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Modelling gravity on a hyper-cubic lattice
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We present a simple dynamical model of symmetric, nondegenerate n X n matrices of fixed signature
defined on an n-dimensional hyper-cubic lattice with nearest-neighbour interactions. We show how this
model is related to general relativity, and discuss multiple ways in which it can be useful for studying
gravity, both classical and quantum. In particular, we show that the dynamics of the model when all
matrices are close to the identity corresponds exactly to a finite-difference discretization of weak-field
gravity in harmonic gauge. We also show that the action which defines the full dynamics of the model
corresponds to the Einstein-Hilbert action to leading order in the lattice spacing, and use this observation
to define a lattice analogue of the Ricci scalar and Einstein tensor. Finally, we perform a mean-field

analysis of the statistical mechanics of this model.
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L. INTRODUCTION

Lattice models of gravity are typically defined using
some discretization which is simultaneously coordinate
and background independent. The most popular such dis-
cretization is the Regge calculus [1,2], used to study both
classical general relativity (GR) [3.,4], as well as to build
models of quantum gravity based on dynamical simplices
[5-17]. Other lattice discretizations of gravity include
[18-23], but all of these formulations differ significantly
from the current proposal.

In this paper we present a discrete model for gravity
which is defined on a regular, in fact hyper-cubic, coordi-
nate lattice. The implied background structure may be
anathema to GR purists, however we will argue that this
is still a useful thing to do, and can be usefully utilized to
study GR.

That having a preferred background might not be
entirely implausible may be inferred from a number of
observations:

(1) Many interesting spacetimes can be put into Kerr-

Schild form, which has a natural background [24].

(2) Many interesting spacetimes can be put into
Painleve-Gullstrand [25] and/or de Donder (nonlin-
ear harmonic) form [26], both of which possess
natural background metrics.

(3) Many interesting spacetimes can be put into
“relativistic acoustic” form, based on the
“analogue spacetime’ program, for which a natural
background metric again exists [27].

(4) Physically interesting black holes can be put
into horizon-penetrating coordinates, for which the
metric components are finite at the horizon; the
presence of a horizon does not necessarily imply
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“infinite deviations” from some assumed back-
ground metric [25,28].

(5) More exotically, recent speculations on ghost-free
massive gravitons are most naturally phrased in
terms of a combination of foreground and back-
ground metric [29].

In view of the above, we are willing to at least entertain the
notion of background structure, to see how far we can get.

II. LATTICE ACTION

Consider an n-dimensional hyper-cubic lattice which
has defined, at each site i, a n X n symmetric, nondegen-
erate matrix ‘g, which is physically to be interpreted as the
metric. Unless otherwise stated, we will assume in this
article that the matrix is positive definite (and hence is a
model for a Euclidean-signature Riemannian geometry);
however, the model can easily be generalized to matrices of
any fixed signature. The dynamics of the model is
described by a particularly simple action defined as a
sum over nearest-neighbor pairs.

First define an “‘average” metric linking the nearest-
neighbor sites i and j:

L g+
ig=2-2L. M
Then set
5 = 0o/ Loy VAT - Y50 - 5 |
(ij)

2)

Here (i) denotes the link joining nearest-neighbor sites i
and j. The lattice spacing is denoted s, and the
n-dimensional Planck length is Lp, while &, is some
convenient dimension-dependent normalizing constant.
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Note that this action has a symmetry under both rigid
(global) SO(n) transformations ['g] — OT['g]O, and
under parity. As we shall see below, ultimately the reason
this particularly simple action works is because of the
intimate connection between hyper-volume excess/deficit
and the Ricci scalar.

III. WEAK FIELD
Consider small fluctuations
ig=10+"n I'h| < 1. 3)

To quadratic order in & we have

— T . |
\/det(”g) =1+ 1 tr['h + 7h] + > tr['h + h]?

— 2 al(h + IRP] + 00, 4
and
SfdetCe) = 5+ ul'h] + o u{'AP — ¢ uf'h?]
+ O, 5)

Thus to quadratic order in & we have

; . 1 . .
S o Z z (tr[(fh —ip)?2] - 5tr[fh - ’h]z) + 0.  (6)
i)
Taking the lattice spacing to zero the finite differences

become derivatives, and the action (up to an arbitrary
multiplicative constant) is given by

1
S o f (a(,hwa“hw — EaﬂthaMh%,)d”x + O(h).

(7)

This is precisely the action for linearized GR in (globally
defined and linearized) harmonic gauge

1
9*h,, —=d,h", = 0. (8)

wy 5%
Thus we see, in a very clear and convincing manner, that
the lattice action (2) can be used to model weak-field GR
provided the very commonly used (linearized) harmonic
coordinates are adopted.

IV. CONTINUUM LIMIT

We now show that the discrete lattice action (2) has a
continuum limit, which is given to leading order by the
Einstein-Hilbert action. Let us first use permutation sym-
metry to rewrite the action as

E: Z{Jdet(if g) - Jdet(fg)}. ©)
(ij)
We can explicitly factor out a 4/det(’g) to obtain
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S = Z\/det("g) is. (10

Here we define the site-specific contribution to the action
for site i in terms of a sum over its nearest neighbors,

s 3 (27 e+ e b - 1) an

Jij)

Let us now work on a continuum manifold with metric
g u»(x), and choose a (site-specific) Riemann normal coor-
dinate system—such that site i is taken to be the origin, and
the metric at site i is ‘g v = 04, Let 65 denote the unit
vector pointing from site i to site j. The coordinate system
is such that the geodesics generated by these coordinate
unit vectors are straight lines:

Uxt(A) = €4, (12)

Then in the immediate neighborhood of the origin we can
construct the vertices of the hyper-cubic lattice such that
the nearest neighbors are connected by geodesics of length
s and have coordinate locations /x* = {{;s.

A very well-known and quite standard result for the
Riemann normal coordinate system is that to quadratic
order
o — i) — 1 apB 2 3
]gp.v_gp,v(Jx)_5#V_§Rﬂavﬁeij€ijs +@(S ) (13)

But then

[ Vg, = 5%, — S RY g (557 + O, (14)

ARy

SO

, . 1
272 det(l + ['g] gD = 1 = 55 Raplillls + O

J

(15)
Hence the site-specific contribution to the action is
IS a0 Y R, plells? + 0. (16)
Jij)
Now using the easily established result
> (it =26, (17)

Jij)

we see that to quadratic order in the lattice spacing (which
is also the geodesic distance), the continuum analogue of
Eq. (11) is given by

i§ o Rs? 4+ O(s3). (18)

Thus to leading order in the lattice spacing our lattice
action corresponds to the Einstein-Hilbert action.
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V. LATTICE RICCI SCALAR

With suitable normalization,

R=-6 (2’”/2\/det(l] + gl VgD — 1). (19)

J(ij)

Then trivially adapting the discussion above,
IR = Rs% + O(s%). (20)

To lowest nontrivial order in the lattice spacing, the
discrete quantity 'R matches its continuum analogue K.

VI. STRONG FIELD EQUATIONS OF MOTION

The discrete version of the FEinstein tensor is easily
obtained by computing

. 1 o
‘G« S . (21)

Jdet('g) ol'g]

We find

5[, Z(\/det(” )(g) ! — ydet(e)(g) ™). (22)

J i)

After picking a suitable normalization, we set

i dt(ij_)i‘-f i)~
G=—6Z[ deet(i:)(fg) ) 1}. (23)

Jij)

But now (again adopting site-specific Riemann normal
coordinates at the site i, so ‘g — [), we have already seen
(to quadratic order) the equivalent of

(gl = 8,, +— R,Lay,;€“€ﬁs2+(9(s3) (24)

and

1

6
whence, to quadratic order

. 1
‘Guv = D) Z [(RWVB

Jij

detlVg] = 1 — R el + O(sY), (25)

S5 R, o)t | + 0

(26)

Summing over the nearest-neighbor sites j, the discrete
Einstein tensor is related to the continuum Einstein tensor by

iG,, = [RW Ls ’R]s2 + O(s)

2Ky
=G,,s* + O(s%). 27

VII. EXTERNAL STRESS-ENERGY TENSOR

As is usual in lattice models, we can also add an external
current ‘J to probe the dynamics. The most natural object
to add is
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= Z,/det(fg) tr['gJ]. (28)

The external current ‘J is interpretable in terms of the
discrete stress-energy tensor ‘7" via

s,
Jdet('g) 8['g]

The strong field discrete Einstein equations in the presence
of external stress energy are then quite simply

lG,u,I/ oc i

i

=1+ Tl ') 29)

(30)

ur:

So formally at least, the discrete lattice model contains all
the correct ingredients for adequately dealing with large
swathes of standard GR. This procedure clearly generalizes
to placing some matter model on the lattice.

VIII. MEAN-FIELD ANALYSIS

In addition to using this lattice model to study classical
GR, it can also be used as a discrete model for studying
quantum gravity. A first step in this direction is to perform
a mean-field analysis of the action (2) which we now
rewrite in terms of the site-specific form as

§=—a, ZyldeCe) 3 (27 faet gl Pad 1),

J i)

€1y

where a, = ,(s/Lp)"~? is the constant appearing in
Eq. (2). This action is translationally invariant and thus
we take the mean-field ansatz—assuming the physics is
dominated by some translation invariant average M = (g),
plus small fluctuations

‘g =M+ 8['g] (32)

This allows us to replace /g with M in the coupling term of
the action. We find

5 (z-"/2Jdet<u T lig] 'Ug)) — 1)

Jiij)
- 2n(2*n/2\/det(u gl M) — 1). 33)

The total action then becomes

S = —a,,ZnZ \[det("g)(Z_”/z\/det(I] +[ig]"'M) — 1).

(34)

Thus the mean-field partition function,
) (35)

is given by
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Lot = ([dgeV\/delg(Z”‘/Z\/det(ﬂ+g"M)—1))N, (36)

where y = 2na,, 8. Now performing a change of variables
g = VM g /M , which has Jacobian detJ = (detM)", after
dropping the tilde the integral which determines the mean-
field partition function is given by

[ dge? a0 factg) (37)

Thus, we see that our mean-field analysis results in a
random matrix model which is invariant under O(n) trans-
formations. Because the matrix model has this symmetry
group we can perform the diagonalization g = OTAO
where A is the matrix of eigenvalues, all of which are by

assumption positive. The Jacobian of this transformation is
given by [30,31]

dg = dO[ [dra T ]I — Asl. (38)
A

A<B

After integrating over the orthogonal group, the integral
appearing in the mean-field partition function becomes

/nd)lA l‘[ |)\A _ /\B|e—7x/det(M)V(A), (39)
A A<B

where the function V(A) is given by

oo -TIVE-TIY 5™«
A A

After a bit of work we obtain the (useful but suboptimal)
constraints

[T VAT V& <vin <[]V (41)

A<l A1 A
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Only for the trivial case n = 1 (a one-dimensional chain) is
the function V(A) bounded from below; for n = 2 there are
directions in eigenvalue space where V(A) becomes arbi-
trarily negative. Thus the mean-field truncation of the lattice
action gives a random matrix model exhibiting pathology
similar to that of the Einstein-Hilbert action. Further study
of this model, using the techniques of random matrix theory,
may shed light on how to deal with this feature.

IX. DISCUSSION

We have seen that with the particularly simple discrete
action (2) one can successfully encode a very large fraction
of standard GR. The action is gauge fixed, with only rigid
(global) rotations and parity inversions as symmetries, and
seems automatically to be in the de Donder (nonlinear
harmonic) gauge; this is a feature, rather than a problem.
(Gauge fixing is not a problem per se [26], since to make
physical predictions one ultimately has to do so anyway).

Presumably there is some more general gauge-invariant
action of which this is gauge-fixed version. We note also
that this model does not exhibit the active diffeomorphism
symmetry of the continuum theory and thus there are
n(n + 1)/2 dynamical degrees of freedom per lattice site;
this is standard for discretizations of gravity [32]. What is
perhaps a little surprising is just how far one can get with
such a simple discrete action.
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