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Aurélien Benoit-Lévy,1,* Kendrick M. Smith,2 and Wayne Hu3

1UPMC-CNRS, UMR7095, Institut d’Astrophysique de Paris, 75014 Paris, France
2Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544-1001, USA

3Department of Astronomy and Astrophysics, Kavli Institute for Cosmological Physics, University of Chicago,
Chicago, Illinois 60637, USA

(Received 2 May 2012; published 10 December 2012)

Gravitational lensing of the cosmic microwave background (CMB) encodes cosmological information in

the observed anisotropies of temperature and polarization. Accurate extraction of this additional informa-

tion requires precise modeling of the covariance matrix of the power spectra of observed CMB fields. We

introduce a new analytical model to describe the non-Gaussian structure of this covariance matrix and

display the importance of second-order terms that were previously neglected. When compared with direct

numerical simulations our model captures parameter errors to better than a few percent for cases where the

non-Gaussianity causes an order unity degradation in errors. We also provide a detailed comparison

between the information content of lensed CMB power spectra and ideal reconstruction of the lensing

potential. We illustrate the impact of the non-Gaussian terms in the power spectrum covariance by

providing Fisher errors on the sum of the masses of the neutrinos, the dark energy equation of state,

and the curvature of the Universe.
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I. INTRODUCTION

Gravitational potentials of large-scale structure generate a
deflection of the trajectories of the cosmic microwave back-
ground (CMB) photons, an effect known as CMB lensing
[1–3] (see Ref. [4] for a review). After its initial detection in
cross correlation with large-scale structure [5,6], CMB
lensing has now been detected with high significance in
high-resolution observations from the Atacama Cosmology
Telescope [7,8] and the South Pole Telescope [9].

CMB lensing generates a characteristic statistical
signature that makes the CMB sensitive to cosmological
parameters which directly influence the growth of cosmic
structure. This breaks the angular diameter degeneracy in
the unlensed CMB and improves constraints on parameters
such as neutrino masses, the dark energy equation of state,
and the curvature of the Universe [10–14].

Mathematically, CMB lensing is described as follows.
We introduce a vector field dðn̂Þ (the deflection field) such
that the lensed temperature Tðn̂Þ and unlensed temperature
~Tðn̂Þ are related by

Tðn̂Þ ¼ ~Tðn̂þ dðn̂ÞÞ (1)

and analogously for the Stokes parameters Qðn̂Þ, Uðn̂Þ
which describe linear CMB polarization. To lowest order
in perturbation theory, the deflection field dðn̂Þ is the
gradient of a scalar lensing potential [i.e., dðn̂Þ ¼
r�ðn̂Þ] which can be written as a line-of-sight integral:

�ðn̂Þ ¼ �2
Z

d�
�ð�� �recÞ
�ð�recÞ�ð�Þ�ð�n̂; �Þ; (2)

where � is the Newtonian potential, � is conformal time,
�rec is the epoch of last scattering, and � is the angular
diameter distance in comoving coordinates.
CMB lensing modifies the Gaussian statistics of

the unlensed CMB by generating a correlation between
the primary field and its gradient [15]. It also modifies the
shape of the temperature and E-mode polarization power
spectra, and generates a nonzero B-mode power spectrum.
This leads to two different statistical techniques for extract-
ing cosmological information from CMB lensing. First, we
can simply make precise measurements of CMB power
spectra (especially the B-mode power spectrum), which
will include lensing contributions. Second, we can recon-
struct the lensing potential � using correlations between
the primary field and its gradient, providing a new cosmo-
logical observable [16–20].
Accurate analysis of CMB anisotropies requires correct

modeling of the covariance matrix of the lensed power
spectra. The lensed CMB is not a Gaussian field, and so its
power spectrum covariance is nontrivial; in particular the
off-diagonal correlations are important. Calculations of the
non-Gaussian covariance of the lensed power spectra have
been performed in both flat sky [21,22] and full-sky [23]
cases, but these calculations make the approximation that
some high-order terms in the lensing potential are negligible.
In the advent of low-noise and high-resolution CMB

experiments that will be able to probe polarization of the
CMB at the arcminute scale (SPTPol, ACTPol [24],
POLARBEAR [25]), it becomes necessary to assess
the validity of the current approximations for the non-
Gaussian power spectrum covariance, and study the impact
on cosmological parameter estimation. The purpose of this
paper is therefore to investigate in detail the impact of the*benoitl@iap.fr
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non-Gaussianities induced by CMB lensing and quantify
the information contained in the power spectra. We intro-
duce a new semianalytical approach to compute the power
spectrum covariance matrix and validate our model by
Monte Carlo simulations.

In Sec. II, we describe the simulations we performed to
estimate the power spectrum covariance matrix and present
our semianalytical model. In Sec. III, we introduce a model-
independent way of characterizing the relative information
content of lensed power spectra and idealized direct recon-
struction. Finally, in Sec. IV, we apply this characterization
to specific cosmological model parameters.

Throughout the paper, we use a fiducial flat �CDM
model with the following parameters:n
�ch

2;�bh
2; h; �; ns; 10

9As;
X

m�

o

¼ f0:1096; 0:0226; 0:693; 0:089; 0:964; 2:419; 0:58 eVg:
(3)

We chose a large fiducial value of m� so as to be testable
with CMB lensing in the near future.

II. NON-GAUSSIAN POWER
SPECTRUM COVARIANCE

To characterize the information content in CMB power
spectra we first require an accurate characterization of the
covariance matrix between the band power estimates of the
temperature and polarization fields. Previous analytic
characterizations have been based on a perturbative expan-
sion of the effect of lensing [21,23] which breaks down in
the damping tail. In this section, we first conduct a suite of
simulations to characterize the covariance and then
develop analytic tools which characterize its main features.

A. Simulations

We simulate the lensed CMB on the full sky using the
following procedure. We first make a realization of the
unlensed CMB fields ~T, ~E and lensing potential � in
harmonic space, treating these fields as Gaussian and com-
puting power spectra using the publicly available Boltzmann
code CAMB [26] to ‘max ¼ 5000. Using a fast spherical
harmonic transform, we compute the unlensed temperature
and polarization in pixel space, using an equicylindrical
pixelization with ðN�;N�Þ ¼ ð16384; 32768Þ equally

spaced points in ð�;�Þ. We then evaluate the lensed tem-
perature and polarization fields

Xðn̂Þ ¼ ~Xðn̂þ dðn̂ÞÞ; (4)

where X 2 fT;Q;Ug and tildes distinguish unlensed from
lensed fields throughout, at each point of an Nside ¼ 4096
Healpix pixelization [27], using cubic interpolation on the
equicylindrical map to evaluate the right-hand side, and
parallel translation of the spin-2 field Q� iU to transport
polarization at the point ðn̂þ dðn̂ÞÞ to the point n̂. (We use
an equicylindrical pixelization for the unlensed fields,

rather than an irregular pixelization such as Healpix, so
that interpolation is straightforward to implement). Taking
another spherical transform to obtain lensed T, E, and B
maps in harmonic space, we compute lensed power spectra

ĈXY
‘ for XY 2 fTT; TE; EE;BBg. As a memory optimiza-

tion, we avoid storing full-sky maps by ‘‘striping’’ the sky
into 16 latitude bands, and calculate the contribution to aT‘m,
aE‘m, a

B
‘m from each band before moving onto the next. This

allows each simulation to fit onto a single core with�2 GB
memory. The above procedure is similar algorithmically to
the publicly available code LensPix [28], although the two
codes differ in minor details of implementation.
We first compare the mean over the N¼32768

realizations

�CXY
‘ ¼ 1

N

XN
�¼1

ĈXY
‘;�; (5)

where XY 2 TT, TE, EE, BB to the predicted lensed
power spectra computed by CAMB. With the resolution
parameters given above, the lensed CMB power spectra
of the simulations agree with CAMB’s calculation of the
lensed CXY

‘ ’s to better than 0.1% for all spectra at

‘max ¼ 3000.
We then estimate the covariance matrix between two

different power spectra XY and ZW as

Cov XY;ZW
‘1‘2

¼ 1

N

XN
�¼1

ĈXY
‘1;�

ĈZW
‘2;�

� �CXY
‘1

�CZW
‘2

: (6)

Even in these noise-free simulations, the Gaussian ran-
dom variance from the unlensed CMB makes the estimate
of the covariance between individual multipoles noisy. We
therefore further bin the power spectrum estimators into
band powers

DXY
i ¼ X

‘

B‘
i C

XY
‘ ; (7)

where B‘
i is a top hat function

B‘
i ¼

� 1
‘iþ1�‘i

; ‘i � ‘ < ‘iþ1

0; otherwise
: (8)

The band width is chosen to be sufficiently small so as to
resolve the acoustic features in the spectrum. In practice we
take every multipole to ‘ ¼ 25 followed by uniform bands
of ‘iþ1 � ‘i ¼ 15. We choose not to bin the 25 first multi-
poles as the derivatives of the power spectrum with respect
to cosmological parameters exhibit strong variation at low
multipoles, and averaging these variations to one single bin
at low ‘ would give erroneous final results. The covariance
matrix between these band estimators then becomes

Cov XY;ZW
ij ¼ X

‘1;‘2

B‘1
i Cov

XY;ZW
‘1‘2

B‘2
j : (9)

The Monte Carlo band power covariance is shown in
Fig. 1. For visualization purposes, it is convenient to scale
out the diagonal contributions by defining the correlation
matrix
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RXY;ZW
ij ¼ CovXY;ZWijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CovXY;XYii CovZW;ZW
jj

q : (10)

For display purposes, we also use a flat binning scheme by
dividing the range of multipoles [2–3000] in 100 bins in
Figs. 1–5. As expected from previous studies, the covari-
ance of the B modes is highly non-Gaussian [21,23,29].
Interestingly, the EE, BB and EE, EE correlations in Fig. 1
are substantially larger than expected from the lowest-
order analytic calculations in Refs. [21,23], and all but
TT, TT show clear evidence for correlated structure on
the acoustic scale that is again not expected. Although
Ref. [21] also conducted simulation tests, their bands
were much wider than the acoustic scale such that these
structures were hidden.

B. Analytic approximation

In order to develop a new analytic approximation to the
covariance matrix, it is useful to first examine the BB, BB
correlation for which the existing models work well. The
dominant terms in the analytic BB, BB correlation expres-
sion can be compactly written as [cf. Ref. [29] Eq. (17)]

Cov BB;BB
‘1‘2

¼ 2

2‘1 þ 1
ðCBB

‘1
Þ2�‘1;‘2

þX
‘

0
@@CBB

‘1

@C
~E ~E
‘

Cov
~E ~E; ~E ~E
‘‘

@CBB
‘2

@C
~E ~E
‘

1
A

þX
‘

0
@@CBB

‘1

@C��
‘

Cov��;��
‘‘

@CBB
‘2

@C��
‘

1
A; (11)

FIG. 1 (color online). Monte Carlo covariance of the lensed CMB band powers computed from 32768 lensed CMB simulations in
bands of �‘ ¼ 30. From left to right and top to bottom: TT, TE, EE, and BB. For visualization purposes we plot the correlation
coefficient R defined in Eq. (10). The diagonal (of order unity) has been subtracted to enhance contrast.
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where unlensed CMB power spectra are denoted with

tildes and C��
‘ is the lensing potential power spectrum.

Assuming that these fields are Gaussian, we can use the
general prescription for Gaussian random fields G,

Cov
GaGb;GcGd

‘‘0 ¼ �‘;‘0

2‘þ1
½CGaGc

‘ C
GbGd

‘ þC
GaGd

‘ CGbGc

‘ �; (12)

for the unlensed CMB and � fields.
To calculate power spectrum derivatives such as the

ones appearing in Eq. (11), we take finite differences
between lensed CMB power spectra computed using
CAMB, rather than using a perturbative expansion in deflec-

tion angles. Since CAMB’s algorithm for computing lensed
CMB power spectra includes terms of high order in deflection

angles [30], this approach to computing derivatives also
includes high-order terms, and in particular does not break
down at high ‘. Some implementational details of the deriva-
tive calculation are presented in the Appendix. The model of
Eq. (11) for the correlation matrix is shown in Fig. 2.
Let us try to interpret the terms in Eq. (11). The first term

is the usual unconnected piece of the covariance that is the
only term for a Gaussian random field. We will loosely
refer to this term as the ‘‘Gaussian piece’’. The second and
third terms involve the fact that the B field is constructed
out of an unlensed ~E field and the lens potential field �. In

the second term, two BB band powers are connected by
the covariance of the unlensed ~E fields they share. In the
third term, they are connected by the shared � fields.
Contributions to the correlation matrix for the second and
third terms are shown separately in Fig. 3.

FIG. 2 (color online). Covariance of the lensed CMB band powers in bands of �‘ ¼ 30, computed using the analytic model from
Sec. II B. From left to right and top to bottom: TT, TE, EE, and BB. For visualization purposes we plot the correlation coefficient R
defined in Eq. (10). Detailed comparison with the Monte Carlo covariance from Fig. 1 shows that the agreement is excellent.
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The second term can therefore be interpreted as the

covariance in BB band powers generated by cosmic vari-

ance of the unlensed ~E ~E power spectrum. The covariance

it generates is positive definite in that enhanced power in
~E ~E leads to enhanced BB across the spectrum thus corre-
lating modes (see Fig. 3, right panel).

The third term is the cosmic variance of the lens power.
Here the correlation reflects the acoustic structure of the
unlensed ~E ~E power spectrum. More power in the lenses
allows more power from the acoustic peaks to transfer into
B modes than the acoustic troughs (see Fig. 3, left panel).

Finally, we note that Eq. (11) omits a fully connected
termwhere the ~E and� fields are cross connected involving
four unique multipoles rather than three. These contribu-
tions tend to sum incoherently and are subdominant in the
covariance [23]. We omit this term in our analytic model.

We can use these results to model the other covariance
terms. First consider BB, XY where XY 2 TT, EE, TE. In
this case, there are no Gaussian or unconnected terms and

CovBB;XY‘1‘2
¼ X

‘

0
@@CBB

‘1

@C
~E ~E
‘

Cov
~E ~E; ~X ~Y
‘‘

@CXY
‘2

@C
~X ~Y
‘

1
A

þX
‘

0
@@CBB

‘1

@C��
‘

Cov��;��
‘‘

@CXY
‘2

@C��
‘

1
A: (13)

In the perturbative limit for the deflection angles, this
expression exactly models all terms in the covariance.
However, again our expression has extended validity since
the derivatives are evaluated nonlinearly with CAMB.
The case of XY ¼ EE is illustrative as there is a substan-

tial correlation. The cosmic variance of the unlensed ~E ~E
power spectrum produces contributions along the diagonal
but biased to a lowerBBmultipole ‘1 < ‘2. This is due to the
fact that most of the power in the low multipoles of BB
actually comes fromwhere the unlensed ~E ~E spectrumpeaks
(‘1 � 1000). In previous analytic approaches, the term that

was kept was for ‘2 ¼ ‘, which is linear in C��
‘ .

Previous approaches have dropped the term associated
with the cosmic variance of the lens power spectrum [the
second term in Eq. (13)] under the justification that it is

second order in C��
‘ . In fact it is the dominant contribution

to the covariance at ‘1, ‘2 * 103. This term causes a band
structure in the EE dependence of the covariance.
Increasing the power in the lenses causes more power
from acoustic peaks in ~E ~E to be transformed intoBB power
while also filling in power in EE at the acoustic troughs.
Thus peaks in EE are anticorrelated with BB and troughs
are correlated.
Finally, there are the cases for whichXY,WZ 2 TT, TE,

EE. These cases are in principle more complicated in that
even at the perturbative level there are many terms that are

FIG. 3 (color online). Contributions of the individual terms in
Eq. (11) to the correlation matrix between BB band powers. Left:
cosmic variance of the lens power [third term in Eq. (11)]. Right:
cosmic variance of the unlensed ~E ~E spectrum (second term).

FIG. 5 (color online). Rows of the correlation matrix R, as in
Fig. 4, between BB-BB band powers computed using either
Monte Carlo simulations (solid lines) or our analytic model
(dashed lines). Binning scheme follows Fig. 1 and the autocor-
relation is omitted. The upper curves are for ‘ ¼ 1306.

FIG. 4 (color online). Rows of the correlation matrix R,
defined in Eq. (10), between EE-EE band powers (top), and
EE-BB (bottom), computed using either Monte Carlo simula-
tions (solid lines) or our analytic model (dashed lines). Binning
scheme follows Fig. 1 and the autocorrelation is omitted.
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not associatedwith the cosmic variance of unlensed and lens
potential power spectra. These are terms that connect the
various unlensed, lensed, and lens potentialmultipoles in the
4 point function. As in the case of BB, BB we can again use
the perturbative approximation as a guide. Here, there is a
cancellation between the power spectrum covariance terms
and the other terms associated with the unlensed fields for
slowly varying unlensed power spectra. These other terms
reflect the fact that at high CMB multipole moment, the
unlensed fields are all lensed by the same large-scale lens
realization. For a fixed lens, neighboring bands are anticor-
related by the exchange of power between them. This effect
does not occur for the covariances with BB since there is no
unlensed B field from which power can be taken.

Given this close cancellation between terms associated
with the unlensed fields, we model only the cosmic vari-
ance of the lens power spectra in these cases. For XY,
WZ 2 TT, TE, EE,

CovXY;WZ
‘1‘2

¼ 1

2‘1 þ 1
½CXW

‘1
CYZ
‘1

þ CXZ
‘1
CYW
‘1

��‘1;‘2

þX
‘

2
4@CXY

‘1

@C��
‘

Cov��;��
‘‘

@CWZ
‘2

@C��
‘

3
5: (14)

In these cases the covariance takes a checkerboard pattern.
For TT, TT or EE, EE enhanced lensing power makes
modes near acoustic peaks smaller and larger near troughs.
Thus peaks are correlated with peaks, troughs with troughs,
and peaks are anticorrelated with troughs.

Combining Eqs. (11), (13), and (14), we have now
developed an analytic model for the lensed CMB band
power covariance in all cases. Comparison with the
Monte Carlo covariance from Sec. II A shows that the
difference is typically & 10%, leading to discrepancies in
parameter uncertainties on the order of 5% or less. We will
explore this in more detail in Sec. IVC.

III. MODEL-INDEPENDENT
LENSING INFORMATION

As mentioned in the introduction, cosmological infor-
mation from CMB lensing can be obtained either from
precise measurements of lensed CMB power spectra or
by applying lens reconstruction techniques. In this section,
we will quantify the relative amount of cosmological in-
formation which can be obtained using these two methods,
in a model-independent way which uses Fisher information
matrix techniques.

In Sec. III A, we review the Fisher matrix formalism as
applied to the lensing potential power spectrum. In
Sec. III B we construct the Karhunen-Loève (KL) basis
to consider the relative information content. In Sec. III C,
we illustrate the necessity to take into account the non-
Gaussian terms computed in Sec. II. Finally in Sec. III D,
we apply our formalism to realistic CMB experiments.

A. Fisher information

The Fisher information matrix quantifies the informa-
tion in a given data set whose covariance matrix is known
on a set of parameters p� of interest. In order to quantify
the lensing information in a model-independent manner,
instead of taking cosmological parameters we take the

power spectrum C��
‘ itself as the parameters of interest.

The effect of any cosmological parameter of present or
future interest can be thought of as a specific sum of these
parameters. Rather than taking every ‘ as a parameter, we
follow Ref. [21] and implicitly assume that the power
spectrum is smooth in ‘ so that we can approximate it
with binned perturbations around the fiducial model. For

each bin � in C��
‘ , we define a parameter p� by

lnC��
‘ ¼ lnC��

‘ jfidþ
XN�

�¼1

p�B
�;‘
� ; 0�‘�‘�max; (15)

where B�;‘
� describes the banding and is defined as

B�;‘
� ¼

�
1; ‘� < ‘ < ‘�þ1 � ‘�max

0; otherwise
: (16)

In practice, we choose � bands with width �‘ ¼ 20 (i.e.,

N� ¼ 40 for ‘�max ¼ 2000 and N� ¼ 60 for ‘�max ¼ 3000).

We define bands in lnC��
‘ so that the power spectrum

remains positive definite for large deviations.
Note that any cosmological parameter variation that

predicts a sufficiently smooth deviation from the fiducial

model of � lnC��
‘ can be represented in these parameters as

p� ¼ 1

ð�‘Þ�
X
‘

� lnC��
‘ B�;‘

� ; (17)

where ð�‘Þ� is the width of bin �.
In general, given some data vectorDI which depends on

parameters p�, the Fisher matrix is given by

F�	 ¼ X
IJ

�
@DI

@p�

�
ðCovD;D

IJ Þ�1

�
@DJ

@p	

�
: (18)

We define a Fisher matrix FP
�	 by specializing to the case

where the parameters p� are the � band powers defined in
Eq. (17) and the data vector DI is the set of lensed CMB
band powers DXY

i (where XY 2 TT, TE, EE, BB) defined
in Eq. (7). The derivatives ð@DI=@p�Þ appearing in the
Fisher matrix are computed nonlinearly using CAMB, as
described in the previous section.
Unless otherwise stated, our model for the covariance

matrix CovD;D
IJ will be based on the semianalytical model

from Sec. II B. (We show below that using the Monte Carlo
covariance matrix from Sec. II A gives essentially identical
parameter uncertainties). We modify this all sky, cosmic
variance limited covariance in two ways. First we include
the possibility that the measurements contain Gaussian
noise terms by replacing the Gaussian diagonal elements
with
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Cov XY;X0Y0
‘‘ ¼ 1

2‘þ 1
½ðCXX0

‘ þ NXX0
‘ ÞðCYY0

‘ þ NYY0
‘ Þ

þ ðCXY0
‘ þ NXY0

‘ ÞðCYX0
‘ þ NYX0

‘ Þ�; (19)

where NXX0
‘ is the noise (cross) power spectrum. Second,

we rescale the whole resulting matrix by 1=fsky where fsky
is the fraction of sky covered by the data set under the usual
assumption that the survey is sufficiently large that corre-
lations across �‘� 2
=�survey induced by the fundamen-

tal mode of the survey or sky cuts are irrelevant across the
acoustic separation. Also we are mainly interested in the
effects of the non-Gaussian terms in the CMB covariance
matrix at high ‘. An accurate forecast of parameter con-
straints or an analysis on data would require a more
detailed modeling of the shape of the survey (e.g., by
introducing a minimum multipole ‘min).

The Fisher matrix FP
�	 defined in this way quantifies the

lensing information (in the form of constraints on the �
band powers p�) which can be obtained from noisy mea-
surements of the lensed CMB power spectrum.

We seek to compare this Fisher matrix to

FR
�	 ¼ X

‘‘0

�
@C��

‘

@p�

�
ðCovR‘‘0 Þ�1

�
@C��

‘0

@p	

�
; (20)

the Fisher matrix of a direct reconstruction of C��
‘ .

We will make the approximation that the covariance
matrix CovR‘‘0 of the reconstructed � band powers is given

by the Gaussian expression

Cov R
‘‘0 ¼

2

fskyð2‘þ 1Þ ðC
��
‘ þ N��

‘ Þ2�‘‘0 ; (21)

where N��
‘ is the noise power spectrum of the reconstruc-

tion. We use as a baseline two cases: a hypothetical cosmic

variance limited lens measurement where N��
‘ ¼ 0, and

the idealized reconstruction noise coming from the lens
reconstruction from quadratic combinations of CMB
fields. For details on how this reconstruction noise is
calculated, see Ref. [31].

The Gaussian approximation (21) makes several approx-
imations which we state explicitly. The power spectrum of
the lens reconstruction contains an off-diagonal contribu-
tion from � band powers [32] (this is the ‘‘N1’’ bias found
by Ref. [33]) which should be folded into the covariance
CovR‘‘0 . It is also possible that there are contributions from

higher-order terms in � [34] (this is the ‘‘N2’’ bias found
by Ref. [35]); such contributions have been found to be
small for temperature-based lens reconstruction, but this
has not been checked for polarization. Finally, since the
quadratic lens reconstruction is not a Gaussian field, its
band power covariance may differ from the Gaussian
expression (21). For temperature-based lens reconstruc-
tion, this issue has been studied in Ref. [35] and the
Gaussian expression has been found to be a good

approximation (after slightly modifying the estimator
along the lines of Ref. [36], see also Ref. [34] for alternate
schemes), but the polarization case has not been studied.
A complete treatment of these issues would be very inter-
esting but is outside the scope of this paper; we will use the
Gaussian approximation (21) as a first-order approxima-
tion to the exact Fisher matrix for lens reconstruction.
Note that the inverse of the Fisher matrix is an approxi-

mation for the covariance matrix of p�

Cov �	 ¼ ðF�1Þ�	 (22)

for both the band power (P) and reconstruction (R) Fisher
matrices.

B. Karhunen-Loève modes

While the p� basis of lens power spectrum perturbations
is complete, it is not ideally suited for assessing the
information content or analysis of data. Measurements of
the many individual parameters would be highly noisy
(and correlated, in the case where the lensed CMB band
powers DXY

i are being used as the observable). In this
section, we construct a more suitable basis whose eigen-
modes are rank ordered in the relative information between
CMB band powers and lens reconstruction. Moreover in
the Fisher approximation, this basis provides a small set of
relevant parameters whose errors are uncorrelated for both
band power and direct measurements. As a complete basis,
it can be used to study any cosmological parameter which
affects the lensing potential.
To construct the eigenmodes, consider the KL

transform:

Cov P
�	v

ðkÞ
	 ¼ �ðkÞCovR�	v

ðkÞ
	 ; (23)

where vðiÞ
	 and �ðiÞ are the KL eigenvectors and eigenval-

ues. We define the KL parameters mk as linear combina-
tions of the band perturbations or cosmological power
spectrum deviations:

mk ¼
X
�

vðkÞ
� p� ¼ X

�

vðkÞ
�

1

ð�‘Þ�
X
‘

� lnC��
‘ B�;‘

� : (24)

These KL modes have the property that their covariance,
either measured from the lensed power spectra or from the
reconstruction are diagonal and related by the KL eigen-
values. The eigenvectors are normalized such that all
modes have unit variance for the direct reconstruction

Cov R
kk0 ¼ �kk0 (25)

and the KL construction then says that the eigenvalues are
the relative variance from the CMB band powers

Cov P
kk0 ¼ �ðkÞ�kk0 : (26)

The KL eigenvalues are therefore the ratio of the two
covariances, and give a simple quantitative way to
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determine which provides more information. If �ðkÞ < 1,
the corresponding KL modemk is better constrained by the
power spectra than by the direct reconstruction.

C. CMB and lens cosmic variance

The KL construction allows a powerful test of physical
self-consistency of the band power covariance. If we con-
sider an idealized measurement in which both the lensed
CMB and the lensing potential are cosmic variance limited

(i.e., NXY
‘ ¼ N��

‘ ¼ 0), then all KL eigenvalues must be

� 1, since there cannot be more information in the lensed
CMB band powers than the reconstruction. We also con-
sider in this section that the full sky is observed, i.e.,
fsky ¼ 1.

If we treat the lensed B mode as a Gaussian field
[i.e., keep only the first term in the BB covariance (11)]
then there are KL eigenvalues that strongly violate this
physicality bound. For example, if we suppose that the BB
power spectrum is measured to ‘max ¼ 2000, then we find
�min ¼ 0:1. This problem disappears when we include the
full band power covariance: we find �min ¼ 1:4, showing
that our covariance model passes this consistency test.
These results are in agreement with Refs. [12,29].

At ‘max ¼ 3000, we find that all the polarization-related
non-Gaussian covariances must be included in order to
satisfy the physicality bound �min � 1. For example, let
us suppose that only EE and BB power spectra are mea-
sured (including TT and TE would only strengthen the
example). If we make the Gaussian approximation for
CovEE;EE, but use non-Gaussian values for CovEE;BB and
CovBB;BB, then we find �min ¼ 0:9 and fail the consistency
test. Analogously, if we make the Gaussian approximation
for CovEE;BB, but use non-Gaussian CovEE;EE and
CovBB;BB, then we find �min ¼ 0:8 and fail. When we
include the full non-Gaussian covariance model from
Sec. II, then we do not find any violation of physicality,
even when all band powers TT, TE, EE, BB are included.
In that case, considering all the covariance as Gaussian
leads to �min ¼ 0:07. When the full non-Gaussian covari-
ance from Sec. II is used, we have �min ¼ 1:09 for the
analytic covariance results, and �min ¼ 1:11 when we use
the covariance matrices computed from the simulations.
We thus expect cosmological parameter errors to be mod-
eled to better than a few percent for ‘max � 3000. We
quantify this expectation for parameter examples in
Sec. IVC. Our model captures the essential of the non-
Gaussian structure of the lensed power spectra covariance.
Most terms in this covariance model have been neglected
in previous studies.

D. Finite noise

While with a perfect reconstruction of the lensing
potential power spectrum we cannot expect more informa-
tion from the power spectra, considering a realistic

reconstruction with a finite noise could in principle lead
to some modes which are better constrained by the power
spectra than by reconstruction.
In Table I, we show some instrumental specifications

that will be used throughout this paper. For Planck, we
use the lowest three HFI frequencies with measured
noise levels from Ref. [37], with maximum multiple
‘max ¼ 2000 and fsky ¼ 0:8.

We also consider a futuristic CMB polarization satel-
lite (denoted by ‘‘CMBPol’’) with a low noise level
(�T ¼ 1 �Karcmin) and a resolution similar to the
SPTPol experiment [38]. Finally, we consider a ground
experiment with instrumental characteristics from
CMBPol assuming a 650 deg2 survey and Planck sensitivity
on the remainder of the Planck region (i.e., fsky ¼ 0:784).

We call this combination of Planckþ ground-based experi-
ment ‘‘Planckþ G.’’
The instrumental noise power spectrum for a single

channel is [39]:

NXX
‘ ¼

�
�XX

T0

�
2
e‘ð‘þ1Þ�2FWHM=8 ln2; (27)

where XX ¼ TT, EE, BB. For a multichannel experiment,
the noise power spectrum is N‘ ¼ ðPiN

�1
‘ðiÞÞ�1, where N‘ðiÞ

is the noise power spectrum of the ith channel.
Note that even though CMBPol approaches the cosmic

variance limit of the CMB, it does not reach the cosmic
variance limit of lens reconstruction. The cosmic variance
of the CMB fields themselves places an irreducible noise
floor on even idealized reconstruction from quadratic
estimators.
The KL eigenvalues are almost always larger than one,

indicating that all the KL modes are better constrained by
reconstruction than with the power spectra. The only
exception is for CMBPol with a low cutoff at ‘max ¼
2000. In that case �min ¼ 0:89, indicating that one KL
mode is slightly better constrained by lensed CMB power
spectra than by lens reconstruction. This number merely
reflects the fact that given the low noise and beam of the
CMBPol experiment, applying a cutoff at ‘max ¼ 2000
degrades the ability of the lensing quadratic estimator to
reconstruct the lensing potential.
All the other KL eigenvalues are greater than one

and they rapidly become much larger after the third

TABLE I. Instrumental specifications used in this paper.
Sensitivities are given in �Karcmin.

Name Frequency �T �P �FWHM fsky ‘max

Planck 100 GHz 81 115 9:50 0.8 2000

143 GHz 47 79 7:10 0.8 2000

217 GHz 71 122 4:70 0.8 2000

Ground based 1.0 1.41 10 0.016 3000

CMBPol 1.0 1.41 10 0.8 3000
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mode (see Fig. 6), indicating that only one or two KL
modes actually contribute to the lensed CMB power spec-
tra, which is in agreement with Ref. [21].

IV. CONSTRAINTS ON COSMOLOGICAL
PARAMETERS

Although the KL construction reveals extra information
in lens reconstruction not available to lensed power
spectra, accessing this information does not necessarily
improve constraints on realistic cosmological parameters.
Its impact depends on both how strongly and how uniquely
cosmological parameter variations change the KL mode
amplitudes corresponding to the new information.

Our purpose is not to give exhaustive forecasts on cos-
mological parameters for various experimental configura-
tions. Rather, we wish to provide examples for when the
extra KL information in reconstruction can and cannot
make an impact. In Sec. IVA, we define and test a means
of comparing the two in the presence of parameters that
change the acoustic peaks of the unlensed CMB. In
Sec. IVB, we compare the errors from the power spectra
to the reconstruction and we assess the impact of the non-
Gaussian covariance in Sec. IVC.

A. Additive lensing approach

The KL mode decomposition is complete and hence the
errors on the mode amplitudes mk can be used to construct

the Fisher matrices FKL;P
cc0 , FKL;R

cc0 corresponding to lensed

power spectra and lens reconstruction, for any set of cos-
mological parameters c:

FKL;P
cc0 ¼X

k

1

�ðkÞ
@mk

@c

@mk

@c0
; FKL;R

cc0 ¼X
k

@mk

@c

@mk

@c0
: (28)

In other words, lensed CMB power spectrum constraints
are downgraded (relative to lens reconstruction) by the KL

eigenvalues. In practice, there are only a few eigenvalues
which are not � 1, and so lensed CMB power spectra are
only sensitive to the first few eigenmodes.
The derivatives (@mk=@c) appearing above can be com-

puted from Eq. (24):

@mk

@c
¼ X

�

vðkÞ
�

1

ð�‘Þ�
X
‘

@ lnC��
‘

@c
B�;‘
� : (29)

Some values of these derivatives with respect to neutrino
mass, dark energy equation of state, and curvature are
presented in Fig. 7. They show a general decreasing trend
but are not monotonically decreasing. For example, the
neutrino mass derivative with ‘max ¼ 2000 shows a second
peak at the sixth KL mode (Fig. 7, left top panel).
The KL Fisher matrices are designed to only account for

the information carried by CMB lensing and should be
added to any other source of information. Indeed these
matrices are highly degenerate if the parameters that con-
trol the unlensed CMB acoustic peaks are allowed to vary.
Two options are conceivable depending on the objective. If
one wants to compare the ultimate amount of information
on the lensing parameters carried by CMB lensing through
the band power measurements or through a lens recon-
struction, then fixing the high-redshift parameters in the
KL matrices is a possibility. In this case, we expect the KL
treatment to be fully accurate within the Fisher approxi-
mation, but the resultant error estimates are not meaningful
unless other sources of information fix those parameters.
The second approach is to add other sources of infor-

mation to the Fisher matrix. The current leading source of
information on these parameters is of course the acoustic
peaks themselves. The bulk of this information comes from
the unlensed CMB spectra. To the extent that the lensing
simply adds to the information in the unlensed CMB we
can approximate the total Fisher matrix as the sum

FKL;PU ¼ FKL;P þ FU; FKL;RU ¼ FKL;R þ FU;

(30)

where FU is the Fisher matrix constructed out of the
unlensed CMB fields with a Gaussian covariance. We
call this the ‘‘additive lensing’’ approximation. For lensing
parameters where lensing can actually destroy information
in the power spectrum, such as �K [21] and m� at suffi-
ciently large values that the neutrinos are nonrelativistic at
recombination, this treatment is approximate. On the other
hand it is an approximation that affects the lensing recon-
struction and power spectrum information alike.
For the power spectrum information, there is a direct

check of this approximation since we can construct the
Fisher matrix from the lensed power spectra and the power
spectrum covariance

Fdir;P
cc0 ¼ X

IJ

�
@DI

@c

�
ðCovD;D

IJ Þ�1

�
@DJ

@c0

�
: (31)

FIG. 6 (color online). KL eigenvalues for Planck (solid/red)
and CMBPol (dashed/green). Top: ‘max ¼ 2000. Bottom: ‘max ¼
3000.
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For the reconstruction, a direct check of the additive lens-
ing approximation would require understanding the covari-
ance between reconstruction and power spectrum statistics,
as well as more subtle effects such as the N1 bias men-
tioned previously [40].

As an aside, note that for numerical stability when
computing the power spectrum Fisher matrices it is impor-
tant to pick a parameter set c where the angular diameter
distance degeneracy is manifest. Hence in practice deriva-
tives with respect to cosmological parameters are com-
puted by adjusting the Hubble parameter h so that the
acoustic scale is fixed when varying the values of other
parameters. Our parameter basis is then composed of three
lensing parameters (

P
m�, w, and �K) and six high-

redshift parameters which control the unlensed CMB:
f�ch

2;�bh
2; ns; �; Ase

�2�; �Sg, where �S is the angle sub-
tended by the sound horizon at recombination. These six
high-redshift parameters are marginalized in all parameter
constraints presented in this paper.

We begin by testing the accuracy of the additive lensing
approximation in the power spectrum case, where we can
simply compare the Fisher matrix FKL;PU obtained in the
additive lensing approximation [Eq. (30)] to the exact
Fisher matrix Fdir;P [Eq. (31)]. As can be seen in Fig. 8,
which presents the ratio of the errors computed by the two
different techniques for a single additional lens parameter,
the two approaches are not strictly equivalent. As expected,
this is especially true for �K where the errors from the
direct lensed Fisher matrix are typically 5% larger than

those predicted by our KL formalism and can approach
20% at high noise. For w, the difference in the errors is
constant at about 3% over the range of noise level consid-
ered. Finally, for

P
m� and the high fiducial value of

0.58 eV, the agreement depends on the noise level. For
very high levels of noise, most of the information comes
from the first few peaks of the unlensed CMB and that
information can be reduced by lensing. For very low levels

FIG. 7 (color online). Derivatives of the KL modes mk with respect to ��h
2 (top), w (middle), and �K (bottom) with lmax ¼ 2000

(left column) and lmax ¼ 3000 (right column), for Planck (solid/red) and CMBPol (dashed/green).

FIG. 8 (color online). Ratio of statistical errors computed
using the additive lensing approximation (i.e., FKL;PU) and the
exact Fisher matrix (i.e., Fdir;P) for individual lensing parame-
ters, as a function of noise level for a �FWHM ¼ 10, ‘max ¼ 3000
experiment. The error on each lensing parameter is computed
with the other two lensing parameters fixed and high-redshift
parameters marginalized.
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of noise, the lensing information saturates to its sample
variance level, while the unlensed CMB would have in
principle retained information far out into the exponen-
tially damped tail. In the intermediate noise regime of
interest to future CMB polarization experiments, the addi-
tive lensing approximation is accurate. Furthermore, we
have explicitly verified that as the fiducial value for

P
m�

is lowered, the discrepancy rapidly goes away.
The same general trends apply to cases of multiple

lensing parameters. As an example, we show in Fig. 9
(top panel) the constraints in the (

P
m�)-w plane (�K

being fixed) for the Planckþ G and CMBPol experiments.
The ellipses from the two approaches are in very good
agreement, thus validating the additive approach in the
case where curvature is fixed.

In the case where curvature is allowed to vary (bottom
panel), parameters become highly degenerate in the lensed
power spectrum effects and so the impact of unlensed
information becomes larger. For the CMBPol case the
errors in ðm�Þ with w and curvature marginalized are
larger by a factor of 1.26 and for the Planckþ G experi-
ment they are larger by 1.20 when comparing the exact to
the additive approach. When making comparisons between
reconstruction and power spectrum information in such
degenerate cases with curvature, one must bear in mind
these curvature induced problems [41].
In summary, for the interesting cases where lensing

provides most of the information on the lensing parame-
ters, the additive lensing approximation is accurate in the
power spectrum case (i.e., the Fisher matrices FKL;PU and
Fdir;P agree). The additive lensing approximation is very
convenient for comparing the cosmological information
from lensed CMB power spectra and lens reconstruction.
Since the Fisher matrix is separated into a sum of unlensed
and lensed contributions, we can simply compare the
Fisher matrices FKL;PU and FKL;RU defined in Eq. (30).
This provides a metric for relative comparison of power
spectrum and reconstruction lensing information.

B. Power spectra vs reconstruction

Given the results in the last section, we can compare
cosmological parameter constraints from lens reconstruc-
tion and lensedCMBpower spectra.Moreover, using theKL
eigenmode formalism, we can explicitly verify how many
KL modes actually carry the cosmological information.
As a general statement, we find that reconstruction

always carries more information than the lensed power
spectra, regardless of the parameter considered. As the
KL modes are rank-ordered in terms of highest relative
information content in the power spectra, we can choose to
truncate the summation defining the KL Fisher matrices
[Eq. (28)] to only use the information from the first few KL
modes. Those cumulative errors are presented in Fig. 10
(upper) for cases where there is only a single additional
lensing parameter. This case is the easiest to understand
since the power spectrum information will be dominated
by the first eigenmode.
For CMBPol, the first KL eigenvalue is close to 1 and so

the errors for any individual lensing parameter are compa-
rable. The power spectrum information saturates at 2–3
eigenmodes as expected. These are modes for which the
extra information in the reconstruction becomes manifest,
but for the three chosen lensing parameters the total impact
is small for �K and w, given the dominance of the first
mode in the derivatives in Fig. 7. For the neutrinos there is a
somewhat larger effect corresponding to large derivatives
in both of the first two modes. Note also that for recon-
struction the eigenmodes are not rank-ordered so some of
the higher modes can contribute more information than the
lower modes. For neutrinos, the cumulative reduction of

FIG. 9 (color online). Sixty-eight percent confidence limit
(CL) ellipses in the (

P
m�)-w plane for the Planckþ G (outer

ellipses) and CMBPol (inner ellipses) experiments. Errors using
the additive lensing approximation (FKL;PU) are shown in
dashed/black, and errors using the exact Fisher matrix (Fdir;P)
are shown in solid/red. Top: �K is fixed. Bottom: �K is
marginalized.
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errors from the reconstruction (relative to the power spec-
trum constraint) reaches 0.7–0.8.

When more than one lensing parameter is included,
resulting degeneracies can make the information in recon-
struction more important. However the small derivatives in
Fig. 7 still limit the practical relevance of this information,
in that other sources like the unlensed CMB and more
importantly other cosmological probes quickly dominate
the net information.

In Fig. 11, we show a two-dimensional example: com-
parison of power spectrum and lens reconstruction con-
straints in the (

P
m�)-w plane with �K fixed, for Planck

and CMBPol. Let us interpret this figure in light of our KL
eigenmode construction. For Planck (upper panel), there is
one (roughly vertical) direction which is constrained by
CMB lensing, and the lens reconstruction constraint is
stronger than the lensed power spectrum constraint. There
is another (roughly horizontal) direction which is con-
strained by lens reconstruction, but veryweakly constrained
by lensing information in the power spectrum (it is con-
strained by the unlensed power spectrum). This is consistent
with the KL eigenvalues for Planck shown in Fig. 6: there is
one KL eigenvalue which is a little larger than 1, and the
second KL eigenvalue is � 1. For CMBPol (bottom panel
of Fig. 11), there is one direction where the lensed power
spectrum and lens reconstruction constraints are nearly
exactly equal, and another direction where lens reconstruc-
tion is somewhat better. This is consistent with the KL
eigenvalues in Fig. 6: the lowest KL eigenvalue is almost
exactly equal to 1, and the second KL eigenvalue is �2.

Similarly, although the KL analysis would imply that
with 3 lensing parameters there should be substantially
better lensing reconstruction constraints, for the chosen

parameters and their fiducial values the unlensed CMB
information rapidly dominates. In Fig. 10 (lower), we
show the impact on the parameter errors of marginalizing
the other two lensing parameters. In this case, all three
types of lensing parameters show 10% or greater cumula-
tive improvements from the reconstruction due to the
higher modes breaking degeneracies, but they are still of
the same order of magnitude as those of the power spectra.
Further relative improvements here are limited by the
unlensed CMB information which also weakly breaks
these degeneracies in the additive approach. Note that we
are somewhat underestimating the impact of the extra
reconstruction information when considering CMB-only
sources of information, since this ability to break degener-
acies in the unlensed CMB is degraded by lensing.
Nonetheless the main point that in practice the extra infor-
mation accessible to lensing reconstruction with CMBPol
is mainly orthogonal to realistic cosmological parameters
remains.

C. Impact of non-Gaussian covariance

We conclude our analysis by investigating the impact of
the non-Gaussian covariance of the lensed power spectra
on the final errors on parameters. Since this does not
involve reconstruction information, we work here with
the direct lensed power spectra Fisher matrix Fdir;P, rather
than using the ‘‘additive lensing’’ approximation from
Sec. IVA.
First note that if one considers the amplitude of the

fiducial lensing spectrum C��
‘ ¼ AlensC

��
‘ jfid as the inde-

pendent lensing parameter as often done in the current
literature [8,9], then non-Gaussian modeling is required

FIG. 10 (color online). Statistical errors on
P

m� (left), �K (middle), and w (right) from lens reconstruction (solid/red) and lensed
CMB power spectra (dashed/blue), using the first k KL eigenmodes (where 1 � k � 10), for CMBPol specs with ‘max ¼ 3000. As
expected, KL eigenmodes with k � 3 do not contribute to the power spectrum constraints, but can contribute slightly in the lens
reconstruction case. Statistical errors were computed using the ‘‘additive lensing’’ approximation and the Fisher matrices FKL;PU and
FKL;RU, as described in Sec. IVA. Top row: only one lensing parameter is varied and the other two are fixed. Bottom row: all three are
varied with the two not shown marginalized.
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for any experiment that gains information from polariza-
tion. This follows from our KL treatment where the infor-
mation on the amplitude comes almost exclusively from
the first mode. For example for CMBPol and ‘max ¼ 3000,
ðAlensÞ ¼ 0:0011 for Gaussian covariance and ðAlensÞ ¼
0:002395 for the non-Gaussian covariance from the simu-
lations. Our analytic model captures this degradation to
2.8% yielding ðAlensÞ ¼ 0:002329.

If on the other hand one takes the lensing parameters
as fundamental cosmological parameters, the impact of
non-Gaussianity is hidden by marginalizing their impact

on C��
‘ . In the previous studies where only the dominant

BB-BB covariance was considered [21] the impact of
non-Gaussianity on lensing parameters was small once

the power spectra amplitude As and the dark matter
density �ch

2 were marginalized for ‘max < 2000. This
simplification has been employed in the subsequent litera-
ture to study parameter forecasts in a wider range of
scenarios [42].
The analytic model allows us to separate out the impact

of the new EE and TE covariance terms. In Fig. 12, we
show the net impact on the w-

P
m� errors of including the

non-Gaussian terms on the PlanckþG (top) and CMBPol
(bottom) experiments, with all the high-redshift parameters
marginalized but�K fixed. For the PlanckþG experiment
the overall impact is small as one would expect from just
adding BB lensing information to Planck. For the CMBPol
experiment, there is a more substantial effect. Interestingly

FIG. 11 (color online). Comparison of 68% CL ellipses in the
(
P

m�)-w plane obtained from lens reconstruction (black/
dashed) and lensed CMB power spectra (red/solid). Statistical
errors are computed using the additive lensing approximation
(i.e., Fisher matrices FKL;RU and FKL;PU) and fixed �K, for
Planck (top panel) and CMBPol (bottom panel, ‘max ¼ 3000).
The outer ellipse in the top panel is unlensed CMB constraint
(not shown in the bottom panel since the unlensed constraint is
much weaker than the lensed constraint).

FIG. 12 (color online). Sixty-eight percent CL ellipses in the
(
P

m�)-w plane, computed using the exact Fisher matrix Fdir;P

with fixed �K, for the Planckþ G (top) and CMBPol (bottom,
‘max ¼ 3000) experiments. Dash-dotted magenta lines are com-
puted with the full Gaussian covariance matrix, and solid red lines
with the full non-Gaussian covariance from the semianalytical
model. Dashed black lines are computed using an intermediate
covariance matrix which includes the non-Gaussian BB-BB co-
variance, but Gaussian covariance for all combinations of T and E.
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this degradation is almost entirely due to the new EE and
TE terms and can be attributed to the use of lensing
information in these spectra to break degeneracies between
lensing parameters and high-redshift parameters.

These new terms can have an impact even if there is only
one additional lensing parameter. For the CMBPol experi-
ment if

P
m� and�K are fixed, the error on w with the full

non-Gaussian covariance is ðwÞ ¼ 0:118. However, if
only the non-Gaussian BB-BB covariance is used, we
have ðwÞ ¼ 0:095, a 24% difference. We conclude that
if in the future lensing information out to ‘max ¼ 3000 from
the polarization fields becomes available and dominates
parameter errors, then all of the covariance terms that
involve polarization should be modeled for full accuracy.

V. CONCLUSIONS

We have constructed a semianalytic model of the co-
variance matrix of the lensed power spectra of CMB
temperature and polarization anisotropies. This model is
able to reproduce the structure found in simulations of
CMB lensing for the non-Gaussian terms in this covari-
ance. More specifically, we have shown the existence and
importance of second-order terms in the lensing potential
that were unaccounted for in previous studies [21–23]. Our
model captures these effects and enables an efficient quan-
tification of cosmological parameter errors that matches
simulations to better than �3% for ‘max � 3000 even in
cases where the non-Gaussianity causes an order unity
degradation in the errors.

Using an parameter independent approach based on
the decomposition of the information carried by CMB
lensing in terms of Karhunen-Loève eigenmodes, we
have exhibited some cases where neglecting some of these
second-order terms leads to physical inconsistencies.
These inconsistencies are removed once the covariance
from our model is used.

We then applied the KL eigenmode technique to com-
pare the cosmological information that can be extracted
either from measurements of the lensed power spectra or
by reconstruction of the lensing potential using quadratic
estimators. Although the non-Gaussian covariance of the
lensed spectra has no significant impact on parameter
errors for Planck, we found that it is non-negligible for
forthcoming CMB experiments which will probe polariza-
tion at the arcminute scale.

If the full non-Gaussian covariance is used then there is
always more information, in principle, in the reconstruc-
tion than in the lensed power spectra. In practice, the
removal of various biases in the reconstruction and
higher-order terms in the reconstruction covariance matrix
may degrade the final errors on parameters. Furthermore,
this extra information is mainly in the detailed shape of
the power spectrum of the lenses. Typical cosmological
parameters do not access this information as they mainly
change the amplitude of the spectrum.

The work presented here is one element in a joint and
optimal likelihood analysis of CMB lensing. Our covari-
ance model provides a computationally efficient means of
calculating the covariance matrix of lensed CMB power
spectra as a function of underlying cosmological or lens
parameters. In the future, a full joint analysis will require
more accurate techniques for a similar characterization of
the reconstruction covariance as well as the covariance
between power spectra and reconstruction observables.
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APPENDIX: DERIVATIVE APPROXIMATION
FOR NON-GAUSSIAN COVARIANCE

The covariance of BB with EE, TT, or TE [see Eq. (13)]
involves computing derivatives of lensed CMB power
spectra with respect to unlensed spectra

X
‘

0
@@CBB

‘1

@C
~E ~E
‘

Cov
~E ~E; ~X ~Y
‘‘

@CXY
‘2

@C
~X ~Y
‘

1
A: (A1)

First note that @CBB
‘1
=@C

~E ~E
‘ is a slowly varying function of

both ‘1 and ‘ given the broad kernel that transfers power
between the ~E ~E and BB. Thus the derivative can be well
approximated by the average response to an unlensed band
perturbation of width �L� ¼ 10 for ‘ 2 band

@CBB
‘1

@C
~E ~E
‘

� @CBB
‘1

@p
~E ~E
�

1

�L�

1

C
~E ~E
‘

: (A2)

On the other hand @CXY
‘2
=@C

~X ~Y
‘ cannot in general be

approximated by a band response as it will have both a
smooth piece from lensing and a �‘2;‘ term from the

unlensed CMB. However, to calculate the covariance it
suffices to note that both the BB derivative and the Cov
term are slowly varying on the �L� scale. Thus the sum
over ‘ 2 B� means that we can replace the true derivative
with the band average response again:
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�@CXY
‘2

@C
~X ~Y
‘

�
�L�

¼ @CXY
‘2

@p
~X ~Y
�

1

�L�

1

C
~X ~Y
‘

: (A3)

With this replacement

X
‘

0
@@CBB

‘1

@C
~E ~E
‘

Cov
~E ~E; ~X ~Y
‘‘

@CXY
‘2

@C
~X ~Y
‘

1
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4@CBB

‘1
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~E ~E
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@CXY
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ð�L�Þ2
X
‘2B�

Cov
~E ~E; ~X ~Y
‘‘

C
~E ~E
‘ C

~X ~Y
‘

3
5: (A4)

Note that while not necessary here, the derivatives
can alternately be calculated more exactly by perturbing
single ‘’s on a sparse grid in the unlensed ‘. As
a function of the unlensed ‘ the derivatives can be
separated as

@CXY
‘1

@C
~X ~Y
‘

¼ A‘�‘‘1 þ B‘‘1 (A5)

into two slowly varying pieces A‘ and B‘‘1 .
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