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Determining the final result of black-hole–neutron-star mergers, and, in particular, the amount of matter

remaining outside the black hole at late times and its properties, has been one of the main motivations

behind the numerical simulation of these systems. Black-hole–neutron-star binaries are among the most

likely progenitors of short gamma-ray bursts—as long as massive (probably a few percents of a solar

mass), hot accretion disks are formed around the black hole. Whether this actually happens strongly

depends on the physical characteristics of the system, and, in particular, on the mass ratio, the spin of the

black hole, and the radius of the neutron star. We present here a simple two-parameter model, fitted to

existing numerical results, for the determination of the mass remaining outside the black hole a few

milliseconds after a black-hole–neutron-star merger (i.e., the combined mass of the accretion disk, the

tidal tail, and the potential ejecta). This model predicts the remnant mass within a few percents of the mass

of the neutron star, at least for remnant masses up to 20% of the neutron star mass. Results across the range

of parameters deemed to be the most likely astrophysically are presented here. We find that, for 10M�
black holes, massive disks are only possible for large neutron stars (RNS * 12 km), or quasiextremal black

hole spins (aBH=MBH * 0:9). We also use our model to discuss how the equation of state of the neutron

star affects the final remnant, and the strong influence that this can have on the rate of short gamma-ray

bursts produced by black-hole–neutron-star mergers.
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I. INTRODUCTION

The potential of black-hole–neutron-star (BHNS) merg-
ers as progenitors of short gamma-ray bursts (SGRBs) and
their importance as sources of gravitational waves detect-
able by ground-based interferometers, such as Advanced
LIGO, VIRGO, and KAGRA [1–4], have driven most
recent studies of these systems. Gamma-ray bursts, in
particular, are a likely result if the neutron star is tidally
disrupted, and the final outcome of the merger is a massive
accretion disk around the black hole (see Ref. [5] and
references therein). If the disruption of the neutron star
causes unbound material to be ejected from the system,
radioactive decay in the neutron-rich ejecta could also
produce a ‘‘kilonova,’’ visible as a day-long, mostly iso-
tropic optical transient [6,7].

Numerical simulations have taught us that BHNS merg-
ers can be divided into two broad categories: either tidal
effects are strong enough for the neutron star to be dis-
rupted before reaching the innermost stable circular orbit
(ISCO) of the black hole, or the neutron star plunges into
the hole before tidal disruption occurs. In the first case,
some material from the disrupted star remains outside the
black hole for long periods of time (� 0:1–1 s) in the form
of an accretion disk, a tidal tail, and/or unbound ejecta. In
the second case, however, the entire neutron star is rapidly
accreted onto the black hole. To first order, the most
important parameters determining the outcome of a
BHNS merger are the mass ratio of the binary [8–10],
the spin magnitude of the black hole [9–11], its orientation
[11], and the size of the neutron star [8,12,13]. The

formation of massive accretion disks is more likely to
occur for black holes of low mass (at least down to mass
ratiosMBH=MNS � 3) and high spins, and for large neutron
stars.
Studying these mergers is a complex problem, and accu-

rate results can only be obtained through numerical simu-
lations in a general relativistic framework: results using
approximate treatments of gravity can lead to qualitative
differences in the dynamics of the merger, and large errors
in the mass of the final accretion disk or of any unbound
material. Unfortunately, general relativistic simulations are
computationally expensive, and only �50 BHNS mergers
have been studied so far (see Refs. [14,15] for reviews of
these results). Additionally, a majority of these simulations
considered binaries with mass ratios MBH=MNS � 2–3,
while population synthesis models indicate that mass ratios
MBH=MNS � 5 are astrophysically more likely [16,17].
Existing general relativistic simulations are also fairly
limited in the physical effects considered: only a few
include magnetic fields [18–20] or nuclear-theory-based
equations of state [13], and none have considered neutrino
emission (although neutrinos have been included in
simulations of neutron-star-neutron-star mergers [21]).
Magnetic fields and neutrino radiation are unlikely to
affect the disruption of the star, or the amount of matter
remaining outside the black hole after the merger.
Magnetic fields exceeding 1017 G are necessary for the
premerger evolution of the binary to be modified [18],
while the neutron star had more than enough time to cool
down during the long evolution of the binary toward the
merger, so that neutrino emission over the short time scale
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governing the disruption of the star (�dis � 1 ms) or even
the last few orbits of evolution (�orbit � 10 ms) is negli-
gible (see Ref. [21] for a numerical confirmation in the case
of binary neutron star mergers). On the other hand, both
effects are critical to the evolution of the postmerger
remnant, and to the modeling of electromagnetic and neu-
trino counterparts to the gravitational-wave signal emitted
by black-hole–neutron-star mergers: accretion disks result-
ing from these mergers are expected to be susceptible to
the magnetorotational instability, and cooled by neutrino
emission over a time scale �� � 0:1 s [22] comparable
with the lifetime of the disk.

Given the size of the parameter space to explore and the
cost of numerical simulations, obtaining accurate predic-
tions for the final state of the system for all possible
configurations is only feasible through the construction
of a model which effectively interpolates between known
numerical results. Such a model can also be of great help to
determine which binary parameters should be used in
numerical simulations in order to study a specific physical
effect (e.g., massive disks) without having to run many
different configurations. In the limit of extreme mass ratios
(MNS � MBH), analytical expressions can be obtained for
the binary separation at which a neutron star would be
disrupted by the tidal field of a Kerr black hole [23,24], and
compared with the ISCO of the hole to obtain a criteria
separating binaries that disrupt outside the ISCO from
binaries for which the neutron star will directly plunge
into the black hole. A similar criteria for more symmetric
mass ratios was derived analytically by Miller [25] using a
post-Newtonian approximation to the location of the ISCO
due to Damour et al. [26], and numerically by Taniguchi
et al. [27] for the case of nonspinning black holes by
studying the quasiequilibrium configurations used as a
starting point for the numerical evolution of BHNS
binaries in general relativity. We discuss these approxima-
tions, and how they compare to our fit to recent numerical
simulations, in Sec. VI B. More recently, Pannarale et al.
[28] computed estimates for the mass remaining outside
the black hole at late times through the use of a toy model
studying the tidal forces acting on the neutron star, repre-
sented by a triaxial ellipsoid, and fitted to the results of
numerical simulations. However, many of those simula-
tions underestimated the remnant masses and only covered
the low-mass-ratio regime MBH=MNS � 2–3. The qualita-
tive dependence of the remnant mass in the parameters of
the binary is captured by their model, but the quantitative
results do not match more recent simulations, particularly
for larger black hole masses [10].

In this paper, we show that simple models comparing the
estimated separation at which tidal disruption of the neu-
tron star occurs (dtidal) and the radius of the ISCO (RISCO)
can accurately predict the mass remaining outside the
black hole at late times. We fit four such models (with
different approximations for dtidal) to a set of 26 recent

numerical simulations covering mass ratios in the range
MBH=MNS ¼ 3–7, black hole spins up to 0.9, and neutron
star radii RNS � 11–16 km. The case of black hole spins
misaligned with the orbital angular momentum is not
considered here, and we limit ourselves to low-eccentricity
orbits (high eccentricities only occur when the binary is
formed through dynamical capture, e.g., in nuclear or
globular clusters). All models match the simulation results
within their expected numerical errors, a few percents of
the original mass of the neutron star.
As obtaining simple approximate constraints on the

binary parameters for which short gamma-ray bursts might
be produced is one of the potential uses of this model, we
will begin by summarizing in Sec. II the main channels
through which BHNS mergers could generate such bursts
and discuss in this context what can be learned from a
simple model predicting solely the total amount of mass
remaining outside the black hole a few milliseconds after
the merger. We then describe in Sec. III the models used
and their physical inspiration. Section IV summarizes the
numerical results used to calibrate the models, while
Sec. V gives the best-fit parameters and discusses the
quality of the fits. Finally, in Sec. VI, we show predictions
of the simplest model across the entire parameter space.
We also discuss their strong dependence in the size of the
neutron star and potential implications for the rate of short
gamma-ray bursts originating from BHNS mergers.

II. SHORT GAMMA-RAY BURSTS

One of the most interesting aspects of black-hole–
neutron-star mergers is their potential as progenitors of
SGRBs—a potential that is, however, conditional on their
ability to form massive hot disks around the remnant black
hole. A detailed discussion of the characteristics of SGRBs
is beyond the scope of this article. But in order to better
understand the implications of our model for the produc-
tion of SGRBs, a few relevant characteristics and potential
pathways to SGRBs should be summarized. The interested
reader can find more details in, for example, the review of
SGRBs progenitors by Lee & Ramirez-Ruiz [5]. SGRBs
are extremely energetic events, releasing energies E�
1048–51ð�=4�Þ ergs over a duration varying between a
few milliseconds and a few seconds (where � is the solid
angle over which the energy is emitted). As opposed to
long bursts, which are observed in star-forming regions of
galaxies and whose association with core-collapse super-
novae is generally accepted, the origin of SGRBs remains
controversial. SGRBs are observed in all types of galaxies,
including in regions without significant star formation.
And some of them even appear offset with respect to their
most likely host. Compact mergers are thus a tantalizing
option as SGRB progenitors: they could release the
required energies; they occur long after star formation;
and a velocity kick given to a neutron star during an
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asymmetric supernova explosion could explain an offset
with respect to the host galaxy.

Two main pathways have been proposed to get to a
SGRB from the remnant of a BHNS (or binary neutron
star) merger. The first involves the emission by a hot
accretion disk of neutrinos and antineutrinos, which can
recombine in high-energy electron-positron pairs in a
baryon-free region along the spin axis of the central black
hole, driving an ultrarelativistic wind [29]. Determining
the energy emitted is a complex problem, depending on the
efficiency of the conversion of the fluid energy into neu-
trino radiation, the efficiency of the �~� ! e�eþ recombi-
nation and the creation of a region sufficiently free of
matter to allow the production of an ultrarelativistic, colli-
mated outflow. Two-dimensional disk simulations indicate
that, for a disk density �� 1010–11 g=cm3 and temperature
T � 2–5 MeV, an energy output E � 1049ðmd=0:03M�Þ2
can be expected, with md the mass of the accretion disk
[30]. Another possibility is to extract the rotational energy
of the black hole through electromagnetic torques
(Blandford-Znajek mechanism [31]). This requires the
rapid growth of a large poloidal magnetic field, to roughly
equipartition levels. Whether this occurs in practice
remains an open question. Assuming equipartition of en-
ergy, Lee et al. [30] find that an energy E � 5�
1050ðmd=0:03M�Þð�=0:1Þ�0:55 is released (and E scales
like B2

p for magnetic energies below equipartition). Here,

� is the viscosity of the disk and Bp the poloidal field.

From this brief summary, we can see that the physics
governing the generation of SGRBs is complex and not
entirely understood. Accordingly, it would be impossible
to determine whether a SGRB can be produced from a
BHNS merger simply from the total mass remaining out-
side of the black hole at late times. This mass is, however,
an important indicator of what happened during merger
and of the energy available for postmerger evolution.
Typically, numerical simulations show that when the rem-
nant mass is greater than �0:1M�, about 1=3–2=3 of that
mass is in a disk, and the rest in the tidal tail. The tem-
perature and density of the disk are generally compatible
with the assumptions of Lee et al. [30], except for the lower
mass disks around black holes � 10M�, which have fairly
low densities. This seems like a promising setup. But
without a better understanding of the exact conditions
leading to the production of a SGRB, we cannot know
for sure which of these configurations, if any, would be
SGRB progenitors. For lower remnant mass, the situation
is more parameter dependent; for lower black hole masses,
the formation of a hot accretion disk remains possible,
while for higher mass ratios, or when the black hole spin
is strongly misaligned with the orbital angular momentum,
nearly all of the material is sent in an elongated tidal tail. In
the end, the only certainty comes for configurations in
which no matter remains outside of the black hole; these
cases can certainly be excluded as SGRB progenitors—and

this already rules out a significant part of the BHNS
parameter space.

III. TIDAL DISRUPTION MODELS

The models used here to estimate the mass remaining
outside the black hole at late times are based on a com-
parison between the binary separation at which tidal forces
become strong enough to disrupt the star, dtidal, and the
radius of the innermost stable circular orbit RISCO.
Intuitively, if dtidal & RISCO, the neutron star will plunge
directly into the black hole, and no mass will remain out-
side the hole after the merger. On the other hand, if dtidal *
RISCO, the star will be disrupted. Some disrupted material
will then form an accretion disk, while somewill be ejected
in a tidal tail and fall back on the disk over time scales long
with respect to the duration of the merger (most of the
neutron star material is accreted within a few milliseconds,
and the disk settles to a near-equilibrium profile over
�10 ms, while material in the tidal tail will fall back
over longer time scales �0:1–1 s). Finally, it is possible
that up to a few percents of the neutron star, material will
be unbound.
The separation, dtidal, at which tidal disruption occurs

can be estimated in Newtonian theory by balancing the
gravitational acceleration due to the star with the tidal
acceleration due to the black hole:

MNS

R2
NS

� 3MBH

d3tidal
RNS (1)

dtidal � RNS

�
3MBH

MNS

�
1=3

; (2)

where RNS is the radius of the neutron star, MNS and MBH

are the masses of the compact objects, and wework in units
in which G ¼ c ¼ 1. In general relativity, these quantities
are not uniquely defined. In practice, we will use the radius
of the star in Schwarzschild coordinates and the Arnowitt-
Deser-Misner mass of the compact objects, all measured at
infinite separation [32].
As for the radius of the ISCO, it is given by [33]

Z1¼1þð1��2
BHÞ1=3½ð1þ�BHÞ1=3þð1��BHÞ1=3�

Z2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�2

BHþZ2
1

q
RISCO

MBH

¼3þZ2�signð�BHÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3�Z1Þð3þZ1þ2Z2Þ

q
;

(3)

where �BH ¼ aBH=MBH is the dimensionless spin parame-
ter of the black hole.
To construct a model for the fraction of the baryon mass

of the star remaining outside the black hole at late times,
we assume that this mass is entirely determined by the
relative location of RISCO and dtidal in units of the neutron
star radius. A first guess for the remnant mass M0

model is

then the linear model:
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M0
model

Mb
NS

¼ �0 dtidal
RNS

� �0 RISCO

RNS

þ �0; (4)

where �0, �0, and �0 are the free parameters of the model,
and Mb

NS is the baryon mass of the neutron star. However,

this simple prescription fits the numerical data rather
poorly. In particular, it strongly underestimates the impact
of the neutron star compactness CNS ¼ MNS=RNS on the
result. This problem is not overly surprising; dtidal was
derived in Newtonian gravity but applied to compact
objects. In particular, it predicts a finite radius for tidal
disruption even if we replace the neutron star by a non-
spinning black hole (for which C ¼ 0:5). To improve the
model, we use instead a corrected estimate of the distance
for tidal disruption, in which compact objects are more
strongly bound:

~d tidal ¼ dtidalð1–2CNSÞ: (5)

This leads to the following model for the mass remaining
outside the black hole at late times, Mrem

model:

Mrem
model

Mb
NS

¼ �ð3qÞ1=3ð1–2CNSÞ � �
RISCO

RNS

; (6)

with q ¼ MBH

MNS
. We could have added a constant term � as in

Eq. (4) but find that this does not improve the quality of the
fit. At the current level of accuracy of numerical simula-
tions, we will show in Sec. V that this simple model is in
agreement with known results. We should note that, as
written here, Eq. (6) can predict negative remnant mass.
These should be understood as the absence of any matter
outside of the black hole after the merger, i.e., Mrem ¼ 0.

A potential improvement on the model described by
Eq. (6) is to compute the tidal effects from the Kerr metric
instead of the Newtonian formula. Fishbone [23] obtained
analytical results for these effects. Using his results leads to
a correction to the value of the separation at which tidal
disruption occurs: 	tidal ¼ dtidal=RNS is then solution of the
implicit equation

MNS	
3
tidal

MBH

¼ 3ð	2
tidal � 2
	tidal þ �2

BH

2Þ

	2
tidal � 3
	tidal þ 2�BH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3	tidal

p ; (7)

with 
 ¼ MBH=RNS. We can then write the corrected
model

~Mrem
model

Mb
NS

¼ ~�	tidalð1–2CNSÞ � ~�
RISCO

RNS

: (8)

In practice, ~Mrem
model gives results consistent with the simpler

model Mrem
model.

In both cases, we end up with a simple formula for the
predicted fraction of the neutron star mass remaining out-
side of the black hole at late times as a function of only 3
dimensionless parameters: the mass ratio q, the neutron star
compactness CNS, and the dimensionless spin of the BH
�BH. Clearly, these are not enough to entirely determine the

characteristics of the binary; the total mass of the system as
well as the internal structure of the neutron star are required
to do so. The structure of the star, in particular, is expected
to affect the remnant mass—although not as much as its
compactness. At best, these models can thus only be accu-
rate up to variations in the remnant mass due to changes in
the properties of the neutron star matter that do not modify
CNS (see Sec. VC for a more detailed discussion of the
accuracy of the model).
Determining which characteristics of the star are probed

by a study of its disruption is, in fact, a complex problem.
In the Newtonian, extreme mass ratio limit, and for poly-

tropic equations of state (P ¼ 
�1þ1=n), the tidal disrup-

tion radius is proportional to k1=32 ð1� n=5Þ1=3RNSq
1=3,

where k2 is the tidal Love number of the neutron star
[34]. In general relativity and for more symmetric mass
ratios, this expression will, however, be modified.
Additionally, the location of the ISCO itself depends on
the properties of the star. For nonspinning black holes and
n ¼ 1 polytropes, this dependence was estimated by
Taniguchi et al. [27]. All these physical effects are not
taken into account in our model. In a way, they are what we
fit for when we choose the free parameters � and �. This
complex picture can be contrasted with the more simple
interpretation of the effect of tides on the gravitational
waveforms during a BHNS inspiral, which causes an accu-
mulated phase difference in the signal proportional to
k2R

5
NS [35,36] (at the lowest order at which finite-size

effects enter post-Newtonian approximations to the
gravitational-wave signal).
Models which are theoretically as valid as Eq. (6) and fit

the data as well can easily be built by including some of
those corrections. For example, including the Newtonian
dependence of dtidal in the dimensionless Love number k2
gives

Mrem
model;k

Mb
NS

¼0:534ð3k2qÞ1=3
�
1–2

MNS

RNS

�
�0:119

RISCO

RNS

; (9)

while a model using as input parameters the quantity that
can most easily be measured in gravitational-wave signals

�NS ¼ ðk2=0:1Þ1=5RNS (which could be directly compared
with the results of a gravitational-wave measurement of the
neutron star properties) can be written as

Mrem
model;�

Mb
NS

¼0:262ð3qÞ1=3
�
1–2

MNS

�NS

�
�0:128

RISCO

�NS

: (10)

The normalization of 0.1 for k2 is arbitrary and chosen to
lie in the middle of the range of values covered by simu-
lations (k2 ¼ 0:085–0:135, as given in Hinderer [37] for
polytropes and by Lackey et al. [38] for the equations of
state used by Kyutoku et al. [38]).
The predictions of these models typically vary by a few

percents of the mass of the neutron star. From current data,
it is impossible to determine which one is most accurate.
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Differences in their predictions can, however, become
larger outside of the fitting region, thus providing a useful
estimate of our error. In the rest of this article, we will
consider numerical results from model (6)—but as more
simulations become available, and, in particular, simula-
tions with the same compactness CNS but different equa-
tions of state, models (9) and (10) might very well prove
more accurate.

IV. NUMERICAL RESULTS

To fit the parameters � and � of our model, we consider
recent results from numerical relativity in the range q ¼
3–7, �BH ¼ 0–0:9, and CNS ¼ 0:13–0:18. We neglect
simulations at lower mass ratios, which are astrophysically
less likely and cannot be modeled accurately by the simple
formula assumed here. Larger spins and more compact
stars would be interesting to consider: according to
Hebeler et al. [39], neutron stars of mass MNS � 1:4M�
could be in the range CNS ¼ 0:15–0:22, while for the same
neutron star mass, Steiner et al. [40] find that the most
likely compactness is CNS ¼ 0:17–0:19. More massive
stars should have an even higher compactness. As for the
black hole spin, it is currently unconstrained—and as we
will see, quasiextremal black hole spins are a very interest-
ing region of parameter space for BHNS mergers.

We also limit the model to spins aligned with the
orbital angular momentum and to low-eccentricity orbits.
Misaligned spins have only been studied for one set of binary
parameters [11], so that we do not have enough information
about their influence on the disk mass to include them in the
model. It is, however, worth noting that known precessing
BHNS results, aswell as soon-to-be published simulations for
highermass ratios (q ¼ 7) andhigher black hole spin (�BH ¼
0:9) agree with the results of our model if the radius of the
innermost stable circular orbit is replaced by the radius of the
innermost stable spherical orbit with the same inclination
with respect to the black hole spin as the orbital plane of the
binary, as proposed by Stone et al. [41]. High-eccentricity
mergers have been studied by East et al. [42,43], but again the
data does not cover enough of the parameter space to be
included in our fit. Additionally, eccentricity is only an issue
for binaries formed in clusters: field binaries are expected to
have negligible eccentricities at the time of the merger.
Finally, we neglect the influence of magnetic fields, as both
Etienne et al. [18] and Chawla et al. [19] find their effect on
the remnant mass to be small (except for large interior mag-
netic fields B * 1017 G).

A list of all simulations used to fit our model is given in
Table I. These results were obtained by three different
groups: Kyoto [8] (SACRA code), UIUC [9], and the
SXS Collaboration [10,11] (SpEC code). In those articles,
the mass outside the black hole, Mrem

NR , is measured at
different times, which would introduce a bias in our fit.
We choose to use the convention of Kyutoku et al. [8],
where Mrem

NR is measured 10 ms after the merger. For this

reason, the values listed in Table I differ from the masses
given in the tables of Refs. [9–11].
Only some of the simulations listed in Table I were

published with explicit error measurements. There is thus
some uncertainty on the accuracy of these results. From
published convergence tests and our own experience with
such simulations, we assume that a rough estimate for the
numerical errors, �Mrem

NR , can be obtained by combining a
10% relative error and a 1% absolute error in the mass
measurement, i.e.,

�Mrem
NR

Mb
NS

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
0:1Mrem

NR

Mb
NS

�
2 þ 0:012

s
: (11)

A few of the parameter sets from Table I have been
studied by multiple groups [identity (ID) 5,6,7]. It should

TABLE I. Summary of the numerical results used. When more
than one group simulated the same set of parameters, the average
value is used. �BH ¼ aBH=MBH is the dimensionless spin pa-
rameter of the black hole, CNS ¼ MNS=RNS is the compactness
of the star, Mrem

NR is the remaining mass 10 ms after merger (as

measured in the numerical simulations), and Mb
NS is the baryon

mass of the star.

ID
MBH

MNS
�BH CNS

Mrem
NR

Mb
NS Code Reference

1 7 0.90 0.144 0.24 SpEC [10]

2 7 0.70 0.144 0.05 SpEC [10]

3 5 0.50 0.144 0.05 SpEC [10]

4 3 0.90 0.144 0.35 SpEC [11]

5 3 0.50 0.145 0.15 SpEC/SACRA [8,11]

6 3 0.00 0.144 0.04 UIUC/SpEC [9,11]

7 3 0.75 0.145 0.21 UIUC/SACRA [8,9]

8 5 0.75 0.131 0.25 SACRA [8]

9 5 0.75 0.162 0.11 SACRA [8]

10 5 0.75 0.172 0.06 SACRA [8]

11 5 0.75 0.182 0.02 SACRA [8]

12 4 0.75 0.131 0.25 SACRA [8]

13 4 0.75 0.162 0.15 SACRA [8]

14 4 0.75 0.172 0.12 SACRA [8]

15 4 0.75 0.182 0.07 SACRA [8]

16 4 0.50 0.131 0.19 SACRA [8]

17 4 0.50 0.162 0.06 SACRA [8]

18 4 0.50 0.172 0.02 SACRA [8]

19 3 0.75 0.131 0.24 SACRA [8]

20 3 0.75 0.162 0.16 SACRA [8]

21 3 0.75 0.172 0.15 SACRA [8]

22 3 0.75 0.182 0.10 SACRA [8]

23 3 0.50 0.131 0.19 SACRA [8]

24 3 0.50 0.162 0.11 SACRA [8]

25 3 0.50 0.172 0.07 SACRA [8]

26 3 0.50 0.182 0.03 SACRA [8]

27 7 0.50 0.144 0.00 SpEC [10]

28 3 �0:50 0.145 0.01 UIUC [9]

29 5 0.00 0.145 0.01 UIUC [9]

30 4 0.50 0.182 0.00 SACRA [8]

31 3 �0:50 0.172 0.00 SACRA [8]
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be noted, however, that these simulations are actually
different cases: the compactness of the neutron star is
similar for all groups (CNS ¼ 0:144 for SpEC, CNS ¼
0:145 for UIUC, and CNS ¼ 0:146 for SACRA), but the
equations of state used are quite different (SpEC and UIUC
use a � ¼ 2 polytrope, while the results from SACRAwere
obtained with a piecewise polytrope with different internal
structure). Even so, the results are compatible with the
error estimates (11) [i.e., differences �0:01–0:03 MNS].
The values listed in Table I are averages of the numerical
results of the different groups.

V. PARAMETER ESTIMATES

A. Best-fit parameters

We determine the parameters � and � of our model
[Eq. (6)] through a least-square fit for the results of simu-
lations 1–26 in Table I. Simulations 27–31, which do not
lead to the formation of a disk, are not used directly—but
we check that the predictions of the model are consistent
with Mrem ¼ 0 for these cases. We find

� ¼ 0:288	 0:011 (12)

� ¼ 0:148	 0:007 (13)

for model Mrem
model in which tidal forces are estimated from

Newtonian physics and

~� ¼ 0:296	 0:011 (14)

~� ¼ 0:171	 0:008 (15)

for the modified model ~Mrem
model in which the tidal forces are

derived from the Kerr metric.
Error estimates are easier if we rewrite the models using

singular value decomposition (see e.g., pages 65–75 and
793–796 of Press et al. [44] and references therein), that is,
if we transform the basis functions of our model so that the
parameters of the model have uncorrelated errors. For
example, in the case of the ‘‘Newtonian’’ model, we have

f1 ¼ 0:851ð3qÞ1=3ð1–2CNSÞ � 0:525
RISCO

RNS

f2 ¼ 0:525ð3qÞ1=3ð1–2CNSÞ þ 0:851
RISCO

RNS

Mrem
model

Mb
NS

¼ Af1 þ Bf2:

(16)

The best-fit parameters A and B are then

A ¼ 0:323	 0:013 (17)

B ¼ 0:026	 0:001; (18)

where the errors on A and B are independent (while the
errors on � and � were strongly correlated).

B. Goodness-of-fit

The ability of these models to fit the numerical results
within their errors �Mrem

NR can be estimated through the
reduced �2

�2 ¼ 1

Ndf
�26

i¼1

�
Mrem;i

model �Mrem;i
NR

�Mrem;i
NR

�
2
; (19)

where Ndf ¼ 26� Nparams ¼ 24 is the number of degrees

of freedom, and the index i refers to the ID of the numerical
simulations [i.e.,Mrem;1 is the remnant mass for simulation

1 of Table I and �Mrem;1
NR the corresponding error estimate

computed from Eq. (11)]. The Newtonian model Mrem
model

and the ‘‘Kerr’’ model ~Mrem
model are an equally good fit to the

data, with �2 ¼ 0:98 and �2 ¼ 0:96, respectively. By
comparison, the best-fit results for modelM0

model [in which

we do not correct dtidal by the factor (1–2CNS)] has a much
larger �2 ¼ 4:04. Adding a constant term � to either
Mrem

model or
~Mrem
model leads to �2 ¼ 1:00.

A comparison between the simple model Mrem
model and

the numerical results is shown in Fig. 1, in which we plot
Mrem

NR as a function of Mrem
model for simulations 1–26. We

can see that the difference between the modeled and
measured masses is generally smaller than the errors
expected from Eq. (11). The main exception is the large
remnant mass observed in case 4. We suspect that our
model, which assumes that the remnant mass scales
linearly with RISCO and dtidal, breaks down for remnant
masses greater than about 20–25% of the neutron star
mass. A nonlinear relation between these distances and
the remnant mass might perform better in that regime,
but more numerical simulations are required to test that
hypothesis.

0 0.1 0.2 0.3
M

model
/M

b

NS

0

0.1

0.2

0.3

0.4

M
N

R
/M

b N
S

Numerical Simulations
M

model
 = M

NR

FIG. 1. Predictions of the best-fit model (diamonds) for simu-
lations 1–26. The solid line represents the ideal Mrem

model ¼ Mrem
NR

result, while the error bars correspond to the estimated numerical
errors �Mrem

NR .
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The more complex model, ~Mrem
model, offers very similar

results: for cases 1–26, the worst disagreement between the
models is 0:008Mb

NS (for case 3), while their rms difference

is 0:004Mb
NS. Models (9) and (10) show larger variations,

of order of a few percents of the neutron star mass.

C. Error estimates

Estimating the error in the mass predictions of our model
from the statistical errors in the parameters� and� is likely
to be misleading. Differences between the numerical results
Mrem

NR and the predictions of the model Mrem
model come from

multiple sources: the numerical error �Mrem
NR of course, but

also a physical spread of the exact mass remnants around the
predictions of the model. A part of that spread at least should
be due to differences in the outcome of BHNS mergers for
binaries with the same parameters (MBH, MNS, �BH, CNS)
but different equations of state (i.e., neutron stars with the
same radius but a different internal structure). This effect
can also be seen in the differences between the predictions
of models (6), (9), and (10). But, more generally, it is
unlikely that the simple equations used here can perfectly
represent the complex dynamics of a BHNS merger.

From the fact that we measured �2 � 1, we know that
the errors Mrem

model �Mrem
NR are compatible with a Gaussian

distribution of variance �Mrem
NR . This is already indicative

of the likely existence of a nonzero physical spread around
the results of the model. The estimated numerical errors
�Mrem

NR are indeed more of an upper bound on the errors in
the simulations than the width of an expected Gaussian
distribution. In the absence of a difference between the real
physical outcome of a merger and the output of the model,
we would thus expect �2 to be lower than 1. How much of
the measured errorsMrem

model �Mrem
NR comes from numerical

errors and how much from actual differences between
the model and the physical reality is hard to determine,
especially considering that the numerical errors are not
well known. A more cautious approach to estimate the
uncertainty in the model is thus to consider �Mrem

NR as a
conservative upper bound on the variance of a Gaussian
error in the model itself.

Figure 2 shows contours of Mrem
model ¼ 0:1Mb

NS for vari-

ous neutron star compactness. The general features of this
plot are not surprising: the formation of massive disks is
known to be favored by low mass ratios, high black hole
spins, and large neutron stars. But our model allows for the
determination of the region of parameter space in which a
certain amount of matter will remain available at late times
with fairly high accuracy: at least within the spread
�Mrem

NR � 0:02M� or, if we consider a measurement of
Mrem as a way to determine the radius of a neutron star,
within �RNS & 0:5 km.

Another important issue is the validity of the model
outside the parameter range currently covered by numeri-
cal relativity. It is indeed possible that larger errors will be
found for more compact neutron stars (CNS > 0:18) or

larger mass ratios (MBH > 7MNS). However, given that
our model fits the numerical data over a fairly wide range
of parameters and is derived from the physics of tidal
disruption, it is likely to give decent results over most of
the astrophysically relevant parameter space—with the
notable exception of configurations leading to very large
remnant masses Mrem * 0:20–0:25MNS (i.e., for nearly
extremal black hole spins and low mass ratios)—and
probably of the asymptotic regime �BH ! 1 where scal-
ings valid in the range � ¼ 0–0:9 might break down. The
differences between models (6), (9), and (10) outside of
the fitting region can also provide a rough estimate of
these errors.

VI. DISCUSSION

A. Parameter space study

Themodels described in the previous sections can be used
to easily approximate the region of parameter space in which
disruption occurs or in which a certain amount of mass will
remain available at late times. Such predictions are particu-
larly important when trying to determine which BHNS
mergers are likely to lead to SGRBs: only BHNS mergers
ending with the formation of a massive accretion disk could
power SGRBs. Disruption of the neutron star is also a pre-
requisite for the ejectionof unboundmaterial and thus for any
electromagnetic signal due to the radioactive decay of a
neutron-rich ejecta. If the neutron star does not disrupt, the
only observational signatures of BHNS mergers are their
gravitational-wave emissions, as well as potential electro-
magnetic or neutrino precursors (see e.g., Tsang et al. [45]).
The minimum remnant mass required to get SGRBs is

currently unknown and is likely to vary across the

3 4 5 6 7 8 9 10
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/M

NS

0.5 0.5

0.6 0.6

0.7 0.7

0.8 0.8

0.9 0.9

0.95 0.95

0.99 0.99

χ B
H

R=9.5km
R=11.5km
R=13.5km
R=15.5km

M=0.1M
NS

FIG. 2 (color online). Mrem
model ¼ 0:1Mb

NS contours for, from top
to bottom, neutron star compactness CNS ¼ 0:22, 0.18, 0.155,
0.135 (i.e., RNS � 9:5, 11.5, 13.5, 15.5 km for MNS ¼ 1:4M�).
For each compactness, we have Mrem

model > 0:1Mb
NS above the

plotted contour. The shaded regions encompass the portions of
phase space for which Mrem

model ¼ 0:1Mb
NS 	�Mrem

NR . SGRBs are

extremely unlikely to occur below the green region (CNS ¼
0:155). Note that the scale is chosen in order to zoom on the
high-spin region [the y axis scales as logð1� �BHÞ � logð�BHÞ].
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parameter space; the fraction of the remnant mass which, at
any given time, is in a long-lived accretion disk around the
black hole (as opposed to the tidal tail or unbound ejecta) is
by no means a constant, nor are the physical characteristics
of that disk. We know, for example, that at high mass ratios
a larger fraction of the mass is initially in an extended tidal
tail than for lower-mass black holes [10]. Furthermore, other
characteristics of the disk (temperature, thickness, baryon
loading along the rotation axis of the black hole, and mag-
netic fields) are important for the generation of a gamma-ray
burst. And what the ideal conditions are depends on the
physical process powering the burst (see Sec. II for more
details). Nevertheless,Mrem

model is already a useful prediction,

providing a good estimate of the amount of material avail-
able for postmerger evolution. Additionally, any configura-
tion for whichMrem

model ¼ 0 can be immediately rejected as a

potential SGRB progenitor.
Predictions for the mass of neutron star material remain-

ing outside the black hole at late times are detailed in
Figs. 3–5, in which we plot contours of the remnant mass
as a function of the mass ratio and black hole spin. Each
figure corresponds to a different neutron star compactness,
covering the range of radii expected from the theoretical
results of Hebeler et al. [39]. Experimental measurements
of neutron star radii are still fairly difficult, but studies of
bursting x-ray binaries by Ozel et al. [46–48] tend to favor
the lower range of potential radii (RNS � 9–12 km).
Steiner et al. [40], after reassessing the errors in the mea-
surement of neutron star radii from x-ray bursts, derived a
parametrized equation of state which takes into account
both the astrophysical measurements and results from

nuclear theory. They predict that RNS � 11–12 km for
MNS ¼ 1:4M�. We can thus consider Figs. 3 and 5 as
bounding the range of potential neutron star radii, while
Fig. 4 is around the most likely neutron star size (for 1:4M�
stars—heavier stars are expected to be more compact).
The strong dependence of the remnant mass in the radius

of the star is particularly noteworthy. In the most likely
astrophysical range of mass ratios (q� 5–10), remnant
masses Mrem ¼ 0:1MNS can be achieved for moderate
black hole spins �BH � 0:7–0:9 if we consider neutron
stars with CNS ¼ 0:155 (RNS � 13:5 km), as in Fig. 3.
But at the other end of the range of potential neutron star
radii, for CNS ¼ 0:22 (RNS � 9:5 km), the much more
restrictive condition �BH � 0:9–0:999 applies (Fig. 5).
For a neutron star in the range of compactness favored
by Steiner et al. [40] (CNS ¼ 0:18, or RNS � 11:5 km),
keeping 10% of the neutron star material outside the black
hole requires spins �BH � 0:8–0:97, an already fairly
restrictive condition (Fig. 4).
This naturally implies that the rate of SGRBs produced

as a result of BHNS mergers is very sensitive to the
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FIG. 3 (color online). Contours Mrem
model ¼ ð0; 0:05; 0:1;

0:15; 0:2ÞMb
NS for a star of compactness CNS ¼ 0:155 (RNS �

13:5 km for MNS ¼ 1:4M�). The shaded regions correspond to
portions of parameter space in which no matter remains around
the black hole (bottom/red), more than 0:2Mb

NS remains and

massive disks should be the norm (top/green), and an intermedi-
ate region in which lower-mass disks will form (center/blue).
Note that the scale is chosen in order to zoom on the high-spin
region.
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FIG. 4 (color online). Same as Fig. 3, but for CNS ¼ 0:18
(RNS � 11:5 km).
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equation of state of nuclear matter, and, in particular, to the
size of neutron stars. Determining that rate is unfortunately
impossible without knowledge of the number of BHNS
mergers and of the distributions of black hole spins and
mass ratios. Additionally, a large enough Mrem is only a
necessary condition for a given BHNS binary to power a
SGRB. Knowledge of the exact properties of the accretion
disk (and of the exact physical process leading to short
gamma-ray bursts) would be required to accurately deter-
mine which BHNS systems are SGRB progenitors.
Nonetheless, the importance of the equation of state can
be fairly easily understood by simply computing the area of
the region above a certain contour of Mrem

model for various

values of CNS. Let us define �cðM;CNS; qÞ as the critical
spin above which Mrem

model >M and

�ðM;CNSÞ ¼
R
10
5 ½1� �cðM;CNS; qÞ�dq

5
: (20)

Then, �ðM;CNSÞ represents the fraction of binaries with
mass remnants greater than M assuming that the distribu-
tions of mass ratios and spins are uniform within the q ¼
5–10 and �BH ¼ 0–1 range, respectively. As we decrease
the size of the neutron star from CNS ¼ 0:155 to CNS ¼
0:22, Table II shows that we go from about 20% of the
parameter space in which significant disks are possible to
about 1%! This does not necessarily mean that SGRBs are
impossible for CNS � 0:22—but certainly indicate that
they would occur in a non-negligible fraction of BHNS
mergers only if quasiextremal spins are the norm.

Current population synthesis models estimate the peak of
the distribution of black holemasses in BHNS systems to be
around MBH � 10M�, or MBH � 7MNS [16,17]. Figure 6
offers clearer information on the behavior of BHNS systems
in that regime. We see that no disk can form for �BH < 0:9
unless RNS > 10:5 km. That condition becomes RNS >
12 km if we require at least 0:1Mb

NS outside the black hole

at late times. Results for BHNS binaries with higher black
hole spins (�BH ! 1) should of course be considered with
caution: indeed, no mergers of BHNS binaries have been
published for �BH > 0:9 or CNS > 0:18, and such simula-
tions would be required to rigorously test the accuracy of
these predictions in extreme regions of the parameter space.
Nonetheless, our model indicates that quasiextremal spins
are at least a necessary condition for the formation of
massive disks for MBH � 10M� and RNS 
 12 km.

The minimum spin requirement for massive disk for-
mation across the parameter space of BHNS binaries is
shown in Fig. 7, in which the black hole spin needed to
keep 10% of the neutron star mass outside the black hole at
late times is plotted. Figures 6 and 7 both indicate the
existence of an extended region of parameter space (CNS �
0:18–0:22, �BH � 0:9–1) which is likely to be astrophysi-
cally relevant but remains numerically unexplored and in
which the outcome of BHNS mergers varies significantly.

B. Comparison with previous models

The tidal disruption of a BHNS binary is a complex
problem, to which various approximations have been

TABLE II. Fraction �ðM;CNSÞ of the parameter space within
q ¼ 5–10, �BH ¼ 0–1 for which Mrem

model >M for various neu-

tron star compactness CNS and critical masses M.

CNS �ð0; CNSÞ �ð0:1Mb
NS; CNSÞ �ð0:2Mb

NS; CNSÞ
0.135 0.46 0.30 0.16

0.155 0.29 0.17 0.07

0.180 0.16 0.08 0.02

0.220 0.05 0.01 0.00
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FIG. 6 (color online). Contours of Mrem
model for binaries with

mass ratio MBH ¼ 7MNS (MBH � 10M�). Shown are contours
forMrem

model ¼ ð0; 0:05; 0:1; 0:15; 0:2ÞMb
NS. The shaded regions are

as in Fig. 3, and the neutron star radius (top scale) is computed
assuming a star of Arnowitt-Deser-Misner mass MNS ¼ 1:4M�.
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proposed. In the limit of very large black hole masses,
Fishbone [23] derived the separation at which equilibrium
tides would cause the disruption of an incompressible,
corotating neutron star, a work that was generalized to
compressible flows and irrotational binaries by Wiggins
and Lai [24]. Such models have a few significant limita-
tions, which were discussed in more detail by Miller [25].
The innermost stable circular orbit of the black hole
is only an approximation to the minimum separation at
which stable circular orbits exist for finite mass objects.
Analytical approximations to the location of the last stable
circular orbit can be obtained from the post-Newtonian
expansion (see e.g., Damour et al. [26]). These show that
for equal mass objects, the last stable circular orbit can be
well outside of the ISCO obtained in the point particle
limit. An alternative to the analytical method, which
avoids the complications resulting from the use of the
post-Newtonian expansion close to merger, is to consider
sequences of quasiequilibrium configurations computed
numerically. This is the approach taken by Taniguchi
et al. [27] to determine whether a neutron star in a
BHNS binary would disrupt before reaching the last stable
circular orbit (in the case of nonspinning black holes). The
numerical results also indicate that the innermost stable
orbit is outside of the ISCO of the isolated black hole,
although not by as much as the post-Newtonian results
would indicate.

Miller [25] also points out that the condition used in
Refs. [26,27] is only valid in the limit of infinitely slow
inspiral. If the system looses angular momentum through
the emission of gravitational waves, the plunge will actually
begin outside of the last stable circular orbit, thus limiting
further the ability of BHNS binaries to disrupt and form
accretion disks. Additionaly, models based on equilibrium
tides neglect the fact that, close to disruption, the rapid inspiral
can cause the neutron star to be well out of equilibrium.

An alternative method is to simply fit semianalytical
models to the result of numerical relativity, effectively
attempting to include the complex physics that is not taken
into account by the model into the free parameters of the
fit. This is the approach taken by Pannarale et al. [28] in
their model describing the neutron star as a triaxial ellip-
soid distorted by the tidal field of the black hole. That
model was, however, fitted to general relativistic simula-
tions at low mass ratio which have since been shown to
have underestimated in many cases the mass of the rem-
nant. At high mass ratio, no general relativistic simulations
were available at the time, and the model was thus fitted to
simulations using an approximate treatment of gravity,
known to overestimate the ability of BHNS binaries to
form disks. Our model takes a similar approach, fitting a
rather simple physical model to more recent numerical data
covering a wider range of binary parameters.

Compared to the predictions of Pannarale et al. [28], the
results presented here indicate that it is a lot more difficult

to create massive accretion disks at high mass ratios than
what that previous model indicated, while at low mass
ratios, q� 3, our model predicts significantly higher final
masses. As opposed to Ref. [28], our model is unlikely to
capture the behavior of BHNS mergers with q� 1, when
finite-size effects begin to make it more difficult to form
massive disks. These differences are expected considering
what we now know of the limitations of the numerical data
used to fit their model.
We can also revisit the condition derived by Taniguchi

et al. [27] for the parameters allowing disk formation in the
case of nonspinning black holes, and by Wiggins and Lai
[24] for extreme mass ratios. Requiring Mrem

model > 0 is

equivalent to imposing an upper bound on the neutron
star compactness,

CNS &

�
2þ 2:14q2=3

RISCO

6MBH

��1
: (21)

We find that our results are less favorable to tidal disruption
and disk formation than in Ref. [27], as could be expected
from the arguments of Miller [25] discussed at the begin-
ning of this section. The predictions of Eq. (21) are, on the
other hand, in agreement with the numerical simulations
performed by Kyutoku et al. [12], even though the results
for low mass ratio, nonspinning BHNS mergers published
in Ref. [12] were not taken into account when fitting our
model. In the high mass ratio limit, they also agree fairly
well with the results of Wiggins and Lai [24] (within
�15% for q� 1000). This is, however, more of a test of
the ability of our model to extrapolate to extreme mass
ratios, well outside of the fitting region, than of the accu-
racy of the results of Wiggins and Lai, which are more
reliable in that regime.

VII. CONCLUSIONS

We constructed a simple model predicting the amount of
matter remaining outside the black hole about 10 ms after a
BHNS merger, based on comparisons between the binary
separation at which the neutron star is expected to be dis-
rupted by tidal forces from the black hole and the radius of
the innermost stable circular orbit around the hole.We show
that the model can reproduce the results of recent general
relativistic simulations of nonprecessing, low-eccentricity
BHNSmergers within a few percents of the totalmass of the
neutron star. The simplest best-fit model is

Mrem

Mb
NS

� 0:288

�
3
MBH

MNS

�
1=3

�
1–2

MNS

RNS

�
� 0:148

RISCO

RNS

(in units in which G ¼ c ¼ 1).
These mass predictions should be valid at the very least

within the range of parameters currently covered by nu-
merical simulations (MBH ¼ 3–7MNS, RNS¼11–16km,
aBH=MBH ¼ 0–0:9) and are likely to remain fairly accurate
within most of the astrophysically relevant parameter
space. Alternative models using different approximations
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for the binary separation at which tidal disruption occurs
are presented in Sec. III.

Using this model, it becomes easy to estimate the region
of parameter space in which large amounts of matter
remain outside the black hole for long periods of time.
This is of particular importance when studying whether
BHNS mergers can result in short gamma-ray bursts. Our
results show the strong dependence of the remnant mass in
the radius of the neutron star: whether the equation of state
of neutron stars is at the soft or stiff end of its potential
range could easily translate into an order of magnitude
difference in the rate of gamma-ray bursts originating
from BHNS mergers. It is also quite clear that high black
hole spins are likely to be a prerequisite for the formation
of massive disks. Neutron stars in the middle of the theo-
retically allowed range of radii (RNS � 11:5 km) require
spins aBH=MBH * 0:8 for about 10% of the neutron star
material to remain outside the hole, while quasiextremal
spins are necessary for the most compact stars.

The validity of our model is currently limited to black
hole spins aligned with the orbital angular momentum and
remnants below�20–25% of the neutron star mass, due to
the lack of numerical data available for precessing binaries
and high mass remnants. Extending the model to cover
these interesting parts of the parameter space would cer-
tainly be useful but would require a large number of
computationally intensive simulations to be performed
(particularly to cover misaligned black hole spins). A few
additional simulations using high mass ratios or small
neutron star radii together with relatively large spins
(�BH * 0:9) would also be extremely helpful, allowing
better estimates of the errors in the model for binary
parameters which are astrophysically relevant but have
never been considered by numerical relativists.

The extreme simplicity of these models should make
them useful tools to obtain cheap but reliable estimates of
the results of BHNS mergers across most of the astrophysi-
cally relevant parameter space, as well as to help determin-
ing which numerical simulations to perform in order to
study given physical effects. This simplicity is, however,
also a reason for caution; to accurately predict which
BHNS systems would lead to the production of short
gamma-ray bursts, modeling more physical properties
will certainly be required: temperature, division of the
mass between disk and tidal tail, neutrino emission, and
magnetic field configuration are all important character-
istics of the final remnant, as are the final properties of the
black hole recently modeled by Pannarale [49]. More
detailed models, however, might require a larger number
of numerical simulations as the number of fitted parame-
ters and the complexity of the problem increases. Finally,
an improved understanding of the physical process leading
to a burst will also be necessary before we can explicitly
determine which BHNS binaries produce short gamma-ray
bursts.
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