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The path integral, which generates in-in correlation functions of a scalar field in a cosmological

spacetime, is shown to admit nontrivial classical solutions as stationary phases. Although the solutions

exist for the Lorentzian signature, their contribution to the path integral is reminiscent of that of the

instantons in Euclidean field theories. When the scalar potential has more than one locally stable vacua,

the correlation functions receive contributions from all of them via these instanton-like configurations,

which is similar to tunneling. We present some explicit solutions for toy models and discuss possible

implications of our results.
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I. INTRODUCTION

Understanding the physics of the early universe is both a
challenge and an opportunity.With the recent observational
advances in cosmology, one may hope to test new theories
on energy scales that can never be reached by conventional
accelerators and discover signs of various novel ideas. This
also motivates one to have a comprehensive understanding
of conventional approaches.

Inflation is the most attractive paradigm in solving the
problems of the standard big-bang model, and its main
predictions are in agreement with observations so far.
However, most of these predictions are based on semiclas-
sical reasoning, and a better understanding of inflationary
theories in terms of well established physics is necessary
for their robustness. In recent years, following the work
[1,2], there has been a growing interest in calculating
quantum loop corrections to cosmological correlation
functions during inflation. Earlier, various cosmological
implications of (loop) quantum effects have been studied
(see e.g., Refs. [3–15]). One of the main reasons for the
recent interest is the observation that interactions give rise
to primordial non-Gaussianities [16], which can potentially
be observed (see Ref. [17] for a review).

As usual, the main technique for evaluating quantum
corrections is the (in-in) perturbation theory. Perturbative
loop calculations corresponding to massless fields in infla-
tionary spacetimes are plagued by infrared divergences, and
there are different views in the literature whether infrared
effects are real (see e.g., Refs. [18–32]; see also Refs.
[33–35] for earlier work). On the other hand, loop contribu-
tions may also be anomalously sensitive to the UV cutoff as
discussed in Ref. [36]. There are some attempts to get non-
perturbative results such as the stochastic approach [37–41].
There are also some attempts to go beyond the one-loop

approximation [42–44] or to work out the complete one-loop
effective action in a time-dependent background [45–51].
In this paper, we consider the in-in path integral for the

generating functional of cosmological correlations corre-
sponding to an interacting scalar field in a Freedman-
Robertson-Walker (FRW) spacetime. For a field theory
defined in the flat space, instantons, if they are admitted,
give valuable nonperturbative information about the vac-
uum structure of the theory (or one may say that instantons
exist if vacuum is nontrivial). Our aim here is to seewhether
similar instanton-like classical solutions exist, which would
correspond to nontrivial saddle points of the cosmological
in-in path integrals. In searching for instanton solutions, one
naturally makes a Wick rotation to the Euclidean signature
[52]. However, it is not known how toWick rotate a general
cosmological spacetime. As an exception, if one consi-
ders the de Sitter space in conformal coordinates, which
is appropriate for Wick rotation due to the special form of
the metric, one sees that Euclidean continuation does not
give an ‘‘inverted’’ scalar potential. Therefore, efforts of
constructing Euclidean solutions directly reminiscent of the
usual instantons would fail.1

On the other hand, a cosmological in-in path integral is
very different in a few important ways from an in-out path
integral defined in flat space. Namely,
(1) The boundary conditions are different compared to

the in-out path integration.
(2) In applying saddle point approximation to an in-out

path integral, one searches for classical configura-
tions that have finite action to have a well defined
expansion scheme. However, an in-in path integral
contains two action terms in the exponential with
different signs, and there is a possibility of cancel-
lation even for configurations with ‘‘infinite’’ action.
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1Here, we only consider quantum fields in a fixed background.
There exist gravitational instantons in the context of Euclidean
quantum gravity in three-dimensional de Sitter space [53].
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(3) The cosmic expansion changes the classical dynam-
ics in a crucial way.

Thus, one may still search for classical configurations
corresponding to stationary phases of an in-in path integral
in the Lorentzian signature. As we will discuss, all three
properties listed above will be important in applying a
rigorous stationary phase approximation.

Indeed, we will be able to show that when the scalar
potential has more than one locally stable vacua, there are
nontrivial classical configurations that correspond to station-
ary phases of the in-in path integral for the generating
functional. Because of the existence of these solutions, the
correlation function receives contributions from all of
the vacua. For instance, the vacuum expectation value of the
scalar (one-point function) becomes the sum of all of the
minima of the potential even when the in-vacuum is specified
around one of the vacua, which is like a tunneling effect.

As we will discuss, when the in-vacuum state is defined
not at the asymptotic past infinity but at a finite time in the
past, there appears some additional technical difficulties
mainly related to the identification of the vacuum and the
correct set of boundary conditions one must employ. We
show that with some reasonable assumptions it is possible
to construct instanton-like solutions for that case also.

The plan of the paper is as follows. In the next section,
we review the in-in path integral formalism for an interact-
ing scalar field propagating in a cosmological spacetime.
Most of the material presented in that section is well known.
As partially new results, we give a slightly different deri-
vation of the equivalence of the path integral and operator
formalisms, and we discuss Wick rotation for a scalar in
de Sitter space (see also Ref. [54] for a rigorous discussion
of Wick rotation). In Sec. III, we fix boundary conditions
and apply stationary phase approximation to determine the
equations obeyed by saddle points. It turns out that the
results alter if the in-vacuum state is defined at finite or
infinite times. In that section, we give several examples and
elaborate physically on why instanton-like solutions do not
exist in some situations and why they are admitted in some
others. In conclusion, we discuss possible implications of
our results and indicate some open problems.

II. REVIEW OF THE IN-IN PATH
INTEGRAL FORMALISM

In this section, we would like to review the path integral
derivation of the in-in correlation functions. Our aim is
to fix our notation and discuss Wick rotation to the
Euclidean signature as a first attempt to search for instan-
ton solutions in de Sitter space. The background metric is
taken as

ds2 ¼ �dt2 þ aðtÞ2ðdx2 þ dy2 þ dz2Þ
¼ að�Þ2ð�d�2 þ dx2 þ dy2 þ dz2Þ; (1)

where t and � are the proper and the conformal time
coordinates, respectively. The scale factor of the de Sitter
space is given by a ¼ expðHtÞ or a ¼ ��0=�, where
�0 ¼ 1=H. Most of our considerations below will be
valid for an arbitrary scale factor aðtÞ, and we will freely
switch between these two coordinate systems. The action
of a minimally coupled real scalar field propagating in
this background is given by

S½�; J� ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½r��r��þ Vð�Þ� � 2J�;

(2)

where we introduce an external source J, which can be
turned on or off. In this paper we only consider real scalar
fields with this canonical action.

A. General theory

Our main object of interest is to calculate the vacuum
expectation value

h0; t0jQðtÞj0; t0i; (3)

where QðtÞ is a polynomial of the field variables and j0; t0i
is the ground state of the system at time t0. Preferably, one
would let t0 ! �1; however, in a realistic scenario t0 can
be finite as well (in that case there is a certain uncertainty
even in the specification of the free vacuum [55]). One
should also work with the vacuum of the interacting theory,
and thus in perturbation theory corrections to the initially
chosen free vacuum state must be taken into account.
The most straightforward way to introduce a path inte-

gral for (3) is to consider the generating functional

Z½Jþ; J�� ¼
Z

D�h0; t0j�; tiJ�h�; tj0; t0iJþ ; (4)

where
R
D�j�; tih�; tj is the identity operator constructed

from the field variables at time t and the inner products
in (4) are evaluated in the presence of two independent
external sources Jþ and J� coupled to field variables.
Differentiating (4) with respect to Jþ or J� at time t, and
setting Jþ ¼ J� ¼ 0 gives (3). It is easy to write the
transition amplitudes in (4) in terms of path integrals to
obtain

Z½Jþ; J�� ¼
Z

D�
Z Yt

t0

D�þD��eiS½�þ;Jþ��iS½��;J��

��0½�þðt0Þ���
0½��ðt0Þ�; (5)

where�þ and�� integrals are over all field configurations
starting from time t0 and ending at time t obeying

�þðt; ~xÞ ¼ ��ðt; ~xÞ ¼ �ð ~xÞ; (6)

and �0½��ðt0Þ� are the vacuum wave functionals corre-
sponding to the inner products h��ðt0Þj0; t0i. By introduc-
ing a Dirac-delta functional, it is also possible to rewrite
the path integral as
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Z½Jþ; J�� ¼
Z Yt

t0

D�þD��eiS½�þ;Jþ��iS½��;J��

��0½�þðt0Þ���
0½��ðt0Þ��½�þðtÞ ���ðtÞ�;

(7)

where now there is no restriction imposed, and (7) reduces
to (5) after integrating over �þðtÞ or ��ðtÞ.

B. Perturbative expansion

Before discussing the Wick rotation in Sitter space, it is
instructive to see how perturbation theory works in the path
integral formalism.2 For that the free scalar action can be
written as

S0½�; J� ¼ 1

2

Z
d4x½�L�� þ 2J�; (8)

where L is a (second order) differential operator. It is
known that the basic role of the vacuum wave functionals
in a (free) path integral is to impose the proper i� prescrip-
tion necessary to define a unique inverse of L (see Sec. 9.2
of Ref. [56]). Therefore, using an integral representation of
the delta functional in (7), the free generating functional
can be written as

Z0½Jþ;J��

¼
Z
D�ð ~xÞ

Z Yt
t0

D�þD��eiS0½�þ;Jþ��iS0½��;J��

�exp

�
i
Z
d3x�ð ~xÞ½�þð ~x;tÞ���ð ~x;tÞ�

�

¼
Z
D�ð ~xÞ

Z Yt
t0

D�exp

�
i

2

Z t

t0

dt0d3x½�TL�þ�TJ �
�
;

(9)

where we define3

L ¼
�
L 0

0 �L

�
; � ¼

�
�þ

��

�
;

J ¼
�

Jþð ~x; t0Þ þ �ð ~xÞ�ðt0 � tÞ
�J�ð ~x; t0Þ � �ð ~xÞ�ðt0 � tÞ

�
:

(10)

Performing the Gaussian integral over �, one finds

Z0½Jþ; J�� ¼
Z

D�ð ~xÞ

� exp

�
� i

2

Z t

t0

dt0d3x0
Z t

t0

dt00d3x00J T�J
�
;

(11)

where � is the inverse of L (with the i� prescription
implied by the vacuum wave functionals.4) One can write
� as

� ¼
�
�þþ �þ�

��þ ���

�
; (12)

where L�þþ ¼ 1, L��� ¼ �1, L�þ� ¼ 0, and
L��þ ¼ 0. Since L is a symmetric operator, Green func-
tions obey

�þ�ð ~x0; t0; ~x00; t00Þ ¼ ��þð ~x00; t00; ~x0; t0Þ;
�þþð ~x0; t0; ~x00; t00Þ ¼ �þþð ~x00; t00; ~x0; t0Þ;
���ð ~x0; t0; ~x00; t00Þ ¼ ���ð ~x00; t00; ~x0; t0Þ:

(13)

Inside the exponential of the functional integral (11), there
are quadratic and linear � terms. After performing the
integrals over t0 and t00, the quadratic terms become

exp

�
� i

2

Z
d3x0d3x00�ðx0Þ½�þþðtÞ þ���ðtÞ ��þ�ðtÞ

� ��þðtÞ��ðx00Þ
�
: (14)

The Green function inside the square bracket is annihilated
by L, and thus it is not invertible. Therefore, the only way
to make the � path integral to be well defined is to impose
these terms to cancel each other. In that case the � integral
becomes

Z
D� exp

�
�i

Z
d3x0d3x00�ðx0Þ½½�þþðtÞ � ��þðtÞ�Jþ

þ ½���ðtÞ ��þ�ðtÞ�J��
�
; (15)

which is nonzero for arbitrary Jþ and J� provided

�þþðtÞ ¼ ��þðtÞ; ���ðtÞ ¼ �þ�ðtÞ: (16)

These are the boundary conditions, which must be imposed
on the homogenous solutions �þ� and ��þ to get a well
defined path integral. When these are imposed, the �
integral decouples and the generating functional becomes

2This issue is discussed in the Appendix of Ref. [1]. Our
treatment of the delta functional in (7) is different from
Ref. [1] but its effect turns out to be the same, namely to force
the appropriate boundary conditions on the propagators to be
consistent with the operator formalism.

3Note that it is possible to shift the upper limit of the time
integral in (9) by an arbitrary positive number since in-in
formalism guarantees that the contributions for times larger
than t cancel. This justifies the delta functions in (10). We would
like to thank the anonymous referee for pointing out this to us.

4Although in the free theory this procedure is relatively easy to
implement, applying i� prescription for the interacting case
using the in-in perturbation theory is highly nontrivial. See
Refs. [57,58] for clarification of this point.
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Z0½Jþ; J�� ¼ exp

�
� i

2

Z t

t0

dt0d3x0
Z t

t0

dt00d3x00JT�J
�
;

(17)

where

J ¼
�

Jþ

�J�

�
: (18)

Differentiating this final expression with respect to Jþ and
J�, one may verify from the definition of Z that

�þþð ~x0;t0; ~x00;t00Þ¼�ih0;t0jT�ð ~x0;t0Þ�ð ~x00;t00Þj0;t0i;
���ð ~x0;t0; ~x00;t00Þ¼�ih0;t0j �T�ð ~x0;t0Þ�ð ~x00;t00Þj0;t0i;
��þð ~x0;t0; ~x00;t00Þ¼�ih0;t0j�ð ~x0;t0Þ�ð ~x00;t00Þj0;t0i;

(19)

where T and �T denotes time and antitime orderings,
respectively. These are exactly the propagators obtained
in the operator formalism. As usual, for an interacting
theory with a polynomial potential Vð�Þ, the generating
functional can be expressed as

Z½Jþ; J�� ¼ exp

�Z
�iVð�i�=�JþÞ=2

�

� exp

�
i
Z

Vði�=�J�Þ=2
�
Z0½Jþ; J��; (20)

which can be evaluated order by order using perturbation
theory.

C. de Sitter space and Wick rotation

At this moment, it is useful to discuss the specification of
the vacuum state j0; t0i, which is closely related to Wick
rotation. For that discussion, we specifically consider a real
scalar field in the Poincaré patch of the de Sitter space and
use conformal coordinates ð�; ~xÞ, where �< 0. The easiest
way to specify the interacting vacuum at �0 ¼ �1 is to
employ a projection by giving a small imaginary part to
the time parameter �. In general, to project out an arbitrary
ket-vector onto the interacting vacuum state defined at
�0 ¼ �1, one may introduce the operator expð��H��Þ
with �� ! 1 and � > 0, where H is the exact
Hamiltonian.5 Since the unitary time evolution operator
is given by U ¼ expð�iH�Þ, such a projection can be
naturally incorporated by assuming that the time parameter
has a small negative imaginary piece. Therefore for
fields evolving forward in time, which correspond to
the þ branch in the in-in formalism, the time must be
complexified as

�þ ¼ �rð1� i�Þ; (21)

where �r is real and � > 0. Similarly, to project out an

arbitrary bra vector onto the interacting vacuum, time must
be complexified as

�� ¼ �rð1þ i�Þ: (22)

After these deformations of the integration contours, there
is no need to keep the vacuum wave functionals in (5) and
one writes

Z½Jþ; J��
¼

Z
D�

Z Y
Cþ

D�þ Z Y
C�

D��eiS½�þ;Jþ��iS½��;J��;

where Cþ and C� are defined by (21) and (22) in the
complex � plane (see Fig. 1).
Let us determine how introducing this complex tilt

affects the propagators of a massless field in de Sitter
space. It is well known that the scalar field operator can
be expanded in terms of the mode functions as

�ð ~x; �Þ ¼ �H�
Z d3k

ð2�Þ3=2
1ffiffiffiffiffi
2k

p
�
ei

~k: ~x�ik�

�
1� i

k�

�
ak

þ e�i ~k: ~xþik�

�
1þ i

k�

�
ayk

�
: (23)

In evaluating the field operator�ð ~x; �Þ on the contours Cþ
and C�, one should replace � by �þ and ��, respectively,
which gives

��þð�0�;�00þÞ ¼
Z

d3ke�ik�0�þik�00
þ � � �

¼
Z

d3kek�ð�0
rþ�00

r Þ � � � ¼
Z

d3ke�k� � � �
(24)

and

FIG. 1. The integration contours Cþ and C� in the complex �
plane. The Wick rotated contours are also shown as C�

E .

5In the following discussion we takeH to be time independent.
With slight modifications, the arguments must be generalized to
time-dependent situations, at least in the adiabatic limit.
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�þþð�0þ;�00þÞ ¼ �ð�0 � �00Þ
Z

d3ke�ik�00
þþik�0

þ . . .

þ �ð�00 � �0Þ
Z

d3ke�ik�0
þþik�00

þ � � �

¼ �ð�0 � �00Þ
Z

d3kek�ð�0
þ��00

þÞ � � �

þ �ð�00 � �0Þ
Z

d3kek�ð�00
þ��0

þÞ � � �

¼
Z

d3ke�k� � � � ; (25)

where the signs are fixed by paying attention to the order-
ings along the respective contours and any positive number
multiplying � is absorbed in �. The crucial point is that
properly complexifying the time coordinates gives the
extra expð�k�Þ factors in the momentum integrals, which
are necessary for the UV convergence of the Green func-
tions (see e.g., Ref. [7]). A similar calculation shows that
the same damping factors appear for �þ� and ���, which
become well defined in the UV.

The above discussion clearly indicates how one should
perform Wick rotation to the Euclidean signature.6 Since
the propagators are well defined along the contours Cþ and
C�, and they are analytic functions of their complex var-
iables provided � > 0, one can do the following replace-
ments without changing the propagators7:

�þ ! �i�r; �� ! þi�r:

After this rotation, the Lorentzian actions for þ and �
branches

S�½��� ¼ 1

2

Z
C�

d�d3x

�
ð@���Þ2 � ð ~@��Þ2 � Vð��Þ

�2

�

� 1

�2

will be transformed into

S�E ½��� ¼ i

2

Z
d�rd

3x

�
ð@�r

��Þ2 þ ð ~@��Þ2 � Vð��Þ
�2
r

�

� 1

�2
r

: (27)

Note that the relative signs of the kinetic and the potential
energy terms are the same for the Lorentzian and the
Euclidean actions since both signs are changed. Of course,
this could be anticipated from the beginning since the
sign change for the kinetic term arises due to time deriva-
tives and the sign of the potential is changed due to the
metric fuctions. However, it was necessary to work out the

intermediate steps as we did above to make sure that
analytical continuation can be performed without a
problem.
As a result, we see that Wick rotation to the Euclidean

signature in the Poincaré patch of the de Sitter space does
not give an inverted potential, and therefore it is not pos-
sible to construct standard instanton solutions for the scalar
fields, which are supposed to extrapolate between different
vacua as in the case of flat spacetime.8 Nevertheless, we
will see in the next section that it is possible to construct
classical solutions in the Lorentzian signature, which are
reminiscent of instantons. In the de Sitter space, if the
scalar field is assumed to depend only on time, as we will
suppose in the next section, then the Lorentzian and the
Euclidean field equations will be the same due to the special
property of the Wick rotation discussed above. Namely any
Lorentzian solution would also satisfy Euclidean field equa-
tions and vice versa. Therefore, in de Sitter space these
solutions also correspond to the saddle points of Euclidean
path integrals similar to instantons.
It is useful to remember that our discussion in this sub-

section is carried out in the Poincaré patch of the de Sitter
space, which is relevant for cosmology. The full de Sitter
space has different properties, and viewing it as the hyper-
boloid in the Minkowski space of one higher dimension, the
Wick rotation to the Euclidean signature gives a sphere.

III. STATIONARY PHASES AND
INSTANTON-LIKE STATES

Consider the following path integral:

I ¼
Z

D�
Z Yt

t0

D�þD�� expðiS½�þ�

� iS½���Þ�0½�þðt0Þ���
0½��ðt0Þ�; (28)

which appears in the generating functional (5). Our aim is to
see if stationary phase approximation can be used to evalu-
ate (28). We take the scalar action (2) defined in a general
FRW spacetime with the metric (1). There are three inte-
gration variables in (28), and the phase must be stationary
with respect to each of them. Moreover, although their
existence only affects the integral at t0, the presence of the
vacuum wave functionals must also be taken into account.

A. Boundary conditions

Surface terms may arise in our discussion for two differ-
ent reasons: either as a result of integrating by parts the
field variables or from the variations of the action. The
vanishing of the surface terms for the first case is important
to have a well defined path integral. For example, in the
free theory these integrations by parts are necessary to

6In flat space, Wick rotation of the in-in path integrals has been
discussed in Ref. [59].

7In other words, by Wick rotation the oscillating functions
damped by a small convergence factor are replaced by the
exponentially decaying functions of the Euclidean time.

8Note, however, that the relative signs of the kinetic and the
spatial gradient terms are changed.
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obtain the second order differential operator in the action.
Boundary conditions causing these surface terms to vanish
must be imposed on all paths contributing to the in-in path
integral, defining the function space in which the func-
tional integral is carried on. The surface terms in the
second case will be important in searching for stationary
phases of the path integral as we will discuss in the next
subsection.

Although it might be important to determine the precise
boundary conditions in a more detailed study, here we
simply assume that necessary conditions are imposed at
spatial infinity and concentrate on the surface terms arising
in the time direction. These surface terms can only arise
from the kinetic term in (2). Here, one has the option of
choosing two different alternatives. If one insists on freely
integrating by parts the þ and � branches, the following
conditions must be imposed on the fields separately:

Strong conditions :
@��

@t0
ðtÞ ¼ 0;

a3ðt0Þ��ðt0Þ @�
�

@t0
ðt0Þ ¼ 0:

(29)

On the other hand, in many cases it would be enough to
require the absence of surface terms for simultaneous
integration by parts of the þ and � fields, which implies

Weak conditions :
@�þ

@t0
ðtÞ � @��

@t0
ðtÞ ¼ 0;

a3ðt0Þ
�
�þðt0Þ@�

þ

@t0
ðt0Þ ���ðt0Þ @�

�

@t0
ðt0Þ

�
¼ 0:

(30)

As noted above, these boundary conditions determine the
function space on which the path integration is carried out.
Our main results will not depend on the choice of the
strong or the weak boundary conditions. However, it would
be important to find out the correct conditions for some
applications.

To continue, one must consider the infinite and the finite
t0 cases separately. For t0 finite, we assume that aðt0Þ is
well defined; i.e., we exclude the situations involving a big-
bang singularity. For the other case t0 ¼ �1, we will
assume, having of course inflation in mind, that aðt0Þ!0
as t0 ! �1 [which we simply write as að�1Þ ¼ 0]. Let
us first discuss the t0 ¼ �1 case for which the boundary
conditions can be determined unambiguously. We would
like to remind the reader that the letter t is reserved to
denote the present time, and we use t0 as a dummy variable
if necessary.

B. The case t0 ¼ �1
The path integral (28) is over all paths extending from

t0 ¼ �1 to time t (þ branch) and then back to t0 ¼ �1
(� branch). Therefore, a stationary phase of (28) is a path,
conveniently named as�clðt0; ~xÞ, which has independentþ
and � branches, denoted by ��

cl ðt0; ~xÞ, respectively (the

branches are connected at time t). The variation around
such a path can be parametrized by ��þ and ��� obeying

��þðt; ~xÞ ¼ ���ðt; ~xÞ ¼ ��ð ~xÞ; (31)

where ��ð ~xÞ corresponds to the variation of the path at the
‘‘boundary’’ time t. The path �cl is stationary if

�

��� ðS½�þ� � S½���Þ�cl
¼ 0: (32)

From this variation, the following surface term arises (as
usual surface terms along spatial directions are assumed to
vanish by suitable boundary conditions):

lim
t0!�1

�
��þa3

@�þ
cl

@t0
� ���a3

@��
cl

@t0

�
t

t0

¼ ��

�
@�þ

cl

@t0
ðtÞ � @��

cl

@t0
ðtÞ
�
aðtÞ3

� ��þðt0Þ@�
þ
cl ðt0Þ
@t0

aðt0Þ3

þ ���ðt0Þ@�
�
cl ðt0Þ
@t0

aðt0Þ3 ¼ 0; (33)

where the condition (31) is used. Since �� is independent,
(33) implies @�þ

cl ðt; ~xÞ=@t ¼ @��
cl ðt; ~xÞ=@t. Together with

the boundary condition�þ
cl ðt; ~xÞ ¼ ��

cl ðt; ~xÞ (recall that�þ
cl

and ��
cl denote two different branches of the same path

�cl), one sees that the path corresponding to the stationary
phase must obey

�þ
cl ¼ ��

cl � �cl (34)

for all times in the region (�1, t), because they have the
same initial value data. The remaining terms in (33) vanish
since we consider FRW spacetimes with að�1Þ ¼ 0, and
thus (33) is satisfied. Thus, requiring the phase to be sta-
tionary with respect to the variations of the boundary
variable in (28) implies the equality of the þ and � paths.
On the other hand, independent variations ��� imply the
same condition for �cl:

�S½�cl�
��

¼ 0; (35)

i.e., �cl must obey the classical equations of motion.
One may see that �cl satisfies all the weak boundary

conditions (30) and only the two of the strong boundary
conditions (29). Therefore, if one insists on imposing the
strong boundary conditions, then @�clðt; ~xÞ=@t ¼ 0 must
also be satisfied.
Till now we have not yet worked out the vacuum wave

functionals in (28), which directly affects the integrations
over ��ð�1Þ. The vacuum wave functional of the free
theory is a Gaussian centered around � ¼ 0. The exact
form of the vacuum wave functional in an interacting
theory is not known, but in perturbation theory there
must arise corrections to the Gaussian functional. In any
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case, if the theory is expanded around � ¼ 0, the vacuum
wave functionals are expected to be oscillating wave func-
tionals around that point. Consequently, the stationary
phase approximation applied to ��ð�1Þ integrations
implies

�clð�1; ~xÞ ¼ 0: (36)

If one perturbatively expands around a different vacuum,
say � ¼ �0 corresponding to a minimum of the potential,
then (36) must be replaced by �clð�1; ~xÞ ¼ �0.

We thus conclude that any classical configuration obeying
the equations of motion (35) and the asymptotic boundary
condition (36) gives rise to a stationary phase of the integral
(28) [with an additional constraint @�clðt; ~xÞ=@t ¼ 0 if
strong boundary conditions are imposed]. Here, there

appears only a single boundary condition (36), and the
situation is obviously different from the boundary condi-
tions arising in a typical in-out path integral having two
asymptotic regions. This is the point (1) mentioned in the
Introduction, and it will be crucial in constructing classical
solutions as stationary phases.
Let us now expand the generating functional (5) around

a solution �cl. We define new integration variables as

�þ¼�clþ�̂þ; ��¼�clþ�̂�; �¼�bþ�̂; (37)

where �b is the boundary value of �cl

�bð ~xÞ � �clðt; ~xÞ: (38)

In these new variables (5) becomes

Z½Jþ; J��inst ¼
Z

D�̂
Z Yt

�1
D�̂þD�̂�eiS½�clþ�̂þ;Jþ��iS½�clþ�̂�;J���0½�þð�1Þ���

0½��ð�1Þ�

¼ exp

�
i
Z

�clðJþ � J�Þ
�Z

D�̂
Z Yt

�1
D�̂þD�̂�eiŜ½�cl;�̂

þ;Jþ��iŜ½�cl;�̂
�;J���̂0½�̂þð�1Þ��̂�

0½�̂�ð�1Þ�;

(39)

where �̂0 denotes the new vacuum wave functionals and
the hatted integration variables must obey

�̂þðt; ~xÞ ¼ �̂�ðt; ~xÞ ¼ �̂ð ~xÞ: (40)

The new action Ŝ contains quadratic and higher order powers
of the field variable, which can be written explicitly as

Ŝ½�̂; J� ¼ � 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½r��̂r��̂þ V̂ð�̂Þ � 2J��;

(41)

where the new potential V̂ is given by

V̂ð�̂Þ ¼ Vð�̂þ�clÞ � Vð�clÞ � V0ð�clÞ�̂: (42)

The terms linear in �̂� cancel out after an integration by
parts since �cl obeys equations of motion and surface terms
vanish owing to the boundary conditions (40).

Differentiating with respect to Jþ and setting all external
sources to zero, one finds from (39) that

h�i ¼ �cl; (43)

where we assume that �̂ ¼ 0 is a minimum of V̂ð�̂Þ and
the path integral in (39) is perturbatively evaluated around

this vacuum implying h�̂i ¼ 0. A nonzero vacuum expec-
tation value such as (43) cannot be generated in perturba-
tion theory.

It is very crucial to note that in expanding the action
functionals in (35) around �cl, the same zeroth order term
S½�cl� cancels each other in the exponential. As a result,

for the in-in path integral there is no need to assume S½�cl�
to be finite to have a well defined expansion around �cl.
This last property, which is also mentioned in the Intro-
duction, allows a more general set of field configurations to
become stationary phases.
As one would expect, in the following we will assume

�cl to depend only on time:

�cl ¼ �clðt0Þ; (44)

which is suitable for cosmological applications. To warm
up for our actual construction, we start studying simple
models in flat space.9

Free massless scalar in flat space: The field equation
€�cl ¼ 0 can be solved as �cl ¼ c1 þ c2t

0. The only solu-
tion obeying (36) is �cl ¼ 0, and thus there is no solution.
Free massive scalar in flat space: The equation of motion

€�cl þm2�cl ¼ 0 has oscillating solutions. To impose (36)
we first keep t0 finite, and thus the solution becomes �cl ¼
c sinðmðt0 � t0ÞÞ. However, t0 ! �1 limit is not well
defined, and thus there is no solution for this case either.

Massless ��4 theory in flat space: The equation €�cl þ
��3

cl ¼ 0 has two oscillating solutions that can be

expressed in terms of elliptic functions. The solution obey-
ing the necessary boundary condition at t0 (once more
keeping t0 finite first) is

9In flat space the second line of (33) does not vanish identi-
cally. One should impose an extra ‘‘Dirichlet’’ boundary condi-
tion at infinity to set ���ð�1Þ ¼ 0.
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�cl ¼ �c

�
2

�

�
1=4

sn

�
c

�
�

2

�
1=4ðt0 � t0Þ;�1

�
; (45)

where sn is the Jacobi elliptic function, but t0 ! �1 limit
is ill defined since the argument of sn does not converge.
As another try, one may scale the constant c to rewrite the
solution as

�cl ¼ � c

t0

�
2

�

�
1=4

sn

�
c

t0

�
�

2

�
1=4ðt0 � t0Þ;�1

�
: (46)

This time, the argument of the sn function has a well
defined limit as t0 ! �1, but one ends up with the trivial
solution �cl ¼ 0 due to the extra factor of t0 that appeared
in front.

Although it is possible to consider more examples,
these are enough for one to convince oneself that in flat
space no solution can be found for scalar fields. The
reason is that the classical solutions are necessarily oscil-
lating for all times and (36) only fixes the phase of the
oscillation. Therefore, the solution automatically becomes
ill defined at time t due to the infinite amount of oscil-
lations it had performed on the way. It is clear that the
expansion of the Universe, which shows up as a cosmic
friction term in the scalar field equation, might change
this situation. Let us therefore consider some examples in
de Sitter space.

Free massless scalar in de Sitter space: The equa-

tion €�cl þ 3H _�cl ¼ 0 can be solved as �cl ¼ c1 þ
c2 expð�3Ht0Þ. To impose (36) let us first keep t0 finite
again, which gives �cl ¼ �0ð1� exp½�3Hðt0 � t0Þ�Þ.
Sending t0 ! �1, one finds �cl ! �0 for all finite t0,
which is a trivial solution.

Free massive scalar in de Sitter space: The equation of

motion €�cl þ 3H _�cl þm2�cl ¼ 0 can be solved by
assuming �cl ¼ expð	t0Þ where 	2 þ 3H	þm2 ¼ 0.
The solution obeying (36) can be written as �cl ¼
cðexp½	þðt0 � t0Þ� � exp½	�ðt0 � t0Þ�Þ. The real part of
	 is always negative, and therefore �cl ! 0 as t0 ! �1
for all finite t0, which shows that there is no suitable
solution.

Massless ��4 theory in de Sitter space: In this case, the

equation for �cl becomes €�cl þ 3H _�cl þ ��3
cl ¼ 0,

which cannot be solved analytically. However, the dynam-
ics is well understood: the Hubble term damps the oscil-
lations about the equilibrium point � ¼ 0 of the ��4

potential. Assuming initially that the expansion rate is
small compared to the frequency of the oscillations, one
can write � ¼ Af, where A represents the slowly varying
amplitude and f is the rapidly oscillating function. Taking

A � H, _A	 AH and _f � Hf correspond to an expansion
that is slow compared to the oscillations. Under these
assumptions, the field equation can be approximately
solved by imposing

2 _Aþ 3HA ¼ 0; €fþ �A2f3 ¼ 0; (47)

which shows that the amplitude decreases exponentially A ¼
A0 expð�3Hðt� t0Þ=2Þ and f is given by the Jacobi elliptic
function sn. Therefore, the solution can be written as10

�cl ’ A

�
2

�

�
1=4

sn

��
�

2

�
1=4 Z t

Aðt0Þdt0;�1

�
; (48)

and it exponentially collapses to zero as t0 ! �1. It is easy
to see that if the expansion rate is not small compared to the
initial oscillation frequency, the solution vanishes more rap-
idly in the limit.
One can have a physical understanding of these negative

results as follows. As noted before, the in-in path integral is
given by the sum over all paths extending from t0 ¼ �1 to
t and then back to t0 again. The trivial path � ¼ 0 corre-
sponding to the ‘‘ground state’’ is clearly a stationary phase
of the integral and the perturbation theory works around
this path. Consider now the paths with �ðt0Þ ¼ 0 having
arbitrary initial velocities at t0 (such paths exist in the
function space provided they satisfy the boundary condi-
tions we discussed in the previous subsection). These paths
can be viewed as spontaneous quantum fluctuations around
the vacuum, and among them only stationary phases have a
chance to give a significant contribution to the in-in path
integral. In flat space, all classical solutions with�ðt0Þ ¼ 0,
i.e., all vacuum fluctuations, necessarily oscillate indefi-
nitely, and their contribution to the path integral averages
out to zero, which explains the absence of solutions in that
case. On the other hand, in de Sitter space fluctuations
starting with finite initial velocities at t0 ¼ �1 are all
damped by the expansion of the Universe near infinity so
that they all vanish ‘‘before’’ escaping from the asymptotic
region. Therefore, the problem is that the solutions either
oscillate too much (flat space) or are damped too much
(de Sitter space).11

The above comments suggest where to look for non-
trivial stationary phases solutions. Take a scalar field prop-
agating in an expanding FRW space with a potential
pictured in Fig. 2. A stationary phase �cl must obey

€�cl þ 3
_a

a
_�cl þ @V

@�
¼ 0: (49)

Assume that we are expanding around the vacuum�a ¼ 0.
Solutions with small initial velocities are damped around
�a ¼ 0, and the corresponding solution in the limit t0 !
�1 is the trivial one �cl ¼ �a ¼ 0. Consider now the

paths with larger initial velocities _�clðt0Þ> 0 such that the

10The period of the sn½x;�1� is given by the complete elliptic
integral of first kind KðxÞ as 2Kð�1Þ ’ 2:62, which shows that
the amplitude A in (48) also fixes the frequency of the
oscillations.
11As a side comment, let us mention that we are focusing on
solutions that have finite velocities @�clðt0Þ=@t0 so that the
second line of (33) is satisfied. It would be interesting to study
solutions with infinite initial velocities still satisfying (33),
which might beat the infinite damping of the cosmic expansion.
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scalar jumps over the first bump in the right and performs
damped oscillations around the second vacuum �b. It is
clear that in the t0 ! �1 limit the solution becomes12

�cl ¼ �b: (50)

Similarly, if _�clðt0Þ is chosen large enough so that the
scalar overshoots the vacuum �b and starts performing
damped oscillations around the locally stable vacuum �c,
then the limiting solution corresponding to all such initial
data becomes

�cl ¼ �c: (51)

Thus, all solutions starting from �clðt0Þ ¼ 0 with finite
initial velocities asymptotically become �cl ¼ �a ¼ 0,
�cl ¼ �b, or�cl ¼ �c, which are the nontrivial stationary
phases. Note that these solutions also satisfy the strong
boundary conditions (29).

The existence of these solutions implies that even
one starts from the vacuum around �a ¼ 0; i.e., even
when the vacuum wave functionals in (5) are chosen
accordingly, the generating functional (5) will get contri-
butions from the vacua �b and �c via the above instanton-
like solutions, and one should write

Z ¼ Za þ Zb þ Zc; (52)

where Za, Zb, and Zc can be calculated using perturbation
theory around the corresponding vacuum. Moreover one
finds

h�i ¼ �a þ�b þ�c; (53)

and thus these solutions change the vacuum expectation
value of the scalar from its naive perturbative value. This is
very similar to tunneling to the perturbatively inaccessible
vacua.

C. The case of finite t0

For finite t0, there appears additional technical difficul-
ties. One of the main problems is that in the absence of an

asymptotic region even the free vacuum cannot be uniquely
determined in an expanding universe [55] (recall how one
defines the Bunch-Davies vacuum). On the other hand, in
an interacting theory one cannot use the trick of giving a
small imaginary piece to time coordinate to project onto
the exact vacuum, and thus even perturbation theory might
become difficult to apply. Moreover, as we will see in a
moment, the existence of stationary phases depends on
whether one imposes the strong or the weak boundary
conditions, discussed above.
We can bypass some of these difficulties since we are

employing a semiclassical approximation. Taking � ¼ 0
as the minimum of the scalar potential, it is reasonable to
assume that the vacuum wave functionals are oscillating
functionals of the field variables around this minimum.
Therefore, in the stationary phase approximation, the pres-
ence of the vacuum wave functionals in the path integral
implies ��

cl ðt0Þ ¼ 0 as a result of ��ðt0Þ integrals in (28).

The variation of the phase in the path integral is still given
by (33) (with finite t0), and setting the coefficient of the
first line to zero again implies �þ

cl ¼ ��
cl . Therefore, sta-

tionary phases must obey

�þ
cl ¼ ��

cl � �cl; �clðt0Þ ¼ 0; (54)

similar to the t0 ¼ �1 case.
The rest of the discussion depends on which boundary

conditions are imposed in the function space. If one assumes
the weak boundary conditions (30), then the only way to set
the second line of (33) to zero is to impose @�clðt0Þ=@t0 ¼ 0
[note that ���ðt0Þ variations are independent], which then
gives�cl ¼ 0. Thus, there is no solution for weak boundary
conditions.
On the other hand, to satisfy the second strong condition

involving aðt0Þ in (29), one should impose Dirichlet or
Neumann conditions for þ and � branches. When the
Neumann condition is chosen either for �þ or ��, then
one gets �cl ¼ 0. Therefore, instanton-like solutions exist
onlywhenDirichlet conditions are imposed, i.e.,��ðt0Þ ¼ 0.
In that case the second line of (33) is also satisfied since
���ðt0Þ ¼ 0, and as a result one finds

�clðt0Þ ¼ 0;
@�clðtÞ
@t0

¼ 0; (55)

where the second condition follows from the first set of strong
boundary conditions in (29).
It is not difficult to construct nontrivial classical solu-

tions13 (actually infinitely many of them) satisfying (55).
As an example consider again massless ��4 theory in flat
space. The solution (45) already satisfies the condition
�clðt0Þ ¼ 0, and imposing the second one in (55) gives

FIG. 2. A scalar potential supporting instanton-like solutions.

12Note that the t0 ! �1 limit is equivalent to the t0 ! þ1
limit.

13Note that the function space with strong boundary conditions
is smaller than the function space with weak boundary condi-
tions. Therefore, one should not be surprised to see that the same
path integral has stationary phases in the first space but not in the
second one.
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�ðnÞ
cl ðt0Þ ¼ �

�
2

�

�
1=2 ð2nþ 1ÞKð�1Þ

t� t0

� sn

�ð2nþ 1ÞKð�1Þ
t� t0

ðt0 � t0Þ;�1

�
; (56)

whereKðxÞ is the elliptic integral of first kind,Kð�1Þ equals
the half period of the Jacobi elliptic function sn½x;�1�, and
n is an integer. Note that as n gets larger, both the amplitude
and the frequency of the oscillations grow, which shows
the necessity of imposing an upper limit (cutoff) for n. The
vacuum expectation value of the scalar still vanishes due to
� ! �� symmetry [note � signs in (56)]:

h�i ¼ 0: (57)

Note also that as t0 ! �1, �cl ! 0 consistent with our
earlier considerations.

Expanding the theory around one of these solutions
gives the potential

V̂ ¼ 3��ðnÞ
cl ðt0Þ2�̂2 þ 2��ðnÞ

cl ðt0Þ�̂3 þ �

2
�̂4; (58)

where �̂ is the fluctuation field. The potential contains
time-dependent coupling constants and specifically a

time-dependent mass term. Since �ðnÞ
cl oscillates about

zero, the shape of the potential also changes in time due
to sign flips of the cubic term. From (56), the mass term
becomes independent of � and the cubic interaction term

has the strength
ffiffiffiffi
�

p
, which cannot arise in any perturbative

expansion in �.
Similar solutions can be seen to exist for different scalar

potentials and for scalars propagating in an expanding FRW
universe, although it might not be possible to write down
analytical expressions. For instance, in the massless ��4

theory defined in an exponentially expanding spacetime
(which is not de Sitter space since t0 is finite), the solution
becomes very much like (48), where the initial value of the
time-dependent amplitude must be quantized to satisfy (55)
. Indeed, (48) becomes more and more reliable for larger
amplitudes, and the solution approaches (56).

IV. CONCLUSIONS

Path integral formulation gives valuable nonperturbative
information about the structure of quantum field theories,
which is otherwise hard, if not impossible, to acquire.
Likewise, it is not going to be surprising to see that in-in
path integrals will reveal some nonperturbative aspects
of quantum contributions to cosmological correlations.
Despite its evident importance, the path integral formalism
applied to in-in correlation functions is not studied too
much. Although one may encounter earlier works like
Refs. [3,5], (to our knowledge) even the very basic result

on the equivalence of the operator and the path integral
approaches in perturbation theory has been proved rela-
tively recently in Ref. [1]. Similarly, a quantitative in-in
path integral treatment of the cosmological perturbation
theory has been given about two years ago [60], which is
very novel. Our work confirms that in-in path integral
formalism will be an important technique in searching
for nonperturbative effects for cosmological correlation
functions, and some surprising results may still emerge.
Including the contributions of nontrivial stationary

phases to in-in path integrals, some perturbative quantum
results are destined to change, and this might have impor-
tant theoretical and observational consequences. For ex-
ample, in discussing the effects of symmetry breaking
and Higgs mechanism in cosmology, the existence of
instanton-like states must definitely be considered since
they allow all locally stable minima to contribute the
cosmological correlations. Namely, even when a gauge
symmetry is broken by a nonzero vacuum expectation of
a scalar in a certain cosmological era, correlation functions
might still be modified by the presence of the symmetric
vacuum via instanton-like states. On the other hand, if
time-dependent solutions (i.e., instanton-like solutions
whose time dependence survives the cosmic damping)
exist similar to (56), they might affect the spectrum of
cosmological perturbations (as by changing the tilt of the
spectrum) since the spectrum is sensitive to the shape of the
scalar potential, and these solutions give rise to potentials
with time-dependent coupling constants like (58).
It is possible to extend this work in different directions.

It would be very interesting to apply the present arguments
to a quantum mechanical problem to test the validity of the
stationary phase approximation in calculating in-in path
integrals. As an inevitable extension, one can consider
gauge fields coupled to scalars and work out how the
existence of instanton-like solutions might have an impact
on the Higgs mechanism on cosmological scales. It would
also be an important exercise to include the gravitational
degrees of freedom and determine the semiclassical gravi-
tational contributions, which might affect the standard
cosmological perturbation theory. Of course, the problems
involving the gauge and the gravitational fields have an
extra complication related to gauge degrees of freedom,
but it is worthwhile to understand how the standard picture
will be modified. In that way one might be more confident
about inflation or find a caveat in its main arguments.
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