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It has become common understanding that the recession of galaxies and the corresponding redshift of

light received from them can only be explained by an expansion of the space between them and us. In this

paper, for the presently favored case of a universe without spatial curvature, it is shown that this

interpretation is restricted to comoving coordinates. It is proven by construction that within the framework

of general relativity other coordinates exist in relation to which these phenomena can be explained by a

motion of the cosmic substrate across space, caused by an explosionlike big bang or by inflation preceding

an almost big bang. At the place of an observer, this motion occurs without any spatial expansion. It is

shown that in these ‘‘explosion coordinates’’ the usual redshift comes about by a Doppler shift and a

subsequent gravitational shift. Making use of this interpretation, it can easily be understood why in

comoving coordinates light rays of short spatial extension expand and thus constitute an exemption from

the rule that small objects up to the size of the solar system or even galaxies do not participate in the

expansion of the universe. It is also discussed how the two interpretations can be reconciled with each other.

DOI: 10.1103/PhysRevD.86.123012 PACS numbers: 04.20.Cv, 98.62.Py, 98.80.Bp, 98.80.Jk

I. INTRODUCTION

After its discovery, the redshift of light from far away
galaxies was first explained in the context of special
relativity and attributed to a Doppler shift caused by an
outward flight of the galaxies in a preexisting invariable
space. It was first observed by V.M. Slipher in the years
since 1912 (see e.g., Ref. [1]), and in 1918 C. Wirtz
interpreted it as being due to a general recessive motion
of galaxies [2]. Use of the Doppler formula led to good
agreement with observational results and revealed the va-
lidity of the Hubble law that, in fact, was first derived in
1927 from general relativity by G. Lemaı̂tre [3,4]. Only in
1929 it was formulated by Hubble in the context of astro-
nomical observations [5]. Hubble’s interpretation of the
cosmological redshift as a Doppler shift became the gen-
erally accepted view, and in accordance with it the big bang
was considered as a giant explosion.

The successful general relativistic formulation of the basic
cosmological equations in comoving coordinates, first by
A. Friedman [6] in 1922, later independently by Lemaı̂tre
[3] in 1927, and 1936 supplemented by a rigorous derivation
of the corresponding metric by H. P. Robertson [7] and
A.G. Walker [8], brought a second interpretation into play.
According to this the recession of galaxies from a distant
observer is not caused by a motion relative to their spatial
environment but rather by an expansion of the space between
them and the observer. Correspondingly inflation and the big
bang are sometimes denoted as space explosions.

For a long time the two interpretations coexisted be-
cause in those days the most distant observable galaxies
gave rise to very small redshifts z only, and at small z the
velocity- redshift relation is the same for both interpreta-
tions. However, at least since 1998 in the context of the
Supernova Cosmology Project [9] more distant cosmic

objects (supernovae) were observed and discrepancies
between the two interpretations became evident, the empha-
sis has completely shifted to spatial expansion. By now even
for small z the recession of galaxies is exclusively attributed
to spatial expansion whereas the explosion perspective is
completely ruled out. This has become the standard doctrine
in research articles (see e.g., Refs. [10,11]), in textbooks (see
e.g., Refs. [12–15]), and in Wikipedia [16], the interpreta-
tion as an explosion sometimes being denoted as a popular
or common misconception (see e.g., Refs. [10,14,17,18] or
Ref. [15], page 28). In the world wide web a multitude of
contributions arguing against the interpretation as an explo-
sion can be found (see e.g., Refs. [19–25]).
In 1934, W.H. McCrea and E. A. Milne [26] showed that

the Friedmann-Lemaı̂tre equations describing the dynam-
ics of the cosmic scale factor aðtÞ in general relativity
follow in exactly the same form from Newton’s laws of
motion (more precisely from the corresponding fluid equa-
tions by Euler) and of gravity. In this so-called Newtonian
cosmology the galaxies are located at the positions
~rðtÞ ¼ ½aðtÞ=aðt0Þ�~rðt0Þ where ~r is the radius vector in a
Euclidean space and ~r ¼ 0 is our position in the universe,
and they move with the velocities ~v ¼ HðtÞ ~r (where
HðtÞ ¼ _aðtÞ=aðtÞ) relative to a preexisting and invariable
space. Near the origin the velocities of galaxies and the
gravitational field produced by them are so small that the
Newtonian equations of motion should asymptotically co-
incide with equations obtainable from general relativity.
This suggests that also in general relativity there should
exist coordinates in which the galaxies are moving across
space.
In this paper, for the presently favored case of a universe

without spatial curvature, it will be shown that the seem-
ingly contradictory interpretations, motion relative to an
invariable space and recession due to expansion of space,
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are both possible and not in contradiction with each
other. It will become apparent that they are relative views
restricted to special sets of coordinate systems which are
related to each other by simple transformations.

It is clear that in the transition from one coordinate
system to another also the interpretation of physical phe-
nomena can change. Since in general relativity a huge
variety of different coordinate systems is available, it
may at first glance appear almost trivial to find a coordinate
system which allows for a prescribed interpretation-motion
across space instead of expansion of space in our case.
There are, however, several restrictions making things less
trivial. In order to remain within the framework of general
relativity, the signature of the metric of all admissible
coordinate systems must be the same.1 In addition, con-
ditions for excluding radial expansion must be imposed.
This will lead us to a set of differential equations to be
solved under the observance of specific boundary condi-
tions. It is not obvious that solutions of this problems
exist, and even when they exist, it is still not granted
that the corresponding metric has the appropriate signa-
ture. A simple example may demonstrate the problem.

In Newtonian mechanics one can go from the Cartesian
coordinates of an inertial system to any other coordinates
and still remain within the framework of the theory, pro-
vided that pseudoforces are admitted. Specifically one can
go to a rigidly rotating coordinate system. The fact that
beyond a certain radius this system rotates with superlumi-
nal velocity poses no problem in Newtonian mechanics. In
general relativity, however, rigidly rotating coordinates are
not admissible because in the superluminal region the metric
assumes the wrong signature. A second example is pre-
sented in footnote 2.

The main body of this paper consists of proving the
existence of explosion coordinates. This is achieved in a
constructiveway, deriving them bymeans of a transformation
from Robertson Walker coordinates. In Sec. II the deter-
mining differential equations and boundary conditions are
specified, formal solutions are derived, and properties of
them as well as conclusions following from them are
discussed. In Sec. III explicit solutions for the most impor-
tant special cases of cosmic evolution are deduced, thus
bringing to an end the envisaged proof of existence. As
already mentioned the interpretation of physical phe-
nomena like the redshift of light from far away galaxies
must be adjusted. It will be shown that the latter can exactly
be described by a Doppler shift and a subsequent gravita-
tional shift. In this context it will be discussed why and
how a spontaneous Doppler shift at the place of emission
can be reconciled with the fact that in comoving coordi-
nates ‘‘. . . the increase of wavelength from emission to
absorption of light does not depend on the rate of change of

[the cosmic scale factor] aðtÞ at the times of emission or
absorption, but on the increase of aðtÞ in the whole period
from emission to absorption’’ [13]. In Sec. III it is also
discussed to what extent the cosmic explosion provided
by inflation or a big bang can be compared with usual
explosions. Section IV deals with some applications and
extensions.
It is clear that the purpose of this paper cannot be the

replacement of the usual approach with Robertson-Walker
coordinates and the corresponding interpretation (also, see
Sec. V), especially since it starts off with solutions
obtained in them. Rather the paper is meant to provide a
supplementation which might even turn out to be useful in
specific cases.

II. SYSTEMS WITHOUT RADIAL
EXPANSION-GENERAL THEORY

In the case of a spatially uncurved universe the square of
the line element in (comoving) Robertson-Walker coordi-
nates is

ds2 ¼ c2dt2 � a2ðtÞðdr2 þ r2d�Þ with

d� ¼ d#2 þ sin2#d’2:
(1)

[r is dimensionless and aðtÞ has the dimension of a length.]
The radial expansion of the universe is expressed by the
time-dependence of length elements, e.g., dlr ¼ aðtÞdr in
radial direction. The underlying coordinates t, r, #, and ’
are called expansion coordinates in this paper. We are
looking for a transformation t, r, #, ’ ! �, �, #, ’ to
new coordinates �, �, # and ’, the explosion coordinates,
for which the square of the line element is given by

ds2 ¼ c2g00ð�; �Þd�2 � d�2 þ g�ð�; �Þd�: (2)

[In contrast to r, � has the dimension of length.] The radial
length element dl� ¼ d� is time independent whence in

explosion coordinates there is no radial expansion. As we
shall see instead of this there is a radial motion. Since #
and ’ remain unchanged, we have

t ¼ tð�; �Þ; r ¼ rð�; �Þ: (3)

Other than in Newtonian cosmology the space is not com-
pletely invariable but may involve angular expansion
because g� can be time dependent. A corresponding expan-
sion of volumes will be discussed at the end of this section.

A. Derivation of explosion coordinates
and corresponding metric

From Eqs. (3) we get

dt ¼ t�d�þ t�d�; dr ¼ r�d�þ r�d�;

where t� denotes the partial derivative of the function

tð�; �Þ with respect to � etc. With this, from Eq. (1) we
obtain

1In this paper SI units are used whence the speed of light is c.
Furthermore, the signature of the metric is ðþ;�;�;�Þ.
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ds2 ¼ ðc2t2� � a2r2�Þd�2 þ ðc2t2� � a2r2�Þd�2
þ 2ðc2t�t� � a2r�r�Þd�2 þ � � � :

In order for this to assume the form of Eq. (2), the equations

c2t�t� ¼ a2r�r�; c2t2� � a2r2� ¼ �1;

g00 ¼ t2� � a2r2�
c2

; g� ¼ �a2r2
(4)

must be fulfilled, or, equivalently

r�¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þc2t2�

q
aðtÞ ; r�¼� c2t�t�

aðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þc2t2�

q : (5)

In order to make the results in expansion and explosion
coordinates comparable we impose the following condi-
tions: 1. the origins of the two coordinate systems perma-
nently coincide, and 2. the coordinate times at the origins
are the same,

1: �¼ 0 for r¼ 0; 2: t¼ � at �¼ 0: (6)

Equations (5) are two equations only for the determina-
tion of the four derivatives r�, r�, t�, and t�, since as soon

as the transformation functions (3) have been determined
from Eqs. (5), the last two of the Eqs. (4) only serve for
the evaluation of g00 and g�. For Eqs. (5) to have solutions,
the integrability condition r�� ¼ r�� must be satisfied. The

evaluation of it results in a nonlinear second order differ-
ential equation for the function tð�; �Þ,

aðtÞt�� þ _aðtÞ
c2

ðc2t2� þ 1Þ ¼ 0: (7)

Once a solution tð�; �Þ is found, rð�; �Þ can be determined
from Eqs. (5). After multiplication with 2at� Eq. (7)

becomes

2a2ðtÞt�t�� þ 2aðtÞ _aðtÞt3� þ 2aðtÞ _aðtÞ
c2

t�

¼ @

@�
½a2ðtÞðt2� þ 1=c2Þ� ¼ 0:

This equation can be integrated once to yield

t� ¼ � 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð�Þ=a2ðtÞ � 1

q
(8)

and once more to yield

� ¼ Gð�Þ � c
Z t

0

dt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð�Þ=a2ðt0Þ � 1

p
���������¼const

; (9)

where Fð�Þ and Gð�Þ are integration functions. [Note that
the algebraic sign in Eqs. (8) and (9) can be chosen
independently from that in the Eqs. (5).] The latter can
be chosen in such a way that additional conditions are
satisfied. Using the second of the conditions (6), from
Eq. (9) we get

Gð�Þ ¼ �c
Z �

0

dt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fð�Þ=a2ðt0Þ � 1

p
���������¼const

: (10)

Inserting Eq. (8) and the second of the Eqs. (5) in the third
of the Eqs. (4) yields

g00 ¼ t2�
1þ c2t2�

¼ a2ðtÞt2�
Fð�Þ : (11)

Since under observance of both conditions (6) the origins
of the two coordinate systems permanently coincide and
since t ¼ � there, also the metric times must be the same
there. (Although this statement needs no separate proof, it
will later be validated as a test in special cases.) As a result
of this from Eqs. (1) and (2) we get

g00ð� ¼ 0; �Þ � 1: (12)

With this and t� ¼ 1 for � ¼ 0 since t ¼ � for � ¼ 0, from
Eq. (11) we finally obtain

Fð�Þ ¼ a2ð�Þ: (13)

Here, að�Þ stands for the function aðtÞ with t replaced by �.
With this and Eq. (10), Eq. (9) becomes

� ¼ �c
Z t

�

dt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð�Þ=a2ðt0Þ � 1

p
���������¼const

: (14)

This equation implicitly determines the function
t ¼ tð�; �Þ. Inserting Eqs. (13) and (8) in the first of the
Eqs. (5) yields

r�¼� að�Þ
a2ðtÞ and r¼Rð�Þ�að�Þ

Z �

0

d�0

a2ðtð�0;�ÞÞ
���������¼const

;

(15)

where Rð�Þ is an arbitrary integration function. From the
first of the conditions (6) it follows that Rð�Þ ¼ 0, so finally
we get

rð�; �Þ ¼ að�Þ
Z �

0

d�0

a2ðtð�0; �ÞÞ
���������¼const

: (16)

(The minus sign could be excluded since we must have
r > 0.)
The Eqs. (14) and (16) determine the solutions of the

Eqs. (4) for the transformation functions rð�; �Þ and tð�; �Þ
only implicitly and require the knowledge of a solution aðtÞ
of the Friedman-Lemaı̂tre equations. Since according to
Eq. (14) their range of validity is restricted to að�Þ � aðtÞ,
it is at this point not yet clear whether for each aðtÞ also
explicit solutions exist and in addition lead to the right
signature of the metric. Therefore, the proof of existence of
solutions is not yet complete. Their determination will in
general require numerical methods. However, in special
cases also analytical solutions can be obtained. In Sec. III
the full solution for two relatively simple but nevertheless
representative cases will be derived.
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B. Flight velocity of galaxies

In explosion coordinates, the radial position of a galaxy
[or an element of the cosmic substrate] is given by
rð�; �Þ ¼ const, whence � ¼ �ð�Þ and

_�ð�Þ ¼ � r�
r�

¼ � ca2ðtÞt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð�Þ=a2ðtÞ � 1

p
a2ð�Þ : (17)

[For the last step Eqs. (5), (8), and (13) were used.] This
means that the galaxies are moving across space. _�ð�Þ is
the coordinate velocity, and from it the physical velocity v
is obtained according to

v ¼
ffiffiffiffiffiffiffiffi
g��

p
d�ffiffiffiffiffiffiffi

g00
p

d�
¼ d�ffiffiffiffiffiffiffi

g00
p

d�
¼ _�ð�Það�Þ

aðtÞt� ; (18)

where at last Eqs. (11) and (13) were used. Insertion of
Eq. (17) finally yields

v ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2ðtÞ=a2ð�Þ

q
: (19)

Thereby a freely disposable sign was chosen such that v is
positive.

C. Redshift of light from far away galaxies

(1) In expansion coordinates, the redshift z of light emit-
ted from a galaxy at the radius rem at the time tem and
received at the origin r ¼ 0 at the time t0 is given by

zþ 1 ¼ �0

�em

¼ aðt0Þ
aðtemÞ ; (20)

where �em or �0 is the wavelength of the light at
emission or reception, respectively. The radial propa-
gation of light is described by cdt ¼ aðtÞdr whence

rem ¼ c
Z t0

tem

dt0

aðt0Þ : (21)

With this equation the time t0 of reception can be
expressed in terms of the time tem and the location rem
of emission.

(2) In explosion coordinates for an observer fixed at the
distance � ¼ �em from the origin, the light emitted
from a galaxy flying past him at the radial velocity v
undergoes the longitudinal Doppler-shift

��

�em

¼
�
1þ v=c

1� v=c

�
1=2 ¼ 1þ v=cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� v2=c2
p : (22)

The physical velocity of Eq. (19) is the one that must
be inserted in the Doppler formula, and because
unlike the recessional velocity _aðtÞr in expansion
coordinates it cannot exceed the speed of light, it is
always in the range of validity of this formula. With
it Eq. (22) becomes

��

�em

¼ að�Þ
aðtÞ

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2ðtÞ=a2ð�Þ

q �
; (23)

where � ¼ �em or t ¼ tð�; �Þ ¼ tem are the times
of emission in explosion or expansion coordinates,
respectively. On its way from � ¼ �em to the
observer at � ¼ 0 the Doppler-shifted light experi-
ences an additional shift in the gravitational field
acting in the system of explosion coordinates. For
simplicity we assume that this field is time indepen-
dent as is true for the special cases to be studied
below. Then, according to general relativity, the
ratio of the wavelength �0 observed at � ¼ 0 and
� ¼ �0 to the wavelength �� of the Doppler-shifted

light at �em ! � and �em ! � is

�0

��

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ð� ¼ 0; � ¼ �0Þ

g00ð�; �Þ

s
: (24)

Making use of the Eqs. (11)–(13), from this we get

�0

��

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g00ð�; �Þ

p ¼ að�Þ
aðtÞt� : (25)

Combining Eqs. (23) and (25) we finally obtain

�0

�em

¼ a2ð�Þ
a2ðtÞt�

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2ðtÞ=a2ð�Þ

q �
: (26)

Since observers at the origin use the same metric
time in both coordinate systems, they also measure
the same frequency or redshift of light that is
emitted by far away galaxies. Therefore the result
(26) must be the same as the result provided by
Eqs. (20) and (21), and although not evident this
coincidence does not need proof. Nevertheless it is
illuminating to see it verified in the special cases
considered in Sec. III.

D. Volume expansion rate

One could be tempted to assume that the elimination
of radial expansion in explosion coordinates leads to
increased angular expansion. Indeed the structure of
g�ð�; �Þ in explosion coordinates [see Eq. (32) for ex-
ample] suggests that there could still be a volume expan-
sion due to a time dependence of azimuthal distances. In
order to clarify this issue we calculate an expansion rate
that involves both radial and angular properties, the volume
expansion rate E ¼ ðd�V=dTÞ=�V. In this �V is the
volume of a spherical shell with infinitesimally small
thickness ��, and T ¼ ffiffiffiffiffiffiffi

g00
p

� is the time measured on

clocks in the system of explosion coordinates whence

E ¼ 1

�V

d�Vffiffiffiffiffiffiffi
g00

p
d�

: (27)

According to Eq. (2) and the last of the Eqs. (4)
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�V ¼ 4�g��� ¼ 4�a2ðtÞr2��;
with t ¼ tð�; �Þ and r ¼ rð�; �Þ. From this, for fixed � we
obtain

1

�V

d�V

d�
¼ 2½ _aðtÞrt� þ aðtÞr��

aðtÞr ;

and using Eqs. (11) and (13) we finally get

E ¼ 2að�Þ
aðtÞ

�
_aðtÞ
aðtÞ þ

r�
rt�

�
: (28)

For obtaining the expansion rate E at � ¼ 0 we consider
the volume

V ¼ 4�
Z �

0
a2ðtÞr2d�0

of a sphere of radius �. Expanding around � ¼ 0 we have

rð�; �Þ ¼ rð0; �Þ þ r�ð0; �Þ�þ � � � ¼ r�ð0; �Þ�þ � � �
because rð0; �Þ ¼ 0 according to the first of the condi-
tions (6). Furthermore, according to the first of the
Eqs. (15) we have

r�ð0; �Þ ¼ að�Þ
a2ðtÞ

���������¼0
¼ 1

að�Þ
since t ¼ � for � ¼ 0 according to the second of the
conditions (6). In consequence

rð�; �Þ ¼ �

að�Þ þOð�2Þ:

Finally, we get

aðtð�; �ÞÞ ¼ aðtð0; �ÞÞ þOð�Þ ¼ að�Þ þOð�Þ:
Altogether we have

V ¼ 4�
Z �

0
½�02 þOð�03Þ�d�0 ¼ 4��3

3
þOð�4Þ:

From this we get dV=d�j�¼0 ¼ 0 and Ej�¼0 ¼ 0, in explo-

sion coordinates at the origin there is no volume expan-
sion. Since in an expanding universe each point can be
chosen as the origin, in explosion coordinates at each point
for a local observer there is no expansion. The expansion
around points at some distance from the origin, described
by Eq. (28), can therefore be regarded as virtual.

III. SYSTEMS WITHOUT RADIAL
EXPANSION-SPECIAL CASES

For simplicity our analysis of special cases will be
restricted to situations in which the gravitational field is
static in explosion coordinates. Since Newtonian cosmol-
ogy is a very good approximation in the neighborhood
of the origin r ¼ 0, the corresponding conditions can be
determined with it. According to the Hubble law v¼HðtÞr
the accelerating (or decelerating) field, equaling the gravi-
tational field (an inflation field being included), is

_vðtÞ ¼ _HðtÞrþH _rðtÞ ¼ ð _HðtÞ þH2Þr:
It becomes time independent for

_HðtÞ þH2 ¼

8>><
>>:

0

A2 ¼ const

�A2 ¼ const

:

In the first case, we obtain

HðtÞ ¼ _aðtÞ
aðtÞ ¼

1

t
! aðtÞ ¼ �t;

where � ¼ const, i.e., the universe is expanding with con-
stant velocity. In the second case two solutions HðtÞ exist,
firstly H ¼ A, i.e., a universe with constant expansion rate,
and secondly

HðtÞ ¼ A cothðAtÞ ! aðtÞ ¼ a0 sinhðAtÞ:

In the third case we obtain

HðtÞ ¼ A tanhðAtÞ ! aðtÞ ¼ a0 coshðAtÞ:

In the following we shall only consider the cases of constant
expansion velocity and constant expansion rate.

A. Universe with constant expansion velocity

For a long time the recent evolution of the universe up to
the present state was considered to be best represented by a
model that assumes the domination of matter and exhibits a

decelerated expansion with aðtÞ � t3=2. Only shortly before
the end of the last century it was detected that the expan-
sion is rather slightly accelerated [9]. The case of a uni-
verse without acceleration or deceleration, aðtÞ ¼ �t with
constant �, lies in between, represents a fairly good
approximation-which is best at the time of the transition
from decelerated to accelerated expansion-and enables a
full analytic solution of our problem.

1. Derivation of explosion coordinates

With aðtÞ ¼ �t the integral in Eq. (14) can readily be
evaluated and is given by

Z t

�

dt0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ð�Þ=a2ðt0Þ � 1

p ¼ 1

2

Z t

�

dt02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � t02

p ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � t2

p
:

With this, resolving Eq. (14) with respect to t and choosing
a sign such that t � 0, we obtain

t ¼ 1

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2�2 � �2

q
: (29)

With aðtÞ ¼ �t and this result Eq. (16) becomes
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r ¼ ��
Z �

0

d�0

�2t02ð�0; �Þ ¼
�c2

�

Z �

0

d�0

c2�2 � �02

¼ c

2�
ln
c�þ �

c�� �
: (30)

The transformation t, r, #, ’ ! �, �, #, ’, providing a
line element of the form (2), is given by Eqs. (29) and (30),
and the inverse transformation is

� ¼ t cosh
�r

c
; � ¼ ct sinh

�r

c
: (31)

Inserting Eqs. (29) and (30) in the third and fourth of the
Eqs. (4) yields

g00 ¼ 1; g� ¼ � c2�2 � �2

4

�
ln
c�þ �

c�� �

�
2
: (32)

[In the derivation of the first equation, for the sake of
brevity Eq. (12) was used. One can easily make sure that
the same result is obtained without it.] Inserting the results
(32) in Eq. (2) yields

ds2¼c2d�2�d�2�c2�2��2

4

�
ln
c�þ�

c���

�
2
d�: (33)

2. Flight velocity of galaxies and associated redshift

The flight velocity of a galaxy at r ¼ const can be
obtained from Eqs. (19) and (29) with aðtÞ ¼ �t.
Alternatively, from Eqs. (31) we immediately get

� ¼ c� tanh
�r

c
and v ¼ �

�
¼ c tanh

�r

c
: (34)

(1) For expansion coordinates, with aðtÞ ¼ �t the
Eqs. (20) and (21) yield

�0

�em

¼ t0
tem

and rem ¼ c

�

Z t0

tem

dt

t
¼ c

�
ln

t0
tem

whence
�0

�em

¼ e�r=c: (35)

(2) In explosion coordinates from Eqs. (22) and (34)
we get

��

�em

¼
�
1þ tanhð�r=cÞ
1� tanhð�r=cÞ

�
1=2 ¼ e�r=c: (36)

According to the first of the Eqs. (32) there is no
additional gravitational redshift of the light on its
way from � ¼ �em to � ¼ 0, i.e. �0=�� ¼ 1, and

therefore we obtain

�0

�em

¼ e�r=c; (37)

exactly the same result as in expansion coordinates,
Eq. (35). It should be noted, however, that, follow-
ing from Eqs. (31), (1), and (33), in the two

coordinate systems the distance from the point of
emission as well as the time of emission differ from
each other.

(3) The case of constant expansion velocity is particu-
larly suited for demonstrating the compatibility of the
two interpretations at issue, because in explosion
coordinates the redshift is completely due to the
Doppler effect. According to Eqs. (34) the spatial
grid of expansion coordinates r is moving relative
to that of explosion coordinates � at a speed that
increases with the distance from the origin. We now
consider a light ray emitted at r ¼ rem and directed
toward the origin. From the viewpoint of the system
Sexpl of explosion coordinates, observers at rest in the

system Sexpa of expansion coordinates are moving

relative to the emitting galaxy at r ¼ rem at a velocity
that increases with decreasing r. Therefore in Sexpl
they appear to observe a Doppler shift that continu-
ously increases as r approaches zero. This way an
observer in Sexpl can readily understand why for

observers in Sexpa the redshift appears to be accumu-

lated on the way of light from emission to reception.

3. View of an external observer

According to the theory of chaotic inflation [27,28], in
the case k ¼ 0 (no spatial curvature) considered in this
paper a Friedman-Lemaı̂tre universe could be finite and
embedded in an infinite super-universe. This so-called
multiverse is filled with a ‘‘foam’’ of fluctuating quantum
fields from which numerous universes of all kinds can
emerge by inflation or have already done so. It is interest-
ing to find out how the situation, so far considered from an
internal observer, would be seen by an external observer
located at some distance from our universe.
Considerably simplifying the above model we consider

a toy model of the universe in which a finite spherical
section of a Friedman-Lemaı̂tre universe is surrounded by
a sufficiently large bubble of true vacuum, uninfiltrated by
any externally generated gravitational fields. In contrast to
the situation outside a collapsing star, due to Birkhoff’s
theorem (time-independence of all metric coefficients in
the vacuum surrounding a spherically symmetric mass or
energy distribution, see Ref. [29] or e.g., Ref. [30]) the
metric of the external space is not of the Schwarzschild
type but must be pseudo-Euclidean. The reason is that it
has been of this kind before the universe emerged by a
creation out of nothing, a process tolerated by general
relativity when the big bang (or, rather, an almost big
bang) is preceded and triggered by an inflation field (dark
energy, inflaton). Therefore, in polar spatial coordinates
�, #, and ’ the corresponding line element is

ds2 ¼ c2d�2 � d�2 � �2d�: (38)

The case aðtÞ ¼ �t represents a fairly good approxima-
tion to the state of our universe from the end of the period
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of matter dominance until now, i.e., for the time interval
t0=2 	 t 	 t0 where t0 is the present age of the universe. In
this time interval the pressure can be neglected and matter
can be treated as pressureless dust. The only forces acting
on the matter elements are gravitational forces [including
the action of dark energy], and we can therefore assume
that in comoving coordinates the boundary of the universe
[which must lie well beyond our horizon] is at rest,
r ¼ R ¼ const, and is constituted by matter elements mov-
ing at the velocity (34) with r ¼ R.

Since according to Eqs. (33) and (38) the external and
internal coordinates are both not only Gaussian normal but
also employ the same radial metric,2 it is rather obvious
that the velocity of the boundary seen by an external
observer is the same as that seen by an internal observer.
A more physical proof of this result is the following. We
consider the propagation of light emitted with frequency �0

at the origin and directed toward an observer outside the
universe, at rest at � ¼ �obs ¼ const. According to the
Eqs. (33) and (38), on its whole way inside and outside
the universe the propagation of light is described by the
equation _�ð�Þ ¼ c or � ¼ cð�� �0Þ, respectively. In con-
sequence, the time between the arrival of successive wave
crests at the place of the observer in ‘‘outer space’’ equals
the time between their emission at the origin whence
�obs ¼ �0. An observer comoving with the boundary of
the universe sees the origin receding from him at the
velocity v given by the second of Eqs. (34). He therefore
observes a redshift of the light from the origin, and accord-
ing to Eq. (22) he measures the frequency

� ¼ �0

�
1� v=c

1þ v=c

�
1=2

:

The light leaves him with the same frequency as it had on
its arrival. Since the boundary moves toward the external
observer, the latter will observe a blueshift of the light from
the boundary and measure the frequency

�obs ¼ �

�
1þ u=c

1� u=c

�
1=2 ¼ �0

�
1� v=c

1þ v=c

�
1=2

�
1þ u=c

1� u=c

�
1=2

;

where u is the velocity of the boundary in his (external)
coordinate frame. As we said above we must have
�obs ¼ �0, and with this the last equation yields

u ¼ v ¼ c tanh
�R

c
; (39)

where at last Eq. (34) and r ¼ R was used.

4. Numerical values of characteristic velocities

(1) In the comoving coordinates of the Robertson-
Walker metric, according to Hubble’s law the present
recessional velocity of the boundary of the observ-
able universe is v ¼ H0d0 where d0 ¼ aðt0Þrbo 

3:5ct0 is its metric distance from us and t0 the age
of the universe. With H0 ¼ 0:7 � 3:24 � 10�18 s�1 it
becomes vrec ¼ 3:45c. A reasonable assumption
about the outer boundary R of the universe is that
at present it is two times as far away from us as the
present boundary of the observable universe, i.e.,
d 
 7ct0. (This way inhomogeneities propagating
from outer space into the universe cannot have
spoiled the homogeneity and isotropy inside the
observable universe, see Ref. [15], page 231). The
corresponding recessional velocity is

vrec ¼ 6:9c: (40)

(2) In explosion coordinates the velocity at which the
present boundary of the observable universe moves
away from us is given by the second of the Eqs. (34).
Following from aðtÞ ¼ �t we have �rbo=c ¼
aðt0Þrbo=ðct0Þ ¼ d0=ðct0Þ ¼ 3:5, and with this we
obtain vbo ¼ 0:998c. At the outer boundary of the
universe we have �R=c ¼ d=ðct0Þ ¼ 7, and accord-
ing to Eq. (39) the velocity at which it moves is

u ¼ v ¼ 0:999998c: (41)

B. Universe with constant expansion rate

We consider a second case in which a full analytic
solution for explosion coordinates can be obtained,
namely, aðtÞ ¼ �eHt with constant expansion rate H. In
this case which describes an inflationary expansion, in
addition to the Doppler shift there is a gravitational blue-
shift of the light from far away galaxies.

1. Derivation of explosion coordinates

In the present case, instead of using Eqs. (14) and (16) it
is easier to go back to Eq. (7), i.e.,

t�� þHt� ¼ �H=c2:

After solving the homogeneous equation, the solution of
the inhomogeneous equation can be obtained by variation
of constants and is given by

tð�; �Þ ¼ �þ 1

H
lncosw with w ¼ H�

c
: (42)

An integration function was chosen such as to satisfy the
second of the conditions (6). With this result and aðtÞ¼�eHt

from Eq. (16) we get

2For a smooth connection with the external coordinates,
as internal coordinates also standard coordinates (ds2 ¼
g00ð�; �Þc2d�2 þ g��ð�; �Þd�2 þ �2d�) could be envisaged.
However, for aðtÞ � t, at some critical � a coordinate singularity
occurs, and for all � > �crit standard coordinates do not exist.
This provides another example that compatibility with the re-
quirements of general relativity may prevent the existence of
coordinates with specified properties.
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rð�; �Þ ¼ ce�H�

�H
tanw: (43)

Inversion of the functions rð�; �Þ and tð�; �Þ given in
Eqs. (42) and (43) yields

� ¼ c

H
arcsin

�
�Hr

c
eHt

�
;

� ¼ t� 1

2H
ln

�
1� �H2r2

c2
e2Ht

�
:

(44)

Inserting aðtÞ ¼ �eHt and Eqs. (42) and (43) in Eq. (11) and
the fourth of the Eqs. (4) we obtain

g00 ¼ cos2w; g� ¼ � c2

H2
sin2w: (45)

From the first equation it follows that Eq. (12) is satisfied as
it should according to the general theory.

2. Flight velocity of the cosmic substrate and
associated redshift

From the Eqs. (19) and (42), and aðtÞ ¼ �eHt we obtain
the flight velocity

v ¼ c sinw: (46)

(1) In the present case Eqs. (20) and (21) become

�0

�em

¼ eHðt0�temÞ with

rem ¼ c

�

Z t0

tem

e�Htdt ¼ c

�H
ðe�Htem � e�Ht0Þ

and in combination yield

�0

�em

¼
�
1� �Hrem

c
eHtem

��1
:

From this, with rem ! r, tem ! t and �Hr=c ¼
e�H� tanw according to Eq. (43) and using Eq. (42),
for expansion coordinates we obtain the result

�0

�em

¼ 1

1� sinw
: (47)

(2) In the system of explosion coordinates, from
Eqs. (22) and (46) we obtain

��

�em

¼ 1þ sinw

cosw
; (48)

and from Eq. (24) and the first of the Eqs. (45) we get

�0

��
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cos20

cos2w

s
¼ 1

cosw
: (49)

Combing the results (48) and (49) we obtain the same
result (47) as in the system of expansion coordinates.

3. Volume expansion rate

According to Eq. (45) the volume of a spherical shell of
small thickness �� is given by

�Vð�; �Þ ¼ 4�
c2

H2
��sin2w:

Because it is time independent, the expansion rate
E ¼ d�V=ð�V ffiffiffiffiffiffiffi

g00
p

d�Þ vanishes everywhere. This means

that in the present case, exponential inflationary evolution,
the cosmic substrate is moving relative to a completely
invariable space.

4. Acceleration of the cosmic substrate and
comparison with ordinary explosions

From the first of the Eqs. (44) and from Eq. (46) with

@�

@t

��������r
¼ c tan

H�

c
¼ c tanw

for simplicity in terms of the time t we obtain

_vðtÞ ¼ c cosw
@w

@t

��������r
¼ H cosw

@�

@t

��������r
¼ cH sinw ¼ Hv:

From this there follows an exponentially growing accel-
eration of the cosmic substrate along its radial trajectories.
Accordingly the inflation preceding an almost big bang
describes the actual explosion, whereas the subsequent
dynamical processes are basically consequences of it.
(In the case of a big bang without inflation the dynamics
of explosion is compressed into a singular instant.) Like in
ordinary explosions the accelerated substance–here dark
energy, there, e.g., a chemical explosive like dynamite or
gunpowder-simultaneously is the blasting agent driving the
explosion, and for an external observer it moves outward
filling a previously empty space. What differs from ordi-
nary explosions is that there are no shattered fragments of a
casing, and there is no precursive shock wave. Instead there
will be a precursive front of the inflation field, a weak
discontinuity, which propagates at the speed of light.

C. Hubble Law

In expansion coordinates the distance from the origin of
a galaxy or an element of the cosmic substrate is d ¼ aðtÞr.
From this follows the Hubble law

_dðtÞ ¼ HdðtÞ with H ¼ _aðtÞ
aðtÞ : (50)

In the explosion coordinates belonging to the case of
constant expansion velocity, aðtÞ ¼ �t, according to the
second of the Eqs. (34) we can write the flight velocity of
galaxies etc., in the forms

v ¼ Hexpl� with Hexpl ¼ 1

�
: (51)

Formally, this is identical with the Hubble law
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_dðtÞ ¼ HdðtÞ with H ¼ 1

t

obtained in expansion coordinates. Physically the two laws
are different in that the underlying lengths as well as proper
times are measured differently.

Let us now consider the case of constant expansion rate
H. In expansion coordinates Eq. (50) with H ¼ const
holds. In explosion coordinates according to Eq. (46)
we have

v¼Hexpl� with

Hexpl¼csinðH�=cÞ
�

¼H

�
1�H2�2

6c2
þ���

�
; (52)

where at last Hexpl was expanded with respect to H�=c. In

contrast to the result for expansion coordinates, Hexpl is

weakly space dependent. This is not in contradiction to
the result obtained for expansion coordinates or from
observations although a space-dependent Hubble parame-
ter appears unusual. The reason is that measurements con-
cerning far away objects involve the application of a theory
related to the specific coordinate system in use, and this
theory must appropriately be adjusted in the transition to
explosion coordinates. (For example, the luminosity dis-
tance must be redefined.)

IV. APPLICATIONS AND EXTENSIONS

(1) In more general cases than the ones considered
in the last section g00 will depend on � and �.
Therefore, in addition to the Doppler shift a time-
dependent gravitational redshift of light will occur.
While the Doppler shift can still be calculated from
the Doppler formula (22), no generally valid for-
mula for the shift effect of time-dependent gravita-
tion is known (at least to the author of this paper).
However, for all cases covered by Eq. (2) the latter
can be derived by making use of the equivalence of
the two different conceptions of galaxy recession.
Combining Eqs. (20), (21), and (23), with tem ! t as
in Eq. (23) we obtain

�0

��

¼ �0

�em

�em

��

¼ aðt0Þ
að�Þð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2ðtÞ=a2ð�Þp Þ
with r ¼ rem ¼ c

Z t0

tem

dt0

aðt0Þ : (53)

(2) Objects that are small in relation to cosmic distances
like atoms, the solar system or even galaxies do not
participate in the spatial expansion of the universe
associated with usual theory. In expansion coordi-
nates this phenomenon is not easily comprehensible.
A first important proof of it is implicitly contained in
one of A. Einstein’s last papers [31]. It is shown

there that a star in static equilibrium can smoothly
be embedded in an expanding universe which means
that the radius of the star does not expand. From this
it is often derived that cosmic expansion is restricted
to distances of cosmic scale. (According to Ref. [32]
‘‘only distances between clusters of galaxies and
greater distances are subject to the expansion.’’)
What cannot be understood on this basis is, why,
on the other hand, light rays of much smaller spatial
extensions are still subject to expansion. (This
applies in particular to the incoherent light emitted
by far away galaxies etc. However, in the usual
derivation of the cosmic redshift only monochro-
matic wave trains of infinite extension are consid-
ered.) This different behavior is especially difficult
to understand in expansion coordinates [33], but it is
very easily understood in explosion coordinates:
Completely independent of the radial extension of
a radially directed light ray the frequency of it is
redshifted due to the Doppler effect and the gravi-
tational field.

(3) The transformation from expansion to explosion
coordinates can only in special cases be analytically
expressed and will in general involve numerical
calculations. A formulation of the general relativis-
tic equations for the dynamic evolution of the uni-
verse in explosion coordinates may offer an easier
approach to solutions, at least in special cases.

(4) The introduction of explosion coordinates in a uni-
verse with negative spatial curvature (k ¼ �1) is
certainly feasible in a similar way as in the case
k ¼ 0 considered in this paper. In the case of posi-
tive spatial curvature the situation is different.
Nevertheless it may be possible to successfully
impose the condition g�� ¼ 0 also in this case,

although this would appear somewhat artificial.

V. CONCLUSION

It was shown in this paper that explaining the recession
of galaxies (or other manifestations of matter at earlier
stages) by an expansion of space or as an explosion and
after-explosionlike motion relative to space is equivalent.
Both interpretations are relative in that their validity is
restricted to specific coordinate systems. The transition
between them can be performed by simple transformations.
Certainly, the usual approach using expansion coordi-

nates has the major merits. Most important is its simplicity
provided by the fact that many physical properties are
related to one simple time-dependent parameter, the scale
factor aðtÞ. Furthermore, the coordinate time is equal to the
proper time and is thus valid for the whole universe. For
people unfamiliar with the field the concept of an expand-
ing space may occasionally provide difficulties, but this is
by far surpassed by the aforementioned advantages.
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Our approach by explosion coordinates aimed at an alter-
native interpretation and consequently is based on a reformu-
lation of known results. Nevertheless it has its merits as well.
For one, it better fits the view of an external observer. Also,
the interpretation of the big bang or inflation as giant explo-
sions, and the restriction of recessional velocities to values
below the velocity of light are more intuitive. Furthermore,
there exist problems which are easier to handle in explosion

coordinates. Finally, the close affinity to Newtonian cosmol-
ogy may provide advantages in some cases.
The two interpretations should by no means be con-

founded. As well as the Doppler effect must not be used
for explaining the redshift in expansion coordinates, their
corresponding distances and recessional velocities must
not be employed when Doppler effect and gravitational
blueshift are evaluated in explosion coordinates.
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