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We present a model for cosmological inflation which has a natural ‘‘turn on’’ and a natural ‘‘turn off’’

mechanism. In our model inflation is driven by the Hawking-like radiation that occurs in Friedmann-

Robertson-Walker (FRW) space-time. This Hawking-like radiation results in an effective negative

pressure ‘‘fluid’’ which leads to a rapid period of expansion in the very early Universe. As the

Universe expands the FRW Hawking temperature decreases and the inflationary expansion turns off

and makes a natural transition to the power-law expansion of a radiation dominated universe. The turn on

mechanism is more speculative, but is based on the common hypothesis that in a quantum theory of

gravity at very high temperatures/high densities Hawking radiation will stop. Applying this speculation to

the very early Universe implies that the Hawking-like radiation of the FRW space-time will be turned off

and therefore the inflation driven by this radiation will turn off.

DOI: 10.1103/PhysRevD.86.123515 PACS numbers: 98.80.Cq

I. INTRODUCTION

Cosmological inflation [1–4] was proposed to address
the horizon problem, flatness problem and monopole prob-
lem in the context of big bang cosmology. By postulating
that in the early Universe there was a brief period of rapid,
exponential expansion, one can explain, without fine-
tuning, the observed facts that the Universe is the same
in different regions which are casually disconnected (the
horizon problem), the Universe appears to be spatially flat
(the flatness problem) and there appears to be a much lower
density of grand unified monopoles than one would naively
expect. However, the inflation hypothesis itself has several
unanswered questions: (i) What is the detailed mechanism
for inflation? (ii) What precedes the inflationary phase or
how does inflation ‘‘turn on’’? (iii) How does the Universe
make a graceful exit from this early, inflationary phase to
standard Friedmann-Robertson-Walker (FRW) radiation
dominated expansion; i.e., how does inflation ‘‘turn off’’?
In many of the original models [1,3,4] inflationary expan-
sion was driven by a phase transition at the grand unified
scale. The mechanism for inflation we propose here is
based on particle creation from the gravitational field and
it need not occur at the same time/energy scale compared
to the canonical examples of inflationary mechanisms.
Specifically, we focus on particle creation connected with
the Hawking-like radiation that occurs in FRW space-time.
This is similar to black hole evaporation, but time reversed.
For an astrophysical size black hole Hawking radiation is
at first a very weak channel for mass/energy loss for the

black hole. As the black hole decreases in mass due to loss
from Hawking radiation it gets hotter and evaporates at a
faster rate. Beyond some size Hawking radiation becomes
very strong so that near the end stages of evaporation the
black hole will radiate explosively. However, near the end
stages of evaporation one can no longer trust the semiclas-
sical calculation [5] leading to Hawking radiation. One
common speculation is that near the end stages of evapo-
ration where quantum gravity should become important,
Hawking radiation will turn off. One concrete proposal
along these lines is the suggestion that in the quantum
gravity regime space-time becomes noncommutative
which leads naturally to a turning off of Hawking radiation
in the late stages of black hole evaporation [6]. Applying
these ideas to FRW space-time leads to a time reversed
version of black hole evaporation. During the very earliest
stages of the Universe when the energy density is large, so
that one is in the quantum gravity regime, the Hawking
radiation from the FRW would be turned off until the
Universe expanded to the point when quantum gravity
started to give way to semiclassical gravity. At this point
the Hawking radiation of FRW space-time would turn on
and, as we show below, would drive a period of exponential
expansion. As the Universe expanded the Hawking tem-
perature of the FRW universe would decrease until the
Universe becomes dominated by ordinary radiation rather
than Hawking radiation. At this point the Universe would
make a graceful transition from inflationary expansion to
the power-law expansion associated with a universe domi-
nated by ordinary radiation.
Already in the 1930s Schrödinger [7] put forward the

idea that particle creation can influence cosmological evo-
lution. More recently Parker [8] and others [9–16] have
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followed this early work of Schrödinger with studies
of how particle creation can affect the structure of cosmo-
logical space-times. As pointed out in Ref. [14] there are
two points about cosmological history which are well
addressed by these particle creation models. First, one
can explain very well the enormous entropy production
in the early Universe via the irreversible energy flow from
the gravitational field to the created particles. Second,
since the matter creation is an irreversible process one
avoids the initial singularity in cosmological space-times
[14]. In this model the Universe begins from an instability
of the vacuum instead of a singularity. The Universe then
rapidly moves through an inflationary phase followed by a
radiation dominated era and finally followed by a matter/
dust dominated era.

II. THERMODYNAMICS AND PARTICLE
CREATION IN FRW SPACE-TIME

Our particle creation/Hawking radiation model for
inflation is closely tied to thermodynamics in a given
space-time so we begin by collecting together some ther-
modynamic results. The first law of thermodynamics reads
dQ ¼ dð�VÞ þ pdV, where dQ is the heat flow into/out of
the system during some interval of cosmic time from t to
tþ dt, � is the energy density, V is the volume and p is the
thermodynamic pressure. Dividing this equation by dt
gives the following differential form for the first law of
thermodynamics:

dQ

dt
¼ d

dt
ð�VÞ þ p

dV

dt
: (1)

For most cosmological models the assumption is made that
the Universe is a closed, adiabatic system which means
dQ ¼ 0. With this assumption the second law of thermo-
dynamics, dQ ¼ TdS, leads to a nonchange in the entropy,
i.e., dS ¼ 0, during the cosmic time interval dt. This
line of reasoning contradicts the observed fact that the
Universe has an enormous entropy. This contradiction
can be addressed by having irreversible particle creation
from the gravitational field, i.e., Hawking radiation from a
FRW space-time. This irreversible particle production
leads to entropy production. The change in heat, dQ, is
now completely due to the change of the number of parti-
cles coming from particle creation. Therefore there is a
transfer of energy from the gravitational field to the created
matter and the Universe is treated like an open, adiabatic
thermodynamic system [14].

We review the relevant parts of the FRW space-time.
The standard FRW metric is

ds2 ¼ �c2dt2 þ a2ðtÞ
�

dr2

1� kr2
þ r2ðd�2 þ sin2�d�2Þ

�
;

(2)

where aðtÞ is the scale factor and k ¼ 0, �1 is the spatial
curvature of the Universe—k ¼ 0 is flat, k ¼ �1 is open
and k ¼ þ1 is closed. The Einstein field equations
(G�� ¼ 8�G

c4
T��) for this metric have a time-time

(� ¼ � ¼ 0) component and space-space � ¼ � ¼ i
component given respectively by

3
_a2

a2
þ 3

kc2

a2
¼ 8�G�

c2
; 2

€a

a
þ _a2

a2
þ kc2

a2
¼ � 8�G

c2
p:

(3)

In the above equations � is the energy density and p is
pressure of the matter source fluid/field. Combining these
two equations gives the standard conservation relationship
dð�VÞ þ pdV ¼ 0, which clearly describes the Universe
as a closed, adiabatic system with dQ ¼ 0. As mentioned
above this leads to dS ¼ 0 which then seems to contradict
the very large observed entropy of the Universe. Allowing
for matter creation alters things. First in the presence of
matter creation the equations in (3) are altered. The first
equation on the left of (3) remains the same but the second
equation is altered and one has an additional equation for
the time rate of change of particle number density. These
modified and additional equations are [17]

2
€a

a
þ _a2

a2
þ kc2

a2
¼ � 8�G

c2
ðp� pcÞ; (4)

_n

n
þ 3

_a

a
¼ c

n
: (5)

The overdot implies a time derivative, n is particle number
density, c is the matter creation rate and pc is the pressure
due to matter creation. The matter creation rate and the
matter creation pressure are connected by the following
relationship [17]:

pc ¼ �þ p

3nH
c : (6)

If one assumes that � and p describe a normal fluid so that
one has the energy condition �þ p > 0 (assuming that
� > 0 this condition is known as the weak energy condition
[18]) and in addition that the matter creation rate is positive
c > 0, one can see that pc of (6) is positive and thus
contributes a negative pressure to (4). Such negative pres-
sures can drive accelerated expansion such as during the
early inflationary phase of the Universe or during the
current ‘‘dark energy’’ dominated era of the Universe. It
would be economical if this negative pressure that occurs
due to Hawking radiation in FRW space-time could drive
both the inflationary era and the present accelerated phase
of the Universe which is normally attributed to dark energy.
We will show that while this particle creation pressure can
drive inflation it cannot drive the present accelerated
expansion.
In the form (6) one could easily explain both inflation

and the current accelerated expansion by simply choosing
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a matter creation rate c to produce whatever acceleration
(if c > 0) or deceleration (if c < 0) one wants. For ex-
ample, if one wants exponential expansion, aðtÞ / eHt, one
should choose c ¼ 3nH [17]. However this choice has
very little physical motivation beyond giving one the result
one wanted in advance. The strength of our proposal is that
the particle creation comes from a specific mechanism—
Hawking radiation in FRW space-time—and as such leads
to definite predictions which allow the model to be verified
or ruled out. We will see that our mechanism does in fact
lead to a particle production rate c � 3nH.

We now move on to a discussion of Hawking radiation
and associated temperature in FRW space-time. Since the
FRW space-time is dynamical, the definition of the cos-
mological event horizon is subtle. However one can define
the apparent horizon knowing the local properties of the
space-time. In order to do this one can rewrite (2) in the
following form [19]:

ds2 ¼ habdx
adxb þ ~r2ðd�2 þ sin2�d�2Þ; (7)

where xa ¼ ðt; rÞ and hab ¼ diagð�c2; a2=ð1� kr2ÞÞ and
~r ¼ aðtÞr. The position of the apparent horizon is given
by the root (~rA) of the equation ðhab@a~r@b~rÞ~r¼~rA ¼ 0.

Expanding this equation over the t, r sector and simplify-
ing we get the position of the apparent horizon (~rA) [20]:

½httð@t~rÞ2 þ hrrð@r~rÞ2�~r¼~rA ¼ 0 ) ~rA ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ kc2

a2

q : (8)

Using the above one can find the Hawking temperature
of the apparent horizon [19]:

T ¼ ℏc�
2�kB

¼ ℏc
2�kB

�
1

~rA

���������1�
_~rA

2H~rA

��������: (9)

The first equality above is the standard relationship
between the Hawking temperature and surface gravity �
at the horizon of a given space-time. For FRW space-time

the surface gravity is � ¼ 1
~rA
j1� _~rA

2H~rA
j. Thus in general the

temperature, T, depends on both ~rA and its time derivative,
_~rA. However, during an inflationary phase the Universe’s
scale factor takes the form aðtÞ / expðconstant� tÞ so that
H ¼ _a

a ¼ constant. If H ¼ constant satisfies H2 � c2=a2

(later we show this is the case for our model of inflation),
we have from (8) ~rA � c

H ¼ constant and _~rA � 0. Thus the

temperature in (9) simplifies to [21]

T ¼ ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ kc2=a2

p
2�kB

� ℏH
2�kB

: (10)

In the final approximation we are again assuming H2 �
c2=a2 which as mentioned above we will justify later.

Before moving to a detailed calculation of how the
particle creation pressure (6) affects the evolution of the
early Universe in the case when this pressure comes from

the particle creation fromHawking radiation, we give some
numerical comparisons which show that this mechanism is
of the correct order of magnitude to explain inflation.
Considering H to be inverse of the Planck time
(tp � 10�43 s) gives from (10) T � ℏH

2�kB
� 1032 K. On

the other hand at Planck energy (Ep) gives a Planck tem-

perature of Tp ¼ Ep

kB
� 1032 K. Thus the Hawking tem-

perature of FRW space-time at very early time is around
the Planck temperature. This large temperature associated
with Hawking radiation of FRW space-time in the early
Universe is a good indication that our proposed mechanism
has the proper order of magnitude to be a major factor in
the early evolution of the Universe.
Our proposed Hawking radiation mechanism for infla-

tion is the inverse of black hole evaporate. For astrophys-
ical black holes the evaporation process begins very
weakly—for a black hole having the mass of our Sun
the temperature of the black body radiation emitted is
� 10�7 K. However at the end stages of evaporation
when the black holes have a small mass the evaporation
will proceed explosively. At this point one is not justified in
using the approximations that led to Hawking radiation as a
thermal spectrum and it is said that one must have in hand a
quantum theory of gravity to understand these end stages
of black hole evaporation. For FRW space-time one is not
justified in using Hawking radiation results at the very
early stage of the Universe; one should have a theory
of quantum gravity to understand this regime. As the
Universe expands there will be a point at which the approx-
imations leading to Hawking radiation from FRW space-
time become valid. It is at this point that our Hawking
radiation from the FRW space-time mechanism for infla-
tion turns on and inflation begins. As the Universe inflates
further the Hawking temperature naturally decreases and
our inflation mechanism will automatically turn off.
One can see that our proposed process is the inverse

of black hole evaporation since the direction of radiation
flux of the Hawking radiation for the apparent horizon in a
FRW space-time is the opposite of that of a Schwarzschild
black hole event horizon. For black holes, the created
particles escape outside the event horizon towards asymp-
totic infinity, while for the apparent horizon of FRW space-
time the created particles come inward from the horizon.
Due to the isotropy of FRW space-time, the radiation
is isotropic from all directions. The net result is an effec-
tive power gain in the Universe, given by the Stephan-
Boltzmann radiation law. In summary the difference in the
radiation direction from a Schwarzschild black hole and
from the FRW space-time is as follows: for black holes the
time rate of energy change P is negative (i.e., they lose
power during Hawking evaporation) while for the FRW
space-time the time rate of energy change P is positive
(i.e., the Universe gains energy). According to the Stephan-
Boltzmann radiation law the time rate of energy gain due to
Hawking radiation is
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P ¼ þdQ

dt
¼ �AHT

4; (11)

where � ¼ �2k4B
60ℏ3c2

is the Stephan-Boltzmann constant and

AH is the area of apparent horizon. Now one can substitute
(11) into (1) but in that case the right-hand side of (1)
(which is the rate of change in energy flux through the
apparent horizon) has to be evaluated at ~r ¼ ~rA, so that�

d

dt
ð�VÞ þ p

dV

dt

�
~r¼~rA

¼ �AH

�
ℏH
2�kB

�
4
; (12)

where we have used (10). To calculate the left-hand side we
first consider the volume of a sphere of arbitrary radius by
ignoring the curvature term; i.e., we take k ¼ 0 and the
volume is given by V ¼ 4�

3
~r3 ¼ 4�

3 r3a3ðtÞ. Note that here
we take the radius at arbitrary ~r. Only after performing the t
derivative in (12) do we set ~r ¼ ~rA. On the other hand for
the right-hand side which represents the flow of energy
across the apparent horizon, we take AH ¼ 4�~r2A ¼
4�r2Aa

2ðtÞ where ~rA comes from (8). Using these expres-
sions for the area and volume in (12) yields a modified
continuity equation:

_�þ 3ð�þ pÞ _a

a
¼ 3�

c

�
ℏ

2�kB

�
4
H5: (13)

If one ignored the effect of the Hawking radiation/particle
creation term on the right-hand side of (13), by setting
T ¼ 0 in (11), then (13) becomes _�þ 3ð�þ pÞ _a

a ¼ 0,

which is the usual continuity equation in the absence of
particle creation.

Using k ¼ 0 and H ¼ _a
a we now rewrite (13) using the

first equation in (3) as

_�

�
þ 3ð1þ!Þ _a

a
¼ 3!cðtÞ _a

a
; (14)

where we have taken the equation of state for ordinary
matter as p ¼ !� and the time dependent equation of state
due to particle creation is

pcðtÞ ¼ !cðtÞ�: (15)

The equation of state parameter due to particle creation is

!cðtÞ ¼ 	�ðtÞ;

where 	 ¼ ℏG2

45c7
¼ 4:8� 10�116 ðJ=m3Þ�1: (16)

The constant 	 above is essentially the inverse of the

Planck energy density �Planck ¼ c7

ℏG2 � 10114 ðJ=m3Þ. As

we will show later it is this constant 	 that sets the time
and length scale for our inflation mechanism. This may
also be different from the usual scale of inflation which is
set by the grand unified scale. Moving the !cðtÞ term in
(14) from the right-hand side to the left-hand-side one can
see that this particle creation term acts like a negative
pressure. For the present Universe this term is negligible.

The present value of the energy density of the Universe is
�0 ¼ 8:91� 10�10 J=m3 so that the !cðt0Þ ¼ 	�0 �
10�125 term on the right-hand side of (14) is effectively
zero. Thus this effective negative pressure cannot explain
the current accelerated expansion of the Universe—one
still needs dark energy. However in the early Universe �
can be large enough so that the particle creation pressure
on the right-hand side of (14) dominates, and as we will see
this can drive inflation and also give a natural turn off for
inflation.
At this point it should be mentioned that (14) does not

violate Wald’s first axiom [22,23] on the energy-
momentum tensor which is nothing but the usual conser-
vation equation r�T

�� ¼ 0 [24,25]. To see this, we note

that in the absence of particle creation the right-hand side
of (14) vanishes and the energy-momentum tensor has
the form

T�� ¼ diagð�;�p;�p;�pÞ; (17)

which satisfies the conservation equation. However in the
presence of particle creation the above definition of T��

fails to simultaneously describe the conservation law and
particle creation. In order to take both features into account
one needs to consider a modification T�� which can deal
with particle creation. Such a scenario is normally dis-
cussed in relationship to particle creation from black holes.
Since, under the appropriate choice of the vacuum state
(i.e., the Unruh vacuum) black holes emit real particles in
the form of thermal radiation, so that there is a power loss
associated with Hawking radiation, it may appear that
Wald’s first axiom is violated. However, as demonstrated
in Ref. [26], for such cases it is the regularized energy-
momentum tensor hT�

� i which satisfies the conservation
equation r�hT�

� i ¼ 0. For the Unruh vacuum the regular-

ized energy-momentum tensor is

hT��i ¼ T��
ðgravitationalÞ þ T��

ðboundaryÞ þ T��
ðradiationÞ: (18)

Thus it is clear that when one is dealing with particle
creation it is the regularized (modified) energy-momentum
tensor that satisfies Wald’s axioms. This is exactly the
picture in our case. Looking into the relation (14) one
can see that the conservation equation in our case is given
by r�

~T�� ¼ 0, where the modified energy-momentum

tensor has the form

~T�� ¼ diagð�;�p0;�p0;�p0Þ
¼ T

��
ðgravitationalÞ þ T

��
ðradiationÞðtÞ: (19)

In the above relation p0 ¼ p� pc, T
��
ðgravitationalÞ is indepen-

dent of time and given by (17) whereas the remaining part,
T��
ðradiationÞðtÞ, only contains the contribution from pcðtÞ—the

particle creation pressure due to Hawking radiation.
In addition to the negative pressure (15) associated with

particle creation due to Hawking radiation one can also
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calculate the effective particle creation rate, c H, and com-
pare with the general result given in (6). Using the equation
of state p ¼ !� one can rewrite (6) as

pc ¼ ð1þ!Þ
3nH

c�: (20)

Equating (20) with (15) gives the time dependent matter
creation rate associated with particle creation due to
Hawking radiation in FRW space-time:

c HðtÞ ¼ 3nH!cðtÞ
ð1þ!Þ : (21)

Recall that in order to have exponential expansion aðtÞ /
eHt one needs the creation rate from (6) to be c � 3nH
[17]. Thus from (21), in order to have exponential expan-
sion (i.e., inflation), one needs !cðtÞ to be approximately
the same size as 1þ!; i.e., one needs !cðtÞ � 4

3 if

one assumes the equation of state for ordinary radiation,
i.e., ! ¼ 1

3 . Since !cðtÞ ¼ 	�ðtÞ where 	 ¼ 4:8�
10�116 ðJ=m3Þ�1, this equality [i.e., !cðtÞ � 4

3 ] will occur

when the density �ðtÞ � 10116 ðJ=m3Þ which is approxi-
mately the Planck density. This density corresponds to the
density in the early Universe. Thus the rough calculations
again point toward there being a large enough matter
creation rate, c HðtÞ, in the early Universe to drive infla-
tionary expansion. However as the Universe expands and
�ðtÞ drops the creation rate c HðtÞ will decrease and this
Hawking radiation driven mechanism for inflation will
turn off.

We now give a detailed calculation of inflation driven by
Hawking radiation. Inserting !cðtÞ ¼ 	�ðtÞ into (14) one
can integrate the resulting equation to find the energy
density � as a function of scale factor a:

�¼ Da�3ð1þ!Þ

1þð 	D1þ!Þa�3ð1þ!Þ !
Da�4

1þ 3	D
4 a�4

¼ D

a4þ 3	D
4

: (22)

D is a constant and in the last equality we have taken the
equation of state of the ordinary matter to be that of radia-
tion (i.e., ! ¼ 1

3 ) since we want the early Hawking radia-

tion inflation phase to be followed by a universe dominated
by ordinary radiation. The dimensions of D depend on the
value of the equation of state parameter !. Note, in the
classical limit (ℏ ! 0), 	 ! 0, the FRW Hawking radia-

tion effect turns off, and (22) gives � / a�3ð1þ!Þ which is
the well known result for a universe dominated by ordinary
matter with an equation of state p ¼ !�.

There are two limits of this � from (22): (i) 	D � a4 so
that � � 4=ð3	Þ and the Hawking radiation effect domi-
nates; (ii) a4 � 	D so that � � D=a4 which is the energy
density of an ordinary radiation dominated universe. In
case (i) the energy density is constant so that one has
an effective cosmological constant which, as shown
below, leads to exponential, inflationary expansion. In
both cases (i) and (ii) the Universe is radiation dominated

but for case (i) this means Hawking radiation of a FRW
space-time and in case (ii) this means ordinary radiation.
As one can see from the two limiting case behaviors
of � these two types of radiation result in very different
evolution.
We now want to find the time dependence of the scale

factor aðtÞ. We begin by substituting � [from (22)] into the
first equation in (3) to get a differential equation for a as a
function of t. [Recall we are assuming that k in (3) is zero
or negligible compared to the other terms.] It is possible to
integrate the resulting equation for a to obtainffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	Dþ 4

3
a4

s
þ ffiffiffiffiffiffiffiffi

	D
p

ln

2
4 a2

2
ffiffiffi
3

p ð ffiffiffiffiffiffiffiffi
	D

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	Dþ 4

3a
4

q
Þ

3
5

¼ 8

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�GD

c2

s
t� ðK � 1Þ ffiffiffiffiffiffiffiffi

	D
p

: (23)

We have written the integration constant as�ðK � 1Þ ffiffiffiffiffiffiffiffi
	D

p
where K is some positive number greater than 1. This will
make it easier to write out some of the later formulas. One
important point to make about the scale factor, aðtÞ, in (23)
is that it has an early exponential expansion phase (the
second, logarithm term on the left-hand side) which natu-
rally transitions to a power-law expansion (the first, power-
law term on the left-hand side). We will discuss these two
regimes in more detail in the following subsections. That
these two phases come out naturally from the proposed
inflation mechanism, without need for fine-tuning some
inflaton potential, is a very attractive feature. In the next
three subsections we will analyze the early-time, exponen-
tial behavior of (23) and the later time, power-law behavior
of (23), and then we will discuss the possible values of
D and K.

A. The very early Universe limit: �D � a4

We first examine the limit of (23) in the very early
Universe where aðtÞ is of a size such that one has the limit
	D � a4. In this limit (23) becomes

aðtÞ ¼ 2ð3	DÞ14 exp
2
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
32�G

9c2	

s
t� K

2

3
5: (24)

Thus in this limit we find exponential expansion (inflation)
with a Hubble constant given by

H ¼ _a

a
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
32�G

9c2	

s
� 1045

1

sec
: (25)

At this point we can return to and justify some of our
earlier assumptions and approximations. First, after (12)

we assumed thatH2 � k c2

a2
is valid for aðtÞ near the Planck

size or larger (e.g., for a � lpl ¼ 10�35 m). For aðtÞ of the
Planck scale one has c2

a2
� 1087 as compared to H2 � 1090

from Eq. (25). Second, we assumed that _~rA � 0. This is
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also justified since from (8) ~rA � 1
H and during the infla-

tionary phase H is approximately constant with its value
given by (25). Thus _~rA � d

dt ð 1HÞ � 0.

During inflation the standard lore is that the radius of
the Universe should increase by a factor of 1026. Thus we
need

aðtendÞ
aðtbeginÞ ¼ 1026 ¼ expðH�tÞ; (26)

where �t ¼ tend � tbegin, with tend, tbegin being the end and

beginning time for this Hawking radiation driven inflation.
From (25) we have H ¼ 1045 sec�1 so we find that (26)
gives �t � 6� 10�44 sec . Note that if one took the ratio

in (26) to be 10 orders larger (i.e., aðtendÞ
aðtbeginÞ ¼ 1036) this would

yield �t � 8:3� 10�44 sec . In other words the time scale
for the length of this inflation is set by H in (25) and
independent of D and K in (23). Because H in (25) is so
large, one does not need a very long time, �t, in order to
inflate the Universe by many orders of magnitude.

In contrast to the above mechanism of inflation, which is
driven by near-Planck-scale physics, the standard picture
of inflation is that it is driven by physics at the grand
unified scale, i.e., by a grand unified phase transition.
In this standard scenario inflation is thought to go
from tbegin � 10�36 sec until tend � 10�33 sec or tend �
10�32 sec . Thus for inflation driven by a phase transition
at the grand unified scale one has �t � 10�33–10�32 sec .

In Fig. 1 we show two plots of a vs t from (23) for the
early, inflationary part of (23). In this figure we have set
D � 1091 J

m3 and two different values of K are shown.

This value of D is justified in a subsequent section.
From the two different values of K we see that this
parameter controls when inflation starts but it does not

influence how long inflation lasts, which in this model is
�t � 10�43 � 10�44 sec .

B. The not so early Universe limit: a4 � �D

The scale function aðtÞ given in (23) will leave the
regime where the very early Universe approximation in
(24) is valid, and then at some time will reach the point

where aðtÞ � ð	DÞ14. After this intermediate stage aðtÞ
from (23) will continue to increase until the regime is
reached where a4 � 	D. In this limit (23) gives

2ffiffiffi
3

p a2 þ ðK � 1Þ ffiffiffiffiffiffiffiffi
	D

p ¼ 8

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�GD

c2

s
t: (27)

Furthermore if the above condition is satisfied in a manner

that a2 � ðK � 1Þ ffiffiffiffiffiffiffiffi
	D

p
, one finally finds

aðtÞ �
�
32�GD

3c2

�
1=4

t1=2: (28)

This is the usual t1=2 power-law expansion for a radiation
dominated universe. Thus after the inflationary stage given
by (24) the solution given in (23) transitions into radiation
dominated expansion given by (28).
In Fig. 2 we show two plots of a vs t from (23) which

show the beginning of the transition from exponential

inflation to t1=2 power-law inflation. Again in this figure
we have setD � 1091 J

m3 and have the same values of K as

in 1. Again the two different values of K control when
inflation starts but they do not influence its duration.

C. Determination of D and K

In this subsection we want to investigate possible values
of the integration constantsD and K.D can be set from the
late-time energy density of radiation. From Ref. [27] one
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FIG. 1 (color online). Scale factor a is plotted with respect to t (in units of Planck time, tPl) using Eq. (23). In (a) we fix K ¼ 170 and
in (b) K ¼ 109. In both cases we take D ¼ 1091 J=m3. In this range of time a increases exponentially from Planck size to about 10�6

following Eq. (24). Because of an extremely large value of the Hubble constant (25) the lifetime of this inflation is very small. This is
the reason why in (b) apparently time is not changing along the x axis. In fact the change in t takes place after the eight decimal places
and thus does not appear in the plot.
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finds that �rad ¼ �rad

�crit
� 4:7� 10�5 which is the ratio

of the radiation energy density to the critical energy
density. Using the value of the critical energy density
(�crit ¼ 1:7� 10�9 J

m3 ) we get �rad ¼ 8:0� 10�14 J
m3 �

10�13 J
m3 for the present radiation energy density. Equating

this with D=a4 and taking a � 1026 as the present scale
factor of the Universe yields D � 1091 J

m3 . Thus the am-

plitude of (24) is ð	DÞ14 � 10�6. Since for our inflationary
phase scale factor aðtÞ given by (24) we require 	D � a4

[which because of the 4th power can translate to

ð	DÞ14 > a], we see that in this picture inflation stops at a
scale of >10�6 rather than >0:1. However given the
uncertainty in when exactly inflation ends this is not a fatal
problem. The scale of the Universe is still inflated by the
same orders of magnitude—it just starts inflating a smaller
scale and ends at a smaller scale.

Moving on to the constant K one can see from Figs. 1
and 2 that this constant sets the time scale for when
inflation starts. In plots 1(a) and 2(a) where K is chosen
to be K ¼ 170 we find that inflation starts at t a few times
larger than the Planck time tPl. From the figures we see
that for K ¼ 170 inflation starts at 3:4tPl to 3:8tPl. On the
other hand from plots 1(b) and 2(b) we see that for K ¼
109 inflation starts at about 107tPl � 10�36 sec . This start
time corresponds to the standard picture where inflation is
driven by a grand unified phase transition. Note that even
though K can shift the starting time of inflation, it cannot
control the duration which is fixed at �t � 10�43 sec .

III. GRACEFUL ENTRANCE TO INFLATION

In the previous section we sketched a model for inflation
driven by Hawking radiation of FRW space-timewhich has
a natural turn off or graceful exit from inflation. We now
offer speculation that this model of inflation driven by

Hawking radiation may also have a natural turn on or
entrance to inflation. As already noted the process for
inflation suggested here is the reverse of black hole evapo-
ration. During postinflation (i.e., late stage) the Hawking
radiation of FRW space-time will be a weak/minor effect
just as Hawking radiation is a weak/minor effect at the
beginning (i.e., early stage) of black hole evaporation.
During inflation (i.e., the very early stage) described in
the section above the FRW Hawking radiation effect is
dominant, just as during the end (i.e., very late stage) of
black hole evaporation the Hawking radiation is dominant.
During the very late stages of evaporation of a black hole

there is speculation that quantum gravity effects will turn
off Hawking radiation. One particularly concrete example
of this is in the noncommutative geometry scenario [6]
where, as the Planck scale is approached, space-time
becomes noncommutative,

½x�; x�� ¼ i���; (29)

where ��� is an antisymmetric rank 2 tensor which has the
dimensions of distance squared. As a result of this non-
commutativity black holes cannot evaporate to arbitrarily
small size, but due to the implied uncertainty relationship
between spatial coordinates—�xi�xj � 1

2 j�ijj, for ex-

ample, �y�z � 1
2 j�yzj—a black hole cannot shrink to

zero size since then one would have �xi ¼ 0 in violation
of this uncertainty relationship. Detailed analysis [6] shows
that as a black hole evaporates in the noncommutative
space-time characterized by (29) it reaches some maxi-
mum temperature after which the black hole temperature
will decrease as the black hole continues to evaporate. At
some point the Hawking temperature of the black hole goes
to zero, the evaporation process stops and one is left with a
nonradiating remnant [6]. Applying this picture to the
FRW Hawking radiation model of inflation one would
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FIG. 2 (color online). Scale factor a is plotted with respect to t (in units of Planck time, tPl) again by using (23). In (a) we consider
K ¼ 170 and in (b) K ¼ 109. As before we take D ¼ 1091 J=m3 and time changes after eight decimal places in (b). Both figures show
that in these intermediate values of a the inflationary behavior (24) naturally makes a transition to an ordinary radiation dominated era
(28) for a � 10�6. These figures nicely capture the end of inflation and the beginning of ordinary radiation domination.
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find that in the very early Universe, as during the late stages
of black hole evaporation, the size of the Universe would
be small and the FRW Hawking temperature would be
zero. Thus at this early stage there would be no inflation
since the FRWHawking radiation would be turned off. The
Universe would expand ‘‘normally’’ according to a power
law like (28). At some point the Universe would reach a
size large enough not to be dominated by the uncertainty
relationship coming from the noncommutative space-time
relationship of (29). At this point the FRW Hawking ra-
diation would turn on and drive inflation until the Universe
transitioned from the regime 	D � a4 to the regime a4 �
	D. When the Universe entered this regime (i.e., a4 �
	D) it would undergo a power-law type of expansion given
in (28) rather than the inflationary expansion of (24).

IV. SUMMARY

In this paper we have proposed a mechanism for infla-
tion based on the particle creation due to Hawing radiation
in a FRW space-time. This mechanism differs from the
model of inflation driven by some phase transition at
the grand unified scale. This can be seen in the different
time scales—inflation driven by a grand unified phase
transition is thought to start at tbegin � 10�36 sec and

last until tend � 10�33–10�32 sec , thus having �t �
10�33–10�32 sec . Because of the large value of H in
(25) [or alternatively the small value of 	 in (16)] the
time scale of our proposed mechanism for inflation is
�t � 10�44–10�43 sec , which is different from the stan-
dard time for inflation. There are two constants, D and K,
which arise in the solution of the scale factor (23).
The constant D is determined by matching the theoretical
late-time energy density (� � D=a4) with the observed
value of the present-day radiation energy density
(�rad�10�13 J

m3 ) and the present-day value of a � 1026.

In this way we obtain D � 1091 J
m3 . We also get the

amplitude of the inflationary period expression for aðtÞ as
given in (24), namely, ð	DÞ1=4 � 10�6. This means that
this model of inflation ends when a � 10�7. This is 6
orders of magnitude smaller than the standard picture of
inflation which ends at a � 0:1. However the scale factor
in our model still inflates in size by a factor of 1026. In this
picture inflation exits at a smaller scale factor than in the
canonical picture. The other constant, K, simply shifts
when inflation starts, but does not control the duration.
From Figs. 1 and 2 one can see for K � Oð100Þ inflation
starts near the Planck time while for K � Oð109Þ inflation
starts near t � 10�36 sec—the standard starting time in
inflation driven by a grand unified phase transition.

Because for some values of K the starting time of
inflation can be near the Planck time, one should worry,
for these values of K, about the validity of the calculation
of the Hawking radiation. For one, near the Planck scale
the constants c, G and ℏ could be different from the
present-day values. In particular since 	 in (16)—and

therefore H in (25)—depend on c to the seventh power,
having a different value of c at these early, near-Planck
times by even 1 order of magnitude would greatly change
the scale of the Hawking radiation driven inflation mecha-
nism proposed here. If cwere 1 order of magnitude smaller
in these very early times the energy scale of the Hawking
radiation driven inflation would shift to be more in line
with that of the grand unified phase transition mechanism
for inflation. In this paper we simply stick to the simplest
assumption—that c, G and ℏ have the present, constant
values even at these early, near-Planck times. We hope later
to investigate the possibility that c, G and/or ℏ have differ-
ent value at these early times.
In this picture of Hawking radiation driven inflation the

time scale is set by 	 in (16). Setting aside this definite
scale prediction for a moment—allowing for an arbitrary
scale 	—we note that one might regard (22), and the
resulting scale factor aðtÞ in (23), as a good phenomeno-
logical model for the time development of the size of the
Universe which naturally includes exponential expansion
with power-law expansion in a single expression.
The inflation mechanism presented here is the time

reversal of black hole evaporation. For a black hole in
the early stages of evaporation via Hawking radiation,
the radiation is a weak effect, barely changing the mass
and space-time of the black hole; for a FRW universe in its
late stages the Hawking radiation is a weak effect having
effectively no effect on the expansion rate of the Universe.
For a black hole in the late stages of evaporation via
Hawking radiation, the radiation is a dominant effect,
which plays a significant role in the change of the black
hole’s mass and the structure of the space-time; for a FRW
universe in its early stages the Hawking radiation is a huge
effect and leads to an enormous expansion rate (25) for the
Universe. In the very late stages of black hole evaporation
it is postulated that quantum gravity effects will shut off
Hawking radiation; for a FRW space-time we postulate
that in the very early stages quantum gravity effects will
shut off Hawking radiation and the associated exponential
expansion (24).
There have been other works that have studied the role

of particle creation in the evolution of the Universe [7–17].
The present proposal is similar to the work of Prigogine
et al. [14], which views particle creation as an irreversible
process from energy transfer and entropy production from
the gravitational field to the particles. The difference in the
present work is that we have proposed a very specific
particle creation mechanism, namely, the Hawking radia-
tion associated with FRW space-time. The FRW Hawking
radiation gives rise to an effective negative pressure
evolution equation for the energy density, �, (13) and
(14). The resulting � given in (22) leads to a time depen-
dent scale factor aðtÞ given in (23) which has two
regimes—one where 	D � a4 with the resulting aðtÞ
being exponential/inflationary expansion as given in (24)
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and one where a4 � 	D with the resulting aðtÞ being
power-law expansion as given in (28). There is a natural
transition from inflationary expansion to power-law expan-
sion so that this model for inflation has a graceful exit from
inflationary behavior. Finally, based on the inverse simi-
larity between black hole evaporation and this FRW
Hawking radiation model of the evolution of the scale
factor aðtÞ, where the period of late-time black hole evapo-
ration corresponds to an early period of the Universe (and
visa versa), we have given some speculation as to how the
FRW Hawking radiation mechanism for inflation may turn
on due to noncommutative space-time effects. Thus the
FRW Hawking radiation picture for the evolution of aðtÞ
provides not only a graceful exit to inflation as well as a
possible graceful entrance.

One final comment—this inflation mechanism has a
feedback mechanism which forces the scale factor, aðtÞ,

to be uniform. For example, if one assumed that the scale
factor also had a dependence on r [i.e., aðr; tÞ] the Hawking
radiation inflation mechanism would tend to erase this r
dependence. If aðr; tÞ were smaller for some r this would
imply a higher Hawking temperature and more rapid ex-
pansion. This would push those regions of r with smaller
scale factor, a, to expand more rapidly until they were the
same as the scale factor in other regions. If aðr; tÞ were
larger for some r this would imply a lower Hawking
temperature and less rapid expansion. This would push
those regions of r with larger scale factor, a, to expand
less rapidly until they were the same as the scale factor in
other regions.
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