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Brazil and Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University,

Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main, Germany
(Received 24 August 2012; published 21 December 2012)

Already more that 40 years ago, it has been suggested that because of the enormous mass densities in

the cores of neutron stars, the hadrons in the centers of neutron stars may undergo a phase transition to

deconfined quark matter. In this picture, neutron stars could contain cores made of pure (up, down,

strange) quark matter which are surrounded by a mixed phase of quarks and hadrons. More than that,

because of the competition between the Coulomb and the surface energies associated with the positively

charged regions of nuclear matter and negatively charged regions of quark matter, the mixed phase may

develop geometrical structures similarly to what is expected of the subnuclear liquid-gas phase transition.

In this paper we restrict ourselves to considering the formation of rare phase blobs in the mixed quark-

hadron phase. The influence of rare phase blobs on the thermal and transport properties of neutron star

matter is investigated. The total specific heat cV , thermal conductivity �, and electron-blob bremsstrah-

lung neutrino emissivities ��;BR, of quark-hybrid matter are computed, and the results are compared with

the associated thermal and transport properties of standard neutron star matter. Our results show that the

contribution of rare phase blobs to the specific heat is negligibly small. This is different for the neutrino

emissivity from electron-blob bremsstrahlung scattering, which turns out to be of the same order

of magnitude as the total contributions from other bremsstrahlung processes for temperatures below

about 108 K.

DOI: 10.1103/PhysRevD.86.123016 PACS numbers: 21.65.Qr, 26.60.Gj, 97.10.Cv, 97.60.Jd

I. INTRODUCTION

Already many decades ago, it has been suggested that
because of the extreme densities reached in the cores of
neutron stars, neutrons and protons may transform to quark
matter in the cores of such objects [1–6]. Quark matter
could thus exist as a permanent component of matter in the
ultradense centers of neutron stars (see Refs. [7–11] and
references therein). If the dense interior of a neutron star is
indeed converted to quark matter, it must be three-flavor
quark matter since it has lower energy than two-flavor
quark matter. And just as for the hyperon content of
neutron stars, strangeness is not conserved on macroscopic
time scales, which allows neutron stars to convert confined
hadronic matter to three-flavor quark matter until equilib-
rium brings this process to a halt.

As first realized by Glendenning [12], the presence of
quark matter enables the hadronic regions of the mixed
phase to arrange to be more isospin symmetric than in the

pure phase by transferring charge to the quark phase in

equilibrium with it. The symmetry energy will be lowered

thereby at only a small cost in rearranging the quark Fermi

surfaces. The electrons play only a minor role when neu-

trality can be achieved among the baryon-charge carrying

particles. The stellar implication of this charge rearrange-

ment is that the mixed phase region of the star will have

positively charged regions of nuclear matter and negatively

charged regions of quark matter.
Because of the competition between the Coulomb and

the surface energies associated with the positively charged

regions of nuclear matter and negatively charged regions of

quark matter, the mixed phase may develop geometrical

structures (see Fig. 1), similarly as it is expected of the

subnuclear liquid-gas phase transition [13–15]. This com-

petition establishes the shapes, sizes, and spacings of the

rare phase in the background of the other in order to

minimize the lattice energy [7,11,12,16].
The change in energy accompanied by developing such

geometrical structures is likely to be very small in com-

parison with the volume energy [12,17–19] and, thus, may

not much affect the global properties of a neutron star.

However, the geometrical structure of the mixed phase may
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be very important for irregularities (glitches) in the timing

structure of pulsar spin-down as well as for the thermal and

transport properties of neutron stars [8,12,17].
To calculate the neutrino-pair bremsstrahlung rates

and thermal properties, we follow the method described
in Refs. [20,21], which is commonly used for the calcu-
lation of the neutrino emissivity and thermal conductivity
in the crusts of neutron stars. These authors considered
contributions from electron-phonon scattering and Bragg
diffraction (the static-lattice contribution). Furthermore,
multiphonon processes and electron band structure effects
are incorporated to obtain more realistic scattering rates
and a better connection between the solid and the liquid gas
phase. Instead of adopting the analytic fits provided in
Refs. [20,21], here we recalculate the scattering rates
from phonon sums using the method of Ref. [22]. There
are two main reasons for this. The first being that, for the
crust, the total ion charge is balanced by the total electron
charge. This will be different for the mixed quark-hadron
phase in the core of a neutron star, since electric charge
neutrality is established between the electric charges of the
rare phase, the dominant phase, and the leptons which are
present in both the rare and the dominant phase. The simple
relation ne ¼ Zni between electron density and ion density
used to derive the crustal fit formula in Refs. [20,21] can
therefore not be used to study the quark-hadron Coulomb
lattice structure in the core of a neutron star. The second
reason concerns the electric charge numbers themselves.
For mixed phase blobs, they can easily exceed Z� 103, as
will be shown in Sec. II C. Charge numbers that high are
obviously not reached in the crustal regimes of neutron
stars [20], where there is usually no need to consider
atomic nuclei with charges much larger than Z > 56.

The paper is organized as follows. In Sec. II, we briefly
discuss the modeling of the mixed quark-hadron phase in
the cores of neutron stars and the equations of state of

confined hadronic and quark matter used in this work. In
Sec. III, we summarize the formalism for calculating the
neutrino-pair bremsstrahlung emissivity and the thermal
conductivity of rare phase blobs immersed in hadronic
matter. The results are presented in Sec. IV.

II. MODELING OF THE MIXED QUARK-HADRON
PHASE IN NEUTRON STARS

A. Hadronic matter

To compute the particle compositions of the cores of
standard neutron stars, that is, neutron stars without decon-
fined quark degrees of freedom, we choose a relativistic
Lagrangian of the following type [8,9]:

L ¼ X
B
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�c 	ði��@
� �m	Þc 	; (1)

where the sum over B sums the baryon species listed in
Table I. The sum over 	 accounts for the presence of
relativistic electrons and muons in neutron star matter.
Their masses are me ¼ 0:511 MeV and m� ¼ 105 MeV.

The quantities g�, g�, and g! are meson-baryon coupling

constants of �, !�, and ~�� mesons. Nonlinear �-meson
self-interactions are taken into account in Eq. (1) via the
terms proportional to b� and c�. The quantities ~� and ��

denote isospin vectors and Dirac matrices, respectively,
and @� � @=@x� [7,9]. We have solved the equations

of motion for the baryon and meson fields, which follow
from Eq. (1), in the framework of the relativistic mean-
field approximation [7,9], where the fields �, !, � are
approximated by their respective mean-field expectation
values �� � h�i, �! � h!i, and �� � h�03i. Two popular

TABLE I. Masses mB, electric charges QB, spin JB, and third
component of isospin I3B of the baryons B included in the

Lagrangian of Eq. (1) [8,9].

B Symbol mB (MeV) QB JB I3B

n mn 939 0 1=2 �1=2

p mp 938 1 1=2 1=2

� m� 1115 0 0 0

�þ m�þ 1190 1 1 1

�0 m�0 1190 0 1 0

�� m�� 1190 �1 1 �1

�0 m�0 1315 0 1=2 0

�� m�� 1315 �1 1=2 �1

FIG. 1 (color online). Schematic illustration of possible geo-
metrical structures in the quark-hadron mixed phase of neutron
stars. The structures may form because of the competition
between the Coulomb and the surface energies associated with
the positively charged regions of nuclear matter and negatively
charged regions of quark matter.
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parametrizations labeled G300 and HV have been used
[7,9,23–25]. Their parameters are summarized in Table II.

Neutron star matter is characterized by the conservation
of two charges, electric and baryonic. This feature leads to
the chemical equilibrium condition

�i ¼ Bi�n �Qi�e; (2)

where �n and �e are the chemical potentials of neutrons
and electrons. The quantities Bi and Qi stand for the
baryon number and the electric charge of particles (mesons
and baryons) of type i. Equation (2) greatly simplifies the
mathematical analysis, since only knowledge of two inde-
pendent chemical potentials �n and �e is necessary. The
latter are given by

�B ¼ g! �!þ g��
�
03I

3
B þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2B þm�2

B

q
;

�	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2	 þm2

	

q
;

(3)

where m�
B ¼ mB � g�B �� denote the effective medium-

modified baryon masses, kB and k	 are the Fermi momenta
of baryons and leptons, respectively, and I3B is the third
component of the isospin vector of a baryon of type B.
Finally, aside from chemical equilibrium, the condition of
electric charge neutrality is also of critical importance for
the composition of neutron star matter. It is given by

X
B

Qið2JB þ 1Þ k3B
6
2

�X
	

k3	
3
2

¼ 0: (4)

Figure 2 shows the baryon-lepton compositions of neutron
star matter computed from Eq. (1) for the relativistic mean-
field approximation. The quantity �i in Fig. 2 stands for the
individual number densities of baryons,

�B ¼ ð2JB þ 1Þk3B=3
3; (5)

whose total number density is given by

�b � X
B

�B: (6)

The individual number densities of electrons and muons
(i ¼ e�, ��) are given by

�i ¼ 2k3i =3

3: (7)

The total energy density and pressure of the matter
shown in Fig. 2 follow from

�H ¼ 1

3
bmNðg� ��Þ3 þ 1

4
cðg� ��Þ4 þ 1

2
ðm� ��Þ2 þ 1

2
ðm! �!Þ2

þ 1

2
ðm� ��Þ2 þ

X
B

1


2

Z kB

0
k2dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm�2

B

q

þX
	

1


2

Z k	

0
k2dk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

	

q
; (8)

and
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q
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B. Quark matter

To model quark matter, we use the bag model. Up (u)
and down (d) quarks are treated as massless particles while
the strange quark (s) mass is assigned a value of ms ¼
200 MeV. First-order perturbative corrections in the strong
interaction coupling constant � are taken into account
[10,26–28]. The Landau potentials of up and down quarks
are then given by

TABLE II. Relativistic mean-field parametrizations used in
this work.

Parametrizations

Coupling constants HV G300

g� 8.7982 9.1373

g! 9.1826 8.6324

g� 9.7145 8.3029

b� 0.00414 0.003305

c� 0.00716 0.01529

FIG. 2 (color online). Sample baryon-lepton compositions
�i=�b of neutron star matter computed for G300 (upper panel)
and HV (lower panel).
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while for strange quarks we have

�s ¼ � 1
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where fð�;mÞ � lnðð�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2

p Þ=mÞ, and � is a
renormalization constant whose value is of the order
of the chemical potentials [28]. In this article we take
� ¼ 300 MeV. The Landau potentials of electrons and
muons are given by

�e ¼ � �4
e
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; (13)
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The condition of chemical equilibrium leads to

�d ¼ �s ¼ �u þ�e ¼ �u þ��: (15)

The partial baryon number densities of the particles are
obtained from (i ¼ u, d, s, e�, ��)

�i ¼ �@�i=@�i; (16)

and the total energy density and pressure of quark matter
follows from

�Q ¼ X
i

ð�i þ�i�iÞ þ B; (17)

and

pQ ¼ �B�X
i

�i; (18)

where B denotes the bag constant. For �, ms ! 0 one
recovers from Eqs. (17) and (18) the standard equation of
state of a massless relativistic quark gas, P ¼ ð�� 4BÞ=3.

C. Geometric structures in the mixed
quark-hadron phase

To determine the possible geometric structures in the
mixed phase of quarks and hadrons, we use the Gibbs
condition

pHð�n;�e; f�gÞ ¼ pQð�n;�eÞ (19)

for phase equilibrium between hadronic matter and quark
matter [12]. The quantity f�g in Eq. (19) stands collec-
tively for the field variables ð ��; �!; ��Þ and Fermi momenta
ðkB; k	Þ that characterize a solution to the equations of
confined hadronic matter. We use the symbol  � VQ=V
to denote the volume proportion of quark matter VQ in the

unknown volume V. By definition,  then varies between 0
and 1 depending on how much confined hadronic matter
has been converted to quark matter. Equation (19) is to be
supplemented with the condition of baryon charge conser-
vation and electric charge conservation. The global con-
servation of baryon charge is expressed as

�b ¼ �Qð�n;�eÞ þ ð1� Þ�Hð�n;�e; f�gÞ; (20)

and the global neutrality of electric charge is given by

0 ¼ qQð�n;�eÞ þ ð1� ÞqHð�n;�e; f�gÞ: (21)

In Figs. 3 and 4 we show sample compositions of
neutron star matter computed for four different parameter
sets (see Table III) which allow for the presence of a mixed
phase of quark and hadrons. One sees that the �� popula-
tion is strongly suppressed in the mixed quark-hadron
phase, since the hadronic phase carries a net positive

FIG. 3 (color online). Particle composition �i=�b of neutron
star matter with mixed quark-hadron phase. The parameter sets
are HV1 and HV2 (see Table III).
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charge which disfavors the presence of the ��. In contrast
to this, the � particle is electrically neutral so that its
presence is not disfavored by electric charge reasons. As
to the population computed for parametrization G300II,
shown in Fig. 4 (bottom panel), the threshold of the �� is
reached before quark deconfinement sets in. As soon as
quark deconfinement occurs, however, the �� population
drops quickly with density while the� population remains
relatively unaffected, enabling hadronic matter to be posi-
tively charged and quark matter to be negatively charged.

As can also be seen from Figs. 3 and 4, the mixed quark-
hadron phases obtained for the G300 parametrizations
exist over a broader density range than HV. This feature
has its origin in the density dependence of �n, which
increases faster with density for the HV1 and HV2 models,
rendering these equations of state stiffer than the G300I
and G300II models for the equation of state.

A larger value for the bag constant B reduces the pres-
sure of the quark phase, which too leads to a broader mixed
phase region. It also follows from Figs. 3 and 4 that the
number of electrons as well as the number of muons drops
quickly with density, since charge neutrality is achieved

chiefly among the quarks themselves. For values of the
strong interaction coupling constant � * 0:25 electrons
disappear from the matter and positrons tend to emerge
in the mixed phase. We therefore consider only � � 0:2.
In Fig. 5 we show the masses of neutron stars, whose

compositions are given in Figs. 3 and 4. The underlying
equations of state are given in Eqs. (8), (9), (17), and (18),
and the parameter sets are listed in Table III. The Baym-
Pethick-Sutherland model for the equation of state has
been used to model the crusts of these neutron stars [29].
The maximum masses of the quark-hybrid stars computed
for HV1 and HV2 are 1:47M� and 1:61M�, respectively.
For G300I and G300II we obtain maximum masses of
1:58M� and 1:69M�, respectively. These values are too
low to accommodate the recently discovered heavy pulsar
PSR J1614-2230, whose mass is M ¼ 1:97	 0:04M�
[30]. One possible explanation could be that the high
rotation rate of this neutron star prevents the hadrons in
the core of this neutron star from transforming to quark-
hadron matter. This neutron star could thus be made
entirely of confined hadronic matter, whose equation of
state is stiffer than the equation of state of quark-hybrid
matter supporting high-mass neutron stars. As found in
Ref. [31], massive (� 2M�) nonrotating neutron stars
with extended regions of deconfined quarks and hadrons
are comfortably obtained in the framework of the nonlocal
SU(3) Nambu-Jona-Lasinio model. This model is not con-
sidered in this paper, however, since our results are largely
independent of the particular microscopic many-body

FIG. 4 (color online). Same as Fig. 3 but for parameter sets
G300I and G300II (see Table III).

TABLE III. Parameter sets of the quark-hybrid star models of
this work. B denotes the bag constant, � is the strong interaction
coupling constant.

Label Hadronic phase Quark phase

HV1 HV B ¼ 110 MeV fm�3, � ¼ 0:2
HV2 HV B ¼ 160 MeV fm�3, � ¼ 0:1
G300I G300 B ¼ 110 MeV fm�3, � ¼ 0:2
G300II G300 B ¼ 160 MeV fm�3, � ¼ 0:1

FIG. 5 (color online). Mass-central density (top panel) and
mass-radius (bottom panel) relationships of neutron stars for
the parameter sets listed in Table III. The solid dots denote the
most massive neutron star model of each sequence.
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model chosen to determine the equation of state of bulk
quark-hadron matter.

As pointed out in Refs. [7,12] the isospin restoring force
can exploit degrees of freedom made available by relaxing
the requirement of strict local charge neutrality to neutral-
ity on larger scales and form a positively charged hadronic
matter region with lower isospin asymmetry energy and a
negatively charged quark matter region. The competition
between the Coulomb interaction and the surface energy
will result in a crystalline lattice of the rare phase in the
dominant phase. The size and spacing of the crystalline
lattice is determined by minimizing the total energy. The
situation is similar to the atomic nuclei immersed in a
relativistic electron gas in the crusts of neutron stars.

Depending on density, the embedding of the rare phase
in the dominant phase can lead to different geometric
structures, including spherical blobs, rods, and slabs. In
what follows, we restrict ourselves to the discussion of
spherical blobs. For an electrically charge neutral Wigner-
Seitz cell, with spherical blob of radius rb, the Coulomb
and surface energy density can be expressed as

�C ¼ 2
�e½qHðÞ � qQðÞ�2r2bf3ðxÞ; (22)

�S ¼ 3�ðÞ=rb; (23)

where �e ¼ 1=137 is the fine structure constant, x ¼
minð; 1� Þ is the volume fraction of rare phase, and

f3ðxÞ ¼ ðx� 3x1=3 þ 2Þ=5 is the function fdðxÞ for d ¼ 3,
which arises from calculating the electrostatic binding
energy of the cell [7]. Due to theoretical difficulties it is
very hard to estimate the surface tension�. Here we follow
Ref. [7] and take a gross approximation expression for
the surface tension first proposed by Gibbs [32], where
the surface energy is proportional to the difference of the
energy densities of the two phases,

�ðÞ ¼ �L½�QðÞ � �HðÞ�; (24)

where � should be on the order of ��Oð1Þ, and we
take L ¼ 1 fm. Three different values for the constant �
(i.e., 0.5, 1, and 2) are used in our calculations to inves-
tigate the effects caused by uncertainties in the value of the
surface tension.

Since �C / r2b and �S / r�1
b , it is possible to minimize

the total energy �C þ �S at fixed  which leads to an
equilibrium radius of the rare phase of blobs inside of
Wigner-Seitz cells,

rb ¼
�

3�ðÞ
4
�e½qHðÞ � qQðÞ�2f3ðxÞ

�
: (25)

The radii of spherical blobs of the rare phase rb and the
radii of Wigner-Seitz cells a as a function of the quark
volume fraction  are shown in Fig. 6. The radii of spheri-
cal blobs is in the range of 10 to 30 fm. To compare our
situation to the crust we also calculate the charge Z and
mass number A ¼ mb=mu of the rare phase blobs, with mb

being the blob mass. In addition we define an effective
electric charge number given by

Zeff ¼ ne
nb

; (26)

where nb is the number density of the spherical blobs. The
values of Z, A, and Zeff as a function of the quark volume

FIG. 6 (color online). Radii of spherical blobs rb and Wigner-
Seitz cells a as a function of quark volume fraction  for
different surface tensions � and parameter sets (Table III) of
the hadronic lagrangian.

FIG. 7 (color online). Mass number A ¼ mb=mu of spherical
blobs of rare phase as a function of quark volume fraction .
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fraction are shown in Figs. 7–9. As can be seen, the charge
and mass numbers are typically one to two orders of
magnitude greater than that of the heaviest stable nuclei,
but due to a dramatic drop in electron density the value
of Zeff can fall near and below Zeff � 10 as  ! 1. The
discontinuities of the curves in Fig. 7 at  ¼ 0:5 are due to

the differences in the hadronic and quark phase densities at
 ¼ 0:5. It is also worth noting that near the edges of the
mixed phase region ( ! 0, 1) the volume density of blobs
nb ¼ 3x=ð4
r3bÞ vanishes, but since f3ð0Þ ¼ 2=5, the blob
radius rb approaches a constant rb ! rbðx ¼ 0Þ. Therefore
Zeff ¼ ne=nb diverges at the edges of the mixed phase
region.

III. THERMAL AND TRANSPORT PROPERTIES
OF QUARK-HADRON PHASE

Next, we turn our interest to the calculation of the
thermal and transport properties of a mixed phase of quarks
and hadrons. Knowledge of these properties is of key
importance in order to carry out thermal evolution simu-
lations of neutron stars with hypothetical quark-hadron
cores and to determine possible astrophysical signatures
hinting at the existence of such matter inside of neutron
stars. Our focus here is on exploring the impact of rare
phase blobs on the following properties: specific heat cV ,
neutrino emissivity ��, and thermal conductivity �.
From the outset, one might expect that because of the

geometric structures in the mixed phase, new degrees of
freedom are introduced to the system, which may store
additional thermal energy and hence would increase the
specific heat. Due to the scattering of degenerate electrons
and rare phase blobs in the mixed phase, there will also be
an additional contribution to the neutrino bremsstrahlung
and an additional microscopic entropy production rate
which reduces the total thermal conductivity.

A. Basic physical quantities

We first introduce some of the basic physical quantities
and functions used in the calculation of the thermal and
transport properties of the quark-hadron phase. The state of
the mixed phase with rare phase blobs is determined by the
ion-coupling parameter [20],

� ¼ Z2e2

akBT
; (27)

where a ¼ ð3=ð4
nbÞÞ1=3 is the Wigner-Seitz cell radius,
which is related to the spherical blob radius by x ¼
ðrb=aÞ3. The quantity �m ¼ 172 corresponds to the melt-
ing point below which a classical one-component Coulomb
crystal (�< �m) becomes a Coulomb liquid (1< �< �m)
[33]. Therefore the melting temperature is given by Tm ¼
Z2e2=ðakB�mÞ. Another important quantity is the plasma
temperature,

Tp ¼ ℏ!p

kB
; (28)

where !p ¼ ð4
Z2e2nb=mbÞ1=2 denotes the plasma

frequency of the spherical blobs, with mb the mass of
the spherical blobs. For later, it is convenient to introduce
the temperature in units of the plasma temperature,

FIG. 8 (color online). Electric charge number Z of spherical
blobs of rare phase as a function of quark volume fraction .

FIG. 9 (color online). Effective charge number Zeff of spheri-
cal blobs of rare phase as a function of quark volume fraction .
The five horizontal lines at the bottom of each panel correspond

to ZðnÞ
eff;min for n ¼ 1, 2, 3, 4, 5 (see Sec. III B).
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tp ¼ T=Tp. For temperatures tp & 1=8 the vibrations

of a Coulomb crystal must be treated quantum
mechanically [20].

Besides the Coulomb interaction, there are three effects
which must be taken into account to describe the interac-
tion between electrons and rare phase blobs. These are the
screening of electrons, the shape of the blob, and the effect
of thermal vibrations. The Fourier transform of the effec-
tive electron-blob interaction is given by [20]

VðqÞ ¼ 4
e�ZFðqÞ
q2�ðqÞ e�WðqÞ; (29)

where �Z is the blob charge per unit volume �Z ¼ qQ
for < 1=2, and �Z ¼ ð1� ÞqH for > 1=2. The quan-
tity �ðqÞ in Eq. (29) is the static longitudinal dielectric
factor adopted from Ref. [34], and FðqÞ is the form factor
of a blob. For simplicity, we assume a uniform distribution
of the electric charge in the rare phase and use FðqÞ ¼
ð3=ðqrÞ3Þ½sinðqrÞ � qr cosðqrÞ� [20].

Thermal vibrations of rare phase blobs are taken into
account via the Debye-Waller factor,

WðqÞ ¼ ℏq2

4mb

�
cothðℏ!s=ð2kBTÞÞ

!s

	
ph
; (30)

where !s is the phonon frequency. Here h. . .iph denotes

the average over the phonon wave vectors and polariza-
tions. Throughout this article, we use the method of
Ref. [22] to compute phonon sums. It is assumed that there
are three polarizations of phonons: two transverse modes

with linear dispersion relations !ðt;iÞ
k ¼ aik (i ¼ 1, 2), and

one longitudinal mode which is determined through
Kohn’s sum rule !2

t;1 þ!2
t;2 þ!2

l ¼ !2
p, where !p

denotes the plasma frequency. The two parameters a1
and a2 are determined by fitting the frequency moments
un � h!niph of the specified lattice type. For a bcc lattice,

the frequency moments u�1 ¼ 2:7990 and u�2 ¼ 12:998
are well known [35] and are used to obtain a1 ¼ 0:58273,
a2 ¼ 0:32296. These parameters also produce first and
fourth moments: �1 ¼ 0:51106, �4 ¼ 0:201946 which
are quite close to the exact values of �1 ¼ 0:51139 and
�4 ¼ 0:203076 [35]. In the special case of the Debye-
Waller factor, the phonon sum can be fitted very well by
the following analytic formula [36]:

WðqÞ ¼ �0

2

�
q

2kF

�
2
�
1

2
u�1e

�9:1tp þ tpu�2

�
; (31)

where kF is electron Fermi wave number and �0 is a
constant given in Ref. [20]. The latter can be rewritten as

~� � �0

2
¼ 32=3
5=6ℏ1=2

�1=2
e c1=2

n2=3e

Zm1=2
b n1=2b

: (32)

With the help of Eq. (32) the Debye-Waller factor can be
written as Wðy2 ~�; tpÞ, where y ¼ q=ð2kFÞ.

B. Neutrino bremsstrahlung emissivity

Next we turn to the calculation of the scattering of
electrons off the rare phase blobs (that is, electron-blob
bremsstrahlung), which leads to the generation of neutrino-
antineutrino pairs according to the reaction e� þ ðZ; AÞ !
e� þ ðZ; AÞ þ �þ ��. The associated neutrino bremsstrah-
lung emissivity can be written as [37]

�� ¼ 8
G2
FZ

2e4C2þ
567ℏ9c8

ðkBTÞ6nbL; (33)

where nb is the number density of the rare phase blobs and
GF ¼ 1:436
 10�49 erg cm3 is the Fermi weak coupling
constant C2þ � 1:675 [20], and L is a dimensionless func-
tion given by

L ¼ Lph þ Lsl or L ¼ Lliq; (34)

where Lph accounts for the scattering of electrons off

the phonons of the Coulomb crystal of rare phase blobs,
Lsl accounts for Bragg scattering between electrons and
the static Coulomb crystal lattice, and Lliq is for the

liquid phase. In the liquid phase the general expression
is obtained through a variational approach in Born
approximation [37–39],

Lliq ¼
Z 1

0
dy

SðqÞjFðqÞj2
yj�ðqÞj2

�
1þ 2y2

1� y2
lny

�
; (35)

where y ¼ q=ð2kFÞ. We follow Ref. [20] for the choice of
the ion-ion structure factor SðqÞ, which was fitted in
Refs. [40,41]. For a solid phase the phonon contribution
is mainly given by umklapp processes, which in Born
approximation can be written as [20,39]

Lph ¼
Z 1

y0

dy
Seffðy2 ~�; tpÞjFðyÞj2

yj�ðyÞj2
�
1þ 2y2

1� y2
lny

�
; (36)

where the lower integration limit y0 ¼ ð4ZeffÞ�1=3

excludes the low-momentum transfers in which the
umklapp processes are forbidden [20], and the effective
static structure factor Seff is obtained from the summation
of multiphonon diagrams [20,42]. For the parameter sets
chosen in this calculation we always have Zeff > 1=4 so
that y0 < 1. Seff can be written in terms of a rapidly
decreasing integral [20],

Seffðy2 ~�;tpÞ¼189

�
2




�
5
e�2Wðy2 ~�;tpÞ



Z 1

0
d�

1�40�2þ80�4

ð1þ4�2Þ5cosh2ð
�Þ

ðe�ð�;y2 ~�;tpÞ �1Þ; (37)

where

�ð�; x; tpÞ � x

� cosð�!tp Þ
! sinhð !2tpÞ

	
ph
; (38)
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with ! � !s=!p denoting the phonon frequency in units

of the plasma frequency. Similarly to the analysis in
Ref. [20], there exist approximate expressions for Seff
for the limiting cases where tp � 1 and tp  1, which

is discussed next. For this purpose, we write the
x-independent part of �ð�; x; tpÞ=tp as

c ð�; tpÞ � 1

tp

*
cosð�!tp Þ

! sinhð !2tpÞ
+
ph

: (39)

For tp � 1 and tp  1, c ð�; tpÞ can be replaced by

c ð�; tpÞ !
8<
: c ð0; tpÞ ~c ð�Þ; tp � 1;

c ð0; tpÞ � ~FðtpÞ�2; tp  1;
(40)

where

~c ð�Þ � lim
tp!0

c ð�; tpÞ
c ð0; tpÞ (41)

is computed numerically. It is a rapidly decaying function
of � and is negligibly small for � * 2. The function
~FðtpÞ � h!=½2t3p sinhð!=2tpÞ�iph is computed numerically

for 1< tp < 102. Asymptotically, ~FðtpÞ has the form

~FðtpÞ ¼
8><
>:
96



1
a3
1

þ 1
a3
2

�
tp; tp & 1;

1
t2p
; tp * 102:

(42)

The function

c ð0; tpÞ ¼
�

1

!tp sinhð !2tpÞ
	
ph

(43)

can be calculated numerically for a broad range of tp
values, and can be shown to behave as

c ð0; tpÞ ¼
8><
>:
2u�2 � 1

12t2p
; tp * 1;


2


1
a3
1

þ 1
a3
2

�
tp; tp & 10�3:

(44)

With the aid of Eqs. (39)–(44), we can now derive low and
high temperature limits of the effective structure factor Seff
of Eq. (37). For tp � 1 one obtains

Seffðx; tpÞ ¼ 189

�
2




�
5
e�2Wðx;tpÞGeffðxtpc ð0; tpÞÞ; (45)

while for tp  1

Seffðx; tpÞ ¼ 189

�
2




�
5
e�2Wðx;tpÞþxtpc ðx;tpÞ


HeffðxtpFðtpÞÞ � e�2Wðx;tpÞ: (46)

Here we have defined

GeffðaÞ�
Z 1

0

1�40�2þ80�4

ð1þ4�2Þ5cosh2ð
�Þ
ðea ~c ð�Þ �1Þ; (47)

which obeys

GeffðaÞ ’
8<
: ea; a * 102;

41
5

181440a; a & 0:1:
(48)

For 0:1 � a � 102 the value ofGeff is obtained numerically.
The quantityHeff in Eq. (46) is defined as

HeffðaÞ �
Z 1

0

1� 40�2 þ 80�4

ð1þ 4�2Þ5cosh2ð
�Þ e
�a�2

: (49)

Asymptotically, Heff behaves as

HeffðaÞ ’
8><
>:

1
189





2

�
5 þ 0:003690a; a & 0:1;

ð1=2Þ
1=2a�1=2; a * 103;
(50)

but its values for 0:1 � a � 103 need to be computed
numerically.
To determine the contributions of the static lattice con-

tribution (Bragg diffraction) to neutrino bremsstrahlung,
we follow Ref. [20] who considered band structure effects.
We begin with defining the dimensionless factor Lsl,

Lsl ¼ 1

12Zeff

X
K�0

1� y2K
y2K

jFðKÞj2
j�ðKÞj2 Iðy; tVÞe

�2Wðy2K ~�;tpÞ;

(51)

where the sum is over K values below the electron

Fermi surface, i.e., yK ¼ K=ð2kFÞ< 1 and tV ¼
jVKj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

p
=ðkBTÞ where VK is given in Eq. (29). The

integral Iðy; tVÞ in Eq. (51) has been fitted analytically over
a wide range of tV and y values in Ref. [20].
In our case, which deals with a solid phase of rare phase

blobs immersed in hadronic matter, the summation of
Lsl sometimes consists only of a few terms. In the case
of a bcc lattice, the condition for the summation to have at
least n terms (not counting multiplicity) is yKn

� 1, which

translates to a lower limit for Zeff � ZðnÞ
eff;min. The values of

ZðnÞ
eff;min for n ¼ 1 through n ¼ 5 are shown in Table IV.

Therefore, since Zeff ¼ Z in a lattice of nuclei immersed
in an electron gas, Lsl is guaranteed to have a handful of
terms. However, as we have seen in Sec. II C, the electron
density will drop drastically with increasing baryon num-
ber density in the mixed phase region if  * 0:5 so that
Zeff drops correspondingly (see Fig. 9 where the first few

ZðnÞ
eff;min are shown).

As will be shown in Sec. IV, for low temperatures of
T & 108K and a quark volume fraction  * 0:5 the sum-
mation consist only of a few terms, and the contribution of
the static lattice oscillates vividly as a function of  (see
Figs. 11 and 12).

TABLE IV. Lower bound values ZðnÞ
eff;min.

Zð1Þ
eff;min Zð2Þ

eff;min Zð3Þ
eff;min Zð4Þ

eff;min Zð5Þ
eff;minffiffiffi

2
p


=3 4
=3
ffiffiffi
6

p

 8

ffiffiffi
2

p

=3 5

ffiffiffiffiffiffi
10

p

=3
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C. Thermal conductivity

To calculate the thermal conductivity of quark-hybrid
matter, we closely follow the formalism outlined in
Ref. [21]. In general, the thermal conductivity of degener-
ate electrons is expressed in terms of an effective collision
frequency �� [43],

� ¼ 
k2BTne
3m�

e��

; (52)

which, in turn, can be expressed in terms of dimensionless
Coulomb logarithms �� [44],

�ei
� ¼ 4
Z2e4nb

p2
FvF

��; (53)

where nb is the number density of rare phase blobs in the
mixed phase, and pF and vF are the Fermi momentum and
Fermi velocity of relativistic electrons. For a solid phase,
the Coulomb logarithms are calculated variationally in
Born approximation [21,43],

��;solid ¼
Z 1

y0

dyS�ðyÞ jFðyÞj
2

yj�ðyÞj2
�
1� x2r

1þ x2r
y2
�
: (54)

Here, xr � pF=ðmecÞ is a relativistic parameter and y0, F,
and � have the same meaning as in Sec. III A. The quantity
S� stands for the effective static structure factor for thermal
conductivity [21,42],

S�ðyÞ ¼ S�ðyÞ þ
�
3

4y2
� 1

2

�
�S�ðyÞ; (55)

where y ¼ q=ð2kFÞ and S�ðyÞ are effective structure factors
used to calculate the electric conductivity � [21].

Instead of using the asymptotic expressions and fitted
formulas for �� provided in Ref. [21], which cover
10�3 < tp < 10 and 0< ~�y2 < 0:15 [~� is given by

Eq. (32)], here we fully calculate their values and derive
their asymptotic behaviors. This covers a wider range
of tp and ~�y2 values. For this purpose, we rewrite the

relevant integrals given in Refs. [21,42] in a form which
is similar to Seff in Sec. III B, i.e.,

S�ðy2 ~�; tpÞ ¼
Z 1

0
d�




cosh2
�
ðey2 ~�tpc ð�;tpÞ � 1Þ


 e�2Wðy2 ~�;tpÞ;

�S�ðy2 ~�; tpÞ ¼
Z 1

0
d�

2
ð1 � 2sinh2
�Þ
cosh4
�


 e�y2 ~�tpc ð�;tpÞ�2Wðy2 ~�;tpÞ; (56)

where c ð�; tpÞ denotes the phonon sum function already

defined in Eq. (39). Since Bragg diffraction does not
contribute to the thermal conductivity, there is no coun-
terpart to Lsl.

Similar to Sec. III B, asymptotic expressions for c ð�; tpÞ
may be used to derive the high and low temperature limits
for S� and �S�. One then obtains

S�ðx; tpÞ !
tp�1

G�ðxtpc ð0; tpÞÞe�2Wðx;tpÞ

!tp1ðextpc ð0;tpÞH�ðxtp ~FðtpÞÞ � 1Þe�2Wðx;tpÞ;

�S�ðx; tpÞ !
tp�1

G��ðxtpc ð0; tpÞÞe�2Wðx;tpÞ

!tp1
H��ðxtp ~FðtpÞÞextpc ð0;tpÞ�2Wðx;tpÞ; (57)

where ~FðtpÞ is given in Sec. III B and the functions G�;��

and H�;�� are defined as

G�ðaÞ �
Z 1

0
d�




cosh2
�
ðea ~c ð�Þ � 1Þ; (58)

G��ðaÞ �
Z 1

0
d�

2
ð1� 2sinh2
�Þ
cosh4
�

ea
~c ð�Þ; (59)

H�ðaÞ �
Z 1

0
d�




cosh2
�
e�a�2 ; (60)

H��ðaÞ �
Z 1

0
d�

2
ð1� 2sinh2
�Þ
cosh4
�

e�a�2 : (61)

The quantity ~c ðtpÞ is defined in Sec. III B. The asymptotic

limits of Eqs. (58)–(61) are given by

G�ðaÞ ’
(
ea; a * 102;
2
3 a; a & 0:1;

G��ðaÞ ’
(
ea; a * 103;
8
15 a; a & 10�2;

H�ðaÞ ’
(
1
2


3=2a�1=2; a * 102;

1� a
12 ; a & 0:1;

H��ðaÞ ’
(

3=2a�1=2; a * 103;
2a

2 ; a & 10�2:

(62)

For a values outside the ranges listed above the values ofH
and G were calculated numerically. Asymptotic approxi-
mations for S� were used for tp & 10�2 and tp * 1. For tp
values outside of these intervals the expression for S� was
computed numerically. The asymptotic approximations for
�S� are valid, and have been used for tp values in the

intervals tp & 10�2 and tp * 10.

D. Specific heat

The calculation of the specific heat is much simpler than
the calculation of the neutrino emissivities and of the
thermal conductivity, since the specific heat does not
involve scattering processes. In terms of the phonon sum
used in Secs. III B and III C, the specific heat density can be
written as
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cV;solid ¼ ℏ!nb
@

@T

�
3!

expð !2tpÞ � 1

	
¼ 3kBnb

4t2p

�
!2

sinh2ð !2tpÞ
	
:

(63)

The asymptotic low and high temperature expressions of
Eq. (63) are given by

cV;solid ¼
8><
>:
3kBnb



1� 1

36t2p

�
; tp * 102;

72kBnb


1
a3
1

þ 1
a3
2

�
t3p; tp & 10�2:

(64)

For temperatures greater than the melting temperature we
adopt Eq. (24) of Ref. [45] for the specific heat density,

cV;liq;gas ¼
8><
>:

3
2 kBnb; � � 1

3
2 kB



1þ log�

log�m

�
; 1< � � �m;

(65)

where we use �m ¼ 172 (as in Secs. III B and III C) instead
of the outdated value �m ¼ 150 [45].

IV. RESULTS AND DISCUSSION

A. Contribution to the specific heat

In this paper, we have calculated the specific heat stem-
ming from rare phase blobs immersed in hadronic matter
for four different parameter sets (see Table III) and three
different values (� ¼ 0:5, 1, 2) for the surface tension of
rare phase blobs. It is intriguing to compare these results
with the heat capacities of the hadronic and quark matter
phases weighted by their volume fractions. For this pur-
pose we compute the specific heat of a Fermi gas of leptons
and baryons from

clV ¼ k3B
3ℏ3

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l þ k2F;l

q
kF;l; (66)

cbV ¼ k3B
3ℏ3

T
X
B

m�
BkF;B; (67)

where m�
B is effective in-medium mass of baryons (see

Sec. II). The specific heat of a quark gas is given by [46]

cqV ¼ 0:6
 1020
�
ne
�0

�
2=3

T9 ergs cm�3 K�1: (68)

The total specific heat of a mixture of quarks and hadrons

follows from cV ¼ ð1� ÞcHV þ cQV where cHV ¼cbVþclV
and cQV ¼ cqV þ clV . Figure 10 compares the different con-
tributions to the specific heat with one another. As can be
seen, the contribution of the rare phase blobs to the specific
heat (colored lines in Fig. 10) is typically several orders of
magnitude smaller than the specific heat of a standard (no
geometrical structures) quark-hadron gas (solid black lines
in Fig. 10). The small jumps at  ¼ 0:5 in Fig. 10 are due
to the discontinuity of the rare phase blob mass mb at
 ¼ 0:5 (see Fig. 7). The parameter sets HV2, G300I,

and G300II lead to results very similar to those shown in
Fig. 10 and are therefore not shown separately.

B. Neutrino bremsstrahlung emissivity

The neutrino bremsstrahlung emissivities emerging
from electron-phonon scattering and electron-lattice
(Bragg diffraction) scattering have been computed from
Eq. (33) for the four parameter sets of Table III. The
surface tension of rare phase blobs in Eq. (24) has been
varied again from � ¼ 0:5, 1, to 2. Figures 11 and 12 show
the contributions of the rare phase blobs to the neutrino
bremsstrahlung emissivity as a function of the quark vol-
ume fraction. A range of representative temperatures from
T ¼ 107 K to 1011 K has been chosen. For comparison, we
show the contributions to the neutrino emissivity which
comes from the modified URCA process in hadronic
matter ��;H;MU and in quark matter ��;Q;MU [46]. Finally,

we also show in these figures the emissivities which cor-
respond to nucleon bremsstrahlung ��;H;BR and quark

bremsstrahlung ��;Q;BR [9,46]. Their total contribution in

quark-hybrid star matter is obtained for a given quark
volume fraction  from �� ¼ �Q þ ð1� Þ�H. As can

be seen from Figs. 11 and 12, the neutrino emissivity from
electron-blob bremsstrahlung becomes comparable to the
emissivities of the modified URCA process (and other
bremsstrahlung processes) for temperatures T & 108 K.

FIG. 10 (color online). Specific heat cV of mixed quark-hadron
phase as a function of quark volume fraction  computed for
different surface tensions � and temperatures T. The underlying
equation of state is HV1. The panel on the left-hand side shows
the contributions of the rare phase blobs to the specific heat.
The curves in the panel on the right-hand side show the specific
heat computed for a standard (no geometrical structures) quark-
hadron gas.
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The bremsstrahlung emissivities oscillate rapidly with 
for T & 109 and  * 0:5. This is due to Bragg diffraction
given by the sum in the expression for Lsl [see Eq. (51)]. As
mentioned in Sec. III B, the sum of Lsl consists only of a
few terms if  * 0:5. The oscillations are essentially due
to the oscillating values of the individual terms in Eq. (51).
The oscillations are smoothed out when the number of
terms is large.

It also follows from Figs. 11 and 12 that the neutrino
emissivity of rare phase blob bremsstrahlung at low tem-
peratures but greater quark volume fractions ( * 0:5)
becomes sensitive to the choice of �. This feature, how-
ever, does not lead to large uncertainties in the total neu-
trino emissivity, since the neutrino emissivities for this
temperature-density regime are dominated by the modified
URCA process and nucleon-nucleon and quark-quark
bremsstrahlung processes.

C. Thermal conductivity

Figures 13–16 show the thermal conductivities due to
presence of rare phase blobs. For comparison, thermal
conductivities in standard quark-hadron gas are shown

too where the thermal conductivity for hadronic phase
�H is adopted from Ref. [47] and that of quark phase
�Q is adopted from Ref. [48]. The total thermal con-

ductivity in standard quark-hadron gas without blobs is
given by

� ¼
�


�Q

þ 1� 

�H

��1
: (69)

Besides scattering between electron and rare phase blobs
calculated in Sec. III C, the geometric pattern will also
alter the total thermal conductivity. The two contribu-
tions �H and �Q from standard quark-hadron gas can be

combined using an expression for the total effective
thermal conductivity of spheres immersed in continuous
matter of a different thermal conductivity [49]. In our
case the bulk thermal conductivity of two phases can be
written as

�eff ¼ �1

�
1� 3

ð2�1 þ �2Þ=ð�1 � �2Þ þ 

�
; (70)

where �1 and �2 are the thermal conductivities of the
dominant and the rare phase, respectively.

FIG. 12 (color online). Same as Fig. 11 but for parameter sets
G300I and G300II. The colored lines show the total contributions
from electron-blob bremsstrahlung for different surface tensions,
�¼0:5 (light red), �¼1 (thick green), �¼2 (thin blue). (For the
sake of clarity, the curves for� ¼ 0:1 and� ¼ 0:2 are not shown.)
The black lines show the total contributions frommodified nucleon
and quark URCA processes (dashed line) and nucleon-nucleon and
quark-quark bremsstrahlung processes (dotted line).

FIG. 11 (color online). Neutrino emissivities �� as a function of
quark volume fraction  at different temperatures computed for
parameter sets HV1 and HV2. The colored lines show the total
contributions from electron-blob bremsstrahlung for different
surface tensions: � ¼ 0:1 (orange dash-dot), � ¼ 0:2 (thin pink
dash-dot), � ¼ 0:5 (light red), � ¼ 1 (thick green), � ¼ 2 (thin
blue). The black lines show the total contributions from modified
nucleon and quark URCA processes (dashed line) and nucleon-
nucleon and quark-quark bremsstrahlung processes (dotted line).
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FIG. 13 (color online). Thermal conductivity � as a function of
quark volume fraction  for matter at a temperature of 107 K and
108 K. The colored lines show the contributions of electron-blobs
scattering in the mixed quark-hadron phase to � computed for
parameter sets HV1 (solid) and HV2 (dashed) for different surface
tensions [see Eq. (24)]: � ¼ 0:5; 1; 2. The thick black lines show
thermal conductivities of a standard (no blobs) quark-hadron gas
computed for HV1 and HV2. The thin black lines show the
effective bulk thermal conductivities defined in Eq. (70) in the
presence of rare phase blobs embedded in dominant phase without
contribution from electron-blob scattering for HV1 (dotted line)
and HV2 (dash-dotted line).

FIG. 14 (color online). Same as Fig. 13 but for a temperature
of T ¼ 109 K and 1010 K.

FIG. 15 (color online). Thermal conductivity � as a function of
quark volume fraction  for matter at a temperature of 107 K and
108 K. The colored lines show the contributions of electron-blobs
scattering in the mixed quark-hadron phase to � computed for
parameter sets HV1 and HV2 for different surface tensions [see
Eq. (24)]: � ¼ 0:5; 1; 2. The thick black lines show thermal con-
ductivities of a standard (no blobs) quark-hadron gas computed for
G300I (solid) and G300II (dashed). The thin black lines show the
effective bulk thermal conductivities defined in Eq. (70) in the
presence of rare phase blobs embedded in dominant phase without
contribution from electron-blob scattering for G300I (solid) and
G300II (dashed).

FIG. 16 (color online). Same as Fig. 15 but for a temperature
of T ¼ 109 K and 1010 K.
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The small jumps of thermal conductivities from
electron-blob scattering (color lines in Figs. 13–16) are
due to discontinuities of rare phase blob mass mb (See
Fig. 7). The jumps of thermal conductivities contributed by
embedding of rare phase blobs (thin black lines in
Figs. 13–16) are due to unequal thermal conductivities of
the two phases �1 � �2 at  ¼ 0:5.

As can be seen from Figs. 13–16, the total thermal
conductivity � ¼ ð��1

eff þ ��1
blobÞ�1 is dominated by

electron-blob scattering at T & 109 K. This is particularly
the case for quark volume fractions close to  ¼ 0 or
 ¼ 1 where the electron thermal conductivity from blob
scattering can be as much as three (for < 0:5) to six
orders of magnitude (> 0:5) smaller than the contribu-
tion from the mixed quark-hadron phase. Physically, this
causes a blocking of the thermal flow through a mixed
quark-hadron phase region, which could manifest itself in
the thermal evolution of quark-hybrid stars.

Asmentioned in Sec. IIC, the blob volume density nb!0
as  ! 0 or  ! 1. Since the Coulomb logarithm �� is
finite for these limits but the coefficient / Zeff is divergent,
the thermal conductivity stemming from rare phase blob
scattering will diverge on both ends of the quark-hadron
phase leading to a vanishing total thermal conductivities
there. Since this occurs only very near the edges of the
quark-hadron boundary ( & 10�2) this feature cannot be
seen in Fig. 13. The small jumps in � near the edges of the
quark-hadron phase for T ¼ 109 K and 1010 K (see Figs. 14
and 16) are due to melting.

V. SUMMARYAND CONCLUSIONS

Because of the competition between the Coulomb and
the surface energies associated with the positively charged
regions of nuclear matter and negatively charged regions of
quark matter, the mixed phase may develop geometrical
structures (e.g., blobs, rods, slabs) similarly to what is
expected of the subnuclear liquid-gas phase transition. In
this paper we explore the consequences of a Coulomb
lattice made of rare phase blobs for the thermal and trans-
port properties of neutron stars. The total specific heat cV ,
thermal conductivity �, and electron-blob bremsstrahlung
neutrino emissivities ��;BR are calculated and compared

with those of standard neutron star matter. To carry out this
project, we have adopted and expanded on methods of
earlier works on the transport properties of neutron stars
[7,25]. The sizes of and spacings between rare phase blobs
are calculated using the Wigner-Seitz approximation [7].
The equations of state used in this study are computed for a
standard nonlinear nuclear Lagrangian, and the associated

equations of motion for the baryon and meson fields are
solved in the relativistic mean-field approximation. Quark
matter has been modeled in the framework of the MIT bag
model. Four different parameter sets (HV1, HV2, G300I,
G300II) have been used to model the composition of
neutron star matter containing a mixed phase of quarks
and hadrons (quark-hybrid matter).
The results discussed in Sec. IV show that the contribu-

tion of rare phase blobs in the mixed phase to the specific
heat is negligible compared to the specific heat of a
quark-hadron gas. This is very different for the transport
properties. For low temperature T & 108 K the neutrino
emissivity from electron-blob bremsstrahlung scattering is
at least as important as the total contribution from other
bremsstrahlung processes (such as nucleon-nucleon and
quark-quark bremsstrahlung) and modified nucleon and
quark URCA processes (see Figs. 11 and 12). It is also
worth noting that the scattering of degenerate electrons off
rare phase blobs in the mixed phase region lowers the
thermal conductivity by several orders of magnitude com-
pared to a quark-hadron phase without geometric patterns
(see Figs. 13–16). This may lead to significant changes in
the thermal evolution of the neutron stars containing solid
quark-hadron cores, which will be part of a future study.
Another very interesting issue concerns the impact of more
complex geometrical structures (rods and slabs) on the
thermal conductivity and on neutrino transport. The pres-
ence of such structures may reduce the neutrino emissiv-
ities because of changes in the dimension of the reciprocal
lattice and the Debye-Waller factor [20].
In summary, our study has shown that the presence of

rare phase blobs in dense neutron star matter may have
very important consequences for the total neutrino emis-
sivity and thermal conductivity of such matter. The impli-
cations of this for the thermal evolution of neutron stars
need to be explored in future studies. To accomplish this
we intend on performing two-dimensional cooling simula-
tions in which rotation and a dynamic composition might
be accounted for Refs. [50,51]. In this connection we refer
to the recent study of Noda et al. [52], who suggested that
the rapid cooling of the neutron star in Cassiopeia A can be
explained by the existence of a mixed quark-hadron phase
in the center of this object.
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