
DBI inflation inN ¼ 1 supergravity

Michael Koehn,1,* Jean-Luc Lehners,1,† and Burt A. Ovrut2,‡

1Max-Planck-Institute for Gravitational Physics, Albert Einstein Institute, 14476 Golm, Germany
2Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396, USA

(Received 9 August 2012; published 7 December 2012)

It was recently demonstrated that, when coupled to N ¼ 1 supergravity, the Dirac-Born-Infeld (DBI)

action constructed from a single chiral superfield has the property that when the higher-derivative terms

become important, the potential becomes negative. Thus, DBI inflation cannot occur in its most

interesting, relativistic regime. In this paper, it is shown how to overcome this problem by coupling

the model to one or more additional chiral supermultiplets. In this way, one obtains effective single real

scalar field DBI models with arbitrary positive potentials, as well as multiple real scalar field DBI inflation

models with hybrid potentials.
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I. INTRODUCTION

Inflation is a possible solution to the flatness and
horizon puzzles of standard big bang cosmology. It was
discovered more than 30 years ago [1–3], and is consid-
ered by many as the leading cosmological model of
the early Universe. This is due in large part to its ability
to generate nearly scale-invariant density perturbations
at the same time as addressing the above-mentioned
puzzles. However, inflation is not unique in this regard.
For example, during an ekpyrotic phase [4–6], where
the Universe contracts very slowly, the same big bang
puzzles can be addressed and nearly scale-invariant den-
sity perturbations can be generated.1 It follows, therefore,
that to understand the actual history of our universe,
we must make progress in two directions. On one hand,
it is important to work out the detailed predictions of
the various models of the early Universe—in particular,
the different predictions they make regarding the non-
Gaussian features in the primordial density perturbations
[11–18]. On the other hand, it is imperative to develop
the microphysical structure of the various cosmological
models. In this paper, we will be mainly interested
in this second aspect with the focus on inflationary
models.

Our aim is to study inflationary theories with
higher-derivative kinetic actions in the context of
four-dimensional N ¼ 1 supergravity.2 Although our
work will be purely within this supergravity context,
the motivation stems from the string theory. There, the
dynamics of D branes and M5 branes are described

by the Dirac-Born-Infeld (DBI) action [20].3 This action
is unusual in that it contains higher-derivative terms
which are essential to understanding its dynamics.4

Furthermore, interactions between branes (and anti-
branes) can generate an effective potential [23–27]. In
such a setting, inflationary models based on the DBI action,
in which the inflaton field is identified with a position modu-
lus of the brane, have been constructed and shown to lead to
interesting observational predictions—such as equilateral
non-Gaussianities [28,29]. These models have mainly been
analyzed in the nonsupersymmetric effective field theory.
However, realistic string compactifications typically pre-
serve minimal supersymmetry in four dimensions; see, for
example Refs. [30,31]. It is of interest, therefore, to reformu-
late these models within the context of four-dimensional
N ¼ 1 supergravity.
In a recent paper [32], we developed a formalism

for coupling chiral supermultiplets with higher-derivative
kinetic terms to supergravity. Restricting to a single chiral
superfield, we constructed a supergravitational generaliza-
tion of the single real scalar DBI action. This supergravity
theory then contains the DBI action of two real scalar
fields: the constituents of the lowest component of the
chiral supermultiplet along with a specific potential energy.
In the process, however, we discovered that when the
higher-derivative terms become significant, the potential
energy necessarily becomes negative regardless of the
form of the superpotential. Thus, with a single chiral
supermultiplet, DBI inflation cannot occur. In this paper,
we will show how this restriction can be overcome by
coupling the supergravity DBI theory to one or more addi-
tional chiral superfields—each, however, with canonical
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1In these models, one must also understand the transition from

a contracting to an expanding phase. This remains an open issue,
but see Refs. [7–10].

2A study of DBI inflation in global supersymmetry (with an
added Einstein-Hilbert term) was performed in Ref. [19].

3The effective description in terms of the DBI action is valid at
arbitrary velocity, but only as long as the proper acceleration of
the branes is small.

4Higher-derivative terms involving the extrinsic and intrinsic
brane curvatures—such as those discussed in Refs. [21,22]—can
arise as well. We will not consider these couplings here, but note
that they might be significant in certain applications.
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two-derivative kinetic terms. Such couplings can lead to
positive, inflationary potentials via the elimination of the
new auxiliary fields. The required couplings are similar,
and in some cases, identical to those previously considered
in several two-derivative inflationary models in supergrav-
ity [33–35]. However, in the higher-derivative context, they
lead to a number of new features, and to different predic-
tions for cosmological observations.

We have two main results: (i) Within the context of
N ¼ 1 supergravity, we provide a method for obtaining
DBI inflation for a single real scalar component of a chiral
superfield with an arbitrary potential energy. This is accom-
plished both when the higher-derivative terms are negligible
and, more importantly, in the relativistic regime where the
higher-derivative terms are dominant. We achieve this by
coupling the single chiral superfield DBI theory to one addi-
tional chiral supermultiplet, with two-derivative kinetic en-
ergy, constrained Kähler potential and specific holomorphic
couplings. (ii) We show how one can obtain multireal field
DBI models with positive potentials. There are two possibil-
ities here. First,within the context of themodels just discussed
one can allow the scalar superpartner of the inflaton field to
fully participate in the dynamics. This is accomplished by
easing restrictions on the Kähler potential. In this case, the
potential for the second real scalar field is automatically
determined. Second, and more generally, one can couple the
supergravity DBI theory to two or more additional chiral
supermultiplets—in which case there is more freedom in
constructing multifield potentials. The multireal scalar field
models are of clear phenomenological interest, since they can
each be compatible with current observational data while
making predictions that are testable in the near future [36,37].

The plan of the paper is the following. In Sec. II, we review
the construction of single chiral superfield DBI actions in
N ¼ 1 supergravity. This reveals that, in the relativistic
regime, the potential for both real component scalars in the
DBI action is negative and thus prohibits inflation from
occurring. In Sec. III, we show how the inclusion of a second
chiral supermultiplet modifies this conclusion. In fact, via a
judicious choice of both the Kähler potential and superpoten-
tial, this allows arbitrary positive potentials to be constructed
for a single real DBI scalar field, while simultaneously fixing
the remaining three real scalars. In the beginning of the next
section, we briefly discuss how this theory can bemodified so
that both real component scalars of the DBI superfield
become dynamical. In Sec. IV, we introduce a third chiral
superfield. This allows us to construct a more general class of
multifield models of DBI inflation in supergravity, including,
for example, models with inflationary potentials of the hybrid
type. We conclude in Sec. V.

II. HIGHER-DERIVATIVE KINETIC TERMS
IN SUPERGRAVITY

In Ref. [32], we showed how to couple chiral superfields
with higher-derivative kinetic terms to four-dimensional

N ¼ 1 supergravity.5 Since we are interested in cosmo-
logical applications, fermionic component fields will be
ignored throughout. The construction takes place in curved
superspace, which is the most natural setting for writing
actions invariant under local supersymmetry transforma-
tions. A chiral superfield � then admits the expansion

� ¼ Aþ����F; (2.1)

where A is a complex scalar field and F is a complex
auxiliary field. The � coordinates are Grassmann-valued
and carry local Lorentz indices (� denotes the index of
a two-component Weyl spinor). They extend ordinary
spacetime to curved superspace, and are defined pre-
cisely so that A and F arise as the components of � in
the above expansion. In curved superspace, supersym-
metric Lagrangians can be constructed from the chiral
integrals

Z
d2�ð �D2 � 8RÞL; (2.2)

where L is a scalar Hermitian function. The chiral pro-

jector in curved superspace is �D2 � 8R, where �D _� is a
spinorial component of the curved superspace covariant

derivative DA ¼ fDa;D�;
�D _�g and R is the curvature

superfield. In its component expansion, R contains the
Ricci scalar R as well as the auxiliary fields of super-
gravity—namely a complex scalar M and a real vector
bm. The purely bosonic components in the � expansion
of R are

R ¼ � 1

6
Mþ�2

�
1

12
R� 1

9
MM�

� 1

18
bmb

m þ 1

6
iea

mDmb
a

�
: (2.3)

Another superfield that we will need is the chiral density
E with expansion

2E ¼ eð1��2M�Þ; (2.4)

where e is the determinant of the vierbein. Note that the
tangent space Lorentz indices A ¼ fa;�; _�g are related to
the spacetime indices M ¼ fm;�; _�g via the superviel-
bein EM

A and its inverse, with Em
a ¼ em

a being the
ordinary vierbein. For a complete discussion of curved
superspace we refer the reader to Ref. [47].
The supergravity theory of chiral supermultiplets with

higher-derivative kinetic terms is defined via the Lagrangian

5Also see Ref. [38], where related results were obtained.
Earlier work of interest includes Refs. [39–46].
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L ¼
Z

d2�2E
�
3

8
ð �D2 � 8RÞe�Kð�i;�yk�Þ=3 þWð�iÞ

�

þ H:c:� 1

8

Z
d2�2Eð �D2 � 8RÞ

�D�iD�j �D�yk� �D�yl�Tijk�l� þ H:c: (2.5)

The first two terms contain theKähler potentialKð�i;�yk�Þ,
which is a Hermitian function of the chiral superfields �i

(where index i ¼ 1; 2; . . . enumerates the fields) and the
superpotential, given by the holomorphic function Wð�iÞ.
By themselves, these terms lead to ‘‘normal’’ two-derivative
kinetic energy and a potential for the scalar superfields
coupled to canonical supergravity. The final term, however,
describes chiral superfields with higher-derivative kinetic
energy. Tijk�l� is a tensor superfield that is Hermitian and

symmetric in the indices i, j as well as in k�, l�. It contains

an arbitrary real function of the chiral superfields and their
covariant spacetime derivatives Dm, with all such indices
contracted. Here, wewill be interested in the casewhere only
one of the chiral superfields, namely�1 � �, has a higher-
derivative action—the generalization to many superfields
with higher-derivative actions being straightforward. In that
case, Tijk�l� effectively reduces to a single arbitrary function
T of�, �y and their spacetime derivatives.
By choosing this function appropriately, one can write a

supergravity version of the single real scalar field DBI
action. It turns out that we need to consider a Kähler
potential with the property

@2K

@�@�y

��������¼ K;AA� ¼ 1 (2.6)

and a tensor superfield [32,48]

16T ¼ fð�;�yÞ
1þ f@� � @�yeK=3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ f@� � @�yeK=3Þ2 � f2ð@�Þ2ð@�yÞ2e2K=3

q : (2.7)

Here fð�;�yÞ is an arbitrary Hermitian function and we
have used the notation that @� � @�y ¼ gmnDm�Dn�

y.
In a brane setting, the lowest component of the f function
can be identified with the warp factor of the direction in
which the brane moves. Performing the d2� integral in the
Lagrangian (2.5) picks out the �2 component of the inte-
grand. A feature of chiral supergravity is that, after per-
forming this integration, one does not end up in Einstein

frame. Rather, one has to perform a Weyl rescaling of the
fields first, with the vierbein transforming as

em
a ! em

aeK=6: (2.8)

Note that this rescaling also removes the factors of eK=3

in (2.7). Then, after eliminating the auxiliary fields bm, M
of the supergravity multiplet, the Lagrangian reduces to

1

e
L¼�1

2
Rþ3eKjWj2�1

f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2f@A�@A�þf2ð@A�@A�Þ2�f2ð@AÞ2ð@A�Þ2

q
�1

�
þeK=3jFj2þe2K=3ðFðDAWÞþF�ðDAWÞ�Þ

�32eK=3jFj2@A�@A�Tþ16e2K=3jFj4T : (2.9)

Here T , which is the Weyl rescaled lowest component of
T, is given by

16T ¼ f

1þf@A�@A�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þf@A�@A�Þ2�f2ð@AÞ2ð@A�Þ2p ;

(2.10)

with f ¼ fðA; A�Þ. The second line of (2.9) can be recog-
nized as the DBI action for the two real scalar fields �, �
that make up the complex scalar A [48]. That is, the
simplest N ¼ 1 supergravity generalization of the single
real scalar DBI action naturally produces a DBI theory for
both real scalar component fields. As can be seen from the
action, when the fields depend only on time there exists an
upper bound on the velocity of A given by

j _Aj2 � 1

2f
: (2.11)

The so-called relativistic regime corresponds to the situ-
ation where this bound is (almost) saturated. Models of
DBI inflation [28] exploit this inequality. As the brane
moves towards a region of large f, the scalars are auto-
matically constrained to move slowly, allowing for infla-
tion to occur on potentials that would otherwise be too
steep.
In the above Lagrangian, the auxiliary field F has not yet

been eliminated. Its equation of motion is algebraic, and
given by

Fþ eK=3ðDAWÞ� þ 32FT ðeK=3jFj2 � @A � @A�Þ ¼ 0:

(2.12)

Interestingly, this is a cubic equation. Thus, F admits up to
three solutions. In our previous paper [32], we showed that
one of these solutions, which we termed the ordinary
branch, is directly related to the usual solution for F that
one obtains in the absence of higher-derivative terms.
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In this paper, we only consider this branch. The remaining
two branches lead to entirely different theories, which are
not continuously connected to the ordinary branch as the
higher-derivative terms become small. The ordinary
branch solution for F is given by

F ¼ Fþ þ F�; (2.13)

where

F� ¼
�
�q

2
�

��
q

2

�
2 þ

�
p

3

�
3
�
1=2

�
1=3

;

q ¼ 1

32T

ðDAWÞ�2
DAW

;

p ¼ e�K=3 ðDAWÞ�
DAW

�
1

32T
� @A � @A�

�
:

(2.14)

When f is small, so is T and F approaches the usual
solution

F � �eK=3ðDAWÞ� ðf smallÞ: (2.15)

In this nonrelativistic limit, after substituting for F one
obtains the usual potential

Vnon-rel: ¼ eKðjDAWj2 � 3jWj2Þ: (2.16)

Note that this expression is only valid as long as the higher-
derivative terms in A are irrelevant.
More interesting for our purposes is the relativistic

limit, where f is large and j _Aj2 correspondingly small,
with T � f=8. In that case, the solution for F approaches

F � �
�ðDAWÞ�2
4fDAW

�
1=3 ðf largeÞ: (2.17)

After substituting for F in the relativistic limit, the
Lagrangian becomes

1

e
Lrel:¼�1

2
Rþ3eKjWj2�3

2

eKjDAWj2
ð4feKjDAWj2Þ1=3�

1

f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2f@A �@A�þf2ð@A �@A�Þ2�f2ð@AÞ2ð@A�Þ2

q
�1

�
þOðf�2=3Þ:

(2.18)

Thus, to leading order the potential is given by

Vrel ¼ �3eKjWj2; (2.19)

which is negative for any choice of superpotential. The
term arising from eliminating F is subleading. It is evident,
therefore, that inflation cannot occur since a phase of de
Sitter-like expansion requires a positive energy density in
the Universe. Thus, supergravitational relativistic DBI
inflation with a single chiral superfield does not work.

III. DBI INFLATION FROM COUPLING
TO A SECOND SUPERFIELD

We have shown that, in the relativistic limit, the super-
gravitational DBI theory of a single chiral supermultiplet
� has a negative potential energy and, hence, inflation

cannot occur. Let us now extend this theory by coupling
it to a second chiral superfield Swith component expansion

S ¼ Bþ����FB: (3.1)

Here B is a complex scalar and FB the complex auxiliary
field associated with S. We will assume that this second
field has a two-derivative action.6 Then, choosing a Kähler
potential such that

K;AA� ¼ 1; (3.2)

K;AB� ¼ 0 ¼ K;A�B; (3.3)

and after the same manipulations as in the previous sec-
tion—for example, Weyl rescaling the action and eliminat-
ing the auxiliary fields bm, M—we obtain the Lagrangian

1

e
L ¼ � 1

2
Rþ 3eKjWj2 � K;BB�@B � @B� � 1

f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2f@A � @A� þ f2ð@A � @A�Þ2 � f2ð@AÞ2ð@A�Þ2

q
� 1

�

þ K;BB�eK=3jFBj2 þ e2K=3ðFBðDBWÞ þ F�
BðDBWÞ�Þ þ eK=3jFj2 þ e2K=3ðFðDAWÞ þ F�ðDAWÞ�Þ

� 32eK=3jFj2@A � @A�T þ 16e2K=3jFj4T : (3.4)

In this expression, the auxiliary fields F, FB of the two chiral multiplets have not yet been eliminated. Their equations of
motion are given by

Fþ eK=3ðDAWÞ� þ 32FT ðeK=3jFj2 � @A � @A�Þ ¼ 0; (3.5)

6One could equally well assume that it also has higher-derivative kinetic terms, but that they are unimportant in the vacuum. For
simplicity, we will not pursue this option here.
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K;BB�FB þ eK=3ðDBWÞ� ¼ 0: (3.6)

Note that these equations are not coupled and, thus, F can
be eliminated as in the previous section. It is also straight-
forward to substitute for FB, since its equation of motion is
algebraic and linear. In the nonrelativistic limit—that is,
when f is small—one obtains the usual potential

Vnon-rel:;2 superfields ¼ eKðjDAWj2 þ K;BB� jDBWj2 � 3jWj2Þ:
(3.7)

However, in the relativistic limit the jDAWj2 term again is
subdominant and the potential becomes

Vrel:;2 superfields ¼ eKðK;BB� jDBWj2 � 3eKjWj2Þ: (3.8)

Comparing this to expression (2.19), we see that in the
two superfield case a new, positive definite term enters the
potential energy. Hence, by choosing the superpotential
appropriately, the overall potential can be made positive
along the direction(s) of interest in field space—thus
enabling inflation to occur.

We will first be interested in the case where one allows
the two real scalars in

A ¼ 1ffiffiffi
2

p ð�þ i�Þ (3.9)

to be dynamically relevant. These scalars both have kinetic
terms of the DBI form—as is evident, for example, from
(2.18). Our formalism also implies that, after the potential
energy has been chosen for the first scalar, the potential of the
second scalar is automatically determined. Moreover, when
theKähler potential satisfies certain additional requirements-
which we derive below-this second scalar can be stabilized.
In this case, our construction allows one to obtain an arbitrary
positive potential. Choosing this appropriately leads effec-
tively to a single real component fieldmodel ofDBI inflation.

We choose for the superpotentialW an Ansatz first used
in Ref. [33] and analyzed, in detail, in Ref. [34] within
the context of ordinary two-derivative supergravity. This
Ansatz is

W ¼ Swð�Þ; (3.10)

where wð�Þ is a ‘‘real’’ holomorphic function of�; that is,
wð�Þ ¼ P

ncn�
n with cn 2 R. The coefficients are chosen

to be real for simplicity. The lowest component of W is
given by BwðAÞ. On the B ¼ 0 plane, we have W ¼ 0,
DBW ¼ wðAÞ and, hence, the potential energy (3.8)
becomes

VB¼0 ¼ eKðA;A�ÞK;BB� jwðAÞj2: (3.11)

Here, the Kähler potential is also evaluated at B ¼ 0. The B
field can always be rescaled so that its kinetic term is
canonical (when B ¼ 0). Correspondingly, we will take
K;BB� jB¼0 ¼ 1. Then the potential further simplifies to

VB¼0 ¼ eKðA;A�ÞjwðAÞj2: (3.12)

For this expression to be physically relevant, one must
ensure that the dynamics is restricted to the B ¼ 0 plane.
That is, the two real scalar fields b, d, defined by

B ¼ 1ffiffiffi
2

p ðbþ idÞ; (3.13)

must be stabilized with zero vacuum expectation values. In
an inflationary context, this means that around b ¼ d ¼ 0
the scalar squared masses m2

b, m
2
d must be positive and at

least as large as the Hubble expansion scale H2. A straight-
forward calculation shows that

m2
b ¼

@2V

@b2

��������b¼d¼0

¼
�
1

2

@2V

@B2
þ @2V

@B@B� þ
1

2

@2V

@B�2

���������B¼0

¼ �eKðA;A�ÞjwðAÞj2K;BBB�B� ; (3.14)

with a similar expression for m2
d. One can assume that,

during inflation, the dynamics is dominated by the potential
and, thus, the Friedmann equation implies that V � 3H2.
Then the requirement that m2

b, m
2
d * H2 translates into the

stability condition

K;BBB�B� & � 1

3
: (3.15)

This condition is analogous to that found in two-derivative
supergravity models [34]. It can be satisfied, for example,
if the Kähler potential includes a term �ðBB�Þ2 with
� & �1=12.
Now note that for the superpotential (3.10), DAW is

proportional to B and hence vanishes on the B ¼ 0 plane.
Thus, the potential term eKjDAWj2 that becomes subdomi-
nant in the relativistic limit, is actually zero on the infla-
tionary trajectory for models of this type. This can also be
seen directly from the equation of motion (3.5) forF. For the
Ansatz (3.10) the ordinary branch solution for F is simply
the trivial solution F ¼ 0 if we restrict to the B ¼ 0 plane.
In other words, in going from the approximately two-
derivative regime to the relativistic DBI regime, the poten-
tial does not change for the models considered here. This
special feature is entirely nontrivial, and arises as a direct
consequence of the choice (3.10). It greatly facilitates the
analysis of the corresponding inflationary models.
Let us now restrict the theory further, so that only a single

real scalar field in (3.9) remains dynamical. For this purpose,
choose the Kähler potential to depend on �, �y via the
combination� 1

2 ð���yÞ2 only. Then, the Kähler potential
will not depend on�. Correspondingly, if � is now stabilized
around � ¼ 0 with a sufficiently high mass, then the dynam-
icswill take place entirely in the� directionwith the potential

V� ¼ w

�
�ffiffiffi
2

p
�
2
: (3.16)

Thus, any smooth positive potential can be engineered in this
way, simply by identifying w with the square root of the
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desired potential and analytically continuing w to the com-
plex plane [34]. However, for consistency, one must check
under what conditions � is stabilized. Its mass along the
putative inflationary trajectory is given by

m2
� ¼ @2V

@�2

���������¼b¼d¼0

¼
�
� 1

2

@2V

@A2
þ @2V

@A@A� �
1

2

@2V

@A�2

����������¼B¼0

¼ �ww00 þ w02 þ 2w2ð1� K;AA�BB� Þ; (3.17)

wherew0 ¼ w;Aj�¼0. Thismass is identical to that obtained in

two-derivative supergravity theories [34]. A working model
of single real component field DBI inflation must then satisfy
m2

� * H2-otherwise perturbations in the � field also become

relevant.Whenw00=w and ðw0=wÞ2 are small (bearing inmind
that for DBI inflation they need not be as small as for two-
derivative inflation), this translates into the requirement

K;AA�BB� &
5

6
: (3.18)

An example of a Kähler potential satisfying all of the above
assumptions and stability constraints was discussed in
Ref. [34]. Here, we will simply repeat it for specificity.
It is given by

K¼�1

2
ð���yÞ2þSSy þ �ðSSyÞ2þ�

2
SSyð���yÞ2;

(3.19)

with � & �1=12 and � * 5=6.

IV. COUPLING TO ADDITIONAL
CHIRAL SUPERFIELDS

DBI inflation was inspired by the string theory, and is of
importance because it has a more direct link to microphysics
than most inflationary models. The higher-derivative terms
play a crucial role in DBI theories, since they lead to the
speed limit (2.11). They also imply the generation of sig-
nificant equilateral non-Gaussianity [28,29]. Interestingly,
models of single real scalar field DBI inflation are already
tightly constrained by current observations-precisely
because of the constraints imposed by the underlying mi-
crophysics. Such models could be ruled out in the near
future [49–52]. However, restricting to a single real scalar
field is not necessary within a string theory context. For
example, many DBI models that have been considered focus
on a D3 brane moving along a warped throat of an internal
Calabi-Yau manifold. The radial direction is typically iden-
tified with the inflaton. By construction, however, such
models naturally have multiple real scalar fields, with the
angular directions in the Calabi-Yau space providing the
additional degrees of freedom [36]. Hence, it is of interest to
also study multifield models of DBI inflation. For such
theories, the constraints arising from the comparison with
observational data are typically less severe. An interesting

recent example is provided in Ref. [37], which is in agree-
ment with all current observations, but where significant
non-Gaussianities of both local and equilateral type are
predicted.
The models studied in the previous section, if the second

real scalar � is not stabilized, can be regarded as two real
scalar field models. This can be achieved by removing
restriction (3.18) on the Kähler potential. However, the
form of the potential (3.12) is then rather restrictive. We
found that an essentially arbitrary positive potential could
be obtained in the purely � direction by choosing wðAÞ
appropriately. But, given wðAÞ, the potential for the second
field � is then determined at the same time. Hence, there is
a risk that the second direction spoils the suitability of the
potential for inflationary dynamics [53]. It turns out that
more flexibility in constructing multireal scalar field poten-
tials can be obtained by coupling our theory to a third chiral
superfield �, with component expansion

� ¼ Cþ����FC: (4.1)

We will assume that �, just like S, does not appear with
higher-derivative kinetic terms in the Lagrangian. Then, in
analogy with FB above, the auxiliary field FC is easily
eliminated. Furthermore, in addition to conditions (3.2)
and (3.3), we restrict the Kähler potential to satisfy

K;BC� ¼ 0 ¼ K;B�C: (4.2)

In the relativistic limit, the potential now becomes

Vrel:;3superfields¼eKðK;BB� jDBWj2þK;CC� jDCWj2�3jWj2Þ:
(4.3)

In the nonrelativistic limit there would be an additional
term eKjDAWj2.
When considering multiple fields, inflationary models of

the so-called hybrid type are of particular interest. In such
theories, inflation occurs along a direction that becomes
unstable at a certain field value. At this point, the infla-
tionary trajectory makes a turn in field space, following the
locally steepest direction to a true minimum of the poten-
tial. To obtain such models in two-derivative supergravity,
a superpotential of the form

W ¼ �ða1�2 � a2Þ (4.4)

has been used [54,55], where a1;2 are constants.7 In the

present context, this approach does not work. The reason
is that the DAW terms, which are needed to obtain the
desired potential, are subdominant in the relativistic regime.
However, instead of coupling � directly to �, one can

7In the context of supersymmetric grand unified theory mod-
els, this can be generalized to a pair of conjugate chiral fields�,
�c, which transform nontrivially under the action of a gauge
group—see, for example Refs. [56,57]. In this case, one may
choose a superpotential of the form W ¼ �ða1��c � a2Þ.
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couple� to S instead, while continuing to couple S to� as
in the previous section. Thus, we consider the superpotential

W ¼ Swð�;�Þ; (4.5)

where w is now a holomorphic function of � and �, and
where we will assume that in the double Taylor series
expansion of w in �, � only real coefficients occur. The
lowest component of this superpotential is BwðA;CÞ. Note
that DAW, DCW and W itself are all proportional to B.
Hence, if the stability condition (3.15) holds, then the dy-
namics once again takes place entirely on the hypersurface
B ¼ 0. The potential is then generated solely by the DBW
term, and reduces to

VB¼0 ¼ eKðA;A�;C;C�ÞjwðA;CÞj2: (4.6)

Note that since DAW is zero in the field space region of
interest, the corresponding ordinary branch solution for F is
once again simply F ¼ 0. Therefore, the potential is always
given by the above expression, whether the higher-derivative
DBI terms are important or not.

Similar to the analysis of Sec. III, we now investigate
whether one can further restrict the dynamics to the two

directions � ¼ ffiffiffi
2

p
ReðAÞ and � ¼ ffiffiffi

2
p

ReðCÞ. For this to be

possible, we must ensure that the directions � ¼ ffiffiffi
2

p
ImðAÞ

and � ¼ ffiffiffi
2

p
ImðCÞ are stabilized when B ¼ 0. Assuming

that the Kähler potential depends only on the combinations
� 1

2 ð���yÞ2 and � 1
2 ð���yÞ2, an analogous calcula-

tion to (3.17) shows that the corresponding masses are
given by

m2
� ¼ �ww;AA þ w;A

2 þ 2w2ð1� K;AA�BB� Þ; (4.7)

m2
� ¼ �ww;CC þ w;C

2 þ 2w2ð1� K;CC�BB� Þ; (4.8)

where all terms are evaluated at B ¼ 0. Dynamical stabil-
ity during inflation is guaranteed if these masses are larger
than the Hubble scale. As above, neglecting w;AA=w,
w;CC=w, w2

;A=w
2 and w2

;C=w
2, we obtain the following

requirements on the Kähler potential:

K;AA�BB� &
5

6
; (4.9)

K;CC�BB� &
5

6
: (4.10)

Under these conditions, the potential energy further sim-
plifies to

V�;� ¼
�
w

�
�ffiffiffi
2

p ;
�ffiffiffi
2

p
��

2
: (4.11)

An example of a Kähler potential satisfying all of the
assumptions and constraints above is given by an extension
of (3.19),

K¼�1

2
ð���yÞ2þSSy þ �ðSSyÞ2þ�1

2
SSyð���yÞ2

� 1

2
ð���yÞ2þ�2

2
SSyð���yÞ2; (4.12)

with � & �1=12, �1 * 5=6, �2 * 5=6. In this case, four
out of the six real scalars fields are stabilized. The two
remaining scalars are dynamical fields, moving in an
essentially arbitrary potential given by (4.11). For example,
a typical hybrid potential can be obtained by choosing

Whybrid ¼ S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20ð2�2 þ 4a1�

2�2 þ ða2 � 2a3�
2Þ2Þ

q
;

(4.13)

with real positive constants a0;1;2;3. This leads to the

potential energy

Vhybrid ¼ a20ð�2 þ a1�
2�2 þ ða2 � a3�

2Þ2Þ: (4.14)

For �>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2a3=a1

p
, inflation takes place along the � ¼ 0

line with potential a20ð�2 þ a22Þ. For �<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2a3=a1

p
, the

transverse direction turns over, and two new minima now

arise at � ¼ 0, � ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=a3

p
, at which points the poten-

tial vanishes—see Fig. 1. This example illustrates how
two-field potentials can be engineered by choosing the
superpotential appropriately. One special feature of the
models considered here is that the kinetic terms are also

FIG. 1 (color online). This graph depicts the field space
trajectory in a potential of the hybrid form (4.14), with a0 ¼
a2 ¼ 1, a1 ¼ 10, a3 ¼ 4. For illustration purposes, we have
plotted the logarithm of the potential rather than the potential
itself. The trajectory first evolves along the� direction with a�2

potential, and then turns as the transverse direction becomes
unstable. Inflation ends as the trajectory reaches a true minimum
of the potential at� ¼ 0, � ¼ 1=2 (or�1=2). For the models we
have constructed, the kinetic terms are also of a ‘‘hybrid’’ type:
the � field evolves according to a DBI kinetic term, while � is
governed by a standard two-derivative kinetic term.
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hybrid—in the sense that � has a higher-derivative DBI
action, while the kinetic term for � is a canonical two-
derivative one.

We should add that for models where the additional
fields transform nontrivially under a gauge group, radiative
corrections must be taken into account [57]. A more thor-
ough analysis is then required on a case by case basis.
Additionally, we would like to note that in all of our
constructions, we have looked only at the inflationary
sector of the theory. In a more complete setting, it is
important to check that the interactions with other sectors
do not spoil the inflationary dynamics [58]. Of course, this
issue must also be analyzed with a specific model at hand.

V. CONCLUSIONS

One of the most important problems in cosmology is to
find a scenario for the early Universe that is not only in
agreement with observations, but is also rooted in a sen-
sible microphysical theory. Only in this way can cosmol-
ogy and particle physics be united, and a consistent theory
of our universe be obtained. While still far from this goal,
we have analyzed a small aspect of the problem in this
paper, showing how to construct models of DBI inflation in
four-dimensional N ¼ 1 supergravity.

Our recent supergravity analysis of higher-derivative
actions showed that if one tries to construct a model of
DBI inflation from a single chiral superfield, it is bound to
fail-since the potential becomes negative when the higher-
derivative terms become important. In this paper, we cir-
cumvented this problem by coupling the theory to one or
more additional chiral superfields. In fact, the construction
in Sec. IV can be generalized to an arbitrary number N of
chiral superfields—each with two-derivative kinetic terms
and appropriately constrained Kähler potential—and con-
sidering a superpotential of the form

W ¼ Swð�1;�2; . . . ;�NÞ: (5.1)

Then, not only can the potential energy be positive but one
can construct a wide range of potential functions for the

original DBI scalar � ¼ ffiffiffi
2

p
Reð�1Þ and N � 1 additional

real scalars. The remaining real scalars, that is, the two

making up the lowest component of S and one scalar in the
lowest component of all the other chiral superfields, can be
stabilized with masses above the Hubble scale if the Kähler
potential satisfies certain requirements discussed in the
text. Our analysis can be viewed as a ‘‘proof in principle’’
that models of multireal scalar field DBI inflation can be
constructed in N ¼ 1 supergravity.
A crucial feature of the analysis of chiral superfields

with higher-derivative actions is that, via the elimination of
the auxiliary fields, the potential energy generically
depends not only on the superpotential, but on the strength
of the higher-derivative terms as well. Thus, in general, the
potential changes during the dynamical evolution. In this
paper, we have shown that, for the constrained Kähler
potentials and superpotentials above, this turns out not to
be the case. The contributions to the potential that depend
on the higher-derivative terms vanish in the region of field
space of dynamical interest. Thus, the potential remains
unchanged as the higher-derivative terms become large or
small. This feature considerably simplifies the study of the
models considered here, and renders them more accessible
for deriving their predictions for cosmological observa-
tions. We hope to pursue this topic in the near future.
Our construction illustrates that it is far from straightfor-

ward to realize DBI inflation in N ¼ 1 supergravity. We
have shown one way in which the desired positive poten-
tials can be obtained from an effective model-building
point of view. It is interesting to ask whether there exist
other ways of realizing DBI inflation within the context of
supergravity. More importantly, however, is the question of
whether or not such constructions can be obtained from a
full-fledged string compactification, or from some other
fundamental theory of particle physics. These are pertinent
questions for future research.
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