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Quasinormal modes for the scattering on a naked Reissner-Nordstrom singularity
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What should be the quasinormal modes associated with a space-time that contains a naked singularity
instead of a black hole? In the present work we address this problem by studying the scattering of scalar
fields on a curved background described by a Reissner-Nordstrom space-time with |g| > m. We show that
there is a qualitative difference between cases with 1 < ¢?>/m? < 9/8 and cases with ¢>/m? = 9/8. We
discuss the necessary conditions for the well-posedness of the problem and present results for the low
damped modes in the low [/ and large / limit. We also consider the asymptotically highly damped
quasinormal modes. We present strong evidence that such modes are absent in the case of a naked
Reissner-Nordstrom singularity, corroborating recent conjectures relating them to classical and quantum

properties of horizons.
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L. INTRODUCTION

The naked Reissner-Nordstrom (R-N) singularity is a
classical general relativistic solution in electrovacuum.
The solution is expected to have a very limited meaning,
due to the fact that such singularities can be created neither
by a gravitational collapse nor by dropping a charge into
the black hole (BH). (According to the weak cosmic cen-
sorship conjecture general naked singularities should be
prohibited in the general theory of relativity, although there
are indications that by including quantum effects the
violations of the conjecture could be considered [1].)
Moreover, a naked singularity created from some exotic
initial data conditions should become quickly neutralized
(classically, or via quantum pair production). Some results
also indicate that if one considers electrogravitational per-
turbations the R-N naked singularity becomes linearly
unstable [2]. However it was discovered that the scalar
field scattering problem on such a singular background
can be still well defined [3-8], since the waves remain
regular at the origin. (However, the backreaction of the
given scalar field configuration might still excite some of
the unstable electrogravitational modes and this would
eventually lead to a breakdown of the perturbation
approach.) Despite the nice regularity property of the
scattering problem, the space-time is nonglobally hyper-
bolic and the time evolution of the fields is not unique
[9,10]. This means one has to specify an additional bound-
ary condition at the singularity to obtain a fully unique time
evolution. Another way of seeing the problem is through
the language of operators: One can understand the spatial
part of the wave operator as a positive symmetric operator
acting on a L? Hilbert space and then obtain the scalar field

*cecilia.chirenti @ufabc.edu.br
Tasaa@ime.unicamp.br
*jozef skakala@ufabc.edu.br

1550-7998/2012/86(12)/124008(16)

124008-1

PACS numbers: 04.25.dc, 04.30.Nk, 04.70.Bw

dynamics through a suitable positive self-adjoint extension
of such a symmetric operator [3,4]. (One ‘“‘preferred” way
in which such a self-adjoint extension can be always
realized is through the so-called Friedrich’s extension [3],
which will also be the case of this paper.) Anyway, after
uniquely specifying the dynamics, one should be able to
characterize the scattering by a set of characteristic oscil-
lations, the quasinormal modes.

Low damped quasinormal modes are in general used as a
possible source of information about potential astrophys-
ical objects (such as neutron stars and black holes), and the
highly damped modes are potentially interesting from the
point of view of quantum gravity [11,12]." Since a lot of
work was devoted to the problem of quasinormal modes of
the Reissner-Nordstrom black hole, it might be interesting
to observe what happens if one transits from the R-N black
hole case to the R-N naked singularity case (with a reflec-
tive boundary condition). Information about ‘““what hap-
pens”” shows how many features of the quasinormal modes
of the black hole space-times are specific to the black holes
themselves and what features survive much more general
conditions. Let us also give one concrete example why
asking what happens with the quasinormal modes of the
naked R-N singularity might be interesting: In the black
hole case the behavior of the asymptotically highly
damped modes is widely suspected to be linked to the
properties of the black hole space-time horizon(s) (or
more specifically it is considered to carry information
about quantum black holes). What does then happen with
the asymptotically highly damped modes in case there are
no horizons present? (If the behavior of the highly damped
modes in the case of R-N naked singularity would, for
instance, resemble the behavior of the highly damped
modes of the black hole, it would be a disturbing fact

"For a paper dealing particularly with the R-N black hole case
see Ref. [13].
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from the point of view of the popular conjectures linking
the modes to the horizon’s quantum area spacing.
Moreover, investigating the R-N naked singularity from
this point of view is especially attractive, as the R-N naked
singularity is obtained by a continuous transition in the ¢,
m parameters from the R-N black hole space-time.) Thus,
briefly, we hope that despite the fact that most likely the
R-N naked singularity model does not correspond to a
realistic physical situation, there are still many interesting
things one can learn from such a model.

The structure of this paper is as follows: In the second
section we analyze the problem of the uniqueness of the
time evolution of scalar fields on a R-N naked singularity
background. In the third and fourth sections we analyze the
properties of the effective potential for the scalar fields
scattering and the geometrical optics (eikonal) limit of
such a scattering problem. In the fifth section we define
analytically solvable potentials that can give good approx-
imations to the problem of the low damped quasinormal
mode (QNM) frequencies (such that characterize the given
scattering problem). In the sixth section we use those
analytical approximations to derive semianalytical results
for the QNM frequencies in the eikonal limit. In the
seventh section we use the numerical characteristic inte-
gration to obtain the low damped frequencies for the low
values of /. In the eighth section we analyze what happens
with the asymptotically highly damped modes and we
suggest that in the case of naked R-N singularity such
modes do not exist (as one might expect considering
some presently popular conjectures [11,12]). We give the
final conclusions in the ninth section. We provide also
appendixes with more detailed results and some further
suggestions for the analytical approximations of the
problem.

II. THE TIME EVOLUTION PROBLEM FOR A
SCALAR FIELD IN THE R-N NAKED
SINGULARITY

In this section we will follow the standard analysis
of the scalar field evolution in a curved background.
(As an example of such an analysis see the treatment of
Schwarzschild black hole perturbations in Refs. [14,15].
For a review that presents also such techniques see for
example Ref. [16].) Take the Klein-Gordon equation for
the complex (charged) scalar field:

\/_G,L(\/_g’“’a W) = (M

with the metric line element given as
gupdxtdx” = —f(r)d* + f(r)~'dr? + r*dQ?.  (2)

For the R-N singularity the function f(r) is in Planck units
given as

PHYSICAL REVIEW D 86, 124008 (2012)

2 2
f=1-"4T (@ > m) 3)

Take the decomposition of the field into the spherical
harmonics

W, 1,0, ) =D 4yt 1)Y,(6, ). (4)

Lm

After we separate the variables we obtain the following
reduced equation:

d2lpl(t’ r)

- R0

_W+Dﬂﬂ
7'2

f(r) d [ dy, (1, r)]

(1, 7). (&)

We are interested only in the compactly supported data
initial value problem: First assume that ,(r, r) is every-
where bounded and hence the Laplace transform of ¢,(r, 1)
exists:

&&ﬂ=fﬁWWMﬂ ©)

The Laplace transformed equation (5) gives the following
equation:
s2 (s,

)= f(r) d[ 2R )dzjll(s r)]

1(1+1)f(r)¢l( N+, (7)

where

8)

5.0 = [swnia ) + 2250]

dt

The solution that corresponds to the initial data term I;(s, r)
is obtained by the inverse Laplace transform of (s, r) and
the function (s, r) is given as

(s, r) = j:o dr'G,(s, r, ¥)I,(s, r'). 9)

Here G,(s, r, ') is a Green’s function satisfying

ffr) d [ 2R )dG,(er,r)]

+{@+&%%&q@unw=av—w. (10)

Since ,(r, t) was bounded, its Laplace transform (s, r)
must be also bounded in r. This translates to the bounded-
ness of the Green’s function in r. The unique solution of the
given initial data problem is obtained if the condition of
boundedness of the Green’s function leads to a unique way
to construct a Green’s function from the two linearly
independent solutions U;; and Uy, of the homogeneous
equation
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f(’") d dUn,z(S, r)
2wl =]
+ [s2 + W]U”,z(& r) =0. (11)

If f(r) goes to 1 at spatial infinity (the metric is asymptoti-
cally flat), then there is only one solution of (11) that stays
bounded as r — oo. If there exists only one solution of
Eq. (11), such that it is linearly independent from the
solution bounded at infinity and in the same time it is
bounded at r — 0, then these two solutions uniquely define
the Green’s function. If all the solutions of (11) are singular
at 0, there is no solution (bounded in r) of the given initial
value problem such that it can be Laplace transformed
(this can be taken as an indication that there is no solution
at all).

If both of the linearly independent solutions are regular
at 0, and (at least) two different Green’s functions lead to a
function in the domain of the inverse Laplace transform,
then there is no uniquely defined solution to the initial
value problem. In the “worst” case there are infinitely
many solutions, given by arbitrary linear combination of
U, and Up,, that are linearly independent to the solution
bounded at r — oo. In such a case the problem is under-
determined and one needs one more condition at r = 0 that
selects a unique Green’s function between the different
Green’s functions marking different time evolutions. For
each one of the choices of the Green’s function, one can
reproduce the calculation from Refs. [14,15] and see that
the quasinormal modes defined by

(1) the choice of the Green’s function close to 0 and

(2) the outgoing radiation condition

characterize the time evolution of the field at a fixed point
within some specific time interval. Unfortunately for the
case of R-N naked singularity [f(r) = 1 — 2m/r + ¢*/r?,
g*> > m?] both of the linearly independent solutions U,
and U, are regular at 0 and the problem is underdeter-
mined. It is easy to show that both of the solutions are
regular at the origin. Write (11) as

d*Upo(s,r) I:f(")(zr - Zm)]dUn,z(S, r)

_ 2
fr) dr? r? dr

+ [s2 + W]Uuz(& r) =0. (12)

Now taking the » — 0 limit of Eq. (12) one obtains the
following:

_dPUpa(s, r)+|:2_mi|dU”,2(s, r)+l(l+1)

dr? 2 dr q°

U”yz(s, r) =0.
q

(13)

This means the solutions U , behave close to 0 as
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Upna(s, r) = exp(B21), (14)
with
m m\2 I(l+1)
BI,Z - —2 + (-2) + 5 E R, (15)
q q q

and hence both are regular.

The fact that the problem is underdetermined is not
surprising, since the space-time is not globally hyperbolic
and anything can fall out at any time from the singularity.
This means the singularity has “hair” (carries some other
information beyond the metric) and the quasinormal modes
obviously depend on the hair. Let us add here that, as we
already mentioned in the introduction, the hair of the
singularity relates to the existence of many different self-
adjoint extensions of the “Hamiltonian™ operator in the
equation. (In Ref. [9] one can find a nice analysis of the
uniqueness of the self-adjoint extensions of such operators
for many different types of naked space-time singularities
including the R-N naked singularity.)

Is there any intuitive physical condition that we can
further impose on the fields, that will uniquely select the
appropriate Green’s function? At least to get the geomet-
rical optics continuous extension of the black hole case one
can impose the condition that nothing falls in or out of the
singularity. This means there is neither absorption nor
superradiation in the scattering and the S matrix of the
Klein-Gordon field is a unitary operator. What does this
condition mean? The conserved current 4-vector for the
complex Klein-Gordon field is given by

JEP) = —igh" (T YV, W — TV, ¥).  (16)

Let us integrate the 4-current along a cylindrical hypersur-
face given by r = ry and ¢ € [1y, 1,]. Then since (16) is a
conserved current it holds that

0(t,) — 0(1)) = — fz dtdodpN—hn#J,.  (17)

Here Q(t, ,) is the integral along a hypersurface given by
the interior of the cylinder at the constant time (¢; or f,),
with a future oriented surface normal vector. X, is a
cylindrical hypersurface given by r = ry and v/—h is
an induced density given as +—h =[f (ro)r3 sin(6).
Furthermore n* is a normal vector to 2,0 given as
n®09) = (0, \[f(ry), 0,0). Since we want Q to remain
constant with respect to time as we take the limit ry — 0
(nothing flows out or into the singularity), Eq. (17) reduces
to the following:
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lim dtd0d~—hn*J,

r0=0 2

= —ilim f(ro)r3 ftz dt fw df sind
ro—0 f 0
21
x[ d[Wo W — o W] =0. (I8)
0

Let us analyze Eq. (18) in decomposition into spherical
harmonics, and hence

V(1 0, ¢) = lztm(r, DY, (6, ). (19)
Then we can rewrite Eq. (18) as
tim oS, [ ity 00,001
— U 00, 0, = 0. 0)

for arbitrary #; and t,. Since f(ro)ri — g*> as ro— 0,
in order to fulfill Eq. (20) we impose® for every [ and
every

Jr(\P»O) = ['»l’l(’", t)arlﬂ}k(r’ t) - lr//}k(r: f)3r¢’1(’", t)]|r=() =0.
1)

But this means that the functions i,(r, ¢) should be always
constrained either by the condition ,(0,1) =0 or
9, (r, 1) ,—o = 0. (One might argue that it will be enough
to claim that the fields and their first r derivatives should be
real at zero, but that does not put any general constraint on
the normal modes.) Now we obtain the function (7, 1)
from the normal modes as

Y1) = ﬁ * dwe e\ (@)Uy (riw) + cx(@)Up(r,i)]
(22)

and take the condition i,(0, r) = 0 for arbitrary time z.
This translates to

foo dwe " c;(0)U;(0, iw) + c2(w)Up(0, iw)] = 0.
0
(23)

But since both U;(0,iw) = Up(0,iw) =1 [see (14)]
and Fourier-like transform given by (23) should not
map nonzero functions to zero, one obtains the condition
¢y(w) = —c|(w). This means we compose the relevant
wave packet only from the following modes:

2Such a condition on the radial part of the current at the origin
(determining whether the scattering is absorptive, radiative, or
superradiative) occurs in the formulation of Ref. [10], where it
gives constraints on the domain of the Hamiltonian providing
symmetricity of the operator.
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U/r,iw) = Uy (r, iw) — Up(r, iw). (24)

The same line of reasoning applies to the condition
d,4(r, 1)],—o = 0 and the wave packets that fulfill such
a condition must be composed entirely from modes given
as (I >0)

U”(iw, r) . Ulz(ia), r)
Bi B

For [ =0, we have the coefficient B8, =0 and the
solution Uj(r, iw) behaves as a constant for r =0
(with the value set to 1), which means that the condi-
tion (25) does not make strictly sense; in such a case
the modes are given simply by the function Up(r, iw).

This shows that the condition of the § matrix being a
unitary operator gives additional constraints on the Green’s
function. The previous conditions mean that we shall con-
sider only a linear space of wave packets formed purely
from modes that vanish at zero or a linear space of wave
packets formed purely from modes whose first r deriva-
tives vanish at zero. (Of course one cannot superpose wave
packets formed from modes having the vanishing radial
derivative at 0 with wave packets formed from modes that
are vanishing at 0, since the 4-current does not linearly
depend on a wave function.)

So let us pick one of those two types of modes, fix the
particular Green’s function and employ the following
reasoning: Since J is conserved and the coefficients in
Eq. (5) are everywhere outside 0 a smooth function of r, the
function (r, t), arising from compactly supported initial
data, could be unbounded in time only in the case where the
wave packet becomes concentrated around the singularity
and slowly growing asymptotically with time into delta
function

Uiow, r) = (25)

lim (7, 1) ~ (1), 26)

But this scenario is prevented by the boundary condition
that “nothing flows in or out of the singularity at any time.”
This means we expect the solution to be bounded with
respect to both time and space and all the reasoning based
on the assumption of the existence of Laplace transform is
justified.

Further in the text we will employ the field vanishing
condition at 0. (This boundary condition at the singularity
corresponds to what is known as Friedrich’s extension
of a symmetric operator.) Thus the quasinormal modes
will relate to the scattering problem following from the
time evolution determined by the boundary condition
(0, 1) = 0. But everything that we will do in the following
text can be repeated for any other meaningful normal
mode boundary condition giving another time evolution
of the fields. The general dependence of the quasinormal
modes (characteristic oscillations) on such a boundary
condition [given by some linear combination U;(r, iw) +
KUp,(r, iw)] describes the way the quasinormal modes

124008-4
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depend on the hair of the singularity. Since the quasinormal
modes are the ones that carry astrophysical information
about the astrophysical sources, their dependence on the
hair of the singularity (in some simplifying sense given by
the complex parameter K) has a potential astrophysical
importance (of course in case naked singularities have any
astrophysical importance).

III. THE SCALAR WAVE SCATTERING
ON A NAKED SINGULARITY

Using ¢; defined as ¢,(r, 1) = rip;(r, 1) and x the tor-
toise coordinate given by the condition

! @)
one can rewrite Eq. (5) into the following form:
P00 - EOED g 1040, 29)
with
Vm g 10 =["LE D 2 20 ) 09
) Pl )

And, for the normal modes e~ “/¢,(r), we can write

82

D) 4 [0? ~ Vim, g, 1,0]i(x) = 0,
dax

If |g| > m, we can see that f(r) given by Eq. (3) has no
zeros for real arguments, but Eq. (27) can still be integrated
to give

(30)

,q2__nﬁ ,qZ__nﬁ

+ mIn(r> — 2mr + ¢%) + C, 31)

where C is an integration constant. We remark here
r., — o0 as r — oo, but for r — 0 we have

(r—0) 42’"2 @ arctan<7_n1 )
x(r—0)=
[ —m? [ —m2

+ mln(g?) + C = x(0) =constant, (32)

as can be seen in Fig. 1. Further in the text we take the
tortoise coordinate with the boundary condition x(0) = 0.
It means that with respect to the usual (C = 0) tortoise
coordinate such a tortoise coordinate is shifted to the origin
by the transformation x — x(r) — x(0).

The potential (29) has for the ratio g>/m? less than
approximately 9/8 and the relevant x (in the naked singu-
larity case the domain of x is constrained) three extrema,
one smaller “outer” maximum, one dominant “inner”
maximum and a minimum in the potential valley between
them. [For r — 0 the function V(r) — —o0.] For ¢*/m?
more than approximately 9/8 the potential has only one
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FIG. 1 (color online). Typical examples of the behavior of the
new tortoise coordinate defined by Eq. (31) for a space-time with
m = 0.5 and different values of g, taking C = 0.
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FIG. 2 (color online). Potential V(r) given by Eq. (29) with
=2, m=0.5 for g =048, 0.5, 052, 0.54 and 0.56. (The
curves from left to right correspond to the increase of charge.)
Note that the dashed part of the potential (for ¢ = 0.48 and 0.5)
is inside the black hole horizon.

maximum (and thus only one peak). These features of the
potential (29) can be seen in Fig. 2.

Moreover, in the case g>/m? less than approximately
9/8 and [ > 1, the inner maximum becomes completely
dominant, making the outer peak negligible as compared to
the size of the inner peak. For the outer peak and for / > 1

2 .
the terms 2r—2” - 2ri4 represent only a small correction (as

compared to the term proportional to /%) and the second
peak will vanish in this approximation at®> ¢2/m? = 9/8.
(This is because the outer peak lies always at r > 1.
It is also quite obvious that the inner peak exists only

2 .
due to the fact that the terms 2r—'§1 - er4 become dominant

?As trivially expected, we will see that the same result comes
directly from the potential for the motion of a massless particle.
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FIG. 3 (color online). Above: Potential V(r) given by Eq. (29)
with m = 0.5 for ¢ = 0.52 (¢*>/m?> < 9/8) and different values
of [ (same caption as on the right plot). Note in this case the
existence of the secondary peak, reminiscent of the black hole
potential. Below: The same, but this time for ¢ = 0.6 (¢g*>/m? >
9/8). There is no secondary peak in this case.

for r close to 0.) The features described in this paragraph
can be observed in Fig. 3.

Further in the text we will use the following notation
related to the potential parameters: By V; and V, we mean
the heights of the two peaks. (V is the first larger peak and
V, the second smaller peak.) By «; we call the curvature of
the first peak and by «, the curvature of the second peak.
Furthermore, by x| .« We mean the point of the location of
the top of the first peak and by x;,. the point of the
location of the second peak. Many of these parameters
can be exactly calculated in the / >> 1 limit. The results
of these calculations are given in Appendix A.

IV. EIKONAL LIMIT—THE PARTICLE PICTURE

First let us have a look at the geometrical optics
(eikonal) limit of the Klein-Gordon equation, which is
valid for />> 1. In particular what does the geometrical
optics limit tell us about the fundamental mode? The
effective potential for the massless particle is

12
V() = 5 £, (33)
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The effective potential goes to plus infinity as » — 0 and its

extremes are given as
3m *+ m\/9 - 8"*27
) LA (34)

This means the potential has one minimum and one maxi-
mum for

a2 =

2
q 9
— < 3 35)
For
2
a9
m? 8 (36)

there are no extrema. The maximum represents the un-
stable orbit of a massless particle, and for the black hole
case it is only the maximum that is relevant (because it is
located above the horizon). For the naked singularity with
g*/m? = 9/8 there exists also a stable orbit of a massless
particle. However the fundamental mode in the geometri-
cal optics limit is related to the unstable orbit as

'V(rmax _ J V//(rmax)f (rmax)
max)
(For a very good paper that discusses this topic see

Ref. [17].) Note that here ‘/— %’d(;‘““) gives the un-

stable orbit decay rate and furthermore holds the following:

2 2
d V(r)f2( )> _ 661;(;)

(37)

V() f2 ) = (

Xmax

(38)

(Again x is the tortoise coordinate.) Particularly for the
Reissner-Nordstrom black hole or naked singularity (with
g*/m? < 9/8) Eq. (37) can be expressed as

Tmax

l 2 2 ]
we Ly 2m g
r max s max rmax 2 rmax
18 13g> + 24m?>  32mgq®> 104*
x\/—3+ m—q2 i ;nq—ﬂ
rmax rmax rmax r max
(39)
with rp,, = mtIm—8q V()Zmz_ng, given as before.

From the black hole QNM boundary conditions one can
see that such massless particles decaying from their un-
stable orbit and eventually escaping either to the BH
horizon, or the infinity represent the fundamental QNMs
in the / > 1 (geometrical) limit. One can observe (see the
discussion later) that the same holds in the naked singu-
larity case. In the [ >> 1 case the fundamental mode of the
massless perturbations is described by the picture of a
particle decaying from its unstable ‘“‘photon” orbit. (Note
that in the naked singularity case the stable photon orbit
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makes the particle decaying inwards oscillate around the
stable orbit.) This should suggest that in the geometrical
optics limit

(1) one shall expect continuity of the fundamental mode

(as a function of g, m) when turning from the black
hole to the naked singularity case, and

(2) for g>/m?> =9/8 there is a clear indication that

there do not exist low damped quasinormal modes.

The way to understand the continuity (for / > 1) of the
fundamental mode as one transfers from the black hole
case to the naked singularity case could be the following:
Consider the partial S matrix S;(w). Within the S matrix
one can look for poles on the complex plane; obviously any
of the poles must be necessarily nonreal. For the relativistic
time dependence convention chosen as exp(—iwt) the
poles with w; > 0 must be purely imaginary (as a result
of the given Hamiltonian being a symmetric operator) and
they represent bound states with the nonrelativistic ener-
gies given as E = —w?. The poles with w; < 0 represent
quasinormal frequencies. Some of the quasinormal fre-
quencies correspond to the resonances in the phase factor
related to the partial S matrix, and the wave packets formed
out of the resonance energies represent quantum particles
tunneling out of the potential valley, for the nonrelativistic
quantum particles (for example) with the decay rate given
as (w?); = 2wgpw,. Now in the naked singularity case the
fundamental mode is represented by a resonance that has a
low enough energy (at the level of the smaller peak) and
gets trapped in the potential valley in between the peaks for
some time and then radiated away. The larger peak behind
the smaller peak is hugely dominant (large /) and effec-
tively acts to the wave packet as an infinite barrier. There
are probably much higher resonance energies related to
higher QNM frequency overtones that are determined by
the higher peak but left unaffected by the details of the
small peak. So there are two different effective regimes for
the quasinormal modes; in the first regime they are sensi-
tive only to the details of the smaller peak, and in the
second regime they are sensitive only to the details of the
larger peak. This splitting disappears in the case of small
I’s since the two peaks are of comparable heights and
effectively interfere.

Let us finish this section with one more remark: In the
black hole case one can relate the fundamental mode to
the peak of the potential (independently of [ > 1) follow-
ing the way of thinking in Ref. [18]. The ratio of the
amplitudes of the reflected and transmitted waves
Arei(@)/Ayans(w) is for quasinormal modes 1. The same
happens for real w’s, when the energies w? are close
(““almost at”’) to the peak of the potential. So for “almost™
real w? (fundamental mode) the continuity of the ratio of
reflected and transmitted amplitudes analytically contin-
ued to the complex plane suggests that the real part of the
frequency should be near the square root of the peak of the
potential. (This intuition is then to some extent confirmed
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also semianalytically, such as by the Ferrari and Mashhoon
approach using the Poeschl-Teller potential [19], or by
using the inverted harmonic oscillator potential.) In the
case of a naked singularity life is not so easy (in the
reduced 1D problem we have no transmitted amplitudes),
so this simple logic fails. (One can say luckily it fails as if it
remained valid one would also for / >> 1 expect a discon-
tinuity in the fundamental mode as one jumps from the
black hole to the naked singularity. This is because the
second, dominant peak suddenly appears in the domain of
the x coordinate, due to the fact that the domain of x
discontinuously jumps when passing from the black hole
to the naked singularity case.) Certainly one can say that
any of the quick fits, such as were done in the black hole
case, do not lead to anything close to the numerical data
obtained in this paper.

V. GENERAL ANALYTICAL METHODS TO
MODEL THE PROBLEM

In this section we want to suggest some ways to model
the naked singularity scattering (with a general time evo-
lution) by solutions of Eq. (30) with V(x, [, m, ¢g) replaced
by analytically solvable potentials. The reasons are the
following: First, this section serves as a basis for the
analysis of the [ >> 1 cases provided in Sec. VI. Second,
it demonstrates that the naked singularity scattering is in
principle treatable via analytical approximations and thus
shows the general power of analytical techniques. (Also the
approximations obtained here might produce some future
results for the quasinormal frequencies. For some further
calculations see Appendix B. Furthermore, for a very nice
overview of the results for the quasinormal frequencies and
related transmission resonances of the analytically trac-
table potentials see Ref. [20].) Third, it might bring more
insights into the physics obtained through the exact scalar
field potential (29).

The key point is to split the scalar field potential into
different domains and approximate it on each of those
domains [or directly the solution of Eq. (30)] by a different,
analytically solvable potential. Then one has to impose
the standard procedure: The logarithmic derivatives of
the solutions on different domains must be glued on the
domain’s boundary. We might add here that since the
analytically solvable potentials are typically fitted by
the parameters of the peaks one expects such an approxi-
mation to work for the modes that are not too damped (the
low damped QNM modes). The approximation cannot be
taken too seriously for the highly damped modes.

Let us suggest modeling all the solutions of the relevant
cases as follows.

A. The case ¢2/m* = 9/8 for arbitrary [

For this case it might be interesting to consider the
Morse potential. (For the definition and origins of all
the potentials used in this section see also Ref. [21].)
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On the other hand the infinite valley behind the one and
only peak may not be well modeled by only a finite valley
that is behind the peak of the Morse potential. Thus we
consider the solution in the region ‘“behind”” Morse poten-
tial region to be given as (24) for x — 0 and the logarithmic
derivative gluing condition originates from

(1) 0 < x < ay: use the function given as [for the details

see Eq. (24)]

& (r) = r¥(r) = Ar(ePr — ePor), (40)

(2) a; = x: use the appropriate solution of Eq. (30) with
the Morse potential:

Vie 10 N (2 — o=@ Tima),

Here a, is a point most conveniently chosen where the
Morse potential is O (for any arbitrary / there is such a point
for x > 0). This means a; can be analytically given as

1
a; = Xlmax — a_l 11’1(2) (41)

Let us make here one remark: Instead of approximating the
original scalar field equation for r = 0 one can consider
taking Eq. (30) in the r — 0O approximation. This leads to
the following:

Lo |2 B0 _

dx? 9 x?

Equation (42) has solutions ¢ = C,x'/3 + C,x?/3. The
solution such that fulfills ¥(0) = 0 must have C; = 0.
This approximation of the solution we think to be less
exact as the approximation given as (40), as it is in fact
effectively only the first nonzero term of the power series
expansion of (40) taken at 0. [For such reasons we decided
to use in our analytical approximations the approximate
solution (40).]

0, x—0. (42)

B. The case of g*/m? = 9/8 in the large [ limit

Let us consider now the limit of large /. In this case,
since the peak already lies close to 0 and the change in the
highest power of inverted x becomes more and more
dominant (with higher I’s), one might simplify the approxi-
mation given in case V1, by using the following potential:

(1) 0 <x < Xx|pmax: use the function given as (40).

(2) Xjmax = x: use the appropriate solution of Eq. (30)

with the potential (Poeschl-Teller potential):

Vicosh2[a;(x = x| max) ] (43)

Here we also used the Poeschl-Teller potential instead of
the Morse potential, because the logarithmic derivative
gluing condition is much easier to solve for the solutions
of the Poeschl-Teller than for the solutions of the Morse
potential. The expense of the simplicity is that the approxi-
mation by such a potential might be slightly less exact than
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by using the Morse potential, but one still expects it to be
accurate enough.

C. The case ¢g*>/m? < 9/8 for arbitrary [

If one does not want to neglect the second smaller peak
(so one is interested in resonances related to the valley
between the two peaks), the analytically treatable potential
describing all the resonances (and also higher damped
QNM frequencies) could be

(1) 0 <x < ay: use the function given as (40).

(2) a; = x = a,: solutions of Eq. (30) with the Morse

potential

Vleial(xixlmax)(z — eial(xixlmax)). (44)

(3) a, = x: solution of Eq. (30) with the Poeschl-Teller
potential:

VZCOShiz[O{Z(X - x2max)]- (45)

Here a, is best chosen as in the case V1 and a, is chosen to
be such that the resulting potential is continuous. Generally
a, has to be obtained numerically, but for larger [’s
(certainly / = 20 is more than enough, as we checked),
the curvature of the second peak is very small comparing to
the curvature of the first peak and also the curvature of the
first peak becomes (for large I’s) very large comparing
to the scales of the potential, so that one can calculate
(for I =20 with a good approximation at least to six
decimal places) a, just by
(1) taking the Poeschl-Teller potential to be constant
and given by the hight of the outer peak;
(2) simplifying the Morse potential by the following
approximation:

V(x) = 2V e~ @0 %ima), (46)

The resulting formula then becomes

1. [V,
— In{—=). 47
o, n(zvl) “7)

a = Ximax —
Then one can easily show that a, — 0 as [ — .

D. The case of ¢g2/m? < 9/8 in the large I limit

Now consider what happens with the resonances related
to the valley between the two peaks in the large / limit. In
such a case the dominant peak grows to infinity as com-
pared to the smaller peak; the infinite valley behind the
dominant peak shrinks to 0. Also @; — 0 and the valley
between the two peaks becomes flat as compared to the
difference between the height of the first peak and the value
of the potential at the bottom of the valley. If the reso-
nances related to the smaller peak locate close to the top of
the peak (they should since the first peak grows with [ and
makes the tunneling harder), then one might effectively
approximate the case V3 by the Poeschl-Teller potential:
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VZCOSh72[a2(x - x2max)]: (48)

for 0 = x. (One can also derive this approximation straight
from the logarithmic derivative gluing condition in
Appendix B 2 by taking the [/ — oo limit.)

VI. THE LARGE ! LIMIT—THE ANALYTIC
APPROACH

In this section we want to analytically confirm the results
obtained directly from the eikonal limit.

A. Calculations for ¢2/m?*<9/8

The case V4 from the previous section is easily solvable.
The solution in the region x =0 must fulfil the out-
going radiation condition. [To be exact after analytically
extending the solution to the complex plane it must give
|

~+ 1

N AR TN
Fy v5

2 a, 2 (4%) ’ (2%)

Unless g*/m? is not too close to the upper limit given for [

large as 9/8, one can reliably approximate ¢ 2@ 2mx =~ ()

and the condition (52) turns to be

1 iV, 1 iV j
NUER 2,1—ﬂ,1}=0.

Fyls +
21{2 (2%) 2 (4%) (4%)

(53)

Now (53) can be rewritten through Gamma functions
and reduces to the simple problem of finding poles of the
product of Gamma functions:
FI:_ iw — iV, +l:|F|:— iw + i\/V_2+

ay 2

1

o 2] 0. (54)
The poles are located at —n for n being a natural number
and this gives

w = 2V, — ia2<n + %) (55)
This is precisely the formula for the lowest damped black
hole QNM frequencies. This means in the / > 1 limit we
see (at least for the lowest modes) a continuous transition
from the black hole case to the naked singularity case,
as expected. (At least in the case where it holds that
e~ 2®%mx ~ (), which becomes a less accurate approxima-
tion for g>/m? close to 9/8. On the other hand for such
ratios of ¢?/m? the peak is almost vanished and one can
assume that the decaying circular orbit eikonal picture has
already quite limited sense.)

All this means that in the regime [ >> 1 the lowest
QNM frequencies should be located close to the first
peak of the potential and are (up to certain n) given by
the formula (55). They represent resonances such that they
are insensitive to the details of the larger peak as in their
case the larger peak can be already seen to act effectively

iw
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asymptotically the outgoing waves on the line (wx); = 0.]
Such a solution is given as follows:

Pr(x)=Cre' Fy (g1, 82 83, (1 +exp(2a (x — xpmax)) 1),
(49)

where F,; is the standard hypergeometric function (of the
type 2-1) and

1 ’1 V,
=—+ |-——==—g,+ 1, 50
81 2 4 a% 82 (50)
iw
g=1-—. (1))
a,

The boundary condition at 0 gives ¢x(0) = 0, leading to

(1 + exp(_2a2x2max))_l) =0. (52)

as an infinite potential barrier. Hence we can conclude that
in the [ > 1 case we are able to match the geometrical
(eikonal) limit of the original problem considered.

B. Calculations for ¢*>/m?* = 9/8

Take the case V2 from the previous section. On the left-
hand side of the logarithmic derivative gluing condition we
need a logarithmic derivative of the function:

r¥, = Cpr(ePrr — ePor), (56)

On the right-hand side of the logarithmic derivative gluing
condition we need the logarithmic derivative of the solu-
tion on the interval [x) . 0. It is given as in (49), only
the parameters are related to the first and only peak in this
case. Then the logarithmic derivative gluing condition
leads to the following:

_i_w_l[l_ﬁ 3\(—de 41 1 _ V1
F( a; 2y4 o2 + 4)F< a + 2y4 a2

_l'_w_l'l_ﬂ 1 — iw l,l_ﬂ
F( 2a, 2y4 a% + 4>F< 2a + 2y4 a%

(rmax)[ 1 + Blelglrmax — Bze:BZrmux]

2al elglrmax — eﬁZrmax

N[N
N—"

+ |+

N
N

(57)

rm ax

If one takes the / — oo limit, then Eq. (57) becomes
S 1 3\ —im 1 3
i 1 N —im — 1 1
F( za)+ﬁ+4>r( i® ﬁg+4)

1r1
= | ==+ coth(v3) |
i[5+ eon(45)]
Here & is defined as @ = w/(2«). For not highly damped
frequencies in the / >> 1 limit it must hold that ® € R. But

(58)
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by plotting the right side of Eq. (58) minus the left side of
Eq. (58) in MATHEMATICA it can be shown that Eq. (58)
does not have any real solutions. For more than large
intervals of values of & the absolute value of the left-
hand side of the equation minus the right-hand side of
the equation always seems to grow (almost) linearly with
respect to @ from the value approximately given as 0.35 at
® = 0 to infinity. It might not be hard to prove also
analytically that (58) does not have real solutions by using
many relatively simple properties of Gamma functions.
This means there are no low damped modes in the case
of g>/m*>>9/8 and | > 1, as expected from the eikonal
limit or particle picture. (It means the damping of the
fundamental mode grows to infinity as / — oo and grows
no less rapidly than «;, and hence no less rapidly than
cubically with [.)

VII. THE NAKED SINGULARITY FOR THE
SMALL WAVE MODE NUMBERS—NUMERICAL
RESULTS FOR THE FREQUENCIES

In Ref. [22], the quasinormal modes of a scalar field in
an electrically charged Vaidya background were studied
using a similar numerical setup to what we are going to use
here. An interesting investigation done in Ref. [22] tried to
determine what would happen with the quasinormal modes
as the time-dependent background approached a naked
singularity, but the numerical code used was not suitable
for following the field evolution after the extremal con-
figuration (¢ = m) was reached. In our present work, we
have a static configuration that describes a naked singular-
ity in order to study the properties of the quasinormal
modes.

Our objective in this section is to solve Eq. (28) with
potential (29) numerically, in the case where g > m
as described in the last section. To do this, we rewrite
Eq. (28) in terms of the light-cone variables u =t — x
and v=1t+x, where x corresponds to the tortoise
coordinate (27), as

0%
Judv

3’y 9P
dx

~z = V(e (59)

that can be integrated with the boundary conditions

d(r=0,1)= ¢p(u,v=u-+2x,) =0, (60)

(w=v,)?

du=0v)=e¢ 272, (61)

where condition (60) is a necessary condition on the field ¢
near the origin (see the discussion on Fig. 5 below) and
condition (61) defines an ‘“‘arbitrary” relevant initial signal
to be propagated. We use the algorithm

Iy = dw + P — s — MVAUAW (62)
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X X X X r=0 . [0}
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Vg Vg+h vg+2h .

FIG. 4 (color online). Example of the numerical grid used for
integrating Eq. (59) with boundary conditions (60) and (61). The
points marked with “x”* are out of our domain, values of ¢ at the
positions marked with filled circles are given by the boundary
conditions and the values at the empty circles are obtained with
the algorithm (62).

where A, and A, are the integration steps in u and v,
respectively, and the definitions of ¢, etc., can be seen in
Fig. 4. Note that here V is the potential (29) evaluated at the
same r coordinate as ¢ (and ¢ ).

As we can see in Fig. 5, the boundary conditions (60)
and (61) ensure the necessary conditions on the fields ¢
and ¢ near the center. As we discussed previously in
Sec. II, the physically correct boundary condition for ¢
is (0,r) = 0. From this we must have for ¢(r, 1) =
rip(r, 1) that ¢(0,1) =0 and ¢'(0,¢) = 0. In fact, the

quantity
E= [I:(aa—qtb)2 + (%)2 + V(r)¢2:|dx (63)

is invariant along the ¢ evolution governed by (59) with
the boundary conditions ¢(r =0, 1) = ¢(r — o0, 1) = 0.
Taking into account (27), the integrand can be expressed
near r = 0 as

‘rl_:(<¢')2 -5¢) (64)

with the prime denoting the derivative with respect to r.
Any initial condition with finite £, as those ones obeying
(60) and (61), is such that

2
(¢/)2 _ ﬁd)z —_ r2+a’ (65)

for r — 0, with @ > 0, implying that ¢'(r = 0, 1) = 0 for
the initial condition with finite £ obeying ¢(r = 0,1) = 0.
Moreover, we have checked that our boundary conditions
for ¢ also reproduce the ¢'(0, ) = 0 condition, by testing
the code with the condition ¢ (7, 1) = 0, where 7 is a very
small value, and we found no differences in the late time
evolution of the fields.
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FIG. 5 (color online). Above: Behavior of ¢ with [ =2 as a
function of r near the center » = 0 for a late time ¢z = 350,
shown here in order to exemplify the effect of conditions (60)
and (61) in the numerical integration, for a space-time with
g = 0.5 and g = 0.52. Below: The same as in the left plot, but
this time for the function ¢ = ¢/r.

In the left plot of Fig. 6 we present some typical time
evolutions of ¢, for [ = 2 and different g/m ratios. In the
right plot we present the obtained frequencies of the QNMs
(fundamental mode) in the wyp X w; plane. We can see a
discontinuity in the frequencies as g/m — 1, as was
expected from the discussion of the potential V(r) (see
Fig. 2). We also point here that we see no significant
changes but rather a smooth behavior as g*>/m* — 9/8
(g/m — 1.06 in the plot). But we see a point of inflection
in wg at g/m = 1.16, for which we did not find an ana-
lytical explanation.

We remark here some numerical issues that prevented us
from extending the results shown in Fig. 6 for lower and
higher ¢/m ratios. As g/m — 1 and ¢ becomes less
damped, different modes subsist for longer times and
longer evolutions are needed in order to obtain the clear
frequency of the fundamental mode. On the other hand, as
we increase g/m, ¢ is damped so quickly that we cannot
observe enough oscillation cycles to obtain the frequen-
cies. These are the issues that have limited our results.

Finally, in Fig. 7 we explore how the frequencies of the
QNMs change with [. As usual in black hole scattering
problems, we see that the oscillation frequency wpg
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FIG. 6 (color online). Above: ¢(xp, t) with [ = 2 at x; = 100
for a space-time with m = (0.5 and different values of g > m.
Below: Frequencies of the fundamental mode with / = 2 in the
wg X w; plane, parametrized by the g/m ratio.
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FIG. 7 (color online). Above: Frequencies of the fundamental
mode as a function of [ for m = 0.5 and g = 0.52 (¢*/m? <
9/8). Below: The same as above, but this time for m = 0.5 and
g = 0.6 (¢*>/m>>9/8).

increases with /. But the qualitative behavior of w; changes
significantly with g/m. In the upper plots (g>/m> < 9/8),
|w;| decreases with [; that is, the damping time is longer.
In the lower plots (¢2/m? = 9/8), we have the opposite
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tendency. This behavior is connected to the potential V(r)
shown in Fig. 3. It might be also interesting to mention that
in case ¢g%/m? = 9/8, there is a qualitative similarity in the
behavior of the imaginary part of the frequencies as a
function of /, between the case when [ is small and the [
large limit.

VIII. ASYMPTOTICALLY HIGHLY DAMPED
MODES FOR THE SCALAR FIELD IN THE R-N
NAKED SINGULARITY SPACE-TIME

Let us explore the following limit: [ will be fixed and
n — 00, assuming that there exist an infinite number of
QNMs. Assume further that w? and w; diverge as n — 0,
In such a limit, to have a good understanding of what the
QNM boundary conditions are, it is convenient to take an
analytic continuation of the solution into the complex x
plane and impose the outgoing wave boundary conditions
on the (Stokes) line Im(wx) = 0. This is for almost imagi-
nary asymptotic frequencies (w = iw; — —io0 as n — )
the line Re(x) = 0. The key point is to realize that, in the
asymptotic case, w> >> |V(x)| holds everywhere apart of a
tiny region around 0, where the potential V(x) can be
already approximated by

2
Vix) = — 0z (66)

(There is one subtlety: The potential, and also later the
solutions, are multivalued functions in the complex vari-
able, but after specifying a branch cut together with the
branch, this does not cause any problems to our analysis.)
So let us make the following statement: The solutions of
the equation

d2 2
$ix) (w2 + ﬁ)d,,(x) —0 67)

dx?

are everywhere good approximations to the solutions of the
scalar field equation for the asymptotically highly damped
modes. [The region where the approximations x = r* and
V(x) ~ 1/r(x)® cease to hold is the region where we can
already neglect the potential as a whole with respect to the
w? term.]

Equation (67) has a general solution given as

¢1(x) = Jox[AJ)5(wx) + BI_j5(wx)],  (68)

where J, is the Bessel function. The solution for which
i (x) fulfills the vanishing boundary condition at 0 is given
by B = 0. Our QNM boundary condition says that this
solution taken along the Stokes line Im(wx) = 0 should
give purely outgoing radiation for wx — co. But in the
wx — oo limit we know that we can approximate the
solution (via Bessel function approximations in such a
limit) as

PHYSICAL REVIEW D 86, 124008 (2012)
2 T
AJwxJs(wx) = A —cos(wx - 3)
T

=A L(e—in'/Seiwx + eiﬂ'/3e—i¢ux)' (69)
2
This linear combination is independent on @ and does
not give the purely outgoing radiation (~ '), which
suggests that our QNM boundary conditions cannot be
fulfilled for asymptotically highly damped modes.

This can be taken as evidence that the asymptotically
highly damped modes (w; — — ) do not exist for the R-N
naked singularity and this can be taken as a confirmation
that the highly damped QNM:s could link to the black hole
space-time horizon’s properties (nonexistence of the hori-
zon leads to nonexistence of the modes in the asymptotic
limit). One can see also some link to the fact that for the
extremal R-N black hole the spacing between the asymp-
totic frequencies goes to zero as proportional to the surface
gravity (this might make a whole infinite tower of arbi-
trarily highly damped modes eventually “collapse” to a
single mode). Moreover, we assume that the nonexistence
of the highly damped modes can be proven along the same
lines also for other naked singularity space-times (like
negative mass Schwarzschild space-time, etc. [9]).

IX. CONCLUSIONS

In this paper we analyzed the problem of the scalar field
scattering on a R-N naked singularity background from the
point of view of quasinormal modes. The evolution on the
R-N naked singularity is nonunique unless one specifies an
additional boundary condition representing a hair of the
singularity. The quasinormal modes then carry information
about the hair. We applied a particular boundary condition,
that nothing comes out or in from the singularity, and
analyzed analytically, as well as numerically, the character-
istic oscillations of the scalar field perturbations (low
damped quasinormal modes). We analyzed the eikonal
[ > 1 case via the analytical approach confirming the
intuition obtained through the massless particle viewpoint
and showed that an approach based on analytical approx-
imations can be useful also for the small / wave mode
numbers. For the small [I’s we calculated the frequencies
numerically via the characteristic integration method. We
also suggested arguments showing that the asymptotically
highly damped modes (limit / fixed and n — o0) do not
exist in the case of R-N naked singularity. This might
confirm the intuition one has about such modes from
the black hole physics (and from the presently popular
conjectures [11,12]).

The basic results can be summarized as follows: For the
low modes and the large / there is a continuous transition in
the low damped QNM modes between the R-N black hole
and the R-N naked singularity. However, when the ratio
g*>/m? becomes larger than approximately 9/8 then the
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picture becomes significantly different and the low damped
modes do not exist for large I’s. (This is a very different
picture from the BH based intuition.) For the small [
numbers the modes face a discontinuous transition when
transiting from the black hole to the naked singularity.
Furthermore, the ! dependence |w;| (for small ) changes
as g>/m? becomes larger than approximately 9/8: |w,|
decreases for g?/m*> < 9/8 and increases for g*>/m? =
9/8. It might be interesting to notice that for ¢>/m?> =
9/8 the increase of |w,| as a function of / (for small I’s)
matches the behavior of |w;| for large I’s. In the case of
large I’s and g*>/m? = 9/8 we have shown that |w,| of the
fundamental mode grows at least cubically with [ and thus,
as we already mentioned, the low damped modes do not
exist. For the asymptotically highly damped modes our
results seem to suggest that they do not exist, which means
that the imaginary parts of the frequencies are bounded.
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APPENDIX A: CALCULATIONS OF SOME
OF THE IMPORTANT QUANTITIES

In this Appendix we provide a list of some of the
quantities (also some of their derivations) that occur in
the calculations relevant to the problem analyzed in this
paper. Write V(r) in a convenient form:

B C D E

A
Vin=5+—=+—+=+—, Al
(r) 23T AT 5T 6 (AD)

with

A=I1l+1), (A2)
B=2m[1—1I(+1)] (A3)
C=q*l(l+1)— (2m)* — 24> (A4)
D = 6mg?, (AS)
E=-24" (A6)

Now let us calculate the second derivative of the potential
with respect to the tortoise coordinate:

&V(x) _ d*V(r) (dr)Z L dv(r) d*r

dx2 dr* \dx dr dx*

(A7)

At rp, the derivative dV(r)/dr is zero, then necessarily

d’V(x) _ I:sz(r) (ﬂ)z]

dx? dr? \dx
|xmax

(A8)

| Xmax

and since
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d&v(r) _6A  12B  20C 30D A 42E
=+t T+ T+ = A9
ar p S /6 g 8 (A9)
we obtain

sz(r)_(l_Zrn+c]2>2<6A 12B  20C 30D 42E>

dx2 2 4 5 6 7 8

r r r r r r r

(A10)
For the global extremum condition holds

dv(r)
dr

=2Art+3Br . +4Cri. +5Dr .+ 6E=0.
(A11)

This equation can have maximally four roots. From (29)
it can be easily seen that for r — o0 (29) becomes for any /,
g, m positive [dominant term is /(/ + 1)/r*] and goes to 0.
In the case of naked singularity for r — O the potential
goes always to —oo (dominant term is —2¢*/r%); in the
case of black hole for r — r it always goes to 0 [dominant
term is f(r)]. This means, together with (A11), that for any
m, g, I (black hole or not) there are always either two local
maxima and one local minimum, or one local maximum
without local minima.

1. The large [ limit

For [ > 1 the following approximations hold: For large
[ the maximum of the inner peak can be approximately
found analytically and behaves as

34l

Fax = . (A12)
JIT+T1)
Also holds the following: For x < 1
3
~—. Al13
Y3 (A13)

The parameters «; and V| turn in the large / limit to be

Y LR

—_—, (Al14)
Y3l
[1( + P2
Vi =—p— Al5
This implies also the following results: For [ — oo
2 (Al6)
Xlmax X1 — 7=
1 1 \/5
1
E ~—, (A17)
o 2\/§
Vo~ 11+ 1), (A18)
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Vs APPENDIX B: SOME SUGGESTIONS
v, 70 (A19) FOR THE ANALYTICAL TREATMENT
OF THE SCATTERING FOR
SMALL WAVE MODE NUMBERS
E -0 (A20) . . . .

a; ’ Write the two linearly independent solutions on the
domain i in the form convenient for the logarithmic de-
rivative gluing condition: C;(W;; + K;¥,,). If the domain

@ — o (A21) extends to the infinity and W;; is taken to be the asymptoti-
oy ' cally incoming wave solution and ¥}, the asymptotically
outgoing wave solution, then K;(w) is the S matrix (ratio of
o) the coefficients of the outgoing and incoming waves).
V(x) =~ Yy for x < 1. (A22)  Anyway, the logarithmic derivative gluing condition at
x the boundary of the regions i and i — 1 turns to be
K. — I:\Péil)lq}il o q}gqu(i*l)l + Kifl(qffifl)zqfil - \Pglq}(il)Z):| ' (B1)
l \If;2llf(,.,1)1 o ‘Pfi—l)quﬁ + Kifl(q’f'zq'(ifl)z o q’fi—l)zq’iz) L,
This is the cqndition connecting the K; coefﬁcient.with the We(x) = C [Wg/(x) + S(w, ), V))Wg/o(x)]
K,_, coefficient through the values of the solutions and i —iox
their derivatives at the boundary of the regions. On one side = Cre7[e™ " M(sy, 52, 2)
consider an asymptotically free-wave region, whereas on + S(w, ay, Vl)ei“’XM(s’l, S/z: 2)] (B2)

the other side consider an infinite potential barrierlike
boundary condition for V. In such a case one can through
equations of the type (B1) to connect (after a finite number
of steps) the S matrix of the external (asymptotic) region
with the boundary condition at the origin (where we can
conveniently put K; to be zero). Then one gets the S matrix
expressed through a function of the boundary values (at all
the boundaries) of the solutions and their derivatives. This
will be an algebraically more difficult condition than the
one coming just from posing the outgoing wave condition
in the external region, as we did in the previous section
(case of large [ and g*>/m? larger than approximately 9/8).
The reason for posing the more complicated condition of
the type (B1) is that it might be easier (and also brings
more insight) to look for a real energy resonances (by
plotting phase change and looking for rapid phase shifts,
hence rapid change of the logarithm of the S matrix) than to
try to numerically solve the more simple outgoing wave
condition (with the help of appropriate computer soft-
ware). Such resonances should then 1 to 1 correspond to
the low damped quasinormal frequencies. Let us apply
these ideas and try to calculate the expressions for the
partial S matrix.

1. The case for ¢*/m? = 9/8

This is the case V1. We are gluing only two regions. The
solution on the left side of the boundary W;, such that
fulfills ¥; (0) = 0, is again given as (40). On the right side
(the Morse potential side) the solution is given as

By Wg/o(x) and W/, (x) we mean asymptotically outgoing
and incoming wave solutions, respectively, in the sense
that Wg/(x — 00) — e /* and Wg/o(x — 00) — /¥
exactly. Furthermore M(., .,.) is the Kummer (confluent)
hypergeometric function and

1 Vi i 2i
lef—i—\/_l+gEs’]+ﬂ, (B3)
2 al al al
2i 4i
=142 =g+ 12 (B4)
aq aq
2V
= P - ). @9

1

Also S;(w, @, V) is the S matrix. The logarithmic deriva-
tives gluing condition at @; = x| yax — ozL, In(2) is then

1 Bleﬁlal — Bzeﬁzul
f(al)[_+ Bia Baa ]
al eP1¢l — eP2¢%1

=a1Z(Cl1)

sy M(sh + 155 +1,2(ay))

+iw+
sh M(s', sb,z(ay))

(B6)

Considering that the following holds:

i4/Vy

aq

z(ay) = (B7)

one can rewrite (B6) into
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! M(s’l + 1,55 + 1,%}‘/_')
=24V, +iw + — . B8
24V, +iw " M(s’l,s’z,i4*/‘7‘) (B8)

a)

1 BePrar — B,ePr
f(a])[_ + Bia Bra ]
al erP14lr — eP2¢%

The partial S matrix can be obtained from (B1) (K; = 0) as

v Y,
\PR/I ‘l'_f Wi/
Vrio YL _ Yio

v Wr/0

Sl(wr Vl’ al) = -

(B9)

Since for real w holds that Vg, = ¥ /; and W, is a real valued function, one can immediately observe that (for € R)
S7(w) = S; '(w), and hence the partial S matrix is unitary.
From (B9) we can conclude the following:

M(sl+1,sz+1,i4;/lw)

1 BreP141 — B, P2 . . s
(a )[_+ﬁ — | 2yV w++ ————"
f Vla ePrn e l %2 M(sl,sz,i4 Vl)

a]

M(sl, 55, AV )
—2iwa, ai
4,/

M(s’l, 55, )

aj

S]((l), Vl! al) = e

(B10)
p p ;M s’+l,s’+1,i4—Vv]
flap[L +Bgu=Bet] — | DV +io + 3 (00157

et =2t %2 M(S’I»SQ»MQ,VI)
2. The two peak case, g*/m? < 9/8

The two peak case is a more complicated problem. Anyway, one can write the logarithmic derivative gluing condition as

az(ay) i Si(w, ay, Vo)M{sy, 55, z(ay)} + e M{s), s}, z(ay)}
2 Si(w, ay, Vo)M{sy, 5o, z(ay)} — €2 M{s!, 55, z(ay)}

Sl(a), ay, VO)M{SI + 1, ) + 1, Z(Clz)};—; - €i2wazM{S/1 + 1, SIQ + 1, Z(aZ)}z_:l
2
Si(w, ay, Vo)M{sy, 55, 2(ay)} — e M{s, s}, z(ay)}
. Fylgn 82,83 — L1+ expQas(ay — xpma )]}
=iw T (B11)
Fy{g1, 82, &3, [1 + expas(ar — xomax))] ™'}

Here S is the S matrix from the case V1 and is given by the formula (B10). The S matrix related to the case V3 (call it S,) is
related to S; through the condition (B1). In the gluing formula (B1) S, stands for K; and S for K;_;. Also ¥;, , are the
solutions of the Poeschl-Teller case

Wi (x) = e Fy[g1, 82, &3 [1 + expRan(x — xpa))] '] (B12)

and

Win(x) = e Fy[g1, g2, &3 [1 + exp(—2a;(x = x2ma))] ']
(B13)
W(;_1)1,» are the Morse potential solutions given as (B2). We see that if there is a regime in which the modes do not feel the

smaller peak, then they are given by the poles of S; and must be in the same time poles of S,. The formula for S, in this case
(for frequencies that represent poles of S) simplifies to

g = I:(‘Péi_l)z\lfil - \Péqu(i—l)Z)]
? (\II§2\I'r(i—l)2 - '\Ifél.7 1)2“Pi2)

(B14)

|u,-

There is a possibility that for the case of the low modes in the two peak model one might be able to neglect the infinite
depth of the valley between the infinite barrier and the Morse peak. In such a case one can take a simpler model where the
Morse potential directly follows after the infinite barrier. The S term appearing in the formula (B11) will be in such a case
given by a much more simple expression:

M{sy, 55, 2(0)}

Si(w, a, Vy) = —F/—7——5.
(@, ay, Vo) Mis,, sh, 20}

(B15)
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