeneous Eq. (13) and repre-
sents the nondivergent part of the electrostatic potential at
the position of the charge. So the electrostatic energy of the
point charge can be evaluated as

WCS ¼ 1

2
qHCSðr0; �0; z0Þ: (20)

Using the results from Eqs. (8) and (16), the self-energy of
the charge q for any position with r > 0 is

WCSðrÞ ¼ q2

2

Z þ1

0
dk

Xþ1

n¼0

an

�
1

!0

K�ðkrÞI�ðkrÞ

� KnðkrÞInðkrÞ
�
: (21)

A closed expression for this result was previously obtained
by Linet [14]; in the Appendix it is checked that our
solution coincides with the Linet one in particular limits.
The electrostatic self-force is given by

frCSðrÞ ¼ � @

@r
WCSðrÞ and f�CS ¼ fzCS ¼ 0: (22)

The force turns out to be directed away from the cosmic
string and is proportional to 1=r2.

C. Cylindrical thin-shell wormhole

We now consider the case of a charge in the space-time
of a thin-shell wormhole connecting two identical cosmic
string geometries Mþ and M�, that is, two locally flat
geometries with the same deficit angle and a hole of radius
a, which is the radius of the cylindrical wormhole throat.1

In cylindrical coordinates ðt; r�; �; zÞ the metric reads [8]

ds2W ¼ �dt2 þ dr2� þ!2
0r

2�d�2 þ dz2; (23)

with 0<!0 � 1 and the coordinate ranges

1This configuration is obtained by placing a shell of negative
energy density at r ¼ a so that the wormhole geometry is
supported by exotic matter.
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�1< t <þ1; r� � a; 0 � � � 2�; �1< z <þ1:

The Poisson equation for the electrostatic potential V�
W associated to a pointlike charge q located at ðr0; �0; z0Þ�Mþ in the

wormhole manifold is

�ð�;!0ÞV
�
W ¼

�
@2

@r2�
þ 1

r�
@

@r�
þ 1

!2
0r

2�

@2

@�2
þ @2

@z2

�
V�
W ¼

�� 4�q
!0r

�ðr� r0Þ�ð���0Þ�ðz� z0Þ for Mþ;
0 for M�:

(24)

Here we have used r instead of r� whenMþ or M� is specified. Changing to the coordinate � � !0�, the equation for
the potential becomes

�ð�;!0ÞV
�
W ¼

8>>>><
>>>>:

�
@2

@r2
þ 1

r
@
@r þ 1

r2
@2

@�2
þ @2

@z2

�
Vþ
W ¼ � 4�q

r �ðr� r0Þ�ð�� �0Þ�ðz� z0Þ for Mþ;�
@2

@r2
þ 1

r
@
@r þ 1

r2
@2

@�2
þ @2

@z2

�
V�
W ¼ 0 for M�;

(25)

which corresponds to two usual potential equations (one in
each manifold M� and Mþ) in the space-time covered
by the coordinate system ðt; r�; �; zÞ with r� � a and
0 � � � 2�!0.

The solution of Eq. (25) can be expanded in terms of a
complete set of orthogonal functions of the coordinates �
and z in the same fashion as for VM and VCS:

V�
W ¼ q

!0

Z þ1

0
dk cos½kðz� z0Þ�

� Xþ1

n¼0

an cos½�ð�� �0Þ�g�� ðr; r0Þ; (26)

where � ¼ n=!0, n�N0, and

an ¼
8<
:

2
� if n ¼ 0;

4
� if n > 0:

(27)

The radial functions are now separated into three sets
corresponding to three regions determined by the radial
coordinate, two of them in Mþ and the other in M�, and
can be written as follows:

g�� ðr; r0Þ ¼

8>>>><
>>>>:
gþ� ðr; r0Þ ¼

(
c ð1Þ

� ðkrÞc ð2Þ
� ðkr0Þc ð3Þ

� ðkaÞ if r � r0

c ð1Þ
� ðkr0Þc ð2Þ

� ðkrÞc ð3Þ
� ðkaÞ if r � r0

)
for Mþ

g�� ðr; r0Þ ¼ c ð1Þ
� ðkr0Þc ð2Þ

� ðkaÞc ð3Þ
� ðkrÞ for M�;

(28)

where c ð1Þ
� and c ð2Þ

� are linearly independent solutions of
the homogeneous version of the modified Bessel Eq. (10)
of order �, satisfying the correct boundary conditions for
the potential inMþ; c

ð3Þ
� is another solution of the homo-

geneous version of (10) and satisfies the boundary condi-
tions for the potential in M�. These functions have the
general form

c ðiÞ
� ðkrÞ ¼ AðiÞ

� I�ðkrÞ þ BðiÞ
� K�ðkrÞ; for i ¼ 1; 2; 3: (29)

The correct boundary conditions for the electrostatic po-
tential are listed below. Starting from the periodic condi-
tions on �, we have

(I) V�
Wðr; � ¼ 0; zÞ ¼ V�

Wðr; � ¼ 2�!0; zÞ,
(II) @

@� V
�
Wðr; � ¼ 0; zÞ ¼ @

@� V
�
Wðr; � ¼ 2�!0; zÞ.

The continuity of the potential implies that
(III) at r ¼ r0: Vþ

Wðr ! r0þ; �; zÞ ¼ Vþ
Wðr ! r0�; �; zÞ,

(IV) at r ¼ a: Vþ
Wðr ! a; �; zÞ ¼ V�

Wðr ! a; �; zÞ.
The asymptotic behavior must fulfill
(V) limr!1Vþ

W ¼ 0,
(VI) limr!1V�

W ¼ 0.

The requirements on the potential slope give
(VII) at rþ ¼ a ¼ r�:

@

@rþ
Vþ
Wðr ! a; �; zÞ ¼ � @

@r�
V�
Wðr ! a; �; zÞ;

(VIII) at rþ ¼ r0:
@

@r
Vþ
Wðr ! r0þ; �; zÞ � @

@r
Vþ
Wðr ! r0�; �; zÞ

¼ � 4�q

r
�ð�� �0Þ�ðz� z0Þ:

Conditions I, II, III, IV are automatically fulfilled by (26)
and (28). Conditions V and VI imply that

Að1Þ
� ¼ 0 ¼ Að3Þ

� ; (30)

so that the other coefficients in c ð1Þ
� and c ð3Þ

� can be

completely absorbed in c ð2Þ
� , i.e.,

Bð1Þ
� ¼ 1 ¼ Bð3Þ

� : (31)
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Finally, from VII and VIII,

Að2Þ
� ¼ 1

K�ðkaÞ (32)

and

Bð2Þ
� ¼ � 1

½K�ðkaÞ�2
�
I�ðkaÞ þ 1

2a½ @@r K�ðkrÞ�r¼a

�
: (33)

In the neighborhood of the point charge, the electrostatic
potential can always be written as

VWðr; �; zÞ ¼ VMðr; �; zÞ þHWðr;�; zÞ; (34)

whereHW is solution of the homogeneous Eq. (25) near the
position of the charge and represents the nondivergent part
of the electrostatic potential. HW can be seen as the sum of
two contributions,

HW ¼ H0 þHCS; (35)

where H0 ¼ ½VWðr;�; zÞ � VCSðr; �; zÞ� and HCS ¼
½VCSðr; �; zÞ � VMðr;�; zÞ�, [as given in (19)]. The elec-
trostatic energy of the charge at any position with r > a is
given by

WWðrÞ ¼ W0ðrÞ þWCSðrÞ; (36)

where we intentionally separated the result as the sum of
the self-energy corresponding to a charge in a cosmic
string background WCSðrÞ plus the extra term

W0ðrÞ ¼ � q2

2!0

Z þ1

0
dk

Xþ1

n¼0

an
½K�ðkrÞ�2
K�ðkaÞ

�
�
I�ðkaÞ þ 1

2a½ @@r K�ðkrÞ�r¼a

�
; (37)

which appears due to the presence of a deficit angle and
a throat; this shows that the nontrivial topology of the
background induces an additional contribution to the
self-energy. In the particular case when !0 ¼ 1, WCS¼0
so that the self-energy corresponds to a cylindrical

thin-shell wormhole connecting two flat geometries with-
out a deficit angle.
The self-force deduced from (36) is

frWðrÞ ¼ fr0ðrÞ þ frCSðrÞ; (38)

where frCS is known from previous works (see Ref. [14])

and

fr0ðrÞ ¼
q2

!0

Z þ1

0
dk

Xþ1

n¼0

an
K�ðkrÞ
K�ðkaÞ

�
@

@r
K�ðkrÞ

�

�
�
I�ðkaÞ þ 1

2a½ @@r K�ðkrÞ�r¼a

�
: (39)

The result is best understood by plotting a numerical
evaluation of the expressions above. In Figs. 1–4 we
show the self-force as a function of the distance from the
charge to the wormhole throat (normalized by the throat
radius so that r=a ¼ 1 corresponds to the location of the
throat) for four different values of the constant!0, which is
associated to the deficit angle. In the situations in which
there is no deficit angle ð!0 ¼ 1Þ the self-force is always
attractive for any position of the charge; for a small deficit

0 10 20 30 40 50
0.0005

0.0004

0.0003

0.0002

0.0001

0.0000

0.0001

0.0002

0.0003

r
a

a2
se

lf
fo

rc
e

4
q2

0 0.5

FIG. 1 (color online). Self-force on a charge as a function of
the distance from the wormhole throat for a large deficit angle
(!0 ¼ 0:5); negative values correspond to an attractive force.
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FIG. 2 (color online). Self-force on a charge as a function of
the distance from the wormhole throat for !0 ¼ 0:75; negative
values correspond to an attractive force.
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FIG. 3 (color online). Self-force on a charge as a function of
the distance from the wormhole throat for a small deficit angle
(!0 ¼ 0:9); negative values correspond to an attractive force.
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(!0 ’ 0:9) at both sides of the throat, the self-force is also
attractive up to very large distances from the throat to the
charge, but the numerical analysis shows that far enough
(r=a� 109), the repulsive force associated to the deficit
angle becomes the dominant effect. On the other hand,
when two conical geometries with larger deficit angle are
connected by the throat, we can easily see that the self-
force points towards the throat for small distances, while it
becomes repulsive as the distance between the throat and
the charge is increased; the range such that the force points
towards the throat increases as the deficit angle decreases.
Such a transition from an attractive force to a repulsive one
is a distinguishing feature of the wormhole geometry
because in the case of a cosmic string background the force
is always repulsive. The attractive character and the chang-
ing behavior of the self-force with the distance thus pro-
vides a way to detect the existence of a throat.

III. SUMMARY

We have evaluated the self-force on a static charged
particle in the cylindrical thin-shell wormhole geometry
connecting two identical flat geometries with a constant
deficit angle. This wormhole can be obtained in terms of a
cosmic string background by the usual cut and paste pro-
cedure, namely, by removing the regions r < a from two
string backgrounds and matching the resulting manifolds at
r ¼ a, where a throat appears. Therefore, the wormhole
and the cosmic string geometries are locally indistinguish-
able; however, their global properties are different. One
one hand, it is known that the self-force in the cosmic string
background always pushes the particle away from the
string. On the other hand we have obtained an analytical
expression in the form of a series for the self-force in the
wormhole geometry, and we have shown numerically that
the particle is repelled from the wormhole throat when
placed beyond a certain distance from the throat, but

otherwise it is attracted, as shown in Figs. 1 and 2. This
qualitative difference is the most important result of the
present work since it shows that the study of the electro-
statics of point particles in a given geometry permits us to
distinguish whether the topology is trivial, as for the cos-
mic string, or whether it includes a throat, as for our
cylindrical wormhole. It would be of special interest to
generalize these results to the Schwarzschild case, which is
physically more interesting though technically more com-
plicated. We leave this task for a further publication.
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APPENDIX

The expression for the electrostatic energy and self-
force for a charge in the cosmic string manifold calculated
by Linet in Ref. [14] are

WCSðrÞ ¼ LB

4�

q2

r
; (A1)

frCSðrÞ ¼
LB

4�

q2

r2
; (A2)

respectively, where

LB ¼
Z þ1

0

�
sinhð�=!0Þ

!0½coshð�=!0Þ � 1� �
sinh�

cosh� � 1

�

� d�

sinhð�=2Þ : (A3)

These results are obtained from Eq. (13) with 0 � � �
2�, or equivalently from (14) where 0 � � � 2�!0 with
the correct boundary conditions. For special cases, the
solution for (14) that derives in (21) and (22) can be
checked with Linet’s results (A1) and (A2). For example,
if !0 ¼ 1=2, then 0 � � � �. Choosing �0 ¼ �=2 for
simplicity, the problem to solve is stated by

�VCS ¼ � 4�q

r
�ðr� r0Þ�ð�� �=2Þ�ðz� z0Þ; (A4)

and the special boundary conditions

VCSðr; z; 0Þ ¼ VCSðr; z; �Þ;
@VCS

@�
ðr; z; 0Þ ¼ @VCS

@�
ðr; z; �Þ ¼ 0: (A5)

This electrostatic problem can be solved by the method of
images if the space is extended to 0 � � � 2� and an-
other charge q is located at the point ðr0; �0 ¼ 3�

2 ; z0Þ.
Clearly, the solution obtained by this method fulfills con-
ditions (A4) and (A5) in the region of interest. The
electrostatic energy of the original charge q is calculated
with the potential Vq generated by the image distribution.

This electrostatic potential can be expanded in the same
basis functions previously used in (8) and by replacing �0
by �0 so that
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r
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4
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0 1

FIG. 4 (color online). Self-force on a charge as a function of
the distance from the wormhole throat, which connects two
geometries without deficit angle; negative values correspond to
an attractive force.
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W
!0¼1

2

CS ðr0Þ ¼ q

2
Vqjðr¼r0;�¼�

2 ;z¼z0Þ

¼ q2

2

Z þ1

0
dk

Xþ1

n¼0

anð�1ÞnKnðkr0ÞInðkr0Þ: (A6)

The right-hand side of (A6) is exactly what is obtained in
(21) using !0 ¼ 1=2. Calculating the same energy by the
usual potential expression for two point charges separated
by a distance 2r0, we have

W
!0¼1

2

CS ðr0Þ ¼ q

2
Vqð�r0Þ ¼ q

2

q

2r0
; (A7)

which is the same result obtained by Linet in (A1), putting
!0 ¼ 1=2 (so that LB ¼ �). The equivalence between
(A6) and (A7) implies that the self-energy calculated by
both methods coincides in this particular case. Similar
reasonings may be applied for !0 ¼ 1=m with m�N, to
check the result in other cases.
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