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Recently, studies of the gravitational collapse of a scalar field within spherically symmetric anti–de

Sitter (AdS) spacetimes presented by Bizon and Rostroworoski [Phys. Rev. Lett. 107, 031102 (2011)],

Jalmuzna et al. [Phys. Rev. D 84, 085021 (2011).] showed an instability of pure AdS to black hole

formation. In particular, the work showed that arbitrarily small initial configurations of a scalar field

evolved through some number of reflections off the AdS boundary until a black hole forms. We consider

this same system, extended to include a complex scalar field, and reproduce this phenomena. We present

tests of our numerical code that demonstrate convergence and consistency. We study the properties of the

evolution as the scalar pulse becomes more compact by examining the asymptotic behavior of the scalar

field, an observable in the corresponding boundary conformal field theory. We demonstrate that such black

hole formation occurs even when one places a reflecting boundary at finite radius, indicating that the

sharpening is a property of gravity in a bounded domain and not of AdS itself. We examine how the initial

energy is transferred to higher frequencies—which leads to black hole formation—and uncover interest-

ing features of this transfer.
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I. INTRODUCTION

Two recent papers [1,2] studied the gravitational col-
lapse of a real scalar field in spherically symmetric anti–de
Sitter (AdS) spacetimes, finding a remarkable instability to
black hole (BH) formation. That is, given any nonvanish-
ing initial scalar field, they provide convincing numerical
evidence, further supported by analytic arguments, that the
resulting spacetime forms a BH within a time that scales
inversely with the square of the initial amplitude of the
scalar perturbation to AdS.1 The work discussing this very
interesting result, however, presents relatively few details
and results from related work [4,5] are in tension with it.
We have therefore reproduced aspects of Refs. [1,2] and
provide new insights in this paper.

Such a result is, at first sight, surprising from a few
different perspectives. Since Minkowski and de Sitter
spacetimes are stable, it might be expected that AdS is
stable as well [6]. Within the context of black hole critical
phenomena [7,8], the result is similarly surprising. In
studies of critical behavior, one generally evolves a series
of pulses with different amplitudes as the initial pulses
implode through their centers, searching for the threshold
of black hole formation. However, this instability suggests
that a black hole is always formed and that this black hole
threshold is only a threshold for immediate collapse.

In contrast, one can similarly view this instability from
the perspective of the corresponding boundary conformal

field theory (CFT). AdS/CFT asserts that BH solutions in
the bulk correspond to thermal states of the CFT. In this
light, the fact that this instability would always form a
black hole would simply imply that states thermalize,
which is not surprising at all. Furthermore, evidence for
the instability has also been given in Refs. [9,10] which
supports this behavior based on ergodic arguments or
linearized perturbation analysis as well as a theorem
guaranteeing the instability under certain conditions [11].
On the other hand, recent works indicate that some
scenarios never form a black hole, and thus thermalization
within the gauge/gravity context need not be a forgone
conclusion [12,13].
Furthermore, a pure state can never thermalize during a

unitary evolution, and so the BH formation conjectures of
Refs. [1,2], as interpreted within the framework of AdS/
CFT correspondence, indicate that it might be impossible
to set up a pure initial state in strict-limit large-N gauge
theories. Likewise, if the initial configuration carries a
conserved global charge, one expects (at most) thermal-
ization in a given charge sector. A global charge in the
boundary CFT dynamics is realized through a local gauge
symmetry of the dual gravitation bulk dynamics. We post-
pone the study of thermalization of charged configurations
in AdS to future work, and discuss here the effect of global
symmetries in the bulk on the thermalization. To this end
we extend the work of Refs. [1,2] to a complex scalar field
collapse in AdS.
This work is organized as follows. The formulation of

the problem is given in Sec. II. We present a number of
details of our numerical work in Sec. III and provide tests

1It is interesting to note that Pretorius and Choptuik foresaw
this possibility in their study in 2þ 1 asymptotically AdS
space [3].
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that our code produces convergent and consistent solutions
through a number of reflections off the boundary. We
consider the results of our simulations in Sec. IV, extending
to a complex scalar field. In Sec. V we interpret the results
of our simulations in a context of a dual-boundary confor-
mal gauge theory dynamics. We conclude in Sec. VI.

II. FORMULATION

Consider a ðdþ 1Þ-dimensional gravitational
system, dual to a strongly coupled CFTd on a
ðd� 1Þ-dimensional sphere Sd�1. We focus on SO(d)-
invariant states of a conformal field theory with nonzero
expectation values for a pair of exactly marginal operators

OðiÞ
d , i ¼ 1, 2. We are interested in a unitary evolution of

such states as determined by the following dual effective
gravitational action:

Sdþ1 ¼ 1

16�Gdþ1

Z
Mdþ1

ddþ1�
ffiffiffiffiffiffiffi�g

p

�
�
Rdþ1 þ dðd� 1Þ

‘2
� 2@��@���

�
; (2.1)

where � � �1 þ i�2 is a massless complex scalar field,

dual to a pair of exactly marginal operatorsOð1Þ
d þ iOð2Þ

d �
Od. Further,

Mdþ1 ¼ @Mdþ1 � I ;

@Mdþ1 ¼ Rt � Sd�1;

I ¼
�
x 2

�
0;
�

2

��
:

(2.2)

Notice that the effective action (2.1) is invariant under a
global phase rotation

� ! �e�i�; (2.3)

corresponding to a phase rotation of expectation values

hOdi ! hOdie�i�: (2.4)

There is associated with Eq. (2.3) a conserved current

J� ¼ ig��ð�@��
� ���@��Þ; (2.5)

and a corresponding conserved charge

Q ¼
Z
Sd�1

dSd�1
Z �=2

0
dx

ffiffiffiffiffiffiffi�g
p

Jt: (2.6)

The other conserved quantity of a CFT during the evolution
is the total massM. We can rephrase the work of Refs. [1,2]
as a statement that nonequilibrium states fM;Q ¼ 0g of a
strongly coupled CFTwith a gravitational dual evolve into
thermal states. Here, in addition to reproducing these
claims (and reinterpreting the gravitational bulk dynamics
from the boundary CFT perspective), we are interested in a
broader question: what is the role of a nonzero charge Q in
the process of thermal equilibration? Such a question is
particularly interesting as it is well-known that a complex

scalar field in AdS supports perturbatively stable boson star
solutions [14].
To proceed, we adopt a notation similar to that

of Ref. [2], choosing the same form of the
ðdþ 1Þ-dimensional metric describing an asymptotically
AdS spacetime

ds2 ¼ ‘2

cos2x

�
�Ae�2�dt2 þ dx2

A
þ sin2xd�2

d�1

�
; (2.7)

where ‘ is the scale size of the AdS spacetime, d�2
d�1 is

the metric of Sd�1, and Aðx; tÞ and �ðx; tÞ are scalar func-
tions describing the metric. The scale ‘ drops out of the
resulting equations and we set it to unity without loss of
generality. The spatial coordinate x runs over 0 ! �=2
such that spheres through the point x have a radius
r � tanx. To describe the real and imaginary components
of a scalar field, we introduce the two quantities �i �
ð@=@xÞð�iÞ and �i � A�1e�ð@=@tÞð�iÞ.
Besides the extension from a real scalar to a complex

scalar field, this is precisely as described in Ref. [2] and we
derive the same equations of motion. However, working
with these variables, achieving a stable numerical scheme
required a few numerical tweaks at the outer boundary to
provide convergent evolutions even through reflections (or
bounces). A more elegant solution, and one which requires
no such tricks, involves rescaling the matter functions in
keeping with their appropriate boundary fall-off. In par-
ticular, we use rescaled quantities according to

�̂i � �i

cosd�1x
; (2.8)

�̂i � e�

A

@t�i

cosd�1x
¼ �i

cosd�1x
; (2.9)

�̂i � @x�i

cosd�2x
¼ �i

cosd�2x
: (2.10)

In terms of these rescaled quantities (we drop the caret
from here forward), we have the following evolution equa-
tions resulting from the Klein-Gordon equation:

_�i ¼ Ae���i;

_�i ¼ 1

cosd�2x
ðcosd�1xAe���iÞ;x;

_�i ¼ 1

sind�1x

�
sind�1x

cosx
Ae���i

�
;x
:

(2.11)

The system also includes two spatial equations to be
integrated,
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A;x ¼ d� 2þ 2sin2x

sin x cos x
ð1� AÞ

� sin x cos2d�1xA

�
�2

i

cos2x
þ�2

i

�
;

�;x ¼ � sin x cos2d�1x

�
�2

i

cos2x
þ�2

i

�
; (2.12)

together with one constraint equation,

A;t þ 2 sin x cos2d�2A2e��ð�i�iÞ ¼ 0; (2.13)

where a sum over i ¼ f1; 2g is implied.
At the origin, these quantities behave independently

of d as

�iðt; xÞ ¼ �ðiÞ
0 ðtÞ þOðx2Þ;

Aðt; xÞ ¼ 1þOðx2Þ;
�ðt; xÞ ¼ �0ðtÞ þOðx2Þ:

(2.14)

At the outer boundary x ¼ �=2 we introduce ���=2�x
so that we have

�iðt; �Þ ¼ �ðiÞ
d ðtÞ�þOð�3Þ;

Aðt; �Þ ¼ 1�M
sind�

cosd�2�
þOð�2dÞ;

�ðt; �Þ ¼ 0þOð�2dÞ:

(2.15)

We note here a difference between our work and Ref. [2].
We choose conditions on � such that it becomes zero on the
boundary and hence the coordinate time with which we
examine the boundary describes proper time there as well.
The gauge freedom in this system allows for such a rescal-
ing without affecting the dynamics observed.

The asymptotic behavior (2.15) determines the boundary
CFT observables: the expectation values of the stress-

energy tensor Tkl, and the operators OðiÞ
d :

8�Gdþ1hTtti ¼ Ed;

hT�	i ¼
g�	
d� 1

hTtti;
16�Gdþ1hOðiÞ

d i ¼ 4d�ðiÞ
d ðtÞ;

(2.16)

where Ed, up to an additive constant2 for even d, is pro-
portional toM; g�	 is a metric on a round Sd�1. Explicitly,

for d ¼ 3, 4 we have

Ed ¼
(
M; d ¼ 3;
3
8 ð1þ 4MÞ; d ¼ 4:

(2.17)

Additionally note that the conserved U(1) charge is
given by

Q ¼ 4�2
Z �=2

0
dx sind�1x cosd�1

� x ð�1ð0; xÞ�2ð0; xÞ ��2ð0; xÞ�1ð0; xÞÞ: (2.18)

Note that since @tQ ¼ 0, the integral in Eq. (2.18) can be
evaluated at t ¼ 0.
The constraint (2.13) implies that M in Eq. (2.15) is

time-independent, ensuring energy conservation:

@tEd ¼ 0: (2.19)

It is convenient to introduce the mass aspect function
Mðt; xÞ as

Aðt; xÞ ¼ 1�Mðt; xÞ cosdx

sind�2x
: (2.20)

Following Eq. (2.12) we find

Mðt; xÞ ¼
Z x

0
dz tand�1z cos2ðd�1Þz Aðt; zÞ

�
�
�2

i ðt; zÞ
cos2z

þ�2
i ðt; zÞ

�
: (2.21)

Comparing Eqs. (2.21) and (2.15) we see that

M ¼ Mðt; xÞjx¼�
2
: (2.22)

Both Ed and the chargeQ are determined from the initial
data. Motivated by Ref. [1], in this paper we consider the
following set of initial conditions:
(a) Q ¼ 0 case:

�ið0; xÞ ¼ 0; �ið0; xÞ ¼ 2


�
e
�4tan2x

�2�2 cos1�dx�1
i ;

(2.23)

where here �j
k represents the Kronecker delta.

Numerically solving the spatial ordinary differential
equations (ODEs) of Eqs. (2.20) and (2.21), we
compute Mð0; �=2Þ ¼ M. For d ¼ 3 � � � 6 and
� ¼ 1

16 the values Mð
Þ are presented in Fig. 1.

FIG. 1 (color online). Mass M of initial configurations (2.23)
as a function of 
 for d ¼ 3, 4, 5, 6 (blue/red/green/orange
curves). Note that M / 
2 for ln
 & 4. While the coordinate
extent of the scalar profile is the same in all d, higher-
dimensional AdSdþ1 more efficiently ‘‘localizes’’ it, resulting
in smaller Md for a fixed 
.

2This constant determines the Casimir energy of the CFTd.
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(b) Q � 0 case:

�ið0; xÞ ¼ @x

�
2


�
e
�4tan2x

�2�2 cos1�dx �1
i

�
;

�ið0; xÞ ¼ !d

2


�
e
�4tan2x

�2�2 cos1�dx �2
i ; !d ¼ d;

(2.24)

where !d is the lowest frequency of the linearized
scalar perturbations of AdSdþ1. Numerically solv-
ing the spatial ODEs of Eqs. (2.20) and (2.21), we
compute Mð0; �=2Þ ¼ M. For d ¼ 3 � � � 6 and
� ¼ 1

16 , the values Mð
Þ and M
Q are presented

in Fig. 2.
Note that for both classes of initial conditions,

Eqs. (2.23) and (2.24), the values �ðiÞ
d ð0Þ, and correspond-

ingly the expectation values of the boundary CFToperators

OðiÞ
d at t ¼ 0, are zero.

III. NUMERICS

A. Implementation

To solve these equations, we employ finite-difference
approximations within a method-of-lines approach that
employs a third-order accurate Runge-Kutte (RK3) time
evolution scheme. Such an approach computes the spatial
derivatives (with a high-order accurate, finite-difference
stencil) and then considers the evolution equations as
ODEs in the time coordinate.

As is standard in studies of critical behavior, we use
adaptive mesh refinement (AMR) to add resolution where
needed and remove it when not needed. In particular, we
use Choptuik’s AD infrastructure [7,15] adapted for our
uses here via the following changes:

(a) We modified the loop for convergence within the
iterative Crank-Nicholson scheme to a three-step
RK3 update;

(b) We replaced second-order accurate spatial deriva-
tives with high-order accuracy spatial derivatives;

(c) We modified the AMR-boundary treatment from
interpolation for a single point in time to interpola-
tion in time of width two points in the parent, with
spatial interpolation on the fine level between these
two points. This approach follows in spirit the
tapered approach of Ref. [16], although it strictly
lacks the higher-order convergence there.

The numerical grid has two boundaries: the origin
and the AdS boundary at � � �=2� x ¼ 0. To enforce
the boundary conditions (2.14) at the origin, we set
�iðt; 0Þ ¼ 0 and Aðt; 0Þ ¼ 1 and obtain values for �iðt; 0Þ
and �iðt; 0Þ from quadratic fits. Because �ðt; xÞ is com-
puted by numerical integration from the outer boundary, no
boundary condition is needed at the origin. At the � ¼ 0
boundary, we enforce the conditions (2.15) by setting
�iðt; �=2Þ, �iðt; �=2Þ, and �iðt; �=2Þ all to zero there.
We set the metric functions Aðt;�=2Þ¼1 and �ðt;�=2Þ¼0,
the latter chosen to ensure that coordinate time t measures
proper time on the boundary.

B. Tests

We carry out a number of tests of our implementation.
We find that the solutions obtained generally converge
at least as fast as third-order in the grid spacing. We
evaluate the residual of the momentum constraint and
confirm that it approaches zero as the resolution is
increased. We compute both the total mass Mðt; �=2Þ
using Eq. (2.21) and the charge using Eq. (2.18), and ensure
that their degree of conservation in time improves with
resolution. We also completed two standard black-hole-
threshold searches and find the expected Choptuik behav-
ior [7]. Figure 3 presents some results from one such test.
For the AMR evolutions mentioned here, we ensure that
increasing both the coarse level resolution and decreasing
the threshold for refinement produce essentially unchanged
collapse times.

FIG. 2 (color online). Mass M of initial configurations (2.24) as a function of 
 for d ¼ 3 � � � 6 (left panel, blue � � � orange) and
corresponding ratios M

Q (right panel). Here, M / 
2 scaling of mass extends only up to ln
� 1. Note that M
Q approaches a constant as

M ! 0, while lnMQ / M for largeM, effectively making the charge negligible. The rescaling of the horizontal axis of the right panel by

5d�3 is made for readability of the graph.
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IV. RESULTS

We find the same behavior as found in Refs. [1,2].
In particular, given any initial, nonvanishing configuration
of a scalar field, an evolution with sufficient resolution
and time produces a black hole. We observe that as the
pulse travels back and forth from the boundary, one sees
increasing compactness in the scalar profile. Examining
the metric function Aðx; tÞ, one sees that on the return of
the pulse to the center, the metric function approaches
zero to an increasing degree, and it is precisely the
approach of Aðx; tÞ to zero that indicates the formation of
a black hole. In other words, the increasingly compact
scalar profile produces an increasingly deeper gravitational
potential well. The location of this minimum also
decreases with each bounce. We plot these two quantities
in Fig. 4 for one particular run of the initial data of
Eq. (2.23).

A. The nature of the instability

One can ask whether this instability results from the
particular nature of AdS spacetime or instead just the
fact that one is evolving in an essentially bounded domain.
Beyond the perturbative analysis, one can imagine sending
a scalar pulse down an elevator shaft equipped with a
mirror. It will blueshift as it gets deeper, but upon returning
to its original height, it would obtain its original form only
to first order. At higher order, one considers not just the
gravity of the Earth, but also the self-gravity of the pulse
which will act to compress the pulse to its center.
One could confirm this picture by numerically evolving

a scalar pulse in an asymptotically flat space but with a
reflecting boundary at some radius, as was done in
Ref. [17]. Instead, we do something similar but with our
same code. That is, we enforce reflecting boundary con-
ditions on the scalar field at some xfinite <�=2:

�iðxfinite; tÞ ¼ 0; �iðxfinite; tÞ ¼ 0: (4.1)

The value is arbitrary, but by truncating the domain, the
scalar pulse does not ‘‘see’’ that the spacetime in which it

FIG. 3 (color online). Convergence test for two bounces with
d ¼ 3. The initial data is of the form (2.23) with 
 ¼ 20:01 and
� ¼ 1=16. Top: The order of convergence obtained from com-
parisons of the metric function Aðx; tÞ at successively doubled
resolutions. The convergence order is computed from three
different resolutions, a base resolution and runs with half and
one-quarter the base grid solution. Thus, run ‘‘32’’ has a grid
spacing 2�5 that of the run labeled ‘‘1.’’ Middle: Order of
convergence obtained for �1ðx; tÞ. Both of these results indicate
that convergence is better than third-order convergent. Bottom:
The logarithm of the L2-norm of the momentum constraint
residual for just the three best resolutions. That it decreases
with increasing resolution suggests the results are converging to
a proper solution of Einstein’s equations. Note that this residual
is computed only at first order of accuracy because it involves a
time derivative and therefore one should not estimate the order of
convergence from it.

FIG. 4 (color online). Demonstration of the increasingly com-
pact gravitational potential with successive bounces of initial
data of the form (2.23) with 
 ¼ 20 and � ¼ 1=16. Six bounces
are shown before a black hole forms. Top: The minimum of
Aðx; tÞ as a function of time. At the final time, the minimum
approaches zero, signaling black hole formation. Middle: The x
coordinate where Aðx; tÞ achieves its minimum. In these coor-
dinates, the speed of light is unity, and the line segments roughly
indicate the motion of the scalar pulse back and forth across the
grid. That compaction increases with each bounce is quite hard
to observe on the linear scale, and so the logarithm of this data is
shown at bottom. The evolution terminates at the last time shown
as the solution approaches black hole formation.
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lives is AdS. We choose xfinite ¼ �=4 and find that pulses
behave qualitatively in the same way, i.e., as they bounce,
they shift to shorter wavelengths and eventually form black
holes. We subsequently varied the value of xfinite and con-
firmed that this behavior is robust. Interestingly, when 
 in
initial data of the form (2.23) was decreased below 18.39,
collapse was not observed even after hundreds of bounces.

B. Boundary information

Given the AdS/CFT correspondence, it is interesting to
consider what the boundary CFT sees from the bulk. One
usually uses a ‘‘dictionary’’ to extract various quantities.
However, here the boundary stress-energy tensor is time-
independent and just equal to the total mass of the space-
time, M. Of particular relevance is the leading asymptotic
value of the scalar field �i as its behavior corresponds to a
quantum operator on the boundary. We therefore determine
the asymptotic behavior of each scalar field �i with a
polynomial, least-squares fit to

�ið�; tÞ ¼ �ðiÞ
d ðtÞ�þ�ðiÞ

dþ2ðtÞ�3: (4.2)

As a check of our extracted value, we employ from ten to
thirty points and confirm that the results of the relevant

quantity, �ðiÞ
d ðtÞ, are hardly affected.

This asymptotic information is displayed for a particular
case in Fig. 5. The left side shows the behavior as a
function of time with each successive bounce along with
the Fourier power spectrum. This spectrum is computed

using the FFTW library [18] acting on �ð1Þ
3 ðtÞ once it has

been interpolated onto a uniform grid over t (recall that the
use of AMR produces nonuniformity in time information
for the asymptotic behavior). The power is computed as
simply the square of the (complex) Fourier amplitude.

V. BOUNDARY CFT PERSPECTIVE OF THE
GRAVITATIONAL COLLAPSE

The formation of an apparent horizon (AH) in AdS
gravitational collapse is holographically dual to the ther-
malization of an initial CFT state corresponding to the
initial condition of the gravitational evolution. To fully
characterize the gravitational dynamics from the boundary
perspective, one would have to compute an infinite set of
local correlation functions.3 Here, we focus on the simplest

local observables, namely hOðiÞ
d i / �i

d. Recall that the one-

point function of the boundary stress-energy tensor is
constant during the evolution [see Eq. (2.16)], and thus
does not carry any information about AH formation. The
same applies to the conserved U(1) charge and so its role is
to identify (select) dynamical thermalization trajectories.

A. Weakly nonlinear perturbations
with global charge in AdS

Following Ref. [1] (see also Ref. [6]) we consider the
solution of Eqs. (2.11) and (2.13), perturbative in the bulk
scalar amplitudes 
:

�i ¼
X1
j¼0


2jþ1�i;2jþ1;

A ¼ 1� X1
j¼1


2jA2j;

� ¼ X1
j¼1


2j�2j;

(5.1)

where �i;2jþ1, A2j, �2j are functions of ðt; xÞ. It is conve-
nient to decompose these functions in terms of a complete
basis. A natural basis is provided by the AdSdþ1 massless
scalar eigenvalues and eigenfunctions (which we refer to
from now on as oscillons)

!j ¼ dþ 2j;

ejðxÞ ¼ djcos
dx2F1

�
�j;dþ j;

d

2
; sin2x

�
; j¼ 0;1; . . . ;

(5.2)

FIG. 5 (color online). The behavior of the scalar field at the
boundary with successive bounces for the same evolution as in

Fig. 4. At left, the asymptotic value �ð1Þ
3 ðtÞ from Eq. (4.2) is

shown for segments of time of length �. The pulse sharpens with
each ‘‘implosion’’ through the origin. On the right is shown the
Fourier transform of the signal on the left. Shown is the natural
logarithm of the amplitude of the Fourier component squared as
a function of (the log of) angular frequency!. The vertical scale
is arbitrary but fixed for all bounces. The transform shows that
energy is shifted to higher frequencies.

3Also, presumably, the nonlocal observables such as Wilson
loops.
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where dj are normalization constants such thatZ �=2

0
dx eiðxÞejðxÞtand�1x ¼ �ij: (5.3)

A remarkable observation of Ref. [1] was that initial con-
ditions which represent at a linearized level [at orderOð
Þ]
a superposition of several oscillons with different index j
appear to be unstable at time scales tinstability �Oð
�2Þ; on
the other hand, nonlinear effects of a single oscillon do not
lead to destabilization. Specifically, the instabilities occur
whenever oscillons with indices4 fj1; j2; j3g are present at
order Oð
Þ, while the oscillon with index jr, such that

!jr ¼ !j1 þ!j2 �!j3 ; (5.4)

is not excited at this order.
In what follows we argue that the basic conclusion of

Ref. [1] remains valid even for configurations with Q � 0.
We point out though an interesting twist: although any
finite number of distinct-index oscillons excited at order
Oð
Þ leads to nonlinear instabilities at order Oð
3Þ, Oð
Þ
initial configurations with an infinite number of distinct-
index oscillons remain (formally) stable at order Oð
3Þ.

While it is straightforward to carry out the analysis in
full generality, to be maximally explicit we discuss the case
of d ¼ 3 and a superposition of two lowest-frequency
oscillons at a linearized level, namely e0 and e1. We
discuss different cases:

(a) a single neutral oscillon;
(b) a superposition of two neutral oscillons;
(c) a single charged oscillon;
(d) a superposition of two charged oscillons;
(e) a superposition of a charged and a neutral oscillon.
Lastly, we comment on nonlinear instabilities at Oð
3Þ

arising from different channels (5.4), i.e., different combi-
nations of fj1; j2; j3g resulting in the same !jr .

To distinguish neutral and charged initial conditions it is
convenient to express the charge Q given by Eq. (2.18) as

Q¼4�2
Z �=2

0
dx tan2x A�1ðt;xÞ

�e�ðt;xÞð@t�1ðt;xÞ�2ðt;xÞ�@t�2ðt;xÞ�1ðt;xÞÞ: (5.5)

1. A single neutral oscillon

Here we take

�2ðt; xÞ � �1ðt; xÞ;
�1ð0; xÞ ¼ 
e0ðxÞ þOð
3Þ;

@t�1ð0; xÞ ¼ 0:

(5.6)

Clearly, in this case Q ¼ 0. Requiring the normalizability
and regularity of �1, to order Oð
3Þ (where the first non-
linear effects appear), we find

�1 ¼ 


�
e0ðxÞ cos

��
3� 135

4�

2
�
t

��
þ 
3½F3;3ðxÞ cosð3tÞ þ F3;9ðxÞ cosð9tÞ� þOð
5Þ;

(5.7)

with

F3;3 ¼ 3
ffiffiffi
2

p
cos3x

�3=2
ð12 cos8x� 88 cos6xþ 108 cos4x

� 63 cos2xþ 63�2 � 252x2

� 252x cotxð2� cos2xÞÞ; (5.8)

F3;9 ¼ 4
ffiffiffi
2

p

�3=2
cos9xð9cos2x� 4Þ: (5.9)

Notice that in Eq. (5.7) we absorbed a term linearly grow-
ing in time,

/ 
3t sinð!0tÞ;
into the Oð
2Þ shift of the leading-order oscillon
frequency !0:

!0 ! w0 � 135

4�

2: (5.10)

Obviously, we could do so because an oscillon with such a
frequency has already been present in the initial condition
(5.6). For this initial configuration the instability condition
(5.4) is satisfied only for j1 ¼ j2 ¼ j3 ¼ jr ¼ 0.

2. A superposition of two neutral oscillons

Consider now a slightly more general (neutral) initial
condition:

�2ðt; xÞ � �1ðt; xÞ;
�1ð0; xÞ ¼ 
ðe0ðxÞ þ e1ðxÞÞ þOð
3Þ;

@t�1ð0; xÞ ¼ 0:

(5.11)

Once again, in this case Q ¼ 0. Requiring the normal-
izability and regularity of �1, to order Oð
3Þ, we find

�1 ¼ 


�
e0ðxÞ cos

��
3� 335

2�

2
�
t

�

þ e1ðxÞ cos
��
5� 1519

6�

2
�
t

��

þ 
3
�X8
k¼1

F3;2k�1ðxÞ cosðð2k� 1ÞtÞ

þ
ffiffiffi
6

p
�

105
e2ðxÞt sinð7tÞ

�
þOð
5Þ; (5.12)

where F3;2jþ1ðxÞ are some analytically determined func-

tions.5 Here, we have three different terms at order Oð
3Þ,
which grow linearly with time:

4The indices could be repeated.

5We omit their explicit expressions to keep the formulas
readable.
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/ 
3t� fcosð!0tÞ; cosð!1tÞ; sinð!2tÞg: (5.13)

The presence of j ¼ f0; 1g oscillons in order-Oð
Þ initial
conditions allows us to absorb the first two terms into the
shifts of the leading-order oscillon frequencies:

!0 ! w0 � 335

3�

2; !1 ! w1 � 1519

6�

2: (5.14)

We cannot do the same with the remaining term in
Eq. (5.13); for this to happen �1ð0; xÞ must contain a
term / 
e2ðxÞ. Of course, the presence of e2ðxÞ at order
Oð
Þ in the initial conditions, while eliminating the

3t� sinð!2tÞ term, would generate new resonances at
j > 2. Thus, the absence of terms that linearly grow with
time at order Oð
3Þ necessitates the excitation of all oscil-
lons at order Oð
Þ in the initial condition. In what follows
we show thatOð
3Þ instabilities can be removed by shifting
the leading-order oscillon frequency [provided the relevant
excitation is present at order Oð
Þ], even if they arise from
different channels (5.4).

3. A single charged oscillon

For charged initial data we take

�1ð0; xÞ ¼ 
e0ðxÞ þOð
3Þ; @t�1ð0; xÞ ¼ 0;

�2ð0; xÞ ¼ 0; @t�2ð0; xÞ ¼ 
!0e0ðxÞ þOð
3Þ;
(5.15)

where [see Eq. (5.5)]

Q ¼ �12�2
2 þOð
4Þ: (5.16)

The initial data (5.15) is a direct charged generalization of
a single-oscillon initial data (5.6). In this case, to order
Oð
3Þ, we find

�1 ¼ 


�
e0ðxÞ cos

��
3� 63

2�

2
�
t

��
þ 
3½F1

3;3ðxÞ cosð3tÞ� þOð
5Þ;
�2 ¼ 


�
e0ðxÞ sin

��
3� 63

2�

2
�
t

��
þ 
3½F2

3;3ðxÞ sinð3tÞ� þOð
5Þ: (5.17)

All the terms that grow linearly with time are absorbed into
the higher-order shift of !0.

4. A superposition of two charged oscillons

For charged initial data we take

�1ð0; xÞ ¼ 
ðe0ðxÞ þ e1ðxÞÞ þOð
3Þ;
@t�1ð0; xÞ ¼ 0; �2ð0; xÞ ¼ 0;

@t�2ð0; xÞ ¼ 
ð!0e0ðxÞ þ!1e1ðxÞÞ þOð
3Þ;
(5.18)

where [see Eq. (5.5)]

Q ¼ �32�2
2 þOð
4Þ: (5.19)

The initial data (5.18) is a direct charged generalization of
the two-oscillon initial data (5.11). In this case, to order
Oð
3Þ, we find

�1 ¼ 


�
e0ðxÞ cos

��
3� 159

�

2
�
t

�
þ e1ðxÞ cos

��
5� 2201

9�

2
�
t

��

þ 
3
�X4
k¼1

F1
3;2k�1ðxÞ cosðð2k� 1ÞtÞ þ 50

ffiffiffi
6

p
3�

e2ðxÞ t sinð7tÞ
�
þOð
5Þ;

�2 ¼ 


�
e0ðxÞ sin

��
3� 159

�

2
�
t

�
þ e1ðxÞ sin

��
5� 2201

9�

2
�
t

��

þ 
3
�X4
k¼1

F2
3;2k�1ðxÞ sinðð2k� 1ÞtÞ � 50

ffiffiffi
6

p
3�

e2ðxÞ t cosð7tÞ
�
þOð
5Þ: (5.20)

Parallel to the discussion in Sec. VA2, the absence of modes of leading order / 
e2ðxÞ in the initial condition (5.18) leads
to growing resonance terms

/ 
3t� fcosð!2tÞ; sinð!2tÞg: (5.21)

5. A superposition of a charged oscillon with a neutral one

For charged initial data we take

�1ð0; xÞ ¼ 
ðe0ðxÞ þ e1ðxÞÞ þOð
3Þ; @t�1ð0; xÞ ¼ 0;

�2ð0; xÞ ¼ 0; @t�2ð0; xÞ ¼ 
!0e0ðxÞ þOð
3Þ;
(5.22)

where [see Eq. (5.5)]

Q ¼ �12�2
2 þOð
4Þ: (5.23)
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In this case, to order Oð
3Þ we find

�1 ¼ 


�
e0ðxÞ cos

��
3� 787

8�

2
�
t

�
þ e1ðxÞ cos

��
5� 1843

12�

2
�
t

��

þ 
3
� X8
k¼1;k�5

F1
3;2k�1ðxÞ cosðð2k� 1ÞtÞ þ 35

ffiffiffi
6

p
4�

e2ðxÞ t sinð7tÞ
�
þOð
5Þ;

�2 ¼ 


�
e0ðxÞ sin

��
3� 153

2�

2
�
t

��
þ 
3

� X7
k¼1;k�5

F2
3;2k�1ðxÞ sinðð2k� 1ÞtÞ

� 75

8�
e1ðxÞ t cosð5tÞ þ 5

ffiffiffi
6

p
12�

e2ðxÞ t cosð7tÞ
�
þOð
5Þ: (5.24)

Parallel to the discussion in Sec. VA2, the absence of
modes of leading order / 
e2ðxÞ in the initial condition
(5.22) for both�1 and�2 leads to growing resonance terms

/ 
3t� fcosð!2tÞ; sinð!2tÞg: (5.25)

Likewise, the absence of a mode of leading order / 
e1ðxÞ
in the initial condition (5.22) for �2 leads to a growing
resonance term

/ 
3t cosð!1tÞ: (5.26)

6. Multichannel instabilities at Oð
3Þ and their removal

Previously, we considered the linear [order-Oð
Þ] super-
position of two neutral/charged oscillons and identified
instabilities at order Oð
3Þ arising from the resonance
term with index jr [see Eq. (5.4)]. Furthermore, we showed
that if an oscillon ejrðxÞ is present in the initial data at order
Oð
Þ, these instabilities can be removed with an appropri-
ate Oð
2Þ shift of the oscillon frequency:

!jr ! !jr þ 
2!ð1Þ
jr
: (5.27)

Thus, it appears that to avoidOð
3Þ instabilities, initial data
at order Oð
Þ must contain all oscillons.

In all examples discussed, only a single instability chan-
nel was present. If all oscillons are excited at order Oð
Þ,
the same resonance frequency wjr (5.4) would arise from

different channels. We argue here that all such multi-
channel instabilities can still be removed with a single
resonance frequency shift (5.27). To be maximally explicit,
consider a neutral, order-Oð
Þ, initial data containing
oscillons j ¼ f0; 1; 2; 3g:

�2ðt; xÞ � �1ðt; xÞ;

�1ð0; xÞ ¼ 

X3
j¼0

AjejðxÞ þOð
3Þ;

@t�1ð0; xÞ ¼ 0;

(5.28)

where Aj are generically different amplitudes. Consider a

resonance index jr ¼ 2. From Eq. (5.4) there are seven
distinct instability channels:

ð1Þ:!jr ¼ !2 þ!0 �!0; ð2Þ:!jr ¼ !2 þ!1 �!1;

ð3Þ:!jr ¼ !2 þ!2 �!2; ð4Þ:!jr ¼ !2 þ!3 �!3;

ð5Þ:!jr ¼ !1 þ!1 �!0; ð6Þ:!jr ¼ !3 þ!0 �!1;

ð7Þ:!jr ¼ !3 þ!1 �!2: (5.29)

Each of the channels in Eq. (5.29) would contribute a term
that grows linearly with time at order Oð
3Þ to �1:

��resonance
1 ¼
3tsinð!2tÞe2ðxÞ 1�

�
60613

120
A3
7þ

35
ffiffiffi
6

p
2

A3A
2
5

þ189
ffiffiffi
5

p
4

A3A9A5þ50607

40
A2
9A7þ1090

3
A2
5A7

þ1797

20
A2
3A7þ159

ffiffiffiffiffiffi
30

p
2

A5A7A9

�
: (5.30)

A resonance frequency shift (5.27) would additionally
contribute

��shift
1 ¼ 
3t sinð!2tÞe2ðxÞ 1� ðA7w

ð1Þ
2 Þ: (5.31)

Clearly, provided A7 � 0, all the instabilities (5.29) can be
removed, i.e.,

��resonance
1 þ ��shift

1 ¼ 0;

for a suitably adjusted wð1Þ
2 .

Straightforward—but quite tedious—considerations
show that for a generic neutral initial condition

�2ðt; xÞ � �1ðt; xÞ;

�1ð0; xÞ ¼ 

X1
j¼0

AjejðxÞ þOð
3Þ;

@t�1ð0; xÞ ¼ 0;

(5.32)

the presence of resonance contributions from channels

!jr ¼ !j1 þ!j2 �!j3 (5.33)

can be eliminated by the following resonance frequency
shift:
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!jr ! !jr þ 
2
X

fj1;j2;j3g

Aj1Aj2Aj3

Ajr

�Oð1Þ; (5.34)

where summation occurs over all possible instability chan-
nels [triplets fj1; j2; j3g satisfying Eq. (5.34)]. The ampli-
tudes Aj are expected to decay fast enough as j ! 1 for

the sum in Eq. (5.34) to be convergent6 (and also to not
have an apparent horizon already present at the initial
hypersurface).

To reiterate, the reason why renormalization of the basic
resonance frequencies !jr would remove all instabilities

up to order Oð
3Þ is because to this order the necessary
frequency shifts due to distinct instability channels (5.33)
add up linearly, as explicitly demonstrated by example
(5.28). From the latter example it is also clear that the

‘‘strength’’ of each of such shifts [!ð1Þ
2 in Eq. (5.31)] is

inversely proportional to the amplitude of a resonance
frequency at order Oð
Þ, i.e., / 1

Ajr
. Thus, provided all

resonances are excited at Oð
Þ (so that this ‘‘inverse am-
plitude strength’’ is finite), the instabilities can always be
eliminated as (schematically) indicated by Eq. (5.34).

Note that while we discussed neutral initial conditions,
similar considerations also apply for initial conditions
carrying global charge. Whether or not weakly nonlinear
instabilities can be removed (or removed under some con-
ditions) beyond order Oð
3Þ is an interesting open ques-
tion. We emphasize that our numerical simulations, as well
as those reported in Refs. [1,2] are outside the weakly
nonlinear regime.

B. Global charge and the thermalization time

In global AdSd, the time it takes for a null geodesic to
cross the spacetime is

tcrossing ¼ �: (5.35)

In Fig. 6 we present the ratio of the AH formation time tAH
to tcrossing as a function of mass M. The blue dots represent

collapse from initial condition (2.23), and the red dots
correspond to collapse from initial condition (2.24). We
find that an AH is forming earlier for Q � 0 initial con-
ditions with the same mass as the corresponding Q ¼ 0
initial conditions. This difference in collapse times could
potentially be attributable to either (i) that one has a global
charge while the other is neutral, or (ii) that the spectral
content of the two initial conditions are different. To under-
stand which of these is responsible, we decompose the
mass aspect function (2.20) into the oscillon basis (5.2):

M ðt ¼ 0; xÞ ¼ X1
j¼0

mjejðxÞ: (5.36)

The spectral content for the two initial conditions (both
with the same mass) is presented in Fig. 7. The spectrum of
the charged configuration does not show a noticeably
broader bandwidth or enhanced amplitudes at high fre-
quencies when compared to the spectrum of the neutral
configuration. Thus, it appears that the acceleration of the
collapse is a dynamical effect related to the class of initial
conditions (2.24).
In a similar fashion, we find significant differences in

collapse times when changing the spacetime dimensions d.
However, in this case the spectral content of the initial
mass aspect function does account for the difference in AH
formation time. The left panel in Fig. 8 compares AH
formation times for d ¼ 3 (blue dots) and d ¼ 4 (red
dots). The spectral content of the corresponding mass
aspect function is shown in the right panel. Because
higher-dimensional oscillons are more localized in the
AdSdþ1 center with increasing d, there is larger overlap
of the initial profile (2.23) with higher modes for larger d,
resulting in a broadening of the spectral bandwidth.

FIG. 6 (color online). AH formation time tAH as a function of massM for d ¼ 3 (left panel) and d ¼ 4 (right panel) on a log-log plot.
The blue dots correspond to thermalization of states with Q ¼ 0; the red dots correspond to thermalization of states with Q � 0. In
both cases, for small M (or 
), we find that AH is formed earlier than / M�1 (or / 
�2), as suggested by weakly nonlinear analysis.
A global charge Q of the initial configurations (2.24) does not extend the thermalization time, compared to the same-mass Q ¼ 0
configurations (2.23).

6In Ref. [13] we present an explicit example where this is the
case.
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C. Bulk vs boundary turbulence

A motivating question behind this study wonders what
the CFT sees of this instability on the boundary. Because
the only observables on the boundary we consider are the
(unchanging) total massM and the asymptotic behavior of

the scalar fields �ðiÞ
d ðtÞ [see Eq. (2.15)] [or equivalently

hOðiÞ
d i; see Eq. (2.16)], we examine the spectral content of

the latter.
Figure 5 displays snapshots of the scalar field for suc-

cessive bounces during an evolution. The initial pulse
becomes increasingly more compact, approaching some-
thing like a Kronecker delta function. As it does so, the
FFT of each pulse similarly approaches the FFT of a delta
function, in particular, a flat, plateau-like spectrum. In
general, if we define the effective bandwidth of the power
spectrum as the frequency at which the plateau ceases, then
we observe this bandwidth to increase rapidly during an
evolution. The only exception appears, for some runs,
during the last few bounces, during which the bandwidth
decreases modestly from its maximum. However, we

speculate that this behavior can be attributed to the non-
linearities of gravity near black hole formation.
Before discussing the behavior of the bandwidth, we

should comment on the falloff behavior of the power
spectrum. It is customary in studies of turbulence in fluid
dynamics to observe the rate of falloff (the slope on a log-
log plot). In particular, a famous result of Kolmogorov
expects a slope in the energy spectra of �5=3 within the
inertial regime of turbulent flows (independent of spatial
dimension d). Here, one might consider the scalar field, in
analogy with a fluid, as a ‘‘gas’’ of oscillons in which
structure transitions to increasingly higher frequencies.
An analysis of the energy spectra over the oscillon basis
in the bulk in Ref. [17] finds a falloff at the rate of �1:22.
In addition, an analysis of the Fourier spectrum over the
time series of the Ricci scalar at the origin in Ref. [19]
reports a slope of �1:61, seemingly close to that of
Kolmogorov. However, the Ricci scalar is an energy den-
sity and thus the expected scaling is not �5=3. Indeed, we
can retrace Kolmogorov’s argument for such a quantity by
the following dimensional considerations. The Fourier

FIG. 7 (color online). Decomposition of the mass aspect function Mðt ¼ 0; xÞ into the oscillon basis for two contrasting initial
configurations: the 
 ¼ 10 neutral (2.23) initial condition (blue dots), and the charged initial condition (2.24) with the same mass (red
dots). Left panel: d ¼ 3. Right panel: d ¼ 4. The different spectra in the oscillon basis do not appear to account for the difference in
the observed AH formation times.

FIG. 8 (color online). The AH formation time noticeably decreases with increasing boundary spacetime dimension d (left panel).
Blue dots represent d ¼ 3 and red dots d ¼ 4. This decrease can be explained by the broadening of the oscillon decomposition
spectrum [see Eq. (5.36)] of the mass aspect function corresponding to initial conditions for different d (right panel).
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transform of �2 (which scales as E / T�2) scales as

Ê / LT�2 for a typical wavelength L. If turbulent behavior
transfers energy to different scales, for �2 it does so with
an efficiency � which has dimensions of T�3 (transfer per
unit time). Thus, one would expect these quantities to be
related by

Ê �
�
L

T2

�
¼ �p!� �

�
1

T3

�
p
�
1

L

���
; (5.37)

where p and � are (so far) arbitrary powers. However, for
Eq. (5.37) to be dimensionally consistent we must have
p ¼ 2=3 and � ¼ �1.

In evaluating what our data says about the falloff, we
have to know which parts of the spectrum represent true
physics as opposed to numerical noise. Straightforward
unigrid convergence tests suggests that we can roughly
trust the spectra up to a bit better than ! � 500 [i.e., the
Nyquist frequency !N ¼ �=ð2�xÞ with �x the grid spac-
ing]. However, in general, we run with AMR and can

resolve locally enormously better than any of our unigrid
evolutions. One issue is that while AMR is very efficient
locally, its performance on global measures is difficult to
evaluate. Instead, we carry out some runs with different
AMR parameters and evaluate where the spectrum changes
significantly.
Additionally, AMR introduces its own noise into the

asymptotic behavior of the scalar field, especially for
higher dimensions (d 	 6). This noise appears as very
small kinks in the time series data which contribute noise
that behaves as/ !�2 (such that the power falloff from this
noise source is �4).
We also note two other sources of noise in the spectrum.

In order to carryout a Fourier decomposition, we first
interpolate to a grid uniform in t. Comparing FFTs with
either linear or cubic interpolation, we find this noise is
generally small, and only significant at quite high frequen-
cies and not strongly dependent on the interpolation
order. The final source of noise arises from potential mis-

matches in the time-series data between �ðiÞ
d ðn�Þ and

�ðiÞ
d ð½nþ 1��Þ. Because the FFT expects a periodic signal,

this mismatch appears as a (rather small) discontinuity,
producing noise that falls off as / !�1 (with a power
that falls off with exponent �2).
As a practical matter, we find that for different runs,

different noise sources dominate the high-frequency
behavior of the power spectrum. Indeed, the only robust
features of the various power spectra we have computed at
the AdS boundary have been the delta-function plateau and
high-frequency noise, the power of which falls off either
with a slope of �2 or �4. In particular, to make a con-
vincing argument that some particular falloff is character-
istic of this weakly nonlinear instability, one needs to
demonstrate not only a feature of the spectrum independent
of any noise, but also a feature not present in the initial
spectrum. That is, any characteristic feature must develop
from the evolution.
At the boundary, the only such feature we find is that of

the plateau and we study its defining feature—its band-
width. In Fig. 9, we display the results of measuring the
bandwidth for one set of evolutions. We show the power
spectrum of the first, middle, and last bounces. From each
bounce, we calculate a maximum frequency as the location
where the spectral power falls to some threshold below the
maximum (typically 20% below the maximum). This fre-
quency then serves as an estimate of the bandwidth of the
pulse and is shown on the right side of the figure. As the
pulse sharpens in time, its spectrum reaches into higher
frequencies and the rate at which it does so is roughly
exponential.
Looking at the right side of Fig. 9, one notices that the

growth rate of the bandwidth, after an initial quiescent
period, appears to approach a line, representing exponen-
tial growth of the bandwidth. We are thus led to examine
the bandwidth of runs with a relatively large number of

FIG. 9 (color online). Demonstration of the bandwidth growth
with each bounce. Shown are the results from the evolution of
initial data of form (2.23) with 
 ¼ 8, � ¼ 0:1 for dimensions
d ¼ 3, 4, 5 and 6. On the left is shown the spectrum of the first
(blue), middle (green), and last (magenta) bounces. The pulses
increasingly demonstrate a plateau-like region indicative of
becoming more like a delta function. At frequencies above the
plateau, unphysical noise is apparent. On the right is shown the
bandwidth associated with all pulses. The bandwidth is obtained
as the location at which the spectrum drops from its maximum
by twenty percent. As noted in the text (see Fig. 8), the same
initial profile for the scalar field contains higher oscillons in its
decomposition with higher dimensions, and therefore one ob-
serves that the bandwidth of the pulses grow more quickly than
the d ¼ 3 case.
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bounces, and indeed we find exponential growth of the
bandwidth for these runs, shown in Fig. 10.

What is particularly interesting about Fig. 10 is that
these runs demonstrate what appears to be a common
growth rate with a slope of 0.04. This commonality in slope
appears despite the fact that these families span different
dimensions d and different forms of initial data. What they
have in common is that they all form black holes after
between 26 and 39 bounces. Note that the growth rate for
these evolutions differs from that shown for d ¼ 3 in Fig. 9
(with a slope of roughly 0.07) which collapses after just 21
bounces.

Another interesting aspect of these bandwidth-vs-
bounce plots is that nearly all evolutions studied terminate
at roughly log10ð�!Þ � 2:7. Presumably this reflects that
black hole formation occurs for such high frequencies. We
speculate, based on these two features, that a bandwidth
plot such as discussed here can be considered as something
of a phase-space picture for this system. At the top of the
plot is black hole formation. Low on the left side, evolu-
tions not yet consisting of a black hole evolve through
some quiescent period. Depending on how weak the initial
data, they enter an exponentially growing bandwidth

regime until they are brought to black hole formation.
Perhaps the growth rate in this linear regime is set by
how low they begin, or, equivalently, how many bounces
they require to achieve the black hole scale. We stress that
this is speculation and will require more runs to test
whether indeed common growth rates occur for disparate
evolutions that share the same number of bounces.
Similarly, this phase-space picture may require some other
basis, such as the oscillon basis, over which to compute the
bandwidth.
Last, we also monitor the behavior of �2 at the origin,

which is related to the energy density (and scales in the
same way). Numerically, the behavior of the scalar fields at
the origin produces less noise and hence cleaner power
spectra. Figure 11 presents results for d ¼ 3, 4, 5, and 6 for
the last bounce before black hole formation. At frequencies
below ! ’ 800 a plateau behavior results from the pulse
profile that is quite narrow and approaches a delta-like
behavior. Within the range ! 2 ð800; 3000Þ the slopes
measured fall in the interval � ð�1:8;�2:2Þ, consistent
with our previous Kolmogorov-type argument for the
power spectrum of a quantity scaling as energy density
(recall that the power spectrum is the square of the com-
plex Fourier amplitude and hence should fall off as �2�).
The relatively wide range of this interval is perhaps not

surprising given that we lack sharp knowledge of where the
inertial regime lies in the spectrum.7 On one hand, because
energy is only ‘‘injected’’ initially, as it shifts to higher
frequencies it pushes the initial lower bound for the inertial
frequency higher. On the other hand, at high frequencies
one has a ‘‘dissipative’’ scale determined by the black hole
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FIG. 11 (color online). Power spectra of �2 at the origin vs
frequency ! for d ¼ 3, 4, 5, 6 as measured in the last bounce
before black hole formation. At frequencies below � 800, the
apparent plateau behavior is indicative of the sharpened profile
of the pulse. At higher frequencies up to ! � 3000, the spectral
power decreases with a slope in the range 2 ð�1:8;�2:2Þ.

FIG. 10 (color online). Bandwidth as a function of bounce for
a few different evolutions. Choosing evolutions with roughly 30
bounces with different dimension d and different families, we
observe similar, exponential growth of the bandwidth for some
intermediate regime (roughly from bounce 10 to bounce 30). The
results shown are as follows: (blue crosses) the initial configu-
ration (2.23) with 
 ¼ 10 in d ¼ 3, (green open circles) the
initial configuration (2.24) with 
 ¼ 10 in d ¼ 3, (cyan open
circles) the initial configuration (2.23) with 
 ¼ 7 in d ¼ 6,
(magenta triangles) the initial configuration (2.23) with 
 ¼ 7
in d ¼ 5, and (red squares) a Gaussian initial profile in d ¼ 3.
Four (black dashed) lines all with the slope 0.04 but with various
y intercepts chosen to align with the bandwidth data are shown.

7To more easily identify this regime, one could introduce
boundary deformations to continuously pump energy from the
boundary into the system as done in, e.g., Ref. [20].
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size. However, because energy is also ‘‘spent’’ in curving
the spacetime, the location of this dissipative bound is also
difficult to determine. Nevertheless, inspection of slope
breaks in the low- and high-frequency regimes leave an
intermediate domain in which the power spectra appears to
fall off with a slope in the range mentioned. Pushing the
analogy with turbulent fluid dynamics even further, one
could speculate that deviations from a slope of �2 are not
surprising, but instead that they would arise much as
intermittency arises in turbulent fluids. With fluids, inter-
mittency introduces deviations from the�5=3 slope due to
the presence and dynamics of vortices. Here perhaps the
sharpening pulse as it periodically propagates through the
origin could leave a similar imprint on the spectrum.

VI. CONCLUSION

We have reproduced the work of Refs. [1,2] and pro-
vided details of our numerics and tests. We find that this
instability towards higher frequencies occurs even in a
finite-sized domain with reflecting boundary conditions
that would not be expected to know that the spacetime is
asymptotically AdS. This result, along with the similar
case in asymptotically Minkowski spacetime in the work
of Ref. [17], suggests that the instability is a property not of
AdS itself, but instead of gravity in a bounded domain.

We generalized the work of Refs. [1,2] to complex scalar
collapse in AdS to address the question of whether AH
formation in global AdS from generic initial conditions
from the bulk perspective (or thermalization trajectories
from the boundary CFT perspective) is sensitive to the
presence of a conserved global charge. For the class of
initial conditions we studied [Eqs. (2.23) and (2.24)] the
answer appears to be ‘‘no.’’ Rather, the collapse is affected
by the spectral decomposition of the initial data in the
oscillon basis [see Eq. (5.2)]. We would like to stress that
global charge can (and does Ref. [13]) strongly influence
AH formation trajectories in the vicinity of stable station-
ary configurations in AdS.

We repeated the weakly nonlinear analysis of the gravi-
tational collapse in the oscillon basis, originally presented
in Ref. [1]. We argued that to the leading order in nonline-
arities, all the instabilities can be removed, provided all
oscillons are excited at the linearized level. This conclu-
sion is robust and independent of the global charge. We
further argued that, while the picture of gravitational col-
lapse as an ideal gas of oscillons is valid in the linearized
regime, this interpretation is in conflict with the late-time
evolution.
Finally, it is clear that gravitational collapse in AdS (or

confined gravity) is driven by some focusing mechanism
by which the bulk energy density cascades to shorter
scales. We have analyzed this behavior from both bulk
and boundary perspectives. In the latter, we have uncov-
ered an exponential behavior in the growth of the spectral
bandwidth of the scalar field. This observation is also
confirmed by examining the behavior at the origin and,
interestingly, �2 displays a behavior consistent with a
Kolmogorov-like mechanism. However, further investiga-
tions are required to put this observation on firmer footing.
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