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We study here the phase-transitional evolution between the Eguchi-Hanson soliton, the orbifolded

Schwarzschild anti–de Sitter black hole, and orbifolded thermal anti–de Sitter space in Gauss-Bonnet

gravity for a small Gauss-Bonnet coefficient �. Novel phase structure is uncovered for both negative and

positive � with spacetime configurations that are stable in Gauss-Bonnet gravity without being so in

Einsteinian gravity. The evolutionary tracks taken towards such stable configurations are guided by

quantum tunneling and can be represented with a phase diagram constructed by comparing the Euclidean

actions of each of our states as a function of � and the black hole radius rb. According to the AdS/CFT

correspondence dictionary, it is expected that some generalized version of closed-string tachyon

condensation will exhibit the phase behavior found here.
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I. INTRODUCTION

One of the more celebrated milestones of theoretical
physics is the anti–de Sitter/conformal field theory
(AdS/CFT) correspondence conjectured by Maldecena
[1]. In a nutshell, the conjecture posits that the conformal
boundary of an n-dimensional gravitational theory in anti–
de Sitter (AdS) space has a mathematically equivalent
(n� 1)-dimensional quantum field theory. By calculating
realizable quantities on the gravitational side of this corre-
spondence, much insight can be grasped from its field
theory dual without making explicit calculations within
the framework of the field theory itself and vice versa.

An early example of this is the Hawking-Page phase
transition between thermal AdS and the Schwarzschild
AdS black hole [2] and the corresponding confinement/
deconfinement phase transition in the large N limit of
N ¼ 4 super Yang-Mills theory [3]. More recent ex-
amples are associated with a conjecture that closed string
tachyon condensation is dual to a soliton configuration
(or ‘‘bubble of nothing’’) [4], such as the AdS solitons
obtained by Horowitz and Myers [5]. An interesting ave-
nue of investigation along these lines is the study of three
asymptotically AdS=Zk spacetimes together: the Eguchi-
Hanson soliton, the orbifolded Schwarzschild AdS black
hole, and orbifolded thermal AdS space. These objects
exist on the gravitational side of the correspondence and
can tell an entertaining story in the context of their phase
transitions amongst one another; but before we explain
why this is so, it is convenient to first briefly introduce
our three said spacetimes.

Anti–de Sitter spacetime is often viewed as a spacetime
corresponding to a negative cosmological constant in the

standard Friedmann cosmology that string theories natu-
rally compactify on [6]. Physically interesting candidate
supergravity models for quantum gravity typically admit
solutions that are asymptotic to this spacetime. Modding
out by Zk yields the orbifolded anti–de Sitter spacetime
(OAdS). In relation to this work, OAdS is very much
treated as a ‘‘background’’ spacetime, which is to
say that both the AdS black hole and the Eguchi-Hanson
soliton converge towards it in the large distance r ! 1
limit.
The (orbifolded) Schwarzschild-AdS black hole

(OSAdS) is a statically uncharged black hole embedded
in (orbifolded) AdS space. It is spherically symmetric and
has an event horizon at some r ¼ rb where events within
r < rb cannot affect external observers situated outside of
the event horizon at r > rb. For an AdS cosmological
length of ‘, the mass of such a black hole takes the simple
expression Mb ¼ rn�3

b ð1þ r2b=‘
2Þ. Accompanying this is

the no-hair theorem which reveals how this mass fully
characterizes the OSAdS because of its constant (zero)
angular momentum and charge, thereupon leaving its
mass as the only degree of freedom left. Semiclassical
reasoning would suggest that the OSAdS dissipates into
the aforesaid OAdS by the means of Hawking radiation.
Lastly, the Eguchi-Hanson soliton (EHS) obtained by

Clarkson and Mann [7] (and independently Copsey [8]) is
perturbatively of lowest energy within its asymptotically
AdS=Zk class and thereby considered a ground state within
string theory. Closed-string tachyon condensation is the
expected field theory dual process corresponding to phase
transitions from EHS to the OSAdS and OAdS geometries.
The EHS is an example of an expanding bubble of nothing
that serves to decay the stabilizing potential over time
by reducing redundant dimensions and leaving behind
an AdS spacetime with a curvature approaching zero
[4,8–11].
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All three of the aforementioned spacetimes have non-
trivial topology insofar as their ambient AdS spacetimes
are quotiented by the isometric groupZk (integersmodulok).
For the EHS, this procedure smooths out what would
otherwise be a conically singular spacetime. For the other
two spacetimes this procedure is called orbifolding; it can
be thought of as a folding-up of the manifold to reduce its
large fundamental domain. The field theory counterpart to
orbifolding is the formation of a fixed point at the conelike
center of the AdS orbifold such that closed-string tachyons
(field theoretic objects dual to general relativistic singular-
ities) locally wind around it to only allow for normalizable
modes [10,12].

We are now ready to discuss the concept of phase
transitions amongst the EHS, OSAdS, and OAdS states.
One way to portray this is by drawing a phase diagram
comprised of individual phase regions; each encoding the
directions of quantum tunneling between every pairwise
combination of the EHS, OSAdS, and OAdS spacetimes.
To that end, a phase region prescribes an evolutionary track
for each of our states to take to reach a state of stability
based on relative energetics. By adjusting the black hole
temperature Tb (corresponding to varying the black hole
radii rb), one can traverse through the phase diagram and
reach different phase regions by crossing the phase
boundaries that divide them.

It is because of the interesting phase transitions that
occur between the EHS, OSAdS, and OAdS states which
makes for an equally interesting field theory dual. For a
case in point, the previously mentioned Hawking-Page
phase transition between the OSAdS with OAdS at critical
temperature corresponds to the quark confinement/decon-
finement phase transition in the large N limit of N ¼ 4
super Yang-Mills theory [2]. This was first proposed by
Witten [3] from an inspection that the low temperature
confinement phase corresponded to AdS space, and the
high-temperature deconfinement phase corresponded to
the AdS black hole. The gravity-side phase transitions
between the EHS, OSAdS, and OAdS have been studied
in Einsteinian gravity for the odd dimensions relevant to
string theory [13] with a belief that its corresponding field
theory dual is the condensation of localized closed-string
tachyons [10,14]. What interests us is the question of how
all this extends to a theory of gravity that is more general
than Einsteinian gravity.

Although conceptually important, Einsteinian gravity
fails to recognize the free-field dynamics in the low-energy
sector for n � 5 dimensional superstring theories as it
ignores higher-order quantum loop corrections [15]. The
inherent self-interactive nature of gravity brings in higher-
order curvature terms into the field equations that are
physically realizable only when the dimensionality is
high enough. A promising remedy for this problem is
Lovelock gravity [16–18]. This gravitational theory adds
a unique linear combination of higher-order Riemann

curvature correction terms to the Einsteinian action without
introducing the quantum instabilities, also known as
ghosts, prevalent in many higher-order gravitational theo-
ries. In n ¼ 5 dimensions, Lovelock gravity is called
Gauss-Bonnet (GB) gravity and is the simplest case of
Lovelock gravity where the higher-order curvature correc-
tions can be controlled fully with a single parameter�. The
GB version of the OSAdS has been well-studied through-
out the last decade [19] but the GB version of the EHS has
only been found recently via semianalytic and numerical
methods by Wong and Mann [20], hence making it natural
(and now possible) to investigate how phase transitions
between EHS, OSAdS, and OAdS differ upon considera-
tions of the stringy corrections induced by GB gravity.
Finding new phase transitions will infer finding extra phase
behavior from its field theory dual as a perk.
The GB phase transitional work between the OSAdS and

thermal OAdS is not a new concept [19,21,22], but our
additional consideration of the EHS into the mix is. We
expect promising results to come of this � � 0 study given
that we already have EHS being the ground state in � ¼ 0
gravity for small black hole radii (and not OAdS if we
naively studied only the OSAdS and OAdS states). The
goal of this paper is to qualitatively study the GB phase
transitions between the 5-dimensional EHS, OSAdS, and
OAdS as a function of a small Gauss-Bonnet parameter �
and rb.
The outline of the paper will be as follows. In Sec. II, we

introduce the reader to GB gravity. Afterwards, the defini-
tions and details of the EHS, OSAdS, and OAdS states in
GB gravity will be provided in Sec. III. By comparing the
actions of these states, the corresponding evolutionary
tracks on each phase region in the phase diagram can be
found; such details will be explained in Sec. IV. How the
set of evolutionary tracks varies with � is analyzed in
Sec. V with discussions and comparisons of its novel phase
transitions, or the lack thereof, with that of Einsteinian
gravity. Lastly, we summarize our results and note pros-
pects for future work in Sec. VI.

II. GAUSS-BONNET GRAVITY: LOVELOCK
GRAVITY IN n ¼ 5 DIMENSIONS

Wewill consider only n ¼ 5 dimensional spacetimes for
the rest of this paper. In n ¼ 5 dimensions, Lovelock
gravity differs from Einsteinian gravity by no more than a
set of Riemann curvature squared terms in the Lagrangian.
Mathematically, this is because the action is a summation
of dimensionally extended Euler densities, and in n ¼ 5
dimensions, the higher-than-cubic curvature terms become
topologically trivial. Although our study concerns itself
with only Gauss-Bonnet gravity, we will introduce
Lovelock gravity in full generality to begin with. The
Lovelock Lagrangian L can be written as a sum of Euler
densities
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L ¼ ffiffiffiffiffiffiffi�g
p X1

k¼0

ckLk

¼ ffiffiffiffiffiffiffi�g
p ½c0L0 þ c1L1 þ c2L2 þ c3L3 þ � � ��; (1)

where
ffiffiffiffiffiffiffi�g

p
is the manifold volume element calculated

using the determinant g of the metric. Each Euler density
Lk is defined by a unique linear combination of Riemann
curvature terms of exactly order k

L k � 1

2k
��a1...akb1...bk
c1...ckd1...dk

Rc1d1
a1b1

. . .Rckdk
akbk

; (2)

where the rank-ð4kÞ tensor �� is defined as the normalized
antisymmetric product of Kronecker delta functions

��a1...akb1...bk
c1...ckd1...dk

� 1

n!
�a1
½c1�

b1
d1
. . .�ak

ck �
bk
dk�: (3)

The total action I is

I ¼ � 1

16�G

Z
dnx

ffiffiffiffiffiffiffi�g
p

� ½c0L0 þ c1L1 þ c2L2 þ c3L3 þ � � ��; (4)

where G is the n-dimensional gravitational constant.
As discussed earlier, the topological triviality of the Euler

densities implies that only the firstL0;L1; . . . ;L½n=2� terms

in (4) are relevant in (nþ 1) dimensions (where ½�� is the
floor function), meaning that the knowledge ofL0, L1, and
L2 will suffice for GB gravity. The evaluation of these give

L 0 ¼ 1; L1 ¼ R;

LGB � L2 ¼ RabcdR
abcd � 4RabR

ab þ R2:
(5)

By setting the zeroth and first-order coefficients of the
action (4) as c0 ¼ �2� and c1 ¼ 1 to match Einsteinian
gravity at � ¼ 0, the (Euclidean) Einstein-Gauss-Bonnet
(bulk) action becomes

I GB ¼ � 1

16�G

Z
dnx

ffiffiffiffiffiffiffi�g
p ½�2�þ Rþ �LGB�; (6)

an integration over 1 timelike component and (n� 1)
spacelike components of our metric. We have introduced
the notation � ¼ c2 as the sole Gauss-Bonnet coefficient
used for tuning the relative magnitude of the curvature-
squared (quantum) correction terms.

In general, there are r ¼ 1 boundary terms attached to
the action (6) but we can excuse ourselves for not including
them here because the metrics of interest here converge to
the same thermal AdS background at infinity, thus leaving
physically relevant quantities (such as the relative action)
to depend only on the difference between bulk quantities.
Although IGB is generally divergent for asymptotically
AdS spacetimes because of its infinite spatial volume, the
relative actions can remain finite if the metrics share the
same asymptotics and have certain coordinate periodicities

matched-up properly—a more precise description of this
procedure will be discussed in the main text.
Upon extremizing the GB action (6) with respect to the

metric, we obtain the GB vacuum field equations�
Rmn�1

2
Rgmnþ�gmn

�

��

�
1

2
gmnðRabcdR

abcd�4RabR
abþR2Þ

�2RRmnþ4RmaR
a
nþ4RabRmanb�2Rabc

m Rnabc

�
¼0:

(7)

The GB field equations (7) show explicitly the contribution
of the Gauss-Bonnet terms toward the pure Einsteinian
vacuum field equations.

III. THE EGUCHI-HANSON SOLITON,
BLACK HOLE, AND THERMAL ADS

IN GAUSS-BONNET GRAVITY

We will now introduce the GB EHS, GB OSAdS, and
OAdS spacetimes with the occasional use of state notation
i 2 S ¼ fs � EHS; b � OSAdS; a � OAdSg. All three
metrics admit dimensionless solutions fiðr; �Þ, giðr; �Þ,
hiðr; �Þ that solve the GB field equations (7) with the
ansatz

ds2¼�r2

‘2
giðr;�Þdt2þ‘2

r2
dr2

hiðr;�Þfiðr;�Þ
þr2

4
ðd�2þsin2�d�2Þþr2

4
fiðr;�Þðdc iþcos�d�Þ2;

(8)

where ‘ is the AdS cosmological length.
The range of the timelike, radial, and three angular

coordinates are t 2 ð�1;1Þ, r 2 ½ri;1Þ, � 2 ½0; ��,
� 2 ½0; 2��, and c i 2 ½0; �i�, respectively. Once the
orbifold-allowed values for �i are set, these types of space-
times are asymptotic to OAdS provided the condition that
fi, gi, and hi are convergent to unity in the r ! 1 limit is
imposed. In the following subsections, the EHS, OSAdS,
and OAdS spacetimes in GB gravity will be introduced in
terms of their solution functions fi, gi, and hi.

A. Gauss-Bonnet Eguchi-Hanson soliton

The 5-dimensional Einsteinian � ¼ 0 EHS has the
metric

ds2 ¼ � r2

‘2
gðrÞdt2 þ r2fðrÞ

4
½dc þ cos�d��2

þ ‘2

r2
dr2

fðrÞhðrÞ þ
r2

4
d�2

2; (9)

where d�2
2 ¼ ½d�2 þ sin2�d�2� is the unit 2-sphere with

function solutions
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fðrÞ ¼ 1� r4s
r4
; gðrÞ ¼ 1þ ‘2

r2
;

hðrÞ ¼ 1þ ‘2

r2
; � ¼ � 6

‘2
:

(10)

The GB version of the EHS [20] has the large-r
(expanded around r ¼ 1) power-series solution

fsðr;�Þ¼1þa4
r4

�a4ð4�a4�b4‘
2Þ

2ð4��‘2Þr8

�a4‘
2ð12�a4�48�b4þ5b4‘

2Þ
15ð4��‘2Þr10 þO

�
1

r10

�
;

gsðr;�Þ¼1þ‘2

r2
þb4
r4

�b4ð4�b4�‘2a4Þ
2ð4��‘2Þr8

þa4‘
2ð252�a4�5b4‘

2þ48�b4Þ
45ð4��‘2Þr10 þO

�
1

r10

�
;

hsðr;�Þ¼1þ‘2

r2
þb4
r4

�b4ð�7‘2a4þ12�b4Þ
6ð4��‘2Þr8

þa4‘
2ð756�a4�5b4‘

2þ336�b4Þ
45ð4��‘2Þr10 þO

�
1

r10

�
;

�¼� 6

‘2
þ12�

‘4
; (11)

where we have two main free parameters a4 �
�r4s þ �a4ð�Þ and b4 � �b4ð�Þ with f�a4ð�Þ;�b4ð�Þg
being the contributions induced from GB gravity. The
range of the radial component that the soliton solution
admits is r 2 ðrs > 0;1Þ where rs is the soliton edge
radius; the space inside the bubble of nothing edge is
nonintegrable. The conditions that must be met at the
bubble edge are fsðrs; �Þ ¼ 0, gsðrs; �Þ> 0, and
hsðrs; �Þ> 0. Note that the soliton is horizonless because
gs and hs are nonzero at r ¼ rs.

To ensure continuity with the Einsteinian EHS solution
founded by Clarkson andMann [23] in the � ! 0 limit, we
look only at the �a4ð�Þ ¼ �b4ð�Þ ¼ 0 solution—one
class of an infinitely countable set of soliton solutions. In
general, both �a4ð�Þ and �b4ð�Þ can take nonzero and
discrete numerical values as shown by a trial-and-error
extrapolation from infinity towards the soliton bubble
edge rs so that the boundary conditions are satisfied [20].
We consider this more restrictive �a4ð�Þ ¼ �b4ð�Þ ¼ 0
class of solutions as we are mainly interested in the
small-�=‘2 (close-to-Einsteinian) physics; it is possible
to generalize our results to �a4ð�Þ � 0 � �b4ð�Þ.

The conical singularities of the Einsteinian EHS can be
removed by restricting the angular periodicity of c s to
�s ¼ 4�=k for integers k � 3 so that its metric regularity
condition r2s ¼ ‘2ðk2=4� 1Þ can be satisfied. Its GB ana-
logue has so far been studied using a near-rs solution [20].
However the analytic connection between the near-rs pa-
rameters and our required arge-r parameters a4 and b4 is

not yet clear. As we are interested in the qualitative behav-
ior of phase transitions, we shall employ the Einsteinian
metric regularity condition r2s ¼ ‘2ðk2=4� 1Þ with k ¼ 5,
as we expect that in the small-� approximation this will
only modify quantitative details.

B. Gauss-Bonnet orbifolded AdS
Schwarzschild black hole

The 5-dimensional static and uncharged GB OSAdS
(with manifold curvature of�1) has the following solution
functions:

fbðr;�Þ¼1

gbðr;�Þ¼‘2

r2
þ 1

4�‘2

2
41�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ8�

�
�

r4
� 1

‘2eff

�s 3
5

¼ ‘2

‘2eff
þ‘2

r2
��‘2

r4
þ2�‘2

r4

�
r2

‘2eff
��

r2

�
2þOð�2Þ;

hbðr;�Þ¼gbðr;�Þ; �¼� 6

‘2
þ12�

‘4
; (12)

where ‘2eff ¼ ‘2½1� 2�=‘2��1 and � is the black hole

mass. The range of the radial component that the black
hole solution admits is r 2 ðrb > 0;1Þ where rb is the
black hole (event horizon) radius. The constraints imposed
on the black hole horizon is gðrbÞ ¼ hðrbÞ ¼ 0. By simple
algebraic manipulations, this constraint gives the mass
parameter � ¼ �ðrb; ‘2; �Þ in terms of the black hole
radius as

� ¼ r4b
‘2eff

þ r2b þ 2�: (13)

The black hole has a conical singularity at the black hole
horizon radius rb which can be eliminated upon Wick-
rotating the time coordinate by t ! i� so that new time
coordinate � has a period of

	b ¼ 2�rbðr2b þ 4�Þ
r2b þ 2r4

b

‘2
ð1� 2�

‘2
Þ
: (14)

This Wick rotation forces the path integral over all
matter fields on the Euclidean section periodic to � to be
equal to the partition function of the canonical ensemble of
matter fields. From this, we can derive that the black hole
temperature Tb is equal to the inverse period 	�1

b .

Although speaking in the language of the black hole tem-
perature is more physical, the black hole radius is actually
a more convenient parameter for defining phase transitions
because it turns out that a temperature interval ðT�

b ; T
þ
b Þ

does not uniquely determine a phase region, whereas a
black hole radius interval ðr�b ; rþb Þ does.
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C. Orbifolded AdS

The metric functions for 5-dimensional orbifolded ther-
mal AdS are

faðr; �Þ ¼ 1;

gaðr; �Þ ¼ 1þ ‘2

r2
;

haðr; �Þ ¼ gaðr; �Þ;
� ¼ � 6

‘2
þ 12�

‘4
:

(15)

This is the pure AdS space that corresponds to the field
theory ‘‘vacuum’’ and is considered the background metric
for orbifolded asymptotically AdS spacetimes to converge
towards in the r ! 1 limit. The range of r here is the
whole space r 2 ðra ¼ 0;1Þ unlike the EHS and OSAdS
where spacetime is only defined on r 2 ðrs=b > 0;1Þ.

IV. FINDING PHASE TRANSITIONS AND
EVOLUTIONARY TRACKS

To study the tendencies for phase transitions between
two states i 2 S and j 2 S, we look to the sign of the
relative Euclidean action Iij � I i � I j calculated using

(6) up to linear order in �. The relative action Iij will be

finite only if the metrics are ‘‘lined up’’ by matching the
angular/time coordinates in the r ! 1 limit. This is done
by requiring the angular periods of c b and c a to be
matched up with the soliton periodicity �s, and the
Wick-rotated timelike coordinate periods 	s and 	a to
be matched up with the Wick-rotated period of the black
hole 	b. In practice, this matching procedure is performed
by evaluating Iij out to some large but finite radius R,

imposing the periodicity-matching conditions to line up
the metrics, then finishing with an R ! 1 limit. Explicitly,
the matching conditions at radius R are

�b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fsðR;�Þ

q
�s; �a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fsðR;�Þ

q
�s;

	s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbðR;�Þ
gsðR;�Þ

s
	b; 	a ¼ 	b:

(16)

A. Phase regions i ! j ! k

We define a phase region as a region in parameter space
[corresponding to a range ðr�@ ; rþ@ Þ of black hole radii] for
which one of the actions fI s; Ia; Ibg of EHS, OSAdS, and
OAdS respectively is smallest. Hence in each phase region
we will have a specific ordering of fI s; Ia; Ibg that
expresses the respective stability of EHS, OSAdS, and
OAdS (and therefore the direction of quantum tunneling
between them). We employ the arrow notation i ! j ! k
for i, j, k 2 S to describe the 3! ¼ 6 different types of
I i < I j < Ik phase regions deduced by calculating Iij ¼
I i � I j etc. (where a positive value indicates i tunneling

into j). Note that the sign of each Iij, Ijk, and Iik is positive

or negative everywhere within a phase region. The bound-
ary of a phase region is where one of Iij, Ijk, and Iik vanish.

In our arrow notation, the arrows point in the direction of
tunneling to the more stable state. Hence for i ! j ! k, the
spacetime i is the least energetically stable state (largest action)
andk is themost energetically stable state (smallest action).By
following the arrows, a phase region described by i ! j ! k
tells an evolutionary story for different initial states:
(Pi1) i will tunnel into j, and later on tunnel into k.
(Pi2) i will tunnel into k directly (bypassing the inter-

mediate state j).
(Pj) j will tunnel into k (it cannot tunnel into i).
(Pk) kwill remain the same (it cannot tunnel into either j

or k).
Hence the least stable state i has two tunneling options,

the state j of intermediate stability has one tunneling
option, and the stable state k does not change. The relative
action Iij evaluated inside a phase region yields the

tunneling amplitude from state i to state j with tunneling
rate �i!j � exp½�Iij�. Clearly process (Pi2) is less prob-

able than (Pi1) since �i!k � exp½�Iij� � exp½�Ijk�<
exp½�Iij� � �i!j; more-excited states prefer to tunnel to

less-excited states via intermediate states if possible.
Therefore the most relevant processes will usually be just
(Pi1), (Pj), and (Pk) in a phase region with i ! j ! k.

B. Phase boundaries rij@

A phase boundary rb ¼ rij@ (i, j 2 S distinct) is where

Iijðrij@ Þ ¼ 0. A trajectory in parameter space that crosses

such a boundary switches the sign of Iij; essentially it

reverses the tunneling direction between exactly one pair
of states fi; jg. For example, if we start in a phase region
i ! j ! k and cross a phase boundary, we either arrive in

phase region j ! i ! k (after crossing rij@ ) or i ! k ! j

(after crossing rjk@ ). A quick illustration of crossing phase
boundaries is shown in Fig. 1.
One logically remaining possibility is a ‘‘triple point’’: a

boundary where the actions of EHS, OSAdS, and OAdS
are equal. This would involve a transition i ! j ! k into
k ! j ! i [requiring Iijðrik@ Þ ¼ 0 and Ijkðrik@ Þ ¼ 0]. We

find no such examples in our investigations. We also note
that a phase region can be bounded by two phase bounda-
ries r�@ < rb < rþ@ from the left and the right; but it can
also have only one phase boundary when either r�@ ¼ 0 or
rþ@ ¼ 1, or even no phase boundary at all if both r�@ ¼ 0
and rþ@ ¼ 1.

V. RESULTS AND DISCUSSION

We discuss here the results of computing the relative
actions, the phase diagrams they depict, and their implica-
tions. Given our constraints and assumptions, we can fully
describe the phase transitions with two parameters: the GB
coefficient �, and the radius of the black hole rb (with
numerical units of ‘2 and ‘ respectively).
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By evaluating each Iij � I i � I j using (6), the three fas; bs; bag pairs for the relative action are

Ias ¼ �	br
4
s

8‘2kG
þ �

�	bð48‘2 þ 56r2sÞ
8‘2kG

;

Ibs ¼ �	bðr4br2s � 2r8b þ ‘2r4b�Þ
8‘2r4pkG

þ �
�	bð24r8b � 8‘2r4b�þ 48‘4r4b � 12‘4�2 þ 56‘2r4br

2
sÞ

8‘4r4bkG
;

Iba ¼ Ibs � Ias

(17)

to linear order in �.
Given a value of �, each phase region is described

uniquely by a black hole radius interval ðr�@ ; rþ@ Þ associated
with an Iðr�@ < rb < rþ@ ; �Þ of constant sign. Any choice of
black hole radius rb will pinpoint the phase we are in.
Every phase region has its own ground state i 2 S into
which all other states in S will ultimately evolve. This is

illustrated by the colored ground-state regions and rij@
phase boundaries on the �� rb phase diagram in Fig. 2.
The green dotted line is not a phase transition; rather, it
indicates where the black hole specific heat capacity Cb ¼
�	2

b@
2Ib=@

2
	b

diverges and switches signs. This first-order

transition lies exactly where the black hole temperature
reaches a local extremum.

We now explore the main physics of this �� rb phase
diagram by choosing five � values (� ¼ �0:09265,
�0:03706, 0, þ0:00529, þ0:02059) that represent its
salient features.

A. The Einsteinian phase diagram: �¼ 0

As expected, we recover exactly the Einsteinian results
of Stotyn and Mann [13] when we set � ¼ 0. We review

here the Einsteinian � ¼ 0 phase diagram using Fig. 3
before extending to Gauss-Bonnet gravity. The alphabetical
labeling of the phase regions in Figs. 3–7 are cataloged in
Table I using our i ! j ! k notation introduced in Sec. IV.
The temperature of the Einsteinian OSAdS is infinite in

the rb ! 0 limit because the small black hole is in a near-
flat background, and thus follows the usual Tb � r�1

b rela-

tion. A feature of AdS space that differs considerably from
flat space is that its large black holes are very hot because
T � rb for large rb. The minimum and finite temperature
that the black hole achieves is at the green dotted line in
Fig. 3 where the black hole specific heat capacity Cb

diverges and switches sign.
Semiclassically, a small black hole for � ¼ 0 has

Cb < 0 and so gets hotter with time, emitting Hawking
radiation at a faster and faster rate until it ‘‘vanishes’’ to

FIG. 1 (color online). An illustrative plot of the three pairwise
relative actions Iij, Ijk, and Iik plotted as a function of rb (blue

solid lines) to form phase region (using i ! j ! k notation) and
phase boundaries (red dashed lines) for some chosen �. Note
that a phase boundary is formed whenever there is an Ipair ¼ 0.

FIG. 2 (color online). The �� rb phase diagram. The light
blue, purple, and brown regions represent the EHS, OSAdS,
OAdS ground states, respectively. The solid darker blue and
lighter red curves are the radii r@ of the OSAdS-EHS rbs@ and the
OSAdS-OAdS (Hawking-Page) rba@ phase boundaries. The green
dotted line is not a phase boundary; instead it indicates where the
specific heat capacity of the black hole switches signs (with þ
and � labels showing the sign of Cb). The black region is an
inaccessible part of the phase diagram which the OSAdS cannot
exist in. The five arrows at the top of the phase diagram are the
representative values of � noted in the text.
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FIG. 3 (color online). The � ¼ 0 phase diagram correspond-
ing to traversing up the � ¼ 0 vertical line on the �� rb phase
diagram in Fig. 2. The black curve is the temperature of the GB
black hole as calculated from Eq. (14). The alphabetical labeling
of different evolutionary tracks is tabulated in Table I. The solid
darker blue and lighter red lines are the radii r@ of the OSAdS-
EHS rbs@ and the OSAdS-OAdS (Hawking-Page) rba@ phase
boundaries. The green dotted line is not a phase boundary;
instead it indicates where the specific heat capacity of the black
hole switches signs (with þ and � labels showing the sign of
Cb). The ground states are labeled at the top.

FIG. 4 (color online). The � ¼ �0:03706 phase diagram cor-
responding to traversing up the � ¼ �0:03706 vertical line on
the �� rb phase diagram in Fig. 2. The black curve is the
temperature of the GB black hole as calculated from Eq. (14).
The alphabetical labeling of different evolutionary tracks is
tabulated in Table I. The solid darker blue and lighter red lines
are the radii r@ of the OSAdS-EHS rbs@ and the OSAdS-OAdS
(Hawking-Page) rba@ phase boundaries. The green dotted line is
not a phase boundary; instead it indicates where the specific heat
capacity of the black hole switches signs (with þ and � labels
showing the sign of Cb). The ground states are labeled at the top.

FIG. 5 (color online). The � ¼ �0:09265 phase diagram cor-
responding to traversing up the � ¼ �0:09265 vertical line on
the �� rb phase diagram in Fig. 2. The black curve is the
temperature of the GB black hole as calculated from Eq. (14).
The alphabetical labeling of different evolutionary tracks is
tabulated in Table I. The solid darker blue and lighter red lines
are the radii r@ of the OSAdS-EHS rbs@ and the OSAdS-OAdS
(Hawking-Page) rba@ phase boundaries. The green dotted line is
not a phase boundary; instead it indicates where the specific heat
capacity of the black hole switches signs (with þ and � labels
showing the sign of Cb). The ground states are labeled at the top.

FIG. 6 (color online). The � ¼ þ0:00529 phase diagram cor-
responding to traversing up the � ¼ þ0:00529 vertical line on
the �� rb phase diagram in Fig. 2. The black curve is the
temperature of the GB black hole as calculated from Eq. (14).
The alphabetical labeling of different evolutionary tracks is
tabulated in Table I. The solid darker blue and lighter red lines
are the radii r@ of the OSAdS-EHS rbs@ and the OSAdS-OAdS
(Hawking-Page) rba@ phase boundaries. The green dotted line is
not a phase boundary; instead it indicates where the specific heat
capacity of the black hole switches signs (with þ and � labels
showing the sign of Cb). The ground states are labeled at the top.
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become OAdS which in turn tunnels to the EHS ground
state. Although having Cb > 0 is necessary for black hole
stability, it is clearly not sufficient as seen on the right side
of region A where it still ultimately ends up as an EHS.
Even past the red ras@ (Hawking-Page) boundary into region
B, the black hole remains unstable by tunneling into the
EHS despite being a little more (semiclassically) stable
than it would be in region A. However, when the black hole
gets large enough so that we are in region C by passing
through the blue rbs@ boundary, the OSAdS finally becomes
stable enough to be the ground state. Because the large
black hole is stable in � ¼ 0, we also expect the large
black hole to be stable in the later � � 0 analyses due to
the vanishing nature of intrinsic curvature corrections with
increasing black hole size.

B. The Gauss-Bonnet phase diagram: � < 0

We now consider the�< 0Gauss-Bonnet phase diagram,
discussing these results in order of increasingly negative �.
We shall start from � ¼ 0� using Fig. 4 and then Fig. 5.
For any �< 0, the OSAdS must have radii of at least

rb > rmin
b � 2

ffiffiffiffiffiffiffiffi��
p

to be physically relevant as the black

hole temperature diverges and turns negative when rb
shrinks past rmin

b . Apart from this lower bound, the small

negative � ¼ �0:03706 phase diagram in Fig. 4 is quali-
tatively the same as the � ¼ 0 phase diagram: the black
hole temperature diverges at both ends, there is a first-order
transition in region A, and evolutionary tracks are in the
same order by inspection of Table I.
Although we do not find an ras@ phase boundary, we can

still have OAdS as the ground state for a large negative �
by a crossover of the red rba@ and blue rbs@ boundaries at
around � � �0:08. This implicitly forms a ras@ boundary,
mediated by the black hole, so that the inner regions A, B,
and C have OAdS as the ground state rather than EHS as
observed for smaller negative �. Furthermore the evolu-
tionary tracks all change from this rba@ =rbs@ crossover, as is
clear by inspection of the � ¼ �0:09265 and � ¼
�0:03706 evolutionary tracks in Table I. When we reach
the � & �0:084 regime, another blue rbs@ boundary
emerges from rb ¼ rmin

b and adds an extra phase region.

What we have described here can be seen in Fig. 5.
We do indeed achieve a stable large black hole in �< 0

as predicted, but note that for � & �0:084 we have an
s ! a ! b evolutionary track at the large rb limit rather
than the a ! s ! b track expected from the � ¼ 0 results.
This could be an indication that our approximations are
starting to break down at this so-called large negative �.
But if it is true that OAdS is the ground state at this level,
this would imply that a large negative � has the ability to
lift the energies of both the OSAdS and EHS states above
AdS for small black holes.

C. The Gauss-Bonnet phase diagram: � > 0

We now look at the �> 0Gauss-Bonnet phase diagram.
We will discuss these results in the order of increasingly
positive � starting from � ¼ 0þ using Fig. 6 and then
Fig. 7.

FIG. 7 (color online). The � ¼ þ0:02059 phase diagram cor-
responding to traversing up the � ¼ þ0:02059 vertical line on
the �� rb phase diagram in Fig. 2. The black curve is the
temperature of the GB black hole as calculated from Eq. (14).
The alphabetical labeling of different evolutionary tracks is
tabulated in Table I. The solid blue line is the radius r@ of the
OSAdS-EHS rbs@ phase boundary. There is no green dotted line
here to locate local extrema in the specific heat capacity because
it is positively monotonic throughout all black hole radii (the þ
label shows the sign of Cb). The ground states are labeled at
the top.

TABLE I. A table of i ! j ! k evolutionary tracks for reaching the most stable configuration on each phase region where s ¼ EHS,
a ¼ OAdS, and b ¼ OSAdS. The alphabetical ordering A ! E of the regions are in increasing black hole radius rb. The arrows point
towards the direction of tunneling which eventually leads to the ground state. The ’� � �’ entries are nonapplicable phase regions.

�< 0 � ¼ 0 �> 0
Phase Region �0:09265 �0:03706 0 þ0:00529 þ0:02059

A s ! b ! a b ! a ! s b ! a ! s a ! s ! b a ! s ! b
B b ! s ! a a ! b ! s a ! b ! s a ! b ! s a ! b ! s
C s ! b ! a a ! s ! b a ! s ! b b ! a ! s a ! s ! b
D s ! a ! b � � � � � � a ! b ! s � � �
E � � � � � � � � � a ! s ! b � � �
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One of the immediate features of the �> 0 phase dia-
gram is how much the topology has changed when juxta-
posed with the � ¼ 0 phase diagram. For a slightly
positive � ¼ þ0:00529 in Fig. 6, we immediately have
an extra first-order transition, a red rba@ phase boundary, and
a blue rbs@ phase boundary all sprouting from rb ¼ 0. The
duplication of these features is a manifestation of the
nonlinearity of the problem when accommodating for
higher-order curvature correction terms because distinct

roots can develop from solving the rij@ equation. Even
with the increasing numbers of phase boundaries, we still
do not observe an ras@ boundary and conclude that an ras@
boundary does not exist in our analysis.

Unlike the � 	 0 cases, a zero black hole temperature
is attained when the black hole radius shrinks to zero
radius for �> 0. This comes from the emergence of a
new first-order transition boundary which allows the small
black hole to have a positive specific heat capacity as it
gets smaller. By doing so, the small black hole is able
prevent itself from being ‘‘wiped out’’ by thermal fluctua-
tions by relying on the counteracting effects of its intrinsi-
cally strong curvature-induced quantum fluctuations at
low temperatures to keep it stable. This intuition is veri-
fied by the existence of a stable OSAdS in the inner phase
region A in both Figs. 6 and 7. Also, as expected, the
�> 0 large black hole is stable—a result consistent with
the � ¼ 0 black hole. With all this being mentioned, it
becomes peculiar that the most unstable black hole con-
figuration for �> 0 is when it is medium-sized, i.e. an rb
sitting in regions B–D in Fig. 6 or region B in Fig. 7. Note
that Cai [19] finds the small GB black hole to be stable in
n ¼ 5 as well, but with the added note that this type of
black hole stability is suppressed in higher n > 5 dimen-
sions. This would suggest that the topology of the �> 0
phase diagram is significantly different from what we have
here if this work were to be extended to higher odd n � 7
dimensions.

Although new exotic behavior takes place for slightly
positive �, we find a loss in phase structure for a larger
positive �. Explicitly, as we increase from � ¼ 0þ to � ¼
0:02, the two red rba@ (Hawking-Page) phase transitions
collide and disappear, consequently eliminating the
b ! a ! s evolutionary track. Afterwards, the two first-
order transitions collide to become an inflexion point that
disappears as well; all local extrema in Tb are discarded,
yielding a totally positive and smooth specific heat capacity
Cb for all black hole radii. Figure 7 shows explicitly the
remnants of the phase-removing process associated with
having a large positive � ¼ þ0:02059. Note that this large
positive value of � makes Tb one-to-one with rb, and it is

until now that a particular temperature Tb will uniquely
identify the phase region we are in because of monotonicity.

VI. SUMMARYAND PROSPECTIVE RESEARCH

The sign and size of the GB parameter� exploits different
physics in GB gravity. By using a small �=‘2 
 1 approxi-
mation, we have constructed an �� rb phase diagram and
found extra Hawking-Page and OSAdS-EHS phase transi-
tions emerging for large-enough negative and small-enough
positive �. This additional phase structure is not always the
case: a sufficiently small negative � gives rise to almost the
same phase structure as the Einsteinian case, and phase
structure is lost for sufficiently large positive �.
When �< 0, it is possible for quantum fluctuations to

lift the energies of both EHS and OSAdS so that thermal
OAdS becomes the ground state. What makes this more
interesting is that there is no explicit ras@ phase transition to
carry this procedure; instead it is implicitly done by the
crossover of the rba@ and rbs@ boundaries at � � �0:08.
When �> 0, quantum fluctuations keep small black holes
stable by counteracting against the weaker opposing thermal
fluctuations actuated by Hawking radiation. Given that the
small and large black holes are stable, the medium-sized
black hole turns out to be the most unstable black hole
configuration in �> 0 as it ends up as the EHS. Also, the
double phase boundaries found from � ¼ 0þ can merge
together and vanish with increasingly positive�. But despite
all the differences between oppositely signed�, we find that
our finite � large black hole is stable because of its intrinsi-
cally small curvature which in turn drives the black hole to
behave more like it would in Einsteinian gravity.
Although the field theory dual to the gravitational � ¼ 0

phase transitions has been identified as closed-string
tachyon condensation, we still await for a more generalized
field theory description of our n ¼ 5 gravitational-side
results as means of prediction and verification. An obvious
extension of this work would be to consider a more gen-
eralized form of the EHS in GB gravity by exploring the
range of values that a4 and b4 can take on. Exploring this
work in dimensions n � 7 would be intriguing, albeit
tedious, as it would incorporate curvature corrections of
at least cubic order, which is expected to give different
physics as we already know that the higher-dimensional
small black hole ceases to be stable for �> 0.
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