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BRST analysis of physical fields and states for 4D quantum gravity on R x S3
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We consider the background-free quantum gravity based on conformal gravity with the Riegert-Wess-
Zumino action, which is formulated in terms of a conformal field theory. Employing the R X S°
background in practice, we construct the nilpotent BRST operator imposing diffeomorphism invariance.
Physical fields and states are analyzed, which are given only by real primary scalars with a definite

conformal weight. With attention to the presence of background charges, various significant properties,
such as the state-operator correspondence and the norm structure, are clarified with some examples.
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L. INTRODUCTION

Conformal field theory (CFT) appears in various
branches of theoretical physics. Quantum gravity is also
described as a certain CFT that has conformal invariance as
a gauge symmetry. It is well-known that two-dimensional
(2D) quantum gravity is described in terms of the CFT
called the Liouville theory, and the Virasoro algebra rep-
resents the background-free picture of 2D spacetime [1-6].

The four-dimensional quantum gravity we will study
here [7-18] is described in terms of such a CFT, which is
formulated on the basis of conformal gravity systemati-
cally incorporating the Riegert-Wess-Zumino action in-
duced from the path integral measure, as in the case of
2D quantum gravity. The model is characterized by how
the metric field decomposes into the conformal factor ¢
and the traceless tensor field &, [12,15]:

Suv = ezqﬁ(geth),u,y = 62¢(§,u1/ + th,uV + - ')’ (1.1)

where tr(h) = g*”h,, =0 and §,, is the background
metric. Nonperturbative effects are incorporated by treat-
ing the conformal factor ¢?? exactly without introducing
its own coupling constant, while the traceless tensor field
h,, is handled by the perturbation theory. Here, 7 is the
dimensionless coupling constant indicating asymptotic
freedom. The model we consider is obtained at the ultra-
violet (UV) limit of ¢t = 0, where exact conformal invari-
ance arises as a realization of background metric
independence.

In this paper, we continue the study of physical fields
and states of the model developed in Refs. [13,14,16,17]
in the context of the Becchi-Rouet-Stora-Tyutin (BRST)
quantization [6,19-22]. The BRST symmetry we discuss
here is the residual diffeomorphism symmetry left after the
gauge fixing, such that the gauge degrees of freedom
reduce to the 15 conformal Killing vectors {* satisfying

V.l +V,lu — 8,,V20*/2=0 [13,16]. The BRST
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transformation is obtained by replacing {# with the corre-
sponding gauge ghost c* as

N 1~
6B¢ CAVA¢+ZV/\CA,

N 1 N N
th/“, = CAV)LI’IMV + Eh/m(v,,c" - V)LCV)

+ %hm(@ﬂc’\ —Vie,). (1.2)

This transformation can be regarded as a conformal
transformation considering quantum gravity as a quantum
field theory on the background spacetime. Due to the
presence of the shift term in the first equation, the invari-
ance under the conformal change of the background metric
occurs as the gauge symmetry. Thus, the background-free
nature is represented as the gauge equivalence between the
metrics before and after the change.

Unlike usual CFT, this conformal invariance is imposed on
the field as well as the vacuum because it is the gauge
symmetry. Although the residual gauge degrees of freedom
are finite, this symmetry is much stronger because the right-
hand side of (1.2) is field-dependent and so the transformation
mixes all modes in the field. Indeed, physical fields are given
only by real primary scalars with a definite conformal weight.

The analysis of physical quantities is carried out
employing the cylindrical background R X S? in practice
because it is useful to study physical states and their norm
structures. The related study on the Minkowski back-
ground M* has been carried out in the previous work
[18]. The result is consistent with this case, as is expected
from the background-free nature of the model.

This paper is presented as follows. In the next section, we
briefly summarize the model and the definitions of the basic
objects we will use. The nilpotent BRST operator imposing
diffeomorphism invariance is constructed in Sec. III. Physical
fields and states are studied in the context of BRST formalism,
with some examples given in Secs. IV and V. The physically
significant properties, such as the state-operator correspon-
dence and the norm structure, are clarified in Sec. VL
Section VII is devoted to a conclusion and discussion.
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II. BRIEF SUMMARY OF THE MODEL

In order to discuss diffeomorphism symmetry at the
quantum level, we have to specify the gravitational action.
The action that governs the dynamics of the traceless
tensor field is given by the Weyl action divided by f2,

—(1/¢) [d*x/=8C3, ), where C,,,, is the Weyl tensor.
The action for the ¢ field, called the Riegert field, in the
conformal factor is induced from the path integral measure.
At the UV limit of t = 0, it is given by the Riegert-Wess-
Zumino action [7]

/d4xJ_{2¢A4¢+< —%%@)qﬁ},

(2.1)

SRWZ (4 )2

where ,/=gA, is the conformally invariant fourth-order
differential operator and G, is the Euler density. The
quantities with the hat are defined in terms of the back-
ground metric §,,. The coefficient b, is the positive-
definite constant greater than 4,1 and thus the action is
bounded from below (in Wick-rotated Euclidean space).

The Riegert-Wess-Zumino action has been quantized in
Refs. [8-11,13,14,16—-18] and the quantization of the Weyl
action has been carried out in the perturbative expansion by ¢
in Refs. [12,15].% It has been shown that the algebra of diffeo-
morphism symmetry (1.2) is closed at the quantum level in this
system without the RZ action [13,16,18], as indicated from the
Wess-Zumino integrability condition [7,26,27].

In this paper, the background is practically chosen to be
R X $3 with unit §3. The Riegert field is expanded in scalar
harmonics on S denoted by Y,;, (A1), which is decom-
posed into three parts: the creation mode, the zero mode,
and the annihilation mode, with ¢ = ¢~ + ¢y + P,

where ¢pg = ¢f, ¢~ = $L and
o, .
¢0 = \/ﬁ(q + ’flp),
{ZzajMe 2Ny m
J>1 M 2J + 1)
1(2J+2)17Y
+ ) Z } (2.2)
J=0 M (J + (2.] + )

'Tt has been computed to be b; = 769/180 + (Ny + 11Ny, /
2 + 62N,)/360, where Ny, Ny, and N, are numbers of
scalar fields, Weyl fermions, and gauge fields, respectively
[23-25]. The first term comes from gravitational loop correc-
tions, which is the sum of —7/90 and 87/20 from the ¢ and 4,
ﬁelds respectively [9,11].

’The beta function has been computed to be 8, = — Byt2, with
Bo = {197/30 + (Ny + 3Ny, + 12N,)/120}/3272, where the
first term of B is the sum of —1/15 and 199/30 from the ¢
and &, fields, respectively [9,11,23-25]. It indicates the asymp-
totic freedom and ensures the positivity of the two-point function
of the stress tensor for this combined system because its coef-
ficient is given by By.
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The commutation relations are given by [§, p] = i and
[a, My a;rzMz] —[b, My JzMz] 87,0,6mm,» Where a;y
and by, are the positive-metric and negative-metric
modes, respectively. The index J(= 0) with M in these
modes and scalar harmonics denotes that these quantities
belong to the (J, J) representation of the S* isometry group
SU(2) X SU(2) with the multiplicity M = (m, m'), where
m, m'=—J,—J +1,...,J. The delta function for the
multiplicity index is deﬁned by Oyny = 6,0 p. For
more details, see Appendix A, in which the conventions
and notations for indices and various tools on R X S* are
summarized.

The 15 conformal Killing vectors on R X S3 are denoted
as (M =, (s (. {7, and their concrete forms are
gathered in Appendix A. Here and below, for simplicity,
we use the indices M, N without J for the four-vector of
J = 1/2 which appears in the conformal Killing vectors,
the corresponding generators, and also ghost modes intro-
duced in the next section. The generator of diffeomorphism
symmetry that forms the conformal algebra is given by
O, = de3§/‘f"M0, where fw, is the stress tensor derived
from the combined system of Riegert-Wess-Zumino and
Weyl actions.

The 15 generators for the Riegert sector are represented
as follows [10,13,14,16]. The Hamiltonian is H = p*/2 +
b, + ZJ,M{ZJa}LMaJM - J+ 2)b;rMbJM}, where the con-
stant energy shift b, is the Casimir effect. The four gen-
erators of special conformal transformations have the form

Qu=W2b;—ip)ay, + Y ZZCJM e, 2127 +2)

J=0M, M,

—VQ2J+1)(2J +3)

bJM I

+
X EMlaJ*M a1+1M2

XfMle Mbj+ M2+€M2 J+] (23)

where €, = (—1)" and C is the SU(2) X SU(2)
Clebsch-Gordan coefficient defined by (A2). The Hermitian
conjugates QL are also the generators of special conformal
transformations.’ The six generators of the SU(2) X SU(2)
rotation group on S are denoted by Ry, with the properties
R;{,,N = Ryy and Ry = —e€yeyR_y_y, Whose explicit
forms are not depicted here. These 15 generators form the
conformal algebra of SO(4,2) as follows:"

QM may be called the generator of translations.

“Parametrizing the four-vector index {(1/2, 1/2), (1/2, —1/2),
(=1/2,1/2), (—1/2, —1/2)} by {1,2,3,4}, and setting A, —
Ry A_ =Rl Ay= (R, +R»)/2. B, =Ry, B- =R,
and B; = (R}, — Ry)/2, the last rotation algebra is written in
the familiar form of the SU(2) X SU(2) algebra as [A,,A_] =
2435, [A3Ac]=*A., [B:,B_]=2B;3, [B3B.]=*B.,
where A. ; and B.; commute. The generators A. 3(B.3) act
on the left (right) index of M = (m, m’).
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[Qu. ON] = 28,y H + 2Ry, [H, Qu]l = —Qu,
[H, Ryn] =0, [Ou, O] =0,

[Om: Ryl = 04rOn — €neLdy-n0-1,

[Ryn: Rik] = SmkRin — €mend-_nkRi-u

— OnLRuk + €y€NS _p RNk 24

The significant property of the generator Q,, (2.3) is that
this generator mixes the positive-metric and negative-
metric modes due to the presence of the last cross term.
Consequently, both of these modes cannot be gauge-
invariant alone, and therefore they themselves have no
physical meaning.

The same situation holds in the case of the traceless
tensor field as well. The generator has been constructed
from the Weyl action in Ref. [13], and its physical proper-
ties have been investigated in Refs. [14,16] and are briefly
summarized in Appendix B.

III. BRST OPERATOR

The gauge ghost c# satisfying the conformal Killing
equation V,c, +V,c, —§,,Vac*/2 =0 is expanded
by 15 Grassmann modes c, Cyy, Cyss c}:,, as

ot =cnt + ekl +enll) + D eundliy- (3D
M M,N

We also introduce the antighost modes b, byy, by, b}:,,.
Here, ¢ and b are real operators and c;;y and b,y satisfy
the relations Cztnv = Cyms CuN = —EMENC_N—m> Dy =
byy, and byy = —€yexb_y_y. The anticommutation
relations among these modes are defined by

{b.ct=1, {bmn: cLrt = OmrOnk — €ENS kO _NL»

{b;{/p CN} = {bM) C;{J} = Sun- (3.2)

For later calculations, it is useful to know that the gauge
ghost modes satisfy Y ¢ = 0 and Y, €4¢_4Cpr = O,
and that the antighost modes also satisfy similar equations.

Using these gauge ghost and antighost modes, we can
construct the 15 generators of conformal symmetry, which
are given by [14,28]

Heh = Z(CLbM - CMbL),
M

h
R]gWN == _CMbI—l\-] + C]“\-/bM + EMGN(C—thM - CiMb—N)

- Z(CLMbLN — cnbur),
L
05 = —2cyb — cby — Z(ZCLMbL + crbyr),
L

ot —2chb + bl + 3 (2cy b + i), (3.3)
L
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These generators satisfy the same conformal algebra as
(2.4). In the following, we write the full generators of the
conformal algebra including the gauge ghost part as

.7-[=H+th, RMN =RMN+R%/];N’ (3 4)
Qu = 0u + 05, of, = ol + o5

The BRST operator generating the diffeomorphism (1.2)
is now given by

Oprst = ¢H + Z(C}J{/IQM +cy0l) + D cunRun
M MN
1 1 h ht
+ ECth + Eg(CLQi[ + CMQ%/[ )

1
+3 > cun Ry (3.5)
M,N

which satisfies the Hermitian condition Q};RST = OBRrsT-
It can be written in the following form:

Oprst = ¢ H + ZCMNRMN —bM — ZbMNYMN +0,
MN MN

(3.6)

where the full generators J{ and R, defined above

come out. The other operators M, Yy, and 0 are de-
fined by

M = ZZCLCM, YMN = CLCN + ZCMLCLN’
M

R t 3.7)
0 =Y (cl0n + cull).
M

Using the expression (3.6), the nilpotency of the BRST
operator can be shown as

Q123RST = Q2 -MH
- 2ZCLCN[RMN + Z(CLMbLN - CNLbML)]
MN L

=0 = MH =2 cliexRyy = 0, (3.8)
M,N

where the conformal algebra (2.4) is used.
The anticommutation relations of the BRST operator
with gauge ghost modes are

{Ogrst, ¢} = _Z%CLCM’
{OgrsT: Cunt = _CLCN - eMeNC—MCiN + Z%CMLCLN,
{OgrsT: cu} = cye + 2§CNCNM’
3.9

{Qprsr ¢l = ccly + ZZCMNC;(/,
N

and those with antighost modes are
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{QBRSTv b} = 3‘[, {QBRSTv bMN} = ZRMN’
{QBRST’ bM} = Q,Mr {QBRST’ b;{//} = QL,

where the full generators appear in the right-hand side.
From (3.10), the nilpotency of the BRST operator repre-
sents [Qprst, H] = [Oprsts Runv] = [Oprst, Qul =
[Qprst, Q1] = 0.

(3.10)

IV. PHYSICAL FIELDS

In this section, we develop the study of physical field
operators [17] in the context of the BRST formalism.

For each generator of the conformal algebra, the Riegert
field transforms as

iH ¢1=d,6, iRy, &1 =V (&nd),

. "
i[Om 1= EuVyud + 7 Vil (4.1)

N B 1 - *
Lo}, 61 =iV + Vil

Here, the third equation is given by the sum of the
equations

v,u,é/]}\;:

. 1
i[Qu, &=1= L5V ub + L3y b+

i[O do+ 1=V, b,

and the fourth equation is the Hermitian conjugate of the
third one.

Using the BRST operator, we find that the transforma-
tion laws (4.1) can be summarized into the single equation

4.2)

. . le
i[Qprst: @1 = c*V, ¢ + ZVMC”- (4.3)
The right-hand side is the BRST transformation ¢ in
(1.2). Also, the BRST transformation of the gauge ghost is
given by the anticommuation relation as

{OpgrsT> ¢}
= —2iZchM17“ - iZ(C;{,,CN + EMGNLMCJLN)Q\I;N
M MN
+ 2i Z CMLCLNgﬁl;N + IZ(CCLgﬁlfI + CMCé’A'l;*)
MN,L M

+ ZZZCMNC]"\-Ig}tL[ + 2iZCNCNM§A’l;* = Cyﬁyc’u.
M,N M,N
4.4

Here, to show the second equality, we use the Grassmann
nature of gauge ghosts and the product expansions of scalar
harmonics (A4).

In the following, the BRST-invariant fields composed of
only the Riegert field and the gauge ghost are studied with
two examples corresponding to the cosmological constant
term and the Ricci scalar curvature.
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Cosmological constant term: We first study the field
operator given by the purely exponential function of the
Riegert field. The normal ordering of such a composite
operator is defined by

00 a
V,=:e%: = z — " = P> e%P0e¥d< (4.5)
— n!
n=0
The zero-mode part can be written as e%%0 =

4a/\/201 gnpa/\[2b1 y=ina®[4b1 The constant a, called the
Riegert charge, represents a quantum correction deter-
mined by the BRST invariance condition below, which is
given by a real number to reflect that V,, is a gravitational
quantity.

Using the commutation relations given in (4.1), we find
that this field satisfies i[H, V,] = 9,V,, and i[Ryy, V,] =

ﬁj(g{mva). For the special conformal transformation,
we find

. - ha -
l[QM’ Va] = A’L/LIV/LVOZ + Tv,u,g]{flvop (46)

where £, is the conformal weight of the field given by
4.7

Since V,, is real, the commutator between QL and V, is
given by the right-hand side of (4.6) with £%;" instead of {%;.
In terms of CFT, V,, is the so-called primary scalar field
with conformal weight &,. These equations are summa-
rized into the single equation using the BRST operator as

~ h -
i[QBRST’ Va] = C'“VMVa + TavMC’u’Va. (48)

Therefore, the spacetime volume integral of V, with
definite conformal weight s, =4 commutes with the
BRST operator; namely, it commutes with all generators
of conformal algebra as

i[ Qgrsr, fdQ4Va] = fszﬁ,L(C“Va) =0, 49

where dQ), = dnd(); is the spacetime volume element.
Furthermore, we can make the field locally BRST-

invariant by introducing the function of the gauge ghost

contracted by the totally antisymmetric e-tensor,

1

w = al E#,,A,,c“c"c"c". 4.10)
This function transforms as
i[Qprst. @] = ¢V, 0 = —wV,c#,  (4.11)

where the transformation law of ¢* (4.4) and c*w = 0 are
used. Using this commutator we can show that the product
oV, becomes BRST-invariant without integrating over the
spacetime volume as
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. 1 a
l[QBRST’ (!)Va] = Z(l’la - 4)(!)VILC’U“VQ = O, (412)
provided h, = 4.
There are two solutions for the equation h, = 4. We

select the solution that approaches the canonical value 4
in the classical limit of »; — oo corresponding to the
large-number limit of matter fields coupled to gravity
(see footnote'). The quantum cosmological constant term
is thus identified to be V,, with the Riegert charge

4
=2b|1—4/1——|

The constant « is real due to b; > 4, as mentioned before.
In the following, « takes this value.

The other solution of i, = 4 is given by 4b; — a due to
the duality relation i, = hy;, . The operator Vy, _, does
not reduce to the canonical form of the cosmological
constant term at the classical limit, but two operators V,,
and Vy, —, are regarded as adjoints of one another in the
presence of the background charge, as is discussed in
Sec. VL.

Ricci scalar curvature: Next, we study the field operator
with derivatives. Because of the rotation invariance, the
number of derivatives must be even. We here consider the
real primary scalar field Wy with two derivatives that
satisfies the following transformation laws: i[H, Wg] =

9y Wg, ilRyn, Wl = V;(¢ly W) and

(4.13)

hg +2

i[O Wl = 4V, W + VW (414)

The equation for Q}:,, is given by the Hermitian conjugate
of (4.14). B represents the Riegert charge and hg + 2 is the
conformal weight of the field, where hg is defined by (4.7)
and 2 denotes the number of derivatives.

The conditions for the Hamiltonian and the rotation
generator are rather simple, but the condition (4.14) is so
strong as to determine the form of the field uniquely. We
find that the following operator satisfies these conditions:”

= B[ V2 'Bv \vis
We ( S5, VuV o B)
B hﬁ
=WL + w2 Vs, 4.15
.3 hﬂ B B B ( )
with

This operator is slightly different from the Ricci scalar
operator given in Ref. [17]. According to this change, we correct
the discussion held there.
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Wh=Vh-Vs+ V;Ve_,

1 1
W5 = _Zan¢oan¢ovﬁ - Eaﬁbovﬁand)o

1
- ZVBan¢Oan¢0 - an¢0(an¢>vﬁ + V,Ba"l¢<)

- (8,,¢>VB + Vﬁan¢<)an¢0 + ©y¢>©ﬂ¢>vﬂ
+2V, ¢ VVih + VgV, 6 Vi,  (4.16)

where V> =V M@“ and Vg has been defined by Eq. (4.5).
Thus, the spacetime volume integral of W with hg = 2

commutes with all generators of the conformal algebra.

It is simply expressed in terms of the BRST operator as

I:QBRST’ fdQ4Wﬁ] = 0.

The quantum Ricci scalar curvature is now identified to be
W with the Riegert charge

2
=2b|1— 41—
G =y

which is one of the solutions of sz = 2. The operator Wy
then reduces to the classical form of the Ricci scalar
curvature J_ R divided by —6 because 8 — 2 and
,B/hB — 1 in the large-b, limit.° In the following, B is
fixed to this value.

Due to the duality relation hg = hy,, — g, another BRST-
invariant operator has the form Wy;, _ g. This operator is the
adjoint of the Ricci scalar operator Wpg, but does not have
the classical limit.

As in the case of V,, using the gauge ghost function
(4.10) we find

(4.17)

(4.18)

[OprsT> @Wg] = 0.

Here, note that this BRST invariance condition is stronger
than the condition (4.17) because the condition (4.17) holds
up to total divergences.

In general, as is clear from the construction, physical
fields are given by primary scalar fields with conformal
weight 4, while primary tensor fields are excluded from
physical fields because such fields do not become gauge-
invariant under rotations and special conformal transfor-
mations due to the presence of spin terms. All of the
descendant fields are excluded as well.

(4.19)

V. PHYSICAL STATES

Let us study the BRST-invariant state | W) satisfying the
condition

The classical form of the R1c01 scalar curvature is given
by d*x/—gR = dQ,e**(—6V> ¢—6V éV* ¢ +6) on the
R X S3 background with unit S3.
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Ogrst!¥) = 0.

First, we define various vacuum states. The vacuum of
Fock space annihilated by the zero mode p and annihila-
tion modes ayy and by, is denoted by [0). We also
introduce the conformally invariant vacuum annihilated
by all generators of the conformal symmetry except gauge
ghost parts, H, Ry, Qp, and Q;{,I, which is defined by
|Q) = e=201400)|0), where ¢o(0) = §/+/2b;. This vacuum
and its Hermitian conjugate have the background charge
—2b,, respectively, and thus the vacua have the total
background charge —4b,.”

The conformally invariant vacuum of the gauge ghost
sector is denoted by |0>gh, which is annihilated by all
generators of the gauge ghost system (3.3); namely, anni-
hilated by all antighosts, but not annihilated by gauge
ghosts. Using this, the Fock vacuum of the gauge ghost
system annihilated by the annihilation modes c); and b, is
given by [Tycu|0)gh-

Since the Hamiltonian depends on neither ¢ and c;;y nor
b and by, the gauge ghost vacuum [ c/|0),, is degener-
ate. The degenerate partners are then given by applying ¢
and []cyy to this vacuum. The norm structure will be
discussed in the next section.

For convenience, we denote the Fock vacuum state with
the Riegert charge y by

ly) = e720|Q) ® l_[CM|O>gh-
M

(5.1)

(5.2)

This state satisfies H |y) = (h, — 4)|y), where iply) =
(y//2by — /2b)|y) is used and —4 comes from the
gauge ghost sector.

The physical state is constructed by applying the
creation modes (such as a}M, b}LM, CX,[, b}:,], and p) to
the Fock vacuum (5.2), where p may be replaced by
the appropriate number. Since {Qprsy,b} = FH and
{Oprst, byn} = 2Ry and the Fock vacuum is annihi-
lated by b and b,;y, we merely consider the subspace
satisfying the conditions

-7‘[|\I’>:RMN|‘I’>:O, b|‘P>:bMN|\P>:0- (5.3)
On this subspace, from the expression of the BRST opera-
tor (3.6), the BRST-invariant state coincides with the
Q-invariant state.

For the time being, we analyze physical states in the
subspace (5.3) described in the following form:

W) = Ap, alyy, blyp - )y, (5.4)
where the dots denote creation modes of other fields except
gauge ghosts. The operator /A and the Riegert charge y

"The background charge originates from the linear term in the
Riegert-Wess-Zumino action (2.1).
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will be determined from the BRST invariance condition
below. The cases in which A includes creation modes of
gauge ghosts and antighosts will be discussed later.

Since c,,|¥) = 0 for the state (5.4), the Q invariance
condition is expressed as

OlW) = Ycl,0ul®) =o0. (5.5)
M

Thus, together with the Hamiltonian and rotation invari-
ance conditions in (5.3), we reproduce the physical state
conditions
(H - 4)|\I’> = RMNN’) = QMl\I,> =0, (5.6)

studied in Refs. [13,14,16]. Here, the condition for QL is
not necessary. This shows that the state |'¥) is given by a
primary scalar with conformal weight 4.5

The BRST invariance condition for |¥) is now equiva-
lent to the condition that the operator A satisfies the
algebra

[HA]=IA,

[RMN“A]:O, [QM,.A]:O

(5.7)
The first condition implies that “A has the conformal
weight /(= 0). By solving the Hamiltonian condition
h, +1—4 = 0in(5.6), the Riegert charge y is determined

to be
4—]
=2b|1— 41— .
Yi 1( bl)

Here, we choose the solution where y approaches the
canonical value 4 — [ in the large-b; limit. The charges
vo and vy, correspond to « and B defined above,
respectively.

In order to find the operator ‘A satisfying the second
and third conditions of (5.7), we seek creation operators
that commute with the generator Q,,, and then combine
them in a rotation-invariant form. Since there is no
creation mode that commutes with Q,, for the Riegert
field, we look for operators constructed in a bilinear
form. Such operators have been studied previously in
Refs. [14,16]. Using the crossing properties of SU(2) X
SU(2) Clebsch-Gordan coefficients (A3), we find that
for the Riegert sector there are two types of
Q-invariant creation operators with conformal weight
2L for integers L = 1:

(5.8)

8The primary state is, in general, defined by H|h,{r}) =
hlhr {r}>’ RMNlh’ {r}> = (EMN){r’},{r}lh’ {I"/}>, and QMlh’ {r}> =
0, where A is the conformal weight, {r} denotes a representation
of SU(2) X SU(2), and .,y is the generator of spin rotations of
the state. The descendant state is generated by applying QL to
the primary state |h, {r}).
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S /\/(Pr )aLN
T Z ZZX(L K)CiY KM, KMzaL KM, aIT(Mz’

K_L M, M,

SL IN — lP(P)bL IN

+ Z ZZX(L K)Ci~ %Xa KMzaL KM, alJr(Mz

K:lMl M,

+ Z Z y(L, K)CIL‘:}(]\LIM,,KMZbIJE—K—lM,alT(Mz’

K=LM M,
(5.9)
where

(—1)% \l(u)(u-z)

x(L, K) =

JRL —2K + 12K + 1) 2K — 1

(5.10)
and y(L, K) = —2/2L —2K — 1)L — 2K + 1)x(L, K).

The zero-mode operators are given by x(p, L) = +/2(y/2b; —
ip)/NQL=1QL+1) and ¢(p) = —2(\2b; — ip).’
For any half-integer L there is no such operator. The opera-
tors for the lower cases of L are provided in Appendix C.

By joining these bilinear operators using the SU(2) X
SU(2) Clebsch-Gordan coefficients, we can construct the
basis of Qj-invariant creation operators in the Riegert
sector. Due to the crossing properties of the Clebsch-
Gordan coefficients, any Q,-invariant creation operators
will be expressed in such a fundamental form. Thus, these
two types of Qj,-invariant bilinear operators are expected
to be the building blocks of physical states. Thus the
physical state |¥) (5.4) is now written in the form
A(ST, ST, - - )|y), where the dots denote building blocks
for other fields and all tensor indices are contracted out in
an Ry y-invariant way. Since building blocks have even
conformal weights, the weight / for A is given by even
integers, which corresponds to the number of derivatives
for physical fields.

As an example, we present here the physical states
corresponding to the lower cases of / up to 4. The lowest
weight state is simply given by |a), which corresponds to
the cosmological constant term, and the second lowest
state with / = 2 is given by Sgol B, which corresponds to
the Ricci scalar curvature, where we use the notations «
and S for vy, and 7,, respectively. For [ = 4, there are two
states, (Sgo)zly“) and ZNGNSLNSTNI%Q, where y, = 0
from (5.8), which correspond to the square of the Ricci

“Here, we correct an error in the previous papers as follows:
x(p, L) is twice that given in Refs. [14,16].
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scalar and the other four derivative scalar quantities, such
as the Euler density, respectively.

At [ = 4, there is another gravitational physical state.
From the Weyl sector summarized in Appendix B, we find
the physical state ZM,XEMCT(7 Mx)c}t( sy Y4) corresponding
to the square of the Weyl tensor. Here, c;r( M) is the lowest

creation mode of the tensor field, which is the only creation
mode that commutes with Q.

For other modes in the Weyl sector, we also have to
consider Qj,-invariant building blocks written in a bilinear
form. The purely gravitational physical state with higher
conformal weight is generally given by combining building
blocks for both the Riegert and Weyl sectors in a rotation-
invariant way.

Finally, we discuss the cases with gauge ghost and
antighost creation modes C/L and bL. For | = 2, we obtain
another BRST-invariant state,

(BB — i3 toot 4 bt
{ ( Zbl lp)Z%GMbMCM+h%EMa;_Ma;M}|B>:
G.11)

where h = p?/2 + b,. This state is, however, equivalent to
the physical state given before up to the BRST trivial state.
To show this, we introduce the state

1Y) = (25, — ip)zeMbiMa;M|3>, (5.12)
M
satisfying the conditions JH|Y) = R,n|Y) =b|Y) =

byn|Y) = 0. Applying the BRST operator to this state,
we obtain

QgrstlY) = {_(V2b1 - ilA’)ZZGMthCL
M

+4(4/2b; — ip)bly + 20 eMaj_Man}IB%
M 2 2

(5.13)
Thus, the state (5.11) can be written in the form
1
—Sh1B8) + 1Y), 5.14
R B) + QgrstlY) (5.14)

where h|B) = 2|B) is used.

In general, it seems that the physical state depending
explicitly on gauge ghosts and antighosts such as this
reduces to the standard form (5.4) up to the BRST trivial
state. Thus, we only consider such a standard form
throughout this paper.

VI. STATE-OPERATOR CORRESPONDENCES
AND NORM STRUCTURES

In this section we discuss various significant properties,
such as the state-operator correspondence, the adjoint of a
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physical state, and the norm structure, with attention to the
presence of the background charge.

Consider the physical state with the Riegert charge y
and the corresponding physical field operator O, satisfying
the BRST invariance condition [Qggst, @O0, ] = 0. The
state-operator correspondence is given by the following
limit:

lim e~*70,|Q) = |0,),

n—ico

(6.1)

apart from the gauge ghost sector.
For the physical fields V,, and W, for instance, we can
obtain the physical states as follows:

V.) = lim e %7V, |Q) = lim e/"4Thnead= o 5| Q)

N—ico n—ico
= ¢2%0]()) (6.2)
and
|WB> = nlivr?ooei4inWB|Q>
= nlir?wei(’4+hﬁ)”{@2¢> —2id, ¢~
ﬁ v & B 78—‘?
+%V,u¢>v ¢>}€ Zevi’|())

— B st saoq
= 00€ Q). (6.3)

24/2b,

These limits exist only when h, = 4 and hg = 2, respec-
tively, as is required from the physical condition.

Since the most singular term of the gauge ghost function
(4.10) at the limit n — ioco behaves as @ % e~ *"[];,cu,
the state-operator correspondence that includes this func-
tion is given by

Jlim @0,19) @ [0)g, < 10,) @ [ [enlO)  (6:4)
100 M

The right-hand side is the physical state discussed in Sec. V.

Next, we consider the adjoint of the physical state
10,) ® [Tcul0)gy. The adjoint of |0,) is denoted by
<07|, which is not the naive Hermitian conjugate (O,
because in this case the Riegert charge is not conserved;
namely, the zero mode does not cancel out, such that
(0,l0,) is unnormalizable.'® The state <6y| is defined
by using the other pair of the physical states derived
from the duality relation h, = hy, —,,.

Again, we consider the physical fields V,, and Wg. The
adjoints of these fields are given by

'The situation is the same as in the case of the Liouville
gravity [4]. Unlike this case, if the Riegert charge were purely
imaginary, such as y = ip, and there were no background
charges, physical fields could be normalizable as (O _;,|0;,) =
1, as in the case of string theory [21,22].

PHYSICAL REVIEW D 86, 124006 (2012)

Va V4b1—ou
- b,
Weg==7 Wi,
b, 4b, — B
T2 (Wib173 + 7 Wa%b]—ﬁ
hg
T i = ,BVM"_B)’ (6.5)
and the out-states corresponding to these fields are
(Vol = lim e*7(Q|V, = (Q]e@br—a)¢(0)
n——ico
Wgl = lim e (Q|W
( ,3| n_’_l.we Q| 8 6.6)
= M«ue(zm, “BI60 S,
8v2
They are normalized to be
(VolVey =1, (WglWwg) = 1. (6.7)

Here, (Q]e*1400|Q) = 1 is used, which comes from the
Riegert charge conservation such that the charge 4b, can-
cels the background charges in the conformally invariant
in- and out-vacua.

The naive inner products between gauge ghost vacua
and their Hermitian conjugates vanish as gh<0|0>gh =
an{OITT ch 11 cu|0)gn = 0, which is easily confirmed by
inserting the anticommutation relations {b,c} =1 and
{bun CLxt = OprOnk — €y€nO_yxd_yp into the re-
levant expressions. So, we normalize the gauge ghost
sector by inserting the operator ¢ = ic [] cyy satisfying
I = Fas

(0] TTeloTen|0), = 1. (6.8)
Thus, the adjoint of the physical state |0,) ® [ c)|0)g is
given by (O, | ®g, (O T] cl 9. In this way, we can always
define the inner product of a physical state normalized to
be unity.

Lastly, we mention that the result (6.7) is consistent with
the two-point correlation function calculated to be [17]

(QIV, )V, (0)]Q) = ( 6.9)

and also with the correlation function between Wpg and
|14 > which will be of the same form. Here, the function L is

defined through the operator product ¢(x)¢(0) =
—(1/4b,) X logL?*(n, ®) + :¢(x)$(0): as
L*(n, w) = 2{00577 — cos%}, (6.10)

where —2 cos(w/2) is the spatial distance and the angle @
is defined in Appendix A.
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VII. CONCLUSION AND DISCUSSION

We have studied background-free quantum gravity
described in terms of CFT in the context of BRST formal-
ism. The nilpotent BRST operator generating the diffeo-
morphism was constructed on the R X 3 background. We
used this operator to construct the BRST-invariant fields
and states and studied various significant properties, such
as the state-operator correspondence and the norm struc-
ture. In terms of CFT, these are given by primary scalars
with definite conformal weight 4, while primary tensors
and all of their descendants are excluded.

The BRST-invariant fields always appear in pairs due to
the existence of the duality in Riegert charges. The physi-
cal field was identified with the one that reduces to the
classical gravitational scalar quantity in the large-b; limit
corresponding to the large-number limit of matter fields
coupled to gravity.

The naive inner product between the physical state and its
Hermitian conjugate is unnormalizable because the Riegert
charge is not conserved; namely, the zero mode does not
cancel out. The adjoint of physical state is given by the other
member of the BRST-invariant pair, which does not have the
classical limit, and so is regarded as a quantum virtual state.
With this state, the Riegert charge can be conserved and we
can define the inner product normalized to be unity.

We now discuss how to define correlation functions
among physical fields with the correct Riegert charge.
Naively, they do not exist because the Riegert charge is
not conserved, as mentioned above. To define the correla-
tion functions, we should consider (for instance) the model
perturbed by the cosmological constant term, and then the
constant mode of the Riegert field o should be taken into
account. Carrying out the path integral over the constant
mode A = ¢ first (in Wick-rotated Euclidean space), we
obtain the correlator in the perturbed theory Sgwy + uV,
as follows:

0y, 0y ) == ["LA0,, -0, )
I'(=s), - -
= lux T<OW| . e 0%“ (Va)s>,
(7.1)
with s = (4b; — 31, y,l_)/a.11 Here, w is the cosmologi-

cal constant. The bar on the field denotes that the field is
integrated over the spacetime volume and (- - -) represents
the correlator in the unperturbed theory. This correlator
will exist because the Riegert charge is conserved. It
indicates that the correlation function has a power-law
behavior in the mass scale. Its physical implications to
inflationary cosmology are discussed elsewhere [29-31].

"Here, s is not an integer, but a fractional number. Therefore,
by regarding s as an integer the correlator may be evaluated,
and then s may be analytically continued to the fractional
number [5].

PHYSICAL REVIEW D 86, 124006 (2012)
APPENDIX A: BASIC TOOLSONR x $3

The notations and conventions for various tools on
R X S3 [13] are summarized here. The background metric
is parametrized by the coordinate x* = (7, x') using the
Euler angles x' = (@, B, y) as d§7, o = —dn* + {(da® +
dB? + dy? + 2cosBdady), where a, B and y have the
ranges [0, 277], [0, 7], and [0, 477], respectively. The radius
of § is taken to be unity such that R = 6. The volume
element on the unit $3 is dQ); = sinBdadBdy/8 and the
volume is given by V3 = [dQ; = 27%. The angle o is
defined by cos(w/2) = cos(B/2)cos(a/2)cos(y/2)—
cos(B8/2) sin(a/2) sin(y/2).

The scalar harmonics on S3 are defined by

[(21 +1)
Y J
M = v, mm

satisfying @"ﬁjY,M = —2J(2J +2)Y;y, where D’ |
is the Wigner D-function [32]. It belongs to the (J,J)
representation of the isometry group SU(2) X SU(2),
and J(= 0) takes integer or half-integer values. The
index M = (m,m') denotes the multiplicity of the
(J,J) representation and thus m and m' take values
from —J to J, respectively. The normalization is taken
to be fdQ:;Y;IM] YJZMZZSJIJZSMIMZ’ where 5M1M2:
o 8 m;,- The complex conjugate is given by Yiy =

mymy

(AD)

€Y, _y, Where €y, = (—1)""""

The SU(2) X SU(2) Clebsch-Gordan coefficient defined
by the volume integral of three products of scalar harmon-
ics over S? is given by

ww _ [IEDCRID
J\M M, 2J+1 Sy, Jamy S ml, Jymly

(A2)

where Cj:’fn] is the standard SU(2) Clebsch-Gordan

coefficient [32]. It satisfies the relations C7", ;, =

Jomy

IM —CJ—M S M, M
Comprm, = Co1 om0 -1, = €0,Copt -1, Cooun = Omn
and the crossing relation

I M, /M
Z Z EMCJzMo JM AR
J=0 M
I, /M
Z Z 6MCJ4M4 JM JoMy* (A3)

J=0 M

The 15 conformal Killing vectors on R X S3 are given in
the following. The vector that generates the time trans-
lation is denoted by n* = (1,0,0,0). The six Killing

(O, &gy, with &y =
Yl/zNﬁjY'l*/zM}. Here, we use

vectors on S° are given by {ly =

i(V3/4) X {Y1/2Mv Yipn —
the index without J in the case of the four-vector index of
J = 1/2 that appears in the conformal Killing vectors
and the corresponding generators. The four vectors that
generate special conformal transformations are given
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by = (LY, 5}{4 ), with ), = /V3ei77y;</2M /2 and  These are used to show the transformation laws in

{1{,, = —iﬂ/V3ei"@jY;‘/2M/2. Their complex conjugates Sec. IV.
are also copformal Killing vectors for special conformal APPENDIX B: GENERATORS
transformations. . . FOR TENSOR FIELDS
At last, we give the product expansion formulas for
scalar harmonics: Here we briefly summarize the generator of the conformal

algebra for the traceless tensor field derived in Ref. [13].
1 The Weyl action is quantized in the radiation™* gauge,12
* — M * field &, is expanded in tensor
Yi Yy = { C Y and then the traceless tensor field #,,,, p
M VV3 % IN TN TN and vector harmonics on 3 with three types of mode opera-

Iy tOrS: € (a1x)> dj(mx)» and € (). The first two modes belong to

2 *
+ ZCJN,J—%N’ Y J—%N’}’ the (J + x, J — x) representation of SU(2) X SU(2) with
N J = 1, and the third belongs to the (J + y, J — y) represen-
VAR 1 M tation withJ = 1 (e is removed by gauge conditions)
Vv Vv, = —{—21 oy 1/2001y) y gaug :
I NG % NI TN where x = *1 and y = *=1/2 are the polarization indices

for a rank-2 tensor and vector, respectively. The index M =

1
M I Y ;%N,}. (A4) (m, m") denotes the multiplicity for each representation.

JN,J—

+27+2)YC
N/

The commutation relations are set as [¢;, (u, x,)» _C-:/rz(MzXz)] = —[djl(Mlxl),d}L (szz)] =68,7,0Mm,M, Bmz and [-eJI(Mlyl), e}tz(szz):.l =
—8,,7,0m,m,0y,y,> and thus ¢y, has the positive metric and d ) and e J(my) have the negative metric. The Hamiltonian

is then given by H = ZJEI{ZM,XDJC}L(MX)CJ(MX) - (2J + 2)d;r(Mx)d1<Mx)] — >my(2J + l)e;f(My)eJ(My)}.
The generators of special conformal transformations are given by

_ M AT T = t
Ou = Z Z Z EZJ(Mlx]),J+%(M2x2){ 2727 + 2)ey, C (=M, x) CT+AMaxy)

J=1 M\, x; My,x,

_ t t
‘\/(2-] + 1)(2-] + 3)6M1d‘](—M1X1)dJ+%(M2X2) + EM2C1+%(7M2x2)dJ(M1x1)}

™ t t
+ le MZ MZ H3 0 o) AU €y esonyy T BUDem, ey dian )}
= X1 Ma,y,

ar t
+ Z Z Z Dz(Ml}ﬂ)J‘*‘%(szz)C(J)eMleJ(*Mlyl)e]‘*%(Mz}’z)’ (BI)
J=1 My, y1 My, y,

B 4] [ 20s+2) _er-n@i+ 1)1 +2) 2 +4)
S (CvE oy E M (reyievEs) C“)—\/ 202 +3) ™

The SU(2) X SU(2) Clebsch-Gordan coefficients defined by the volume integrals of three products of tensor harmonics up
to rank 2 are given by

M _JaT—Do Y in o
EJ(M,x,),J+%(M2x2) 2J - 1H)({J +2)C C B

J+x,m ,J+%+x2m2 J—x; m’1,1+%—x2m2

where

1

iy im im’
Hj(Mlxl);J(szz) = _\/(2‘1 - 1)(2J + 3)CZJ+x1m|,J+y2mzCj—x]m’l,J—)@m’z’ (B3)
1y Im Im!
2 = ./ 2 2
DJ(MI)’l)J*%(Mz)’z) J(2J + 3)C1+YI my,J 5ty m, CJ*)’lmI]J*%*)’zm/z'

Here, the type E is defined by the product of a scalar and two tensor harmonics, the type H is the product of scalar, tensor,
and vector harmonics with a derivative, and the type D is the product of a scalar and two vector harmonics. In the generator,

2The space of the residual symmetry in the radiation gauge @ih[ ;= Vh io = hgo = 0 1is slightly bigger than the space generated by
the 15 conformal Killing vectors, and hence we further remove the lowest mode of &, satisfying (V/V; + 2)h;, = 0, namely,
€12y = 0 in the text. We call this choice the “radiation”” gauge.

124006-10



BRST ANALYSIS OF PHYSICAL FIELDS AND STATES ... PHYSICAL REVIEW D 86, 124006 (2012)

the coefficients with the four-vector index for scalar harmonics appear. The general expressions of these coefficients are
given in Ref. [13].

In order to construct physical states, we have to prepare creation operators that commute with Q,,. From (B1), we find
that all creation modes do not commute with Q,,, except the lowest creation mode of the tensor field with the positive
metric c}t( M)* Thus the rotation-invariant combination of c:f( M) gives the lowest-weight states in the Weyl sector. For other
modes, we look for the Q),-invariant creation operators constructed in a bilinear form. Such operators and CT( M) will
provide building blocks of physical states for the Weyl sector, which have been constructed and classified in Ref. [14].

APPENDIX C: BUILDING BLOCKS FOR LOWER L

Here, we write down the building blocks of physical states with conformal weight 2L given in (5.9) for the lower cases of
L. For L = 1, they are given by

2 N 1 . 1
st = ‘/;(\/2191 —ip)at, - 5 > Cly s *Ml a;m, St =—2(2b, — ip)bl, — \/_ZZ ewal ai . (C1)
M1, , 2 M 2 2

with conformal weight 2. The building blocks of L = 2 with conformal weight 4 are given by

2 o 2
S;rN = 4|—(2b, — lp)a;rN 2 Z CgM W, a;M aTM + = Z C%ﬁl,leaIeraIMz,
VIS V3,
STN = _\/E(VZbl - ilA’)b;rN - 00‘11N V2 Z C%M I a;MlalM \/— Z C%AN/II,IMzaiera-ler
MM,
+4 Z C]l/cl/ i, 1M1aTM2’ (C2)

and the building blocks of L = 3 with conformal weight 6 are given by

2
- NP t
Siy = "g(\ﬂb, —ip)ajy — V2 Z C5M lea;M ale + 4MZM C2M lealeale 1’ Z C;M] g]‘/12613]‘4[613]‘42
1 2 2
S;LN = —V2(/2by - ilA’)bz 4‘/_1700‘12N V2 Z C?ﬁl M, asM C’ITM +4 Z C%%I leanga-ll-M7
MM,
T 415 t t
\I Z C3M, ;M2a3M a3M + 43 Z C3M AM, ;M %, 4 MZA;I CIM leblMlale
1 2
+44/15 Z C%g I IMI a;er (C3)
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