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We consider the background-free quantum gravity based on conformal gravity with the Riegert-Wess-

Zumino action, which is formulated in terms of a conformal field theory. Employing the R� S3

background in practice, we construct the nilpotent BRST operator imposing diffeomorphism invariance.

Physical fields and states are analyzed, which are given only by real primary scalars with a definite

conformal weight. With attention to the presence of background charges, various significant properties,

such as the state-operator correspondence and the norm structure, are clarified with some examples.
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I. INTRODUCTION

Conformal field theory (CFT) appears in various
branches of theoretical physics. Quantum gravity is also
described as a certain CFT that has conformal invariance as
a gauge symmetry. It is well-known that two-dimensional
(2D) quantum gravity is described in terms of the CFT
called the Liouville theory, and the Virasoro algebra rep-
resents the background-free picture of 2D spacetime [1–6].

The four-dimensional quantum gravity we will study
here [7–18] is described in terms of such a CFT, which is
formulated on the basis of conformal gravity systemati-
cally incorporating the Riegert-Wess-Zumino action in-
duced from the path integral measure, as in the case of
2D quantum gravity. The model is characterized by how
the metric field decomposes into the conformal factor e2�

and the traceless tensor field h�� [12,15]:

g�� ¼ e2�ðĝethÞ�� ¼ e2�ðĝ�� þ th�� þ � � �Þ; (1.1)

where trðhÞ ¼ ĝ��h�� ¼ 0 and ĝ�� is the background

metric. Nonperturbative effects are incorporated by treat-
ing the conformal factor e2� exactly without introducing
its own coupling constant, while the traceless tensor field
h�� is handled by the perturbation theory. Here, t is the

dimensionless coupling constant indicating asymptotic
freedom. The model we consider is obtained at the ultra-
violet (UV) limit of t ¼ 0, where exact conformal invari-
ance arises as a realization of background metric
independence.

In this paper, we continue the study of physical fields
and states of the model developed in Refs. [13,14,16,17]
in the context of the Becchi-Rouet-Stora-Tyutin (BRST)
quantization [6,19–22]. The BRST symmetry we discuss
here is the residual diffeomorphism symmetry left after the
gauge fixing, such that the gauge degrees of freedom
reduce to the 15 conformal Killing vectors �� satisfying

r̂��� þ r̂��� � ĝ��r̂��
�=2 ¼ 0 [13,16]. The BRST

transformation is obtained by replacing �� with the corre-
sponding gauge ghost c� as

�B� ¼ c�r̂��þ 1

4
r̂�c

�;

�Bh�� ¼ c�r̂�h�� þ 1

2
h��ðr̂�c

� � r̂�c�Þ

þ 1

2
h��ðr̂�c

� � r̂�c�Þ: (1.2)

This transformation can be regarded as a conformal
transformation considering quantum gravity as a quantum
field theory on the background spacetime. Due to the
presence of the shift term in the first equation, the invari-
ance under the conformal change of the background metric
occurs as the gauge symmetry. Thus, the background-free
nature is represented as the gauge equivalence between the
metrics before and after the change.
Unlike usual CFT, this conformal invariance is imposed on

the field as well as the vacuum because it is the gauge
symmetry. Although the residual gauge degrees of freedom
are finite, this symmetry is much stronger because the right-
hand side of (1.2) is field-dependent and so the transformation
mixes all modes in the field. Indeed, physical fields are given
only by real primary scalars with a definite conformal weight.
The analysis of physical quantities is carried out

employing the cylindrical background R� S3 in practice
because it is useful to study physical states and their norm
structures. The related study on the Minkowski back-
ground M4 has been carried out in the previous work
[18]. The result is consistent with this case, as is expected
from the background-free nature of the model.
This paper is presented as follows. In the next section, we

briefly summarize the model and the definitions of the basic
objects we will use. The nilpotent BRST operator imposing
diffeomorphism invariance is constructed in Sec. III. Physical
fields and states are studied in the context ofBRST formalism,
with some examples given in Secs. IVand V. The physically
significant properties, such as the state-operator correspon-
dence and the norm structure, are clarified in Sec. VI.
Section VII is devoted to a conclusion and discussion.
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II. BRIEF SUMMARY OF THE MODEL

In order to discuss diffeomorphism symmetry at the
quantum level, we have to specify the gravitational action.
The action that governs the dynamics of the traceless
tensor field is given by the Weyl action divided by t2,
�ð1=t2ÞR d4x

ffiffiffiffiffiffiffi�g
p

C2
����, whereC���� is theWeyl tensor.

The action for the � field, called the Riegert field, in the
conformal factor is induced from the path integral measure.
At the UV limit of t ¼ 0, it is given by the Riegert-Wess-
Zumino action [7]

SRWZ ¼� b1
ð4�Þ2

Z
d4x

ffiffiffiffiffiffiffi�ĝ
p �

2��̂4�þ
�
Ĝ4 � 2

3
r̂2R̂

�
�

�
;

(2.1)

where
ffiffiffiffiffiffiffi�g

p
�4 is the conformally invariant fourth-order

differential operator and G4 is the Euler density. The
quantities with the hat are defined in terms of the back-
ground metric ĝ��. The coefficient b1 is the positive-

definite constant greater than 4,1 and thus the action is
bounded from below (in Wick-rotated Euclidean space).

The Riegert-Wess-Zumino action has been quantized in
Refs. [8–11,13,14,16–18] and the quantization of the Weyl
action has been carried out in the perturbative expansion by t
in Refs. [12,15].2 It has been shown that the algebra of diffeo-
morphismsymmetry (1.2) is closed at the quantum level in this
systemwithout theR2 action [13,16,18], as indicated from the
Wess-Zumino integrability condition [7,26,27].

In this paper, the background is practically chosen to be
R� S3 with unit S3. The Riegert field is expanded in scalar
harmonics on S3 denoted by YJM (A1), which is decom-
posed into three parts: the creation mode, the zero mode,
and the annihilation mode, with � ¼ �> þ�0 þ�<,

where �0 ¼ �y
0 , �> ¼ �y

< and

�0 ¼ 1ffiffiffiffiffiffiffiffi
2b1

p ðq̂þ 	p̂Þ;

�< ¼ �

2
ffiffiffiffiffi
b1

p
�X
J�1

2

X
M

aJMe
�i2J	YJMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Jð2J þ 1Þp

þ X
J�0

X
M

bJMe
�ið2Jþ2Þ	YJMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðJ þ 1Þð2J þ 1Þp �

: (2.2)

The commutation relations are given by ½q̂; p̂� ¼ i and

½aJ1M1
;ayJ2M2

�¼�½bJ1M1
;byJ2M2

�¼�J1J2�M1M2
, where aJM

and bJM are the positive-metric and negative-metric
modes, respectively. The index Jð� 0Þ with M in these
modes and scalar harmonics denotes that these quantities
belong to the ðJ; JÞ representation of the S3 isometry group
SUð2Þ � SUð2Þ with the multiplicity M ¼ ðm;m0Þ, where
m; m0 ¼ �J;�J þ 1; . . . ; J. The delta function for the
multiplicity index is defined by �MN ¼ �mn�m0n0 . For
more details, see Appendix A, in which the conventions
and notations for indices and various tools on R� S3 are
summarized.
The 15 conformal Killing vectors on R� S3 are denoted

as �� ¼ 	�, ��MN , �
�
M, �

��
M , and their concrete forms are

gathered in Appendix A. Here and below, for simplicity,
we use the indices M, N without J for the four-vector of
J ¼ 1=2 which appears in the conformal Killing vectors,
the corresponding generators, and also ghost modes intro-
duced in the next section. The generator of diffeomorphism
symmetry that forms the conformal algebra is given by

Q� ¼
R
d�3�

�T̂�0, where T̂�� is the stress tensor derived

from the combined system of Riegert-Wess-Zumino and
Weyl actions.
The 15 generators for the Riegert sector are represented

as follows [10,13,14,16]. The Hamiltonian is H ¼ p̂2=2þ
b1 þ

P
J;Mf2JayJMaJM � ð2J þ 2ÞbyJMbJMg, where the con-

stant energy shift b1 is the Casimir effect. The four gen-
erators of special conformal transformations have the form

QM¼ð ffiffiffiffiffiffiffiffi
2b1

p � ip̂Þa1
2M

þX
J�0

X
M1

X
M2

C
1
2M

JM1;Jþ1
2M2

f ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jð2Jþ2Þp

�
M1
ayJ�M1

aJþ1
2M2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Jþ1Þð2Jþ3Þp
�
M1

byJ�M1
bJþ1

2M2
þ
M2

ay
Jþ1

2�M2
bJM1

g; (2.3)

where 
M ¼ ð�1Þm�m0
and C is the SUð2Þ � SUð2Þ

Clebsch-Gordan coefficient defined by (A2). The Hermitian

conjugates Qy
M are also the generators of special conformal

transformations.3 The six generators of the SUð2Þ � SUð2Þ
rotation group on S3 are denoted by RMN, with the properties

Ry
MN ¼ RNM and RMN ¼ �
M
NR�N�M, whose explicit

forms are not depicted here. These 15 generators form the
conformal algebra of SO(4,2) as follows:4

1It has been computed to be b1 ¼ 769=180þ ðNX þ 11NW=
2þ 62NAÞ=360, where NX, NW , and NA are numbers of
scalar fields, Weyl fermions, and gauge fields, respectively
[23–25]. The first term comes from gravitational loop correc-
tions, which is the sum of�7=90 and 87=20 from the � and h��
fields, respectively [9,11].

2The beta function has been computed to be �t ¼ ��0t
3
r , with

�0 ¼ f197=30þ ðNX þ 3NW þ 12NAÞ=120g=32�2, where the
first term of �0 is the sum of �1=15 and 199=30 from the �
and h�� fields, respectively [9,11,23–25]. It indicates the asymp-
totic freedom and ensures the positivity of the two-point function
of the stress tensor for this combined system because its coef-
ficient is given by �0.

3Qy
M may be called the generator of translations.

4Parametrizing the four-vector index fð1=2; 1=2Þ; ð1=2;�1=2Þ;
ð�1=2; 1=2Þ; ð�1=2;�1=2Þg by f1; 2; 3; 4g, and setting Aþ ¼
R31, A� ¼ Ry

31, A3 ¼ ðR11 þ R22Þ=2, Bþ ¼ R21, B� ¼ Ry
21,

and B3 ¼ ðR11 � R22Þ=2, the last rotation algebra is written in
the familiar form of the SUð2Þ � SUð2Þ algebra as ½Aþ; A�� ¼
2A3, ½A3; A�� ¼ �A�, ½Bþ; B�� ¼ 2B3, ½B3; B�� ¼ �B�,
where A�;3 and B�;3 commute. The generators A�;3ðB�;3Þ act
on the left (right) index of M ¼ ðm;m0Þ.
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½QM;Q
y
N� ¼ 2�MNH þ 2RMN; ½H;QM� ¼ �QM;

½H;RMN� ¼ 0; ½QM;QN� ¼ 0;

½QM;RNL� ¼ �MLQN � 
N
L�M�NQ�L;

½RMN; RLK� ¼ �MKRLN � 
M
N��NKRL�M

� �NLRMK þ 
M
N��MLR�NK: (2.4)

The significant property of the generatorQM (2.3) is that
this generator mixes the positive-metric and negative-
metric modes due to the presence of the last cross term.
Consequently, both of these modes cannot be gauge-
invariant alone, and therefore they themselves have no
physical meaning.

The same situation holds in the case of the traceless
tensor field as well. The generator has been constructed
from the Weyl action in Ref. [13], and its physical proper-
ties have been investigated in Refs. [14,16] and are briefly
summarized in Appendix B.

III. BRST OPERATOR

The gauge ghost c� satisfying the conformal Killing

equation r̂�c� þ r̂�c� � ĝ��r̂�c
�=2 ¼ 0 is expanded

by 15 Grassmann modes c, cMN, cM, c
y
M as

c� ¼ c	� þX
M

ðcyM��M þ cM�
��
M Þ þ X

M;N

cMN�
�
MN: (3.1)

We also introduce the antighost modes b, bMN , bM, b
y
M.

Here, c and b are real operators and cMN and bMN satisfy

the relations cyMN ¼ cNM, cMN ¼ �
M
Nc�N�M, b
y
MN ¼

bNM, and bMN ¼ �
M
Nb�N�M. The anticommutation
relations among these modes are defined by

fb; cg ¼ 1; fbMN; cLKg ¼ �ML�NK � 
M
N��MK��NL;

fbyM; cNg ¼ fbM; cyNg ¼ �MN: (3.2)

For later calculations, it is useful to know that the gauge
ghost modes satisfy

P
McMM ¼ 0 and

P
M
Mc�McM ¼ 0,

and that the antighost modes also satisfy similar equations.
Using these gauge ghost and antighost modes, we can

construct the 15 generators of conformal symmetry, which
are given by [14,28]

Hgh ¼ X
M

ðcyMbM � cMb
y
MÞ;

Rgh
MN ¼ �cMb

y
N þ cyNbM þ 
M
Nðc�Nb

y
�M � cy�Mb�NÞ

�X
L

ðcLMbLN � cNLbMLÞ;

Qgh
M ¼ �2cMb� cbM �X

L

ð2cLMbL þ cLbMLÞ;

Q
ghy
M ¼ 2cyMbþ cbyM þX

L

ð2cMLb
y
L þ cyLbLMÞ: (3.3)

These generators satisfy the same conformal algebra as
(2.4). In the following, we write the full generators of the
conformal algebra including the gauge ghost part as

H ¼ H þHgh; RMN ¼ RMN þ R
gh
MN;

QM ¼ QM þQgh
M; Qy

M ¼ Qy
M þQghy

M :
(3.4)

The BRSToperator generating the diffeomorphism (1.2)
is now given by

QBRST ¼ cH þX
M

ðcyMQM þ cMQ
y
MÞ þ

X
M;N

cMNRMN

þ 1

2
cHgh þ 1

2

X
M

ðcyMQgh
M þ cMQ

ghy
M Þ

þ 1

2

X
M;N

cMNR
gh
MN; (3.5)

which satisfies the Hermitian condition Qy
BRST ¼ QBRST.

It can be written in the following form:

QBRST ¼ cH þ X
M;N

cMNRMN � bM� X
M;N

bMNYMN þ Q̂;

(3.6)

where the full generators H and RMN defined above

come out. The other operators M, YMN , and Q̂ are de-
fined by

M ¼ 2
X
M

cyMcM; YMN ¼ cyMcN þX
L

cMLcLN;

Q̂ ¼ X
M

ðcyMQM þ cMQ
y
MÞ:

(3.7)

Using the expression (3.6), the nilpotency of the BRST
operator can be shown as

Q2
BRST ¼ Q̂2 �MH

� 2
X
M;N

cyMcN
�
RMN þX

L

ðcLMbLN � cNLbMLÞ
�

¼ Q̂2 �MH � 2
X
M;N

cyMcNRMN ¼ 0; (3.8)

where the conformal algebra (2.4) is used.
The anticommutation relations of the BRST operator

with gauge ghost modes are

fQBRST; cg ¼ �2
X
M

cyMcM;

fQBRST; cMNg ¼ �cyMcN � 
M
Nc�Mc
y
�N þ 2

X
L

cMLcLN;

fQBRST; cMg ¼ cMcþ 2
X
N

cNcNM;

fQBRST; c
y
Mg ¼ ccyM þ 2

X
N

cMNc
y
N; (3.9)

and those with antighost modes are
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fQBRST; bg ¼ H ; fQBRST; bMNg ¼ 2RMN;

fQBRST; bMg ¼ QM; fQBRST; b
y
Mg ¼ Qy

M;
(3.10)

where the full generators appear in the right-hand side.
From (3.10), the nilpotency of the BRST operator repre-
sents ½QBRST;H � ¼ ½QBRST;RMN� ¼ ½QBRST;QM� ¼
½QBRST;Q

y
M� ¼ 0.

IV. PHYSICAL FIELDS

In this section, we develop the study of physical field
operators [17] in the context of the BRST formalism.

For each generator of the conformal algebra, the Riegert
field transforms as

i½H;�� ¼ @	�; i½RMN;�� ¼ r̂jð�jMN�Þ;
i½QM;�� ¼ ��Mr̂��þ 1

4
r̂��

�
M;

i½Qy
M;�� ¼ ���

M r̂��þ 1

4
r̂��

��
M :

(4.1)

Here, the third equation is given by the sum of the
equations

i½QM;�>�¼�
�
Mr̂��>þ�0M@	�0þ1

4
r̂��

�
M;

i½QM;�0þ�<�¼��Mr̂��<;
(4.2)

and the fourth equation is the Hermitian conjugate of the
third one.

Using the BRST operator, we find that the transforma-
tion laws (4.1) can be summarized into the single equation

i½QBRST; �� ¼ c�r̂��þ 1

4
r̂�c

�: (4.3)

The right-hand side is the BRST transformation �B� in
(1.2). Also, the BRST transformation of the gauge ghost is
given by the anticommuation relation as

ifQBRST; c
�g

¼ �2i
X
M

cyMcM	� � i
X
M;N

ðcyMcN þ 
M
Nc�Mc
y
�NÞ��MN

þ 2i
X

M;N;L

cMLcLN�
�
MN þ i

X
M

ðccyM��M þ cMc�
��
M Þ

þ 2i
X
M;N

cMNc
y
N�

�
M þ 2i

X
M;N

cNcNM�
��
M ¼ c�r̂�c

�:

(4.4)

Here, to show the second equality, we use the Grassmann
nature of gauge ghosts and the product expansions of scalar
harmonics (A4).

In the following, the BRST-invariant fields composed of
only the Riegert field and the gauge ghost are studied with
two examples corresponding to the cosmological constant
term and the Ricci scalar curvature.

Cosmological constant term: We first study the field
operator given by the purely exponential function of the
Riegert field. The normal ordering of such a composite
operator is defined by

V� ¼ :e��: ¼ X1
n¼0

�n

n!
:�n: ¼ e��>e��0e��<: (4.5)

The zero-mode part can be written as e��0 ¼
eq̂�=

ffiffiffiffiffiffi
2b1

p
e	p̂�=

ffiffiffiffiffiffi
2b1

p
e�i	�2=4b1 . The constant �, called the

Riegert charge, represents a quantum correction deter-
mined by the BRST invariance condition below, which is
given by a real number to reflect that V� is a gravitational
quantity.
Using the commutation relations given in (4.1), we find

that this field satisfies i½H;V�� ¼ @	V� and i½RMN; V�� ¼
r̂jð�jMNV�Þ. For the special conformal transformation,

we find

i½QM; V�� ¼ ��Mr̂�V� þ h�
4
r̂��

�
MV�; (4.6)

where h� is the conformal weight of the field given by

h� ¼ �� �2

4b1
: (4.7)

Since V� is real, the commutator between Qy
M and V� is

given by the right-hand side of (4.6) with ���
M instead of ��M.

In terms of CFT, V� is the so-called primary scalar field
with conformal weight h�. These equations are summa-
rized into the single equation using the BRST operator as

i½QBRST; V�� ¼ c�r̂�V� þ h�
4
r̂�c

�V�: (4.8)

Therefore, the spacetime volume integral of V� with
definite conformal weight h� ¼ 4 commutes with the
BRST operator; namely, it commutes with all generators
of conformal algebra as

i½QBRST;
Z

d�4V�� ¼
Z

d�4r̂�ðc�V�Þ ¼ 0; (4.9)

where d�4 ¼ d	d�3 is the spacetime volume element.
Furthermore, we can make the field locally BRST-

invariant by introducing the function of the gauge ghost
contracted by the totally antisymmetric 
-tensor,

! ¼ 1

4!

����c

�c�c�c�: (4.10)

This function transforms as

i½QBRST; !� ¼ c�r̂�! ¼ �!r̂�c
�; (4.11)

where the transformation law of c� (4.4) and c�! ¼ 0 are
used. Using this commutator we can show that the product
!V� becomes BRST-invariant without integrating over the
spacetime volume as
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i½QBRST; !V�� ¼ 1

4
ðh� � 4Þ!r̂�c

�V� ¼ 0; (4.12)

provided h� ¼ 4.
There are two solutions for the equation h� ¼ 4. We

select the solution that approaches the canonical value 4
in the classical limit of b1 ! 1 corresponding to the
large-number limit of matter fields coupled to gravity
(see footnote1). The quantum cosmological constant term
is thus identified to be V� with the Riegert charge

� ¼ 2b1

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

b1

s 1
A: (4.13)

The constant � is real due to b1 > 4, as mentioned before.
In the following, � takes this value.

The other solution of h� ¼ 4 is given by 4b1 � � due to
the duality relation h� ¼ h4b1��. The operator V4b1�� does

not reduce to the canonical form of the cosmological
constant term at the classical limit, but two operators V�

and V4b1�� are regarded as adjoints of one another in the

presence of the background charge, as is discussed in
Sec. VI.

Ricci scalar curvature: Next, we study the field operator
with derivatives. Because of the rotation invariance, the
number of derivatives must be even. We here consider the
real primary scalar field W� with two derivatives that

satisfies the following transformation laws: i½H;W�� ¼
@	W�, i½RMN;W�� ¼ r̂jð�jMNW�Þ and

i½QM;W�� ¼ �
�
Mr̂�W� þ h� þ 2

4
r̂��

�
MW�: (4.14)

The equation for Qy
M is given by the Hermitian conjugate

of (4.14). � represents the Riegert charge and h� þ 2 is the

conformal weight of the field, where h� is defined by (4.7)

and 2 denotes the number of derivatives.
The conditions for the Hamiltonian and the rotation

generator are rather simple, but the condition (4.14) is so
strong as to determine the form of the field uniquely. We
find that the following operator satisfies these conditions:5

W� ¼ :e��
�
r̂2�þ �

h�
r̂��r̂��� h�

�

�
:

¼ W1
� þ �

h�
W2

� � h�
�

V�; (4.15)

with

W1
� ¼ r̂2�>V� þ V�r̂2�<;

W2
� ¼ � 1

4
@	�0@	�0V� � 1

2
@	�0V�@	�0

� 1

4
V�@	�0@	�0 � @	�0ð@	�>V� þ V�@	�<Þ

� ð@	�>V� þ V�@	�<Þ@	�0 þ r̂��>r̂��>V�

þ 2r̂��>V�r̂��< þ V�r̂��<r̂��<; (4.16)

where r̂2 ¼ r̂�r̂�
and V� has been defined by Eq. (4.5).

Thus, the spacetime volume integral ofW� with h� ¼ 2

commutes with all generators of the conformal algebra.
It is simply expressed in terms of the BRST operator as�

QBRST;
Z

d�4W�

�
¼ 0: (4.17)

The quantum Ricci scalar curvature is now identified to be
W� with the Riegert charge

� ¼ 2b1

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

b1

s 1
A; (4.18)

which is one of the solutions of h� ¼ 2. The operator W�

then reduces to the classical form of the Ricci scalar
curvature

ffiffiffiffiffiffiffi�g
p

R divided by �6 because � ! 2 and

�=h� ! 1 in the large-b1 limit.6 In the following, � is

fixed to this value.
Due to the duality relation h� ¼ h4b1��, another BRST-

invariant operator has the formW4b1��. This operator is the

adjoint of the Ricci scalar operator W�, but does not have

the classical limit.
As in the case of V�, using the gauge ghost function

(4.10) we find

½QBRST; !W�� ¼ 0: (4.19)

Here, note that this BRST invariance condition is stronger
than the condition (4.17) because the condition (4.17) holds
up to total divergences.
In general, as is clear from the construction, physical

fields are given by primary scalar fields with conformal
weight 4, while primary tensor fields are excluded from
physical fields because such fields do not become gauge-
invariant under rotations and special conformal transfor-
mations due to the presence of spin terms. All of the
descendant fields are excluded as well.

V. PHYSICAL STATES

Let us study the BRST-invariant state j�i satisfying the
condition

5This operator is slightly different from the Ricci scalar
operator given in Ref. [17]. According to this change, we correct
the discussion held there.

6The classical form of the Ricci scalar curvature is given
by d4x

ffiffiffiffiffiffiffi�g
p

R ¼ d�4e
2�ð�6r̂2�� 6r̂��r̂��þ 6Þ on the

R� S3 background with unit S3.
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QBRSTj�i ¼ 0: (5.1)

First, we define various vacuum states. The vacuum of
Fock space annihilated by the zero mode p̂ and annihila-
tion modes aJM and bJM is denoted by j0i. We also
introduce the conformally invariant vacuum annihilated
by all generators of the conformal symmetry except gauge

ghost parts, H, RMN , QM, and Qy
M, which is defined by

j�i ¼ e�2b1�0ð0Þj0i, where�0ð0Þ ¼ q̂=
ffiffiffiffiffiffiffiffi
2b1

p
. This vacuum

and its Hermitian conjugate have the background charge
�2b1, respectively, and thus the vacua have the total
background charge �4b1.

7

The conformally invariant vacuum of the gauge ghost
sector is denoted by j0igh, which is annihilated by all

generators of the gauge ghost system (3.3); namely, anni-
hilated by all antighosts, but not annihilated by gauge
ghosts. Using this, the Fock vacuum of the gauge ghost
system annihilated by the annihilation modes cM and bM is
given by

Q
McMj0igh.

Since the Hamiltonian depends on neither c and cMN nor
b and bMN , the gauge ghost vacuum

Q
cMj0igh is degener-

ate. The degenerate partners are then given by applying c
and

Q
cMN to this vacuum. The norm structure will be

discussed in the next section.
For convenience, we denote the Fock vacuum state with

the Riegert charge  by

ji ¼ e�0ð0Þj�i �Y
M

cMj0igh: (5.2)

This state satisfies H ji ¼ ðh � 4Þji, where ip̂ji ¼
ð= ffiffiffiffiffiffiffiffi

2b1
p � ffiffiffiffiffiffiffiffi

2b1
p Þji is used and �4 comes from the

gauge ghost sector.
The physical state is constructed by applying the

creation modes (such as ayJM, b
y
JM, c

y
M, b

y
M, and p̂) to

the Fock vacuum (5.2), where p̂ may be replaced by
the appropriate number. Since fQBRST; bg ¼ H and
fQBRST; bMNg ¼ 2RMN and the Fock vacuum is annihi-
lated by b and bMN , we merely consider the subspace
satisfying the conditions

H j�i¼RMNj�i¼0; bj�i¼bMNj�i¼0: (5.3)

On this subspace, from the expression of the BRST opera-
tor (3.6), the BRST-invariant state coincides with the

Q̂-invariant state.
For the time being, we analyze physical states in the

subspace (5.3) described in the following form:

j�i ¼ Aðp̂; ayJM; byJM; � � �Þji; (5.4)

where the dots denote creation modes of other fields except
gauge ghosts. The operator A and the Riegert charge 

will be determined from the BRST invariance condition
below. The cases in which A includes creation modes of
gauge ghosts and antighosts will be discussed later.

Since cMj�i ¼ 0 for the state (5.4), the Q̂ invariance
condition is expressed as

Q̂j�i ¼ X
M

cyMQMj�i ¼ 0: (5.5)

Thus, together with the Hamiltonian and rotation invari-
ance conditions in (5.3), we reproduce the physical state
conditions

ðH � 4Þj�i ¼ RMNj�i ¼ QMj�i ¼ 0; (5.6)

studied in Refs. [13,14,16]. Here, the condition for Qy
M is

not necessary. This shows that the state j�i is given by a
primary scalar with conformal weight 4.8

The BRST invariance condition for j�i is now equiva-
lent to the condition that the operator A satisfies the
algebra

½H;A�¼ lA; ½RMN;A�¼0; ½QM;A�¼0: (5.7)

The first condition implies that A has the conformal
weight lð� 0Þ. By solving the Hamiltonian condition
h þ l� 4 ¼ 0 in (5.6), the Riegert charge  is determined

to be

l ¼ 2b1

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4� l

b1

s 1
A: (5.8)

Here, we choose the solution where  approaches the
canonical value 4� l in the large-b1 limit. The charges
0 and 2 correspond to � and � defined above,
respectively.
In order to find the operator A satisfying the second

and third conditions of (5.7), we seek creation operators
that commute with the generator QM, and then combine
them in a rotation-invariant form. Since there is no
creation mode that commutes with QM for the Riegert
field, we look for operators constructed in a bilinear
form. Such operators have been studied previously in
Refs. [14,16]. Using the crossing properties of SUð2Þ �
SUð2Þ Clebsch-Gordan coefficients (A3), we find that
for the Riegert sector there are two types of
QM-invariant creation operators with conformal weight
2L for integers L � 1:

7The background charge originates from the linear term in the
Riegert-Wess-Zumino action (2.1).

8The primary state is, in general, defined by Hjh; frgi ¼
hjh; frgi, RMNjh; frgi ¼ ð�MNÞfr0g;frgjh; fr0gi, and QMjh; frgi ¼
0, where h is the conformal weight, frg denotes a representation
of SUð2Þ � SUð2Þ, and �MN is the generator of spin rotations of
the state. The descendant state is generated by applying Qy

M to
the primary state jh; frgi.
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SyLN ¼ �ðp̂;LÞayLN

þ XL�1
2

K¼1
2

X
M1

X
M2

xðL;KÞCLN
L�KM1;KM2

ayL�KM1
ayKM2

;

Sy
L�1N ¼ c ðp̂ÞbyL�1N

þ XL�1
2

K¼1
2

X
M1

X
M2

xðL;KÞCL�1N
L�KM1;KM2

ayL�KM1
ayKM2

þ XL�1

K¼1
2

X
M1;M2

yðL;KÞCL�1N
L�K�1M1;KM2

byL�K�1M1
ayKM2

;

(5.9)

where

xðL;KÞ ¼ ð�1Þ2Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2L� 2K þ 1Þð2K þ 1Þp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L

2K

 !
2L� 2

2K � 1

 !vuut
(5.10)

and yðL;KÞ ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2L� 2K� 1Þð2L� 2Kþ 1Þp

xðL;KÞ.
The zero-mode operators are given by �ðp̂;LÞ¼ ffiffiffi

2
p ð ffiffiffiffiffiffiffiffi

2b1
p �

ip̂Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2L�1Þð2Lþ1Þp
and c ðp̂Þ ¼ � ffiffiffi

2
p ð ffiffiffiffiffiffiffiffi

2b1
p � ip̂Þ.9

For any half-integer L there is no such operator. The opera-
tors for the lower cases of L are provided in Appendix C.

By joining these bilinear operators using the SUð2Þ �
SUð2Þ Clebsch-Gordan coefficients, we can construct the
basis of QM-invariant creation operators in the Riegert
sector. Due to the crossing properties of the Clebsch-
Gordan coefficients, any QM-invariant creation operators
will be expressed in such a fundamental form. Thus, these
two types of QM-invariant bilinear operators are expected
to be the building blocks of physical states. Thus the
physical state j�i (5.4) is now written in the form
AðSy;Sy; � � �Þji, where the dots denote building blocks
for other fields and all tensor indices are contracted out in
an RMN-invariant way. Since building blocks have even
conformal weights, the weight l for A is given by even
integers, which corresponds to the number of derivatives
for physical fields.

As an example, we present here the physical states
corresponding to the lower cases of l up to 4. The lowest
weight state is simply given by j�i, which corresponds to
the cosmological constant term, and the second lowest

state with l ¼ 2 is given by Sy
00j�i, which corresponds to

the Ricci scalar curvature, where we use the notations �
and � for 0 and 2, respectively. For l ¼ 4, there are two

states, ðSy
00Þ2j4i and P

N
NS
y
1�NS

y
1Nj4i, where 4 ¼ 0

from (5.8), which correspond to the square of the Ricci

scalar and the other four derivative scalar quantities, such
as the Euler density, respectively.
At l ¼ 4, there is another gravitational physical state.

From the Weyl sector summarized in Appendix B, we find

the physical state
P

M;x
Mc
y
1ð�MxÞc

y
1ðMxÞj4i corresponding

to the square of the Weyl tensor. Here, cy1ðMxÞ is the lowest
creation mode of the tensor field, which is the only creation
mode that commutes with QM.
For other modes in the Weyl sector, we also have to

considerQM-invariant building blocks written in a bilinear
form. The purely gravitational physical state with higher
conformal weight is generally given by combining building
blocks for both the Riegert and Weyl sectors in a rotation-
invariant way.
Finally, we discuss the cases with gauge ghost and

antighost creation modes cyM and byM. For l ¼ 2, we obtain
another BRST-invariant state,�

�ð ffiffiffiffiffiffiffiffi
2b1

p � ip̂Þ2X
M


Mb
y
�Mc

y
M þ ĥ

X
M


Ma
y
1
2�M

ay1
2M

�
j�i;

(5.11)

where ĥ ¼ p̂2=2þ b1. This state is, however, equivalent to
the physical state given before up to the BRST trivial state.
To show this, we introduce the state

j�i ¼ ð ffiffiffiffiffiffiffiffi
2b1

p � ip̂ÞX
M


Mb
y
�Ma

y
1
2M
j�i; (5.12)

satisfying the conditions H j�i ¼ RMNj�i ¼ bj�i ¼
bMNj�i ¼ 0. Applying the BRST operator to this state,
we obtain

QBRSTj�i ¼
�
�ð ffiffiffiffiffiffiffiffi

2b1
p � ip̂Þ2X

M


Mb
y
�Mc

y
M

þ 4ð ffiffiffiffiffiffiffiffi
2b1

p � ip̂Þby00 þ 2ĥ
X
M


Ma
y
1
2�M

ay1
2M

�
j�i:

(5.13)

Thus, the state (5.11) can be written in the form

1

2
ffiffiffi
2

p Sy
00j�i þQBRSTj�i; (5.14)

where ĥj�i ¼ 2j�i is used.
In general, it seems that the physical state depending

explicitly on gauge ghosts and antighosts such as this
reduces to the standard form (5.4) up to the BRST trivial
state. Thus, we only consider such a standard form
throughout this paper.

VI. STATE-OPERATOR CORRESPONDENCES
AND NORM STRUCTURES

In this section we discuss various significant properties,
such as the state-operator correspondence, the adjoint of a

9Here, we correct an error in the previous papers as follows:
�ðp̂;LÞ is twice that given in Refs. [14,16].
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physical state, and the norm structure, with attention to the
presence of the background charge.

Consider the physical state with the Riegert charge 
and the corresponding physical field operatorO satisfying

the BRST invariance condition ½QBRST; !O� ¼ 0. The

state-operator correspondence is given by the following
limit:

lim
	!i1e

�4i	Oj�i ¼ jOi; (6.1)

apart from the gauge ghost sector.
For the physical fields V� and W�, for instance, we can

obtain the physical states as follows:

jV�i ¼ lim
	!i1e

�4i	V�j�i ¼ lim
	!i1e

ið�4þh�Þ	e��>e
�ffiffiffiffiffi
2b1

p q̂j�i
¼ e��0ð0Þj�i (6.2)

and

jW�i ¼ lim
	!i1e

�4i	W�j�i

¼ lim
	!i1e

ið�4þh�Þ	
�
r̂2�> � 2i@	�>

þ �

h�
r̂��>r̂��>

�
e��>e

�ffiffiffiffiffi
2b1

p q̂j�i

¼ � �

2
ffiffiffi
2

p
b1

Sy
00e

��0ð0Þj�i: (6.3)

These limits exist only when h� ¼ 4 and h� ¼ 2, respec-

tively, as is required from the physical condition.
Since the most singular term of the gauge ghost function

(4.10) at the limit 	 ! i1 behaves as ! / e�4i	
Q

McM,
the state-operator correspondence that includes this func-
tion is given by

lim
	!i1!Oj�i � j0igh , jOi �

Y
M

cMj0igh: (6.4)

The right-hand side is the physical state discussed in Sec. V.
Next, we consider the adjoint of the physical state

jOi �
Q

cMj0igh. The adjoint of jOi is denoted by

h ~Oj, which is not the naive Hermitian conjugate hOj
because in this case the Riegert charge is not conserved;
namely, the zero mode does not cancel out, such that

hOjOi is unnormalizable.10 The state h ~Oj is defined

by using the other pair of the physical states derived
from the duality relation h ¼ h4b1�.

Again, we consider the physical fields V� and W�. The

adjoints of these fields are given by

~V� ¼ V4b1��;

~W� ¼ �b1
4
W4b1��

¼ �b1
4

�
W1

4b1�� þ 4b1 � �

h�
W2

4b1��

� h�
4b1 � �

V4b1��

�
; (6.5)

and the out-states corresponding to these fields are

h ~V�j ¼ lim
	!�i1e

4i	h�j ~V� ¼ h�jeð4b1��Þ�0ð0Þ;

h ~W�j ¼ lim
	!�i1e

4i	h�j ~W�

¼ 4b1 � �

8
ffiffiffi
2

p h�jeð4b1��Þ�0ð0ÞS00:

(6.6)

They are normalized to be

h ~V�jV�i ¼ 1; h ~W�jW�i ¼ 1: (6.7)

Here, h�je4b1�0ð0Þj�i ¼ 1 is used, which comes from the
Riegert charge conservation such that the charge 4b1 can-
cels the background charges in the conformally invariant
in- and out-vacua.
The naive inner products between gauge ghost vacua

and their Hermitian conjugates vanish as ghh0j0igh ¼
ghh0j

Q
cyM

Q
cMj0igh ¼ 0, which is easily confirmed by

inserting the anticommutation relations fb; cg ¼ 1 and
fbMN; cLKg ¼ �ML�NK � 
M
N��MK��NL into the re-
levant expressions. So, we normalize the gauge ghost
sector by inserting the operator # ¼ ic

Q
cMN satisfying

#y ¼ # as

gh

D
0
������Y

cyM#
Y

cM

������0Egh ¼ 1: (6.8)

Thus, the adjoint of the physical state jOi �
Q

cMj0igh is
given by h ~Oj �gh h0j

Q
cyM#. In this way, we can always

define the inner product of a physical state normalized to
be unity.
Lastly, we mention that the result (6.7) is consistent with

the two-point correlation function calculated to be [17]

h�j ~V�ðxÞV�ð0Þj�i ¼
�

1

L2ð	;!Þ
�
4
; (6.9)

and also with the correlation function between W� and
~W�, which will be of the same form. Here, the function L is

defined through the operator product �ðxÞ�ð0Þ ¼
�ð1=4b1Þ � logL2ð	;!Þ þ :�ðxÞ�ð0Þ: as

L2ð	;!Þ ¼ 2

�
cos	� cos

!

2

�
; (6.10)

where �2 cosð!=2Þ is the spatial distance and the angle !
is defined in Appendix A.

10The situation is the same as in the case of the Liouville
gravity [4]. Unlike this case, if the Riegert charge were purely
imaginary, such as  ¼ ip, and there were no background
charges, physical fields could be normalizable as hO�ipjOipi ¼
1, as in the case of string theory [21,22].
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VII. CONCLUSION AND DISCUSSION

We have studied background-free quantum gravity
described in terms of CFT in the context of BRST formal-
ism. The nilpotent BRST operator generating the diffeo-
morphism was constructed on the R� S3 background. We
used this operator to construct the BRST-invariant fields
and states and studied various significant properties, such
as the state-operator correspondence and the norm struc-
ture. In terms of CFT, these are given by primary scalars
with definite conformal weight 4, while primary tensors
and all of their descendants are excluded.

The BRST-invariant fields always appear in pairs due to
the existence of the duality in Riegert charges. The physi-
cal field was identified with the one that reduces to the
classical gravitational scalar quantity in the large-b1 limit
corresponding to the large-number limit of matter fields
coupled to gravity.

The naive inner product between the physical state and its
Hermitian conjugate is unnormalizable because the Riegert
charge is not conserved; namely, the zero mode does not
cancel out. The adjoint of physical state is given by the other
member of the BRST-invariant pair, which does not have the
classical limit, and so is regarded as a quantum virtual state.
With this state, the Riegert charge can be conserved and we
can define the inner product normalized to be unity.

We now discuss how to define correlation functions
among physical fields with the correct Riegert charge.
Naively, they do not exist because the Riegert charge is
not conserved, as mentioned above. To define the correla-
tion functions, we should consider (for instance) the model
perturbed by the cosmological constant term, and then the
constant mode of the Riegert field � should be taken into
account. Carrying out the path integral over the constant
mode A ¼ e�� first (in Wick-rotated Euclidean space), we
obtain the correlator in the perturbed theory SRWZ þ� �V�

as follows:

hh �Ol1
� � � �Oln

ii ¼ 1

�

Z 1

0

dA

A
A�sh �Ol1

� � � �Oln
e��A �V�i

¼ �s �ð�sÞ
�

h �Ol1
� � � �Oln

ð �V�Þsi;
(7.1)

with s ¼ ð4b1 �P
n
i¼1 liÞ=�.11 Here, � is the cosmologi-

cal constant. The bar on the field denotes that the field is
integrated over the spacetime volume and h� � �i represents
the correlator in the unperturbed theory. This correlator
will exist because the Riegert charge is conserved. It
indicates that the correlation function has a power-law
behavior in the mass scale. Its physical implications to
inflationary cosmology are discussed elsewhere [29–31].

APPENDIX A: BASIC TOOLS ON R � S3

The notations and conventions for various tools on
R� S3 [13] are summarized here. The background metric
is parametrized by the coordinate x� ¼ ð	; xiÞ using the
Euler angles xi ¼ ð�;�; Þ as dŝ2

R�S3
¼ �d	2 þ 1

4 ðd�2 þ
d�2 þ d2 þ 2 cos�d�dÞ, where �, � and  have the
ranges ½0; 2��, ½0; ��, and ½0; 4��, respectively. The radius
of S3 is taken to be unity such that R̂ ¼ 6. The volume
element on the unit S3 is d�3 ¼ sin�d�d�d=8 and the
volume is given by V3 ¼

R
d�3 ¼ 2�2. The angle ! is

defined by cosð!=2Þ ¼ cosð�=2Þ cosð�=2Þ cosð=2Þ�
cosð�=2Þ sinð�=2Þ sinð=2Þ.
The scalar harmonics on S3 are defined by

YJM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J þ 1Þ

V3

s
DJ

mm0 ; (A1)

satisfying r̂jr̂jYJM ¼ �2Jð2J þ 2ÞYJM, where DJ
mm0

is the Wigner D-function [32]. It belongs to the ðJ; JÞ
representation of the isometry group SUð2Þ � SUð2Þ,
and Jð� 0Þ takes integer or half-integer values. The
index M ¼ ðm;m0Þ denotes the multiplicity of the
ðJ; JÞ representation and thus m and m0 take values
from �J to J, respectively. The normalization is taken
to be

R
d�3Y

�
J1M1

YJ2M2
¼�J1J2�M1M2

, where �M1M2
¼

�m1m2
�m0

1
m0

2
. The complex conjugate is given by Y�

JM ¼

MYJ�M, where 
M¼ð�1Þm�m0

.
The SUð2Þ � SUð2Þ Clebsch-Gordan coefficient defined

by the volume integral of three products of scalar harmon-
ics over S3 is given by

CJM
J1M1;J2M2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J1þ1Þð2J2þ1Þ

2Jþ1

s
CJm
J1m1;J2m2

CJm0
J1m

0
1
;J2m

0
2
;

(A2)

where CJm
J1m1;J2m2

is the standard SU(2) Clebsch-Gordan

coefficient [32]. It satisfies the relations CJM
J1M1;J2M2

¼
CJM

J2M2;J1M1
¼CJ�M

J1�M1;J2�M2
¼
M2

CJ1M1

JM;J2�M2
, CJM

00;JN¼�MN,

and the crossing relationX
J�0

X
M


MC
J1M1
J2M2;J�MC

J3M3

JM;J4M4

¼ X
J�0

X
M


MC
J1M1

J4M4;J�MC
J3M3

JM;J2M2
: (A3)

The 15 conformal Killing vectors on R� S3 are given in
the following. The vector that generates the time trans-
lation is denoted by 	� ¼ ð1; 0; 0; 0Þ. The six Killing

vectors on S3 are given by �
�
MN ¼ ð0; �jMNÞ, with �jMN ¼

iðV3=4Þ � fY�
1=2Mr̂jY1=2N � Y1=2Nr̂jY�

1=2Mg. Here, we use

the index without J in the case of the four-vector index of
J ¼ 1=2 that appears in the conformal Killing vectors
and the corresponding generators. The four vectors that
generate special conformal transformations are given

11Here, s is not an integer, but a fractional number. Therefore,
by regarding s as an integer the correlator may be evaluated,
and then s may be analytically continued to the fractional
number [5].
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by �
�
M ¼ ð�0M; �jMÞ, with �0M ¼ ffiffiffiffiffiffi

V3

p
ei	Y�

1=2M=2 and

�jM ¼ �i
ffiffiffiffiffiffi
V3

p
ei	r̂jY�

1=2M=2. Their complex conjugates

are also conformal Killing vectors for special conformal
transformations.

At last, we give the product expansion formulas for
scalar harmonics:

Y�
1
2M
YJN ¼ 1ffiffiffiffiffiffi

V3

p
�X
N0
C

1
2M

JN;Jþ1
2N

0Y
�
Jþ1

2N
0

þX
N0
C

1
2M

JN;J�1
2N

0Y
�
J�1

2N
0

�
;

r̂iY�
1
2M
r̂iYJN ¼ 1ffiffiffiffiffiffi

V3

p
�
�2J

X
N0
C

1
2M

JN;Jþ1
2N

0Y
�
Jþ1

2N
0

þ ð2J þ 2ÞX
N0
C

1
2M

JN;J�1
2N

0Y
�
J�1

2N
0

�
: (A4)

These are used to show the transformation laws in
Sec. IV.

APPENDIX B: GENERATORS
FOR TENSOR FIELDS

Herewe briefly summarize the generator of the conformal
algebra for the traceless tensor field derived in Ref. [13].
The Weyl action is quantized in the radiationþ gauge,12

and then the traceless tensor field h�� is expanded in tensor

and vector harmonics on S3 with three types of mode opera-
tors: cJðMxÞ, dJðMxÞ, and eJðMyÞ. The first two modes belong to

the (J þ x, J � x) representation of SUð2Þ � SUð2Þ with
J � 1, and the third belongs to the (J þ y, J � y) represen-
tation with J � 1 (e1=2ðMyÞ is removed by gauge conditions),

where x ¼ �1 and y ¼ �1=2 are the polarization indices
for a rank-2 tensor and vector, respectively. The index M ¼
ðm;m0Þ denotes the multiplicity for each representation.

The commutation relations are set as ½cJ1ðM1x1Þ;c
y
J2ðM2x2Þ�¼�½dJ1ðM1x1Þ;d

y
J2ðM2x2Þ�¼�J1J2�M1M2

�x1x2 and ½eJ1ðM1y1Þ;e
y
J2ðM2y2Þ�¼��J1J2�M1M2

�y1y2 , and thus cJðMxÞ has the positive metric and dJðMxÞ and eJðMyÞ have the negative metric. The Hamiltonian

is then given by H ¼ P
J�1f

P
M;x½2JcyJðMxÞcJðMxÞ � ð2J þ 2ÞdyJðMxÞdJðMxÞ� �

P
M;yð2J þ 1ÞeyJðMyÞeJðMyÞg.

The generators of special conformal transformations are given by

QM ¼ X
J�1

X
M1;x1

X
M2;x2

E
1
2M

JðM1x1Þ;Jþ1
2ðM2x2Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jð2J þ 2Þp


M1
cyJð�M1x1ÞcJþ1

2ðM2x2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J þ 1Þð2J þ 3Þ

p

M1

dyJð�M1x1ÞdJþ1
2ðM2x2Þ þ 
M2

cy
Jþ1

2ð�M2x2ÞdJðM1x1Þ
�

þ X
J�1

X
M1;x1

X
M2;y2

H
1
2M

JðM1x1Þ;JðM2y2ÞfAðJÞ
M1
cyJð�M1x1ÞeJðM2y2Þ þ BðJÞ
M2

eyJð�M2y2ÞdJðM1x1Þg

þ X
J�1

X
M1;y1

X
M2;y2

D
1
2M

JðM1y1Þ;Jþ1
2ðM2y2ÞCðJÞ
M1

eyJð�M1y1ÞeJþ1
2ðM2y2Þ; (B1)

where

AðJÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4J

ð2J�1Þð2Jþ3Þ

s
; BðJÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2Jþ2Þ

ð2J�1Þð2Jþ3Þ

s
; CðJÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J�1Þð2Jþ1Þð2Jþ2Þð2Jþ4Þ

2Jð2Jþ3Þ

s
: (B2)

The SUð2Þ � SUð2Þ Clebsch-Gordan coefficients defined by the volume integrals of three products of tensor harmonics up
to rank 2 are given by

E
1
2M

JðM1x1Þ;Jþ1
2ðM2x2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2J � 1ÞðJ þ 2Þp
C

1
2m

Jþx1m1;Jþ1
2þx2m2

C
1
2m

0

J�x1m
0
1
;Jþ1

2�x2m
0
2

;

H
1
2M

JðM1x1Þ;JðM2y2Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J � 1Þð2J þ 3Þ

p
C

1
2m
Jþx1m1;Jþy2m2

C
1
2m

0

J�x1m
0
1;J�y2m

0
2
;

D
1
2M

JðM1y1Þ;Jþ1
2ðM2y2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jð2J þ 3Þ

p
C

1
2m

Jþy1m1;Jþ1
2þy2m2

C
1
2m

0

J�y1m
0
1
;Jþ1

2�y2m
0
2

:

(B3)

Here, the type E is defined by the product of a scalar and two tensor harmonics, the typeH is the product of scalar, tensor,
and vector harmonics with a derivative, and the typeD is the product of a scalar and two vector harmonics. In the generator,

12The space of the residual symmetry in the radiation gauge r̂ihij ¼ r̂ihi0 ¼ h00 ¼ 0 is slightly bigger than the space generated by
the 15 conformal Killing vectors, and hence we further remove the lowest mode of hi0 satisfying ðr̂jr̂j þ 2Þhi0 ¼ 0, namely,
e1=2ðMyÞ ¼ 0 in the text. We call this choice the ‘‘radiationþ’’ gauge.
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the coefficients with the four-vector index for scalar harmonics appear. The general expressions of these coefficients are
given in Ref. [13].

In order to construct physical states, we have to prepare creation operators that commute with QM. From (B1), we find
that all creation modes do not commute with QM, except the lowest creation mode of the tensor field with the positive

metric cy1ðMxÞ. Thus the rotation-invariant combination of cy1ðMxÞ gives the lowest-weight states in the Weyl sector. For other

modes, we look for the QM-invariant creation operators constructed in a bilinear form. Such operators and cy1ðMxÞ will
provide building blocks of physical states for the Weyl sector, which have been constructed and classified in Ref. [14].

APPENDIX C: BUILDING BLOCKS FOR LOWER L

Here, wewrite down the building blocks of physical states with conformal weight 2L given in (5.9) for the lower cases of
L. For L ¼ 1, they are given by

Sy1N ¼
ffiffiffi
2

3

s
ð ffiffiffiffiffiffiffiffi
2b1

p � ip̂Þay1N�
1ffiffiffi
2

p X
M1;M2

C1N
1
2M1;

1
2M2

ay1
2M1

ay1
2M2

; Sy
00¼� ffiffiffi

2
p ð ffiffiffiffiffiffiffiffi

2b1
p � ip̂Þby00�

1ffiffiffi
2

p X
M


Ma
y
1
2�M

ay1
2M
; (C1)

with conformal weight 2. The building blocks of L ¼ 2 with conformal weight 4 are given by

Sy2N ¼
ffiffiffiffiffiffi
2

15

s
ð ffiffiffiffiffiffiffiffi
2b1

p � ip̂Þay2N � ffiffiffi
2

p X
M1;M2

C2N
3
2M1;

1
2M2

ay3
2M1

ay1
2M2

þ 2ffiffiffi
3

p X
M1;M2
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1M1;1M2

ay1M1
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;

Sy
1N ¼ � ffiffiffi

2
p ð ffiffiffiffiffiffiffiffi

2b1
p � ip̂Þby1N � 4by00a

y
1N � ffiffiffi

2
p X

M1;M2

C1N
3
2M1;

1
2M2

ay3
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2M2

þ 2ffiffiffi
3

p X
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1M1;1M2

ay1M1
ay1M2

þ 4
X

M1;M2

C1N
1
2M1;

1
2M2

by1
2M1

ay1
2M2

; (C2)

and the building blocks of L ¼ 3 with conformal weight 6 are given by

Sy3N ¼
ffiffiffiffiffiffi
2

35

s
ð ffiffiffiffiffiffiffiffi
2b1

p � ip̂Þay3N � ffiffiffi
2

p X
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1
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ay5
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�
ffiffiffiffiffiffi
15

2
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3
2M2
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2M2

;

Sy
2N ¼ � ffiffiffi

2
p ð ffiffiffiffiffiffiffiffi

2b1
p � ip̂Þby2N � 4

ffiffiffi
3

p
by00a

y
2N � ffiffiffi

2
p X

M1;M2

C2N
5
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1
2M2
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2M1

ay1
2M2

þ 4
X

M1;M2

C2N
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ay2M1
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15
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s X
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3
2M1;

3
2M2

ay3
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þ 4
ffiffiffi
3

p X
M1;M2

C2N
3
2M1;

1
2M2

by3
2M1

ay1
2M2

� 4
ffiffiffiffiffiffi
15

p X
M1;M2

C2N
1M1;1M2
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: (C3)
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