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The Korteweg-de Vries equation is a nonlinear wave equation that has played a fundamental role in

diverse branches of mathematical and theoretical physics. In the present paper, we consider its signifi-

cance to cosmology. It is found that the Korteweg-de Vries equation arises in a number of important

scenarios, including inflationary cosmology, the cyclic universe, loop quantum cosmology and braneworld

models. Analogies can be drawn between cosmic dynamics and the propagation of the solitonic wave

solution to the equation, whereby quantities such as the speed and amplitude profile of the wave can be

identified with cosmological parameters such as the spectral index of the density perturbation spectrum

and the energy density of the universe. The unique mathematical properties of the Schwarzian derivative

operator are important to the analysis. A connection with dark solitons in Bose-Einstein condensates is

briefly discussed.
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I. INTRODUCTION

The Korteweg–de Vries (KdV) equation [1] is the com-
pletely integrable, third-order, nonlinear partial differential
equation:

@tuþ @3xuþ 3

u0
u@xu ¼ 0; (1)

where u ¼ uðx; tÞ, @t ¼ @=@t, @3x ¼ @3=@x3, etc., u0 is a
constant and ðx; tÞ represent space and time coordinates,
respectively. This equation was originally derived within
the context of small-amplitude, nonlinear water wave the-
ory and it is well known that it admits a solitonic wave
solution of the form

u ¼ u0�
2sech2½�ðx� �2tÞ=2�; (2)

where the constant �=2 represents the wave number of the
soliton [1]. The KdV soliton is characterized by the prop-
erty that its speed and amplitude are proportional to the
square of the wave number.

The KdV equation has played a central role in diverse
branches of physics, including nonlinear optics, atomic
and nuclear physics, Bose-Einstein condensates and astro-
physical plasmas (see Ref. [2] for a review). As far as we
are aware, however, it has not been discussed previously
within a cosmological context (although see Ref. [3]). This
is perhaps not surprising, given that the KdV equation is a
third-order partial differential equation in two independent
variables, whereas the field equations for spatially isotropic
universes are second-order, ordinary differential equations
(ODEs).

On the other hand, Eq. (1) can be reduced to the non-
linear ODE:

� �2u0 þ u000 þ 3

u0
uu0 ¼ 0; (3)

where a prime denotes d=d� and� � x� �2t represents a
‘‘wavelike’’ independent variable. The purpose of the
present paper is to show that wave solutions to Eq. (3),
and in particular the soliton solution (2), arise in a number
of cosmological settings, including the inflationary para-
digm, the cyclic universe scenario, loop quantum cosmol-
ogy and braneworld models. We consider scenarios where
the universe is dominated by a single self-interacting scalar
field, �. Interpreting the value of the scalar field in terms
of a wavelike coordinate of the KdV equation then allows
for a direct analogy to be drawn between cosmological
dynamics on the one hand and solitonic behavior on the
other. Cosmological parameters can then be identified
with quantities such as the speed and amplitude of the
corresponding wave.
The paper is organized as follows. In Sec. II, we

discuss a connection between the KdV equation and the
Schwarzian derivative operator that we employ in later
sections. We proceed in Sec. III to consider the class of
inflationary universes that generate density perturbation
spectra with a constant spectral index. In Sec. IV, we
address the same question within the context of the cyclic
universe. In Sec. V, we find that the scaling solutions of
various braneworld and loop quantum cosmological sce-
narios are analogous to the KdV soliton. We conclude with
a discussion in Sec. VI on a connection with dark solitons
in Bose-Einstein condensates. Unless otherwise stated,
units are chosen such that ℏ ¼ c ¼ 1 and the Planck mass

is normalized to mP ¼
ffiffiffiffiffiffiffi
8�

p
.

II. THE KDV EQUATION AND THE SCHWARZIAN
DERIVATIVE OPERATOR

The KdV equation (3) admits an auto-Bäcklund trans-
formation, whereby a solution u ¼ uð�Þ can be derived
from a given seed solution �u ¼ �uð�Þ [4]. For the special*J.E.Lidsey@qmul.ac.uk
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case where the seed is the trivial solution �u ¼ 0, such a
transformation reduces to the condition that a solution
to Eq. (3) is given by

u ¼ u0ð�2 � 4y2Þ; (4)

where �2 is a constant and the function y ¼ yð�Þ is a
particular solution to the first-order Riccati equation:

y0 ¼ u

4u0
¼ �2

4
� y2: (5)

For example, the solution

y ¼ �

2
tanhð��=2Þ; (6)

generates the KdV soliton (2).
Solutions to Eq. (5) satisfy a third-order ODE given by

S½yð�Þ� � y000

y0
� 3

2

 
y00

y0

!
2

¼ ��2

2
; (7)

as may be verified by direct differentiation of Eq. (5).
The left-hand side of Eq. (7) is the Schwarzian derivative
operator (often referred to simply as the Schwarzian) [5].
This operator exhibits a number of remarkable properties,
one of which we exploit in the present work: it is the unique
combination of derivatives that is invariant under a homo-
graphic transformation corresponding to the group of
fractional linear transformations. This follows since, for a
function y ¼ yð�Þ, the composition NðyÞ � ½lnðy0Þ�0 ¼
y00=y0 transforms under the inversion y ! 1=y such that
Nð1=yÞ ¼ NðyÞ � 2y0=y. Some straightforward algebra
then implies that the operator SðyÞ � N0 � N2=2 is invari-
ant under inversion. Moreover, since SðyÞ ¼ Sðmyþ nÞ for
any m, n 2 <, SðyÞ is invariant under the full group of
fractional linear transformations.

This implies that if �yð�Þ is a particular ‘‘seed’’solution to
the differential equation S½y� ¼ fð�Þ for some function
fð�Þ, the general solution to such an equation is given by

yð�Þ ¼ a �yþ b

c �yþ d
;

a b

c d

 !
2 SLð2;RÞ; (8)

where a, b, c, d are constants such that ad� bc ¼ 1.
To summarize, therefore, if a particular solution to the

Schwarzian equation (7) for constant � can be found, the
general solution (8) can be written down immediately.
Restricting the general solution to satisfy the first-order
constraint (5) then generates a solution (4) to the KdV
equation (3). We employ this result in the following sec-
tions for a number of cosmological models.

III. INFLATIONARY DENSITY PERTURBATIONS
AND THE KDV SOLITON

The inflationary scenario remains the cornerstone of
modern, early universe cosmology. While there is currently
considerable interest in multiple-field versions of the

paradigm, our aim in this section is to revisit the simplest
version of the scenario, namely inflation driven by a single,
minimally coupled, slowly rolling scalar inflaton field, �.
(For reviews, see, e.g., Refs. [6,7].) We consider the gen-
eral class of models that generate a density perturbation
spectrum with a constant spectral index to lowest order
in the slow-roll approximation. Our main aim is to high-
light some interesting mathematical features of the under-
lying differential equations that have not been previously
discussed.
The cosmological Friedmann equations in Hamilton-

Jacobi form are given by

3H2 � 2H02 ¼ Vð�Þ; _� ¼ �2H0; (9)

where the Hubble parameter H ¼ Hð�Þ is viewed as a
function of �, Vð�Þ denotes the inflaton potential and
a prime and dot denote differentiation with respect to the
inflaton field and cosmic time, respectively. The energy
density of the universe is �ð�Þ ¼ 3H2ð�Þ. It is assumed
implicitly and without loss of generality that the inflaton

varies monotonically with cosmic time such that _�> 0
(H0 < 0).
The Hubble slow-roll parameters are defined by

� � 2
H02

H2
; � � 2

H00

H
; (10)

and the spectral index is given by

1� ns ¼ 2

ð1� �Þ2
�
�� ð1� �2Þ

2

�
d ln�

dN

��
; (11)

where higher-order derivative terms in N � � lnðaHÞ
have been neglected. To lowest order in the slow-roll
approximation, 1� ns ¼ 4�� 2�. This condition is a
second-order, nonlinear ODE for the dependent variable
H ¼ Hð�Þ:

4
H00

H
� 8

H02

H2
¼ �ð1� nsÞ: (12)

Considerable insight into the nature of the general solu-
tion to Eq. (12) may be gained by expressing the energy
density of the universe in terms of the gradient of a
‘‘potential’’ function, W ¼ Wð�Þ, such that

H2ð�Þ � 4H2
0W

0ð�Þ; (13)

where H0 is an arbitrary constant. Substituting this defini-
tion into Eq. (12) yields

S½Wð�Þ� � W 000

W 0 �
3

2

�
W 00

W 0

�
2 ¼ ��2

2
; (14)

where �2 � 1� ns.
The left-hand side of Eq. (14) is the Schwarzian deriva-

tive of the function Wð�Þ and it is interesting that it arises
in this cosmological context. Consequently, we may now
determine from Eqs. (13) and (14) the general forms of the
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Hubble parameters for the full family of inflationary cos-
mologies that generate a constant spectral index.

Since current observational bounds on the spectral index
inferred from theWMAP7þ H0 data set are 0:939< ns <
0:987 at the 2� confidence limit [8], we focus on the
red perturbation spectrum, �2 > 0. A particular solution
to Eq. (14) is �Wð�Þ ¼ expð��Þ and the general solution is
therefore given directly by

Wð�Þ¼ae��þb

ce��þd
; H2ð�Þ¼4�H2

0

e��

ðce��þdÞ2 : (15)

Moreover, comparing Eq. (14) with Eq. (7) and (13) with
Eq. (5) immediately implies that H2ð�Þ satisfies the KdV
equation

� ð1� nsÞH20 þH2000 þ 3

H2
0

H2H20 ¼ 0; (16)

if the general solution to Eq. (14) is restricted to satisfy the
Riccati equation

W 0 ¼ �2

4
�W2: (17)

It may be verified that condition (17) is satisfied if

ad ¼ �bc ¼ 1=2; � ¼ 1

cd
¼ 2a

c
: (18)

As a result, the solution (15) can be expressed as

H2ð�Þ ¼ H2
0�

2sech2
 
�

2

ffiffiffiffiffiffiffi
8�

p
mP

�

!
; (19)

for cd > 0 and

H2ð�Þ ¼ �H2
0�

2cosech2
 
�

2

ffiffiffiffiffiffiffi
8�

p
mP

�

!
; (20)

if cd < 0, where we have specified c ¼ jdj without loss of
generality and have restored the dependence on the Planck
mass for future reference. [If c � jdj, Eqs. (19) and (20)
can be recovered by performing a linear translation
��1 lnjd=cj on the value of the inflaton field.]

Equations (19) and (20) arebothwave solutions to theKdV
equation (16) and the former has precisely the form of the
nonsingular KdV soliton (2). This suggests a direct analogy
can be drawn between such a wave and inflationary cosmol-
ogy. In such an analogy, the inflaton field plays the role of a
characteristic, wavelike coordinate on a two-dimensional
spacetime fx; tg, the speed of the soliton is determined by
the deviation of the spectral index away from the scale-
invariant, Harrison-Zel’dovich spectrum ns ¼ 1, and the
amplitude profile of the soliton is parametrized by the energy
density of the universe (in appropriate units).

The first slow-roll parameter for the ‘‘soliton’’ solution
(19) is given by

�ð�Þ ¼ �2

2
tanh2ð��=2Þ; (21)

and determines the tensor-scalar ratio, r � P 2
T=P

2
S ¼ 16�,

where P 2
S ¼ H2=ð64�4�Þ and P 2

T ¼ H2=ð4�4m2
PÞ are the

amplitudes of the density and gravitational wave pertur-
bations [6,7]. This parameter is bounded from above such
that r < 8ð1� nsÞ, which is consistent with the current
observational 2� bound r < 0:24 [8].
We therefore focus on the nonsingular KdV wave. Given

the general form of the Hubble parameter, the inflationary
potential can be deduced directly from the Hamilton-Jacobi
equation (9), V ¼ H2ð3� �Þ. Substituting Eqs. (19) and
(21) and expanding the brackets up to linear order in � to be
consistent with slow roll implies that

Vð�Þ ¼ H2
0�

2

"
3�

 
3þ �2

2

!
tanh2

�
�

2
�

�#
: (22)

It is interesting to remark that after some straightforward
algebra, Eq. (22) can be expressed in the form

�
2

6þ �2

��
V þH2

0�
4

2

�
¼ �2H2

0sech
2

�
�

2
�

�
: (23)

Hence, a rescaled and linearly shifted version of the poten-
tial also satisfies a KdVequation.
It is straightforward to verify that the potential (22)

corresponds precisely to that derived in Ref. [9] by a
different method. As discussed in Ref. [9], from the cosmic
dynamical systems point of view, the late-time attractor
of this model is the power-law solution � ¼ �2. There are
two different solutions, Eqs. (19) and (20), depending on
whether the initial value of � is greater or less than �2 [9].
Within the context of the present discussion, the power-law
model is the seed solution �Wð�Þ ¼ expð��Þ and the two
models are characterized by sgnðcdÞ, i.e., by sgnðW 0Þ.
On the other hand, it is important to emphasize that the

solution for ns is derived from an approximate ODE (12)
and must necessarily break down as the speed of the
inflaton increases. Indeed, to next-to-leading order in slow
roll, the equation for the spectral index becomes the non-
linear, third-order ODE [10]

4��2�þ8ðCþ1Þ�2�ð6þ10CÞ��þ2C�2¼1�ns;

(24)

where �2 ¼ 4H0H000=H2 is the third slow-roll parameter
and C ’ �0:73. Consequently, the error introduced by
restricting the analysis to slow roll, whereby the above
correspondence with the KdV soliton arises is associated
with neglecting the third derivative of the Hubble parame-
ter, for example. It is unlikely an exact solution to such an
ODE can be found. Nonetheless, the approximation to slow
roll improves as � ! 0. In other words, there is a value of
the inflaton below which the correspondence is accurate.
Nonetheless, the solution (19) does represent an exact

cosmological background driven by an effective potential
of the form:

COSMOLOGYAND THE KORTEWEG-DE VRIES EQUATION PHYSICAL REVIEW D 86, 123523 (2012)

123523-3



Vð�Þ ¼ H2
0�

2sech2
�
�

2
�

�"
3� �2

2
tanh2

�
�

2
�

�#
; (25)

and the late-time attractor of this potential as � ! 1 is
the power-law solution, as discussed above. Equation (25)
further illustrates how the solitonic interpretation of the
background cosmology becomes more accurate at early
times (� ! 0).

IV. DENSITY PERTURBATIONS IN THE CYCLIC
UNIVERSE AND THE KDV SOLITON

During inflation, quantum fluctuations in the inflaton
field become frozen on super-Hubble radius scales because
the comoving Hubble scale decreases with time due to the
rapid, accelerated expansion of the universe. However, the
comoving Hubble radius can also decrease if the universe
undergoes a phase of slow, decelerated contraction driven
by a negative scalar field potential. This is the basis of
the cyclic universe scenario. As shown in Ref. [11], the
expression (11) for the spectral index is invariant under the
duality � ! 1=� and this implies there exists a one-to-one
correspondence between inflationary and cyclic models
that generate identical spectral indices.

This suggests that a similar analogy between gravita-
tional and solitonic physics may be established for the
cyclic universe scenario. Indeed, in the Hamilton-Jacobi
formalism of the cosmological Friedmann equations (9),
the definition of the Hubble parameter H ¼ _a=a in terms
of the scale factor a implies that

a0H0 ¼ � 1

2
aH: (26)

Integrating Eq. (26) then yields the dependence of the scale
factor on the scalar field in terms of the quadrature

að�Þ ¼ a0 exp

�
� 1

2

Z �
d�

H

H0

�
; (27)

where a0 is an arbitrary constant.
However, Eq. (26) is invariant under the simultaneous

interchange Hð�Þ $ að�Þ. If we therefore consider a
‘‘dual’’ cosmology where the Hubble parameter is given by
~Hð�Þ ¼ að�Þ, Eq. (27) implies that the dual scale factor is
given by the quadrature

~að�Þ ¼ ~a0 exp

�
� 1

2

Z �
d�

a

a0

�
: (28)

Since the seed cosmology fHð�Þ; að�Þg itself satisfies
Eq. (26), the duality between the two scenarios is given
by the simultaneous interchange of the Hubble parameters
and scale factors of the two scenarios when all parameters
are expressed as functions of the scalar field [12]:

~að�Þ ¼ Hð�Þ; ~Hð�Þ ¼ að�Þ: (29)

It is straightforward to verify that under this duality, the
Hubble slow-roll parameter indeed transforms as ~� ¼ 1=�.

As a result of this duality, the analysis of Sec. III applies
directly to the cyclic universe. We conclude, therefore,
that there exists a one-to-one correspondence between
solutions to the KdV equation and the respective cyclic
cosmological models when the spectral index is constant.
For the cyclic model that is dual to Eq. (19), the speed of
the soliton is once more determined by the spectral index,
whereas the amplitude of the soliton is now proportional to
the square of the cosmic scale factor.

V. MODIFIED COSMOLOGY

In recent years, considerable interest has focused on
cosmological dynamics arising from modified gravity
theories. This is motivated in part by open questions in
early universe cosmology, such as the singularity problem,
as well as providing alternative scenarios to dark energy
models. At a phenomenological level, such modifications
can be quantified by altering the standard form of the
Friedmann equation such that

3H2 ¼ �L2ð�Þ; (30)

where L ¼ Lð�Þ is a given function of the energy density
and is determined by the specific model in question.
Of particular interest in such scenarios are scaling

(attractor) solutions, since these enable the generic asymp-
totic behavior of a cosmological model to be better under-
stood. Scaling solutions are characterized by the property
that the energy densities of the component matter fields
scale at the same rate as the universe expands (contracts).
Such solutions were classified in Ref. [13] under the
assumption that the matter content of the universe is
comprised of a self-interacting scalar field with potential
Vð�Þ and a barotropic fluid with an adiabatic index 	.
By introducing a parameter

� � � 1

L

V 0

V
; (31)

it was found that � ¼ constant is a necessary condition for
a scaling solution to exist. In that case, there exists an
attractor solution for �2 > 3	, where the relative contribu-
tion of the scalar field energy density to the total density of
the universe is �� ¼ 3	=�2. There exists a second stable

solution if �2 < 6 where the scalar field dominates the
fluid. It was further shown that these solutions exist if the
condition

�
�00

�02 � 1 ¼ �
d ln½Lð�Þ�

d�
; (32)

is satisfied [13].
In this section, we investigate the conditions that allow

for scaling solutions in modified gravity to be interpreted
as KdV-type solitons. We proceed by rewriting Eq. (32) in
the form
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�00

�
� 3

2

�02

�2
¼ �02

�2

�
�
d lnL

d�
� 1

2

�
: (33)

Defining a new variable � ¼ �ð�Þ:
� ¼ 4�0�

0; (34)

where �0 is an arbitrary constant, then transforms Eq. (33)
into a Schwarzian differential equation:

S½�ð�Þ� ¼
 
�00

�0

!
2�
�
d lnL

d�
� 1

2

�
; (35)

where the dependence of the square bracket on � is
implicit.

We now look for particular solutions to Eq. (35) that
satisfy the condition that the Schwarzian of � is constant:

S½�ð�Þ� ¼ ��2

2
: (36)

The discussion of Sec. III implies that the energy density
of the universe will satisfy the KdV equation if �0 ¼
ð�2=4Þ � �2. As we saw above, there are two possible
solutions when �2 > 0, depending on whether �0 > 0 or
�0 < 0. (The product �0�

0 is assumed implicitly to be
positive definite.)

Equations (35) and (36) imply that�
�00

�0

!
2
"
�
d lnL

d�
� 1

2

�
¼ ��2

2
: (37)

Since �00 ¼ �2��0, it follows that 
�00

�0

!
2

¼ �2 � �

�0

: (38)

Consequently, Eq. (37) simplifies to the first-order ODE

d lnL

d�
¼ � 1

2

1

�0�
2 � �

; (39)

and integrating yields the solution

L ¼
�
1� �

�0�
2

�
1=2

; (40)

where we have chosen the appropriate branch of the gen-
eral solution and the constant of integration to ensure
that the standard relativistic cosmology is recovered in
the low-energy limit � � �0�

2. The modified Friedmann
equation (30) is therefore given by

3H2 ¼ �

�
1� �

�0�
2

�
: (41)

Finally, the results of Sec. III can be carried over to deduce
that the corresponding scaling solutions when expressed in
terms of the energy density are given by the KdV wave
solutions

� ¼ �0�
2sech2ð��=2Þ; (42)

when �0 > 0 (�0 > 0) and

� ¼ ��0�
2cosech2ð��=2Þ; (43)

when �0 < 0 (�0 < 0).
The Friedmann equation (41) arises in a number of

cosmological models that are directly motivated by quan-
tum gravity considerations. When �0 < 0, the model cor-
responds to the Randall-Sundrum braneworld scenario
[14], where our observable universe is interpreted as a
codimension one-brane embedded in five-dimensional,
Z2 symmetric anti–de Sitter space. The coefficient �0�

2

is determined by the tension of the brane [14]. On the other
hand, the case where �0 > 0 results in the Friedmann
equation for the Shtanov-Sahni bouncing braneworld [15].
In this model, the universe is again interpreted as a one-
brane embedded in a five-dimensional spacetime sourced
by a bulk cosmological constant, but the extra fifth dimen-
sion is now assumed to be timelike.
Furthermore, the Friedmann equation (41) arises generi-

cally in loop quantum cosmological (LQC) scenarios when
�0 > 0 [16]. In LQC models, the quadratic corrections in
the energy density originate from nonperturbative quantum
geometric corrections and become important at high en-
ergy scales. Indeed, in such a framework, �0�

2 determines
a critical density

�0�
2 ¼ �crit ¼

ffiffiffi
3

p
16�2	3

�Pl; (44)

where �Pl is the Planck density and 	 � 0:2375 is the
Immirzi parameter [16].
In effect, therefore, by focusing on the KdVequation we

have arrived at three different cosmological models that are
all inspired by quantum gravity effects. The corresponding
scaling solutions (42) and (43) are those found previously
in Refs. [13,17]. We may now interpret these solutions
as wave solutions of the KdV equation. The nonsingular
soliton solution reflects the nonsingular nature of the
Shtanov-Sahni and LQC scaling solutions. Due to the
nature of the quantum corrections, the universe collapses
from infinity (� ! �1), undergoes a nonsingular bounce
at �¼�crit ð�¼0Þ and then expands to infinity (�!þ1).
From the point of view of a stationary laboratory
‘‘observer,’’ such dynamics would be equivalent to the
time dependence of the soliton amplitude as the wave
propagates (modulo the appropriate relationship between
cosmic and laboratory times). The cosmic bounce corre-
sponds to the passing of the peak of the wave. In the
LQC scenario, the ‘‘speed’’ of the wave is parametrized
by the fractional energy density of the scalar field and the
barotropic index of the fluid, �2 ¼ 3	=��.
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VI. DISCUSSION

In the present work, it has been shown for the first time
that the KdV equation arises in a number of important
cosmological scenarios, including the inflationary uni-
verse, the cyclic universe, loop quantum cosmology and
braneworld cosmology. In each model, cosmological solu-
tions can be reinterpreted as wavelike solutions to the
KdV equation, and this allows for analogies to be drawn
between cosmic dynamics and wave propagation.

For example, in the inflationary scenario, we have found
that the ODE determining the spectral index of the density
perturbation spectrum generated during single-field, slow-
roll inflation is closely connected to both the Schwarzian
derivative operator and the KdV wave equation. In princi-
ple, this allows for the full family of inflationary models
that generate a constant spectral index to be classified in a
very straightforward manner in terms of solutions to the
KdV equation.

In the region of observational parameter space r <
8ð1� nsÞ, a formal analogy was established between the
nonsingular KdV soliton and the inflating universe. In
such a correspondence, the scalar field plays the role of a
wavelike coordinate, the speed of the soliton is determined
by the value of the spectral index and the amplitude of
the soliton is parametrized by the energy density of the
universe. Due to the duality between the inflationary and
cyclic universes, similar conclusions hold for the simplest
version of the cyclic universe scenario, although in this
case the amplitude of the soliton is related to the scale
factor of the universe.

The general conditions for scaling solutions in a class of
modified cosmological models sourced by a scalar field
and a perfect fluid were considered. Requiring that the
integral of the cosmic energy density (with respect to the
scalar field) has a constant Schwarzian derivative led
naturally to a modified Friedmann equation that arises
generically in the Randall-Sundrum and Shtanov-Sahni
braneworld models [14,15] and loop quantum cosmology
scenarios [16]. In all cases, the corrections to the
Friedmann equation are quadratic in the energy density.
For such models, the scaling solutions may be interpreted
as wave solutions to the KdV equation, where the cosmic
energy density is again analogous to the soliton wave
amplitude.

Finally, it is worth remarking that the KdV equation is
closely related to the nonlinear Schrödinger equation.
This equation admits solutions that determine the propa-
gation of solitons in Bose-Einstein condensates [18,19].
A Bose-Einstein condensate is the ground state of a gas
of N interacting bosons trapped by an external potential.
In the limit where the interaction between the atoms is
sufficiently weak, the mean-field approximation may
be employed. In this case, the macroscopic wave func-
tion for the condensate, c , satisfies the Gross-Pitaevskii
equation [20]:

iℏ@tc ¼ � ℏ2

2m
r2c þ Vðx; tÞc þ gjc j2c ; (45)

where Vðx; tÞ is the trapping potential and m is the mass
of the atoms forming the condensate. The scattering
coefficient is given by g ¼ 4�ℏ2Na=m, where a is the
(s-wave) scattering length.
By employing sufficiently anisotropic trapping poten-

tials, it is possible to reduce the condensate to a quasi–one-
dimensional configuration. Typically, the potential is given
by VðxÞ ¼ �2x2=2, where the trap strength � � 1. To a
first approximation, therefore, the potential can be ignored.
In this limit, the condensate becomes homogeneous and the
Gross-Pitaevskii equation is identical to the integrable
nonlinear Schrödinger equation:

iℏ@tc ¼ � ℏ2

2m
@2xc þ gjc j2c : (46)

The defocusing nonlinear Schrödinger equation (46),
where g > 0, supports dark soliton solutions [18]. A dark
soliton is an envelope excitation characterized by a dip in
the ambient density and a phase jump across the density
minimum. Such solitons have been observed in a variety of
Bose-Einstein condensates in recent years (for a recent
review, see Ref. [21]). The solution is given by [19]

jc j2 ¼ ð1� jc dsj2Þ;

jc dsj2 ¼
 
1� v2

c2

!
sech2

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
�
v

c

�
2

s
ðx� vtÞ

�

3
5;

(47)

where n is the background density, v is the speed of the

soliton, ðx� vtÞ is its position and c ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
ng=m

p
is the

sound speed in the condensate. The spatial extent
of the soliton is characterized by the healing length � ¼ ℏ=ffiffiffiffiffiffiffiffiffiffi
mng

p ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
4�na

p
In general, the speed of the soliton is

bounded from above by the sound speed, v < c.
The density profile of the dark soliton (47) corresponds

precisely to the energy density of the inflationary universe
(19) and the LQC scaling solution (42). On dimensional
grounds, we can make the identification

�

mp
$ ðx� vtÞ ffiffiffiffiffiffi

na
p

; (48)

and view the scalar field as a wavelike coordinate. Modulo
a constant of proportionality, the spectral index may then
be identified with the speed of the soliton:

1� ns $
 
1� v2

c2

!
; (49)

whereas in the LQC model, the speed is proportional to the
kinemetic parameters:

JAMES E. LIDSEY PHYSICAL REVIEW D 86, 123523 (2012)

123523-6



	

��
$

 
1� v2

c2

!
: (50)

The deviation of the spectral index away from the scale-
invariant perturbation spectrum is proportional to the speed
of the soliton relative to the condensate sound speed. The
maximal speed of the soliton is attained in the limit of
the scale-invariant spectrum, ns ! 1. For the LQC scaling
solution, the maximal speed corresponds to an equation of
state p ¼ �� for the fluid, which is the limit of a cosmo-
logical constant.

The above analogies are not intended to be precise,
but they do nonetheless suggest that a new link between
gravitational and nongravitational systems might be estab-
lished through the KdV equation. It would be interesting
to formalize such analogies further to establish kine-
matic correspondences between cosmology and condensed
matter physics.
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