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In gravitational-wave interferometers, test masses are suspended on thin fibers which experience

considerable tension stress. Sudden microscopic stress release in a suspension fiber, which I call a ‘‘creep

event,’’ would excite motion of the test mass that would be coupled to the interferometer’s readout. The

random test-mass motion due to a time sequence of creep events is referred to as ‘‘creep noise.’’ In this

paper I present an elastodynamic calculation for the test-mass motion due to a creep event. I show that

within a simple suspension model, the main coupling to the optical readout occurs via a combination of a

‘‘dc’’ horizontal displacement of the test mass and excitation of the violin and pendulum modes, and not,

as was thought previously, via lengthening of the fiber. When the creep events occur sufficiently

frequently and their statistics is time independent, the creep noise can be well approximated by a

stationary Gaussian random process. I derive the functional form of the creep noise spectral density in this

limit, with the restrictive assumption that the creep events are statistically independent from each other.
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I. INTRODUCTION

Gravitational-wave interferometers like the Laser
Interferometric Gravitational-wave Observatory (LIGO) in
the United States of America [1], VIRGO [2] in Europe, and
their smaller counterparts GEO600 in Germany [3] and
TAMA in Japan [4], are using superprecise optomechanical
measurements to search for astrophysical gravitational
waves. After several years of taking scientific data, LIGO
and VIRGO are currently being upgraded with improved
instrumentation and should again become operational
in 2015 [5,6]. LIGO Science Collaboration (LSC) and
the VIRGO community are projecting [7] that with the
upgraded technology, both interferometers will soon be
measuring multiple coalescences of relativistic compact
objects (neutron stars and black holes). These projections
are based in part on the theoretical predictions for spectral
density of the interferometers’ noise. It is thought that the
random processes that contribute most of the noise, i.e., the
seismic shaking of the suspensions [8], the thermomechan-
ical and thermorefractive fluctuations of the mirror surface
[9], and the quantum-mechanical fluctuations of the light
field coupled to the test-mass motion [10,11] are well
understood [12].

One of the dangerous unknowns for the advanced
gravitational-wave interferometers is a non-Gaussian noise
from a superposition of transient events in the instrument.
In this paper I concentrate on the creep noise, which is
caused by a superposition of the sudden localized tension
stress releases (creep events) in suspension fibers and their
end attachments. It has been thought that a creep event
would couple to the interferometer’s readout via

lengthening of the fiber [16]. Specifically, it was argued
that because of Earth’s curvature, the laser beam was not
strictly perpendicular to the suspension fiber, and thus the
fiber’s lengthening would result in some test-mass dis-
placement along the beam. In this paper I show that this
coupling, while present, is not dominant, at least for a
simple model where the fiber is represented by a cylinder
with constant radius. Instead, a creep event couples to the
interferometer’s output predominantly through excitation
of the pendulum and violin modes of the suspension; this
coupling is explicitly calculated in this work.
The fact that creep events couple to the transverse vibra-

tional modes of the system is in agreement with the ex-
periment of Ageev et al. [17] who find a substantial excess
noise in the transverse motion of a tungsten wire stretched
to 20% of the breakup stress. Similar excess noise in steel
wires was observed in Ref. [18]. However, the results in
Ref. [17] were not confirmed by Gretarsson and Saulson
[19] who did not observe any excess noise in the motion of
the stressed tungsten wire. Moreover, it is far from obvious
that the processes responsible for the creep events in
metallic fibers [20] will be operating in the fused silica
suspension fibers such as the ones that are currently used
in GEO600 and that will be used in the advanced
LIGO, VIRGO, and KAGRA suspensions [21]. Two
experiments with fused silica fibers have been performed
in Refs. [19,22]; in both experiments no excess noise was
discovered near the violin resonant frequency of the fiber.
In a more recent work [23], the motion of a test mass was
monitored in GEO600, where the fused silica suspension
fibers were used. The motion near the violin-mode fre-
quency was entirely consistent with that of the thermally
excited violin mode. Therefore, currently there is no ex-
perimental evidence that the creep excess noise in the*yuri.levin@monash.edu.au
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future advanced gravitational-wave interferometers will
pose a serious problem. However, there are at least two
reasons to keep investigating the creep noise: (1) the mea-
surements in Refs. [19,22,23] have all been performed at
frequencies from several hundreds to thousands of hertz,
where the noise of ground-based interferometers is strongly
dominated by the quantum shot noise, while the danger from
creep noise exists at much lower frequencies, in the same
region of tens of hertz where the shot noise is unimportant;
and (2) the main source of creep noise may well not be
inside the fused silica suspension fibers, but inside other
carrying parts of the system like the bond between the test
masses and the ‘‘ears’’ that are supporting them [24,25]. It is
thus important to understand how a creep event inside the
suspension couples to the horizontal motion of the test-
mass, as well as the frequency dependence of the noise
generated by a multitude of the creep events. This paper
lays a theoretical foundation for addressing these issues.

The plan of the paper is as follows. In Sec. II, I present a
convenient reciprocity relationship for linear elastody-
namic systems. In Sec. III, I use this relationship to derive
the interferometer’s response to a creep event, as a function
of the location of the stress release in the fiber. In Sec. IV,
I derive the functional form of the creep noise spectral
density, in the limit where the creep noise can be treated as
a stationary Gaussian random process. A brief discussion
of the future work is presented in Sec. V.

II. ELASTODYNAMICS AND
RECIPROCITY THEOREM

During the creep event, the stress changes suddenly in
some small volume of the fiber. But how does this affect
the motion of the test mass? At first glance, this seems
like a formidable problem in elastodynamics. However, it
turns out that solving the reciprocal problem is sufficient.
Namely, one should in a mental experiment apply a sudden
force to the test mass and compute the motion of the fiber at
the location where the creep event originated. The solution
of the reciprocal problem leads directly to the solution of
the original problem. Reciprocity relations have been thor-
oughly studied in elastodynamics; see e.g., Ref. [26] for a
comprehensive review. Here I will use the following for-
mulation of the reciprocity theorem.

Consider an elastodynamic system initially at rest, that is
being driven by a distributed force, with the force per
volume given by

~Fð~r; tÞ ¼ ~fð~rÞ�ðtÞ; (1)

where �ðtÞ is some function that is nonzero only for t > 0.
Consider also a readout variable

XðtÞ ¼
Z

d3r ~gð~rÞ � ~�ð~r; tÞ; (2)

where ~�ð~r; tÞ is the displacement from rest at location ~r and
time t. Both the applied forces and displacement are

assumed to be small, so that a linear approximation of
elastodynamics holds. The reciprocity theorem states that

if in the pair of Eqs. (1) and (2) the form factors ~fð~rÞ and
~gð ~rÞ are interchanged then the readout variable XðtÞ
remains the same. In other words, the input-output dynami-

cal system is invariant with respect to ~f and ~g interchange,
with �ðtÞ being the input and XðtÞ being the output.

The proof of the theorem is as follows. Let ~�nð ~rÞ be the
normal modes of the system, with proper angular frequen-

cies !n. A displacement field ~� can then be decomposed
into a series

~�ð ~r; tÞ ¼ �nanðtÞ ~�nð ~rÞ: (3)

The mode amplitudes anðtÞ are the new dynamical coor-
dinates. The Lagrangian of the unforced system is given by

L0 ¼ 1

2
�nmn½ _a2n �!2

na
2
n�; (4)

where mn is the effective mass of the nth mode. External
forcing of Eq. (1) is introduced via an additional interac-
tion Langangian term

Lint ¼
Z

d3r ~Fð ~r; tÞ � ~�ð ~r; tÞ; (5)

which, in terms of the coordinates an, can be rewritten as

Lint ¼ �nanfn�ðtÞ: (6)

Here fn are constants given by

fn ¼
Z

d3r ~�nð~rÞ � ~fð ~rÞ: (7)

The full Langrangian allows us to immediately obtain the
equations of motion:

d2an
dt2

þ!2
nan ¼ �ðtÞ fn

mn

: (8)

Therefore,

anðtÞ ¼ fn
mn

�nðtÞ; (9)

where �nðtÞ is the solution to the forced harmonic oscil-
lator problem

d2�n

dt2
þ!2

n�n ¼ �ðtÞ (10)

with the initial condition �nð0Þ ¼ _�nð0Þ ¼ 0. The readout
variable in Eq. (2) can then be written as

XðtÞ ¼ �n

gnfn
mn

�nðtÞ; (11)

where gn is defined similarly to fn:

gn ¼
Z

d3r ~�nð~rÞ � ~gð ~rÞ: (12)

YURI LEVIN PHYSICAL REVIEW D 86, 122004 (2012)

122004-2



The readout variable XðtÞ is invariant with respect to the

interchange of ~f and ~g, Q.E.D.

III. TEST-MASS RESPONSE TO
A SINGLE CREEP EVENT

A. General considerations

A creep event happens when a minute section of the
suspension fiber refuses to support its full share of the
tension stress. What exactly happens microscopically is
poorly known, but a simple model will suffice for modeling
the elastodynamical behavior. Let us assume that a small
fiber element of volume V suddenly does not support any
elastic stress Tij. I now consider a slightly reduced elastic

system, namely the original one with the small volume
element V taken out. This slightly reduced system experi-
ences a sudden force applied to the boundary of the volume

element V, so that the boundary surface element ~dS,
assumed to be directed outside of the volume, experiences
the force

~dF ¼ �Tijð ~dS � ~ejÞ ~ei; (13)

where ~ei are the unit vectors along the coordinate axes, and
the summation over the dummy indices is assumed.

I would like to evaluate the test-mass displacement XðtÞ
under the action of the force in Eq. (13) that is switched on
at t ¼ 0 (this situation is somewhat similar physically to
the excitation of magnetar motion as a result of sudden
reconfiguration of the magnetosphere during a giant mag-
netar flare; see Ref. [27]). By the reciprocity theorem from
the previous section, this is equivalent to acting with the
suddenly switched-on force on the test mass, directed
along the laser beam:

FtestmassðtÞ ¼ �ðtÞ; (14)

where�ðtÞ is the Heavyside function [28]. One then has to
find the response of the slightly reduced elastic subsystem
to this force, and in particular that of the reciprocal readout
variable XreadoutðtÞ that is dictated by the functional form of
the force in Eq. (13)

XreadoutðtÞ ¼ �
Z

Tij�i
~dS � ~ej; (15)

where the integration domain is the boundary of the vol-
ume V. It is obvious that for sufficiently small [29] volume
V the response of the slightly reduced system is the same as
that of the full system, and from here on I shall make no
distinction between the two.

By Gauss’s theorem, for small V the above equation can
be written as

XreadoutðtÞ ¼ �VTij

@�i

@xj
; (16)

where the strain @�i=@xj is evaluated at the location of the

creep event. To sum up, by finding the response of Xreadout

from Eq. (16) to the force Ftestmass ¼ �ðtÞ applied at the
test mass along the direction of the laser beam, one finds
the test-mass displacement in response to the creep event.
It is convenient and instructive to work in the Fourier

domain

FtestmassðtÞ ¼
Z 1

�1
d!Ftestmassð!Þei!t: (17)

For the force given by Eq. (14), the force Fourier compo-
nent is given by

Ftestmassð!Þ ¼ lim
�!0þ

�
1

2i�ð!� i�Þ
�
; (18)

where positive � serves to avoid the singularity in Eq. (17);
the limit � ! 0- would give FtestmassðtÞ ¼ �ð�tÞ.
The test-mass horizontal displacement Xtestmass under the

action of the applied force is given by

Xtestmassð!Þ ¼ Ftestmassð!Þ
M

Z½ð!� i�ð!Þ�; (19)

where the mechanical impedance Zð!Þ, as derived in the
Appendix, is given by [30]

Z½!� ¼ 1

� !
!s

cot½� !
!s
�!2

p �!2
: (20)

Here, M is the mass of the test mass; !p ¼ ffiffiffiffiffiffiffi
g=l

p
is the

pendulum angular frequency of the test mass; !s ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=ðNmÞp

!p is the fundamental violin-mode angular

frequency measured when the test mass is fixed in space;
and l,m, and N are the length, the mass, and the number of
the strings on which the test mass is suspended, respec-
tively. The small positive �ð!Þ � ! inserted into Eq. (19)
represent damping. Mathematically, this displaces the
poles of Zð!Þ into the upper half of the complex ! plane
[31]. These poles represent the frequencies of normal
modes of the suspension; their imaginary parts equal the
rate of exponential decay of their amplitudes. The actual
values of �ð!Þ are only important near the normal-mode
frequencies and can be measured experimentally.
If no damping is present, the poles of Z½!�, i.e., the

normal-mode frequencies, are given approximately by

!0 ’ �!p ¼ �
ffiffiffiffiffiffiffi
g=l

q
(21)

for the pendulum mode, and

!vj ’ �
�
j!s þ ð�1Þj !

2
p

j!s

�
(22)

for the j ¼ 1; 2; . . . violin modes. Let us introduce nonzero
�p and �vj which are the damping rates of the pendulum

and violin modes, respectively. The impedance can be
expanded as follows:
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Zð!� i�Þ ’ 1

!2
p � ð!� i�pÞ2

þ �1
j¼1

2!2
p

!2
vj

1

!2
vj � ð!� i�vjÞ2

: (23)

Substituting Eqs. (20) and (18) into Eq. (19), and evaluat-
ing the inverse Fourier transform, I get

XtestmassðtÞ ¼ 1

M!2
p

½1� cosð!ptÞe��pt�

þ�1
j¼1

2!2
p

M!4
vj

½1� cosð!vjtÞe��vjt�: (24)

As expected, the system’s response to a sudden force is a
constant displacement added to damped oscillations due to
excited pendulum and violin modes.

Let us take stock, and sum up what has been done so far.
In a reciprocal problem, one has to find out the induced
shear at the location of the creep-event source when a
sudden force FðtÞ ¼ �ðtÞ is applied to the test mass. In
this subsection I have done part of the problem, i.e., I found
the test-mass displacement under the action of the said
force. To make further progress, I need to choose a par-
ticular model for the suspension fiber itself. In the next
subsection I consider one of the particular cases that can
be dealt with analytically. The treatment of complicated
geometries is left for future work.

B. Example: Creep event in a cylindrical fiber
with a constant cross section

Let us consider in detail the case where the creep events
occur inside a cylindrical fiber of constant cross section
that is rigidly attached at the top to a suspension isolation
plate and at the bottom to the test mass. It is assumed here
that the allowed test-mass motion is a parallel translation
but not rotation, as is the case when four suspension fibers
are used. The dominant part of the stress in the fiber is

Tzz ¼ � Mg

N�r2
; (25)

where N is the number of suspension fibers and r is the
radius of the fibers’ horizontal cross section. The readout
variable in Eq. (16) is given by

Xreadout ¼ MgV

N�r2
@�z

@z
; (26)

where z is the vertical coordinate along the fiber. I choose
z ¼ 0 at the fiber’s top and z ¼ l at the fiber’s bottom.

Let xc, yc, z be the spatial coordinates of the source of a
creep event, where xc, yc ¼ 0 corresponds to the location
of fiber’s axis at z, and xc is measured along the laser beam
direction. The vertical strain induced by the fiber’s motion
is given by (see, e.g., Chapter 11 of Ref. [32])

@�z

@z
¼ �xc

@2�

@z2
; (27)

where �ðzÞ is the horizontal displacement of the fiber.
Therefore, the readout variable is

Xreadout ¼ �MgVxc
N�r2

@2�

@z2
: (28)

Let us now find the fiber motion �ðz; tÞ. Its dynamical
equation of motion is given by (see, e.g., Chapter 12 of
Ref. [32] or Ref. [33])

@2�

@t2
¼ c2s

�
@2�

@z2
� �2 @

4�

@z4

�
: (29)

Here cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mgl=ðNmÞp

is the velocity of the tension
wave in a fiber, and � is the characteristic bending length
given by

� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
�EN

Mg

s
r2 ¼ 1

2
ð�0z;zÞ�1=2r: (30)

Here r is the radius of the fiber, E is the Young modulus,
and �0z;z is the initial stretch factor of the fiber under the

loading forceMg=N of the test mass. Advanced LIGO will
use the fused silica fibers with the following parameters:
r ¼ 2� 10�4m,M ¼ 40 kg, E ¼ 72 GPa, l ¼ 0:6 m, and
N ¼ 4 fibers per test mass. These parameters produce the
bending length � ’ 0:001 m � l.
The periodic solutions of the homogeneous Eq. (29) can

be written as

�ðz; tÞ / ei!tepz; (31)

where

p2 ¼
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð!�

cs
Þ2

q
2�2

: (32)

For frequencies of interest, !�=cs � 1, and thus
the solutions feature two physically distinct branches,
p ¼ �1=� and p ¼ �i!=cs. The former branch repre-
sents evanescent quasistatic bending perturbations that will
be large near the fiber’s attachment points, while the latter
represents tension waves in a fiber. The boundary condi-
tions �ð0Þ ¼ �0ð0Þ ¼ �0ðlÞ and �ðlÞ ¼ Xtestmass, together
with � � l, determine the full solution for the fiber:

�ðz; tÞ ¼ Bei!t½�bendðzÞ þ �waveðzÞ�; (33)

where

�bendðzÞ ¼ k�fe�z
� � ½cosðklÞ þ k� sinðklÞ�ez�l

� g; (34)

and

�waveðzÞ ¼ sinðkzÞ � k� cosðkzÞ: (35)

Here k ¼ !=cs, and the amplitude B is given by
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B ’ Xtestmassð!Þ=sinðklÞ
¼ Xtestmassð!Þ=sinð�!=!sÞ: (36)

Therefore, in the Fourier domain the readout variable is
given by

Xreadoutð!Þ ¼ � lim
�!0þ

1

2�ið!� i�Þ
gVxc
N�r2

� 1

� !
!s

cos½� !
!s
�!2

p �!2 sin½� !
!s
�

� ½��2�bendðz; !Þ � k2�waveðz; !Þ�; (37)

where �bendðz;!Þ and �waveðz;!Þ are given by Eqs. (34)
and (35), respectively. In the time domain, putting in all the
damping terms, I get

XreadoutðtÞ ¼ Cpðxc; zÞ½1� cosð!ptÞe��pt�
þ �1

j¼1Cvjðxc; zÞ½1� cosð!vjtÞe��vjt�; (38)

where

Cpðxc; zÞ ¼ � gVxc
N�r2!2

p

�
e�z

� � e
z�l
�

�l
�!2

p

!2
s

�2

l2
z

l

�
; (39)

and

Cvjðxc; zÞ ¼ 2gVxcð�1Þjþ1

N�r2!2
vj

�
�
�j

�l
½e�z

l � ð�1Þjez�l
� �

�
�
�j

l

�
2
sinð�jz=lÞ

�
: (40)

In the expressions above I used � � l and !p � !s.

I remind the reader that xc, z are the coordinates of
the location of the creep event with the effective volume
V, and that Eq. (38) gives the test-mass response to such an
event. The geometric nature of the prefactors in Eqs. (39)
and (40) is apparent once one recalls g=!2

p ’ l, and

g=!2
vj ’ ½Nm=M�ð�jÞ�2l.

It is instructive to compute a numerical example. In the
expression (38) above, consider values xc ¼ r, V ¼ nm3,
and z ¼ 0 (i.e., a formation of a nanometer-size hole at the
top edge of the fiber). The displacement that one then gets
at a pendulum frequency is of order 10�21 m.

It is worthwhile to have another look at the right-
hand side of Eq. (37). The part of the equation in square
brackets,

Cðz;!Þ ¼ ��2�bendðz; !Þ � k2�waveðz; !Þ (41)

determines the z dependence of the coupling of the creep
event to the horizontal motion of the test mass. The function
CðzÞ is plotted in Fig. 1, for ! ¼ !s (i.e., the fundamental
violin mode). Fiducial parameters that were used in making
the plot are specified in the figure’s header. The function
peaks very strongly within � from the attachment ends
of the fiber; there CðzÞ � k=� is dominated by the �bend.

Away from the attachment points, the coupling is domi-
nated by the �wave part of the solution and CðzÞ � k2.
In this subsection’s model the creep events are assumed

to be triggered homogeneously in the suspension fibers
[34]. Thus the creep events have only ��=l chance to be
triggered within � from the attachment points. However,
they have individually a much larger impact [by a factor of
1=ðk�Þ] on the test-mass motion then those originating
away from the attachments. It follows that the creep events
originating within the bending regions near attachment
points contribute most of the creep noise; their contribution
is greater by a factor of �k�2l�1��1 ¼ ðl=�2�Þð!s=!Þ
than that of the creep events away from the attachment
points. This is studied in Sec. IV.

C. The case of a nonorthogonal laser beam
and suspension fiber

Let us now consider the case where a laser beam is
inclined by a small angle � with respect to the horizontal
direction. This is an inevitable effect because of the spheri-
cal shape of the equipotential surface on which the test
masses in the same arm are located; for a 4 km arm � ’
3� 10�4 radians. It is this misalignment that was previ-
ously thought to be the major source of the creep noise
[16]; we treat this mechanism within the formalism devel-
oped in the previous section. The reciprocal force applied
at the test mass now has a vertical component

FIG. 1 (color online). The quantity Cðz;!Þ, which character-
izes the coupling strength of the creep event to the test-mass
horizontal displacement, is plotted as a function of the creep
event’s distance from the top of the fiber, at a frequency of the
fundamental violin mode. The coupling is strongly peaked
within the bending length � from the top. A similar ‘‘bending’’
peak occurs at the bottom of the suspension fiber (not shown).
The parameters for the plot are those for advanced LIGO
suspension fused silica fibers: E ¼ 72 GPa, r ¼ 2� 10�4 m,
l ¼ 0:6 m, M ¼ 40 kg, N ¼ 4.
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FvertðtÞ ¼ ���ðtÞ (42)

that causes the vertical test-mass motion

Xvert ¼ � �l�ðtÞ
N�Er2

½1� cosð!verttÞe��vertt�; (43)

where the negative sign corresponds to the upward motion.
Here we take into account only one vertical suspension
mode with the angular frequency

!vert ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NE�r2

Ml

s
(44)

and the damping rate �vert; the higher-order vertical modes
are at a much higher frequency and have a much weaker
coupling to the sudden force. The readout variable from
Eq. (26) is given by

XvertreadoutðtÞ ¼ MgV��ðtÞ
EðN�r2Þ2 ½cosð!verttÞe��vertt � 1�: (45)

In the Fourier domain,

Xvertreadoutð!Þ ¼ �gV

N�r2l

1

2�i!½!2
vert � ð!� i�vertÞ2�

:

(46)

It is instructive to compare the amplitude of the vertical
mode to the amplitude of the pendulum mode excited by
the creep even near the attachment point, as inferred from
Eq. (38). Their ratio is approximately given by

vertical

pendulum
’ �r2

xc�
� few� 10�5: (47)

It is the smallness of this ratio that makes the contribution
to the creep noise from the creep-induced fiber lengthening
subdominant relative to the direct horizontal coupling, in
most of the LIGO band.

IV. CREEP NOISE IN THE STATIONARY LIMIT

Consider now a situation where multiple creep events
are triggered in sequence. According to the central limit
theorem, if the events occur sufficiently frequently, their
superposition produces a random Gaussian noise in the
test-mass motion. The response of the test mass to a single
creep event can be written as Xð ~	; t� t0Þ where t0 is the
time when the creep event is triggered, and ~	 is the set of
parameters characterizing the event (location in the fiber,
effective volume, etc.). In what follows we assume that the
creep events are statistically independent from one another
and that the creep-event parameters sample some well-
defined probability distribution function. This assumption
is known not to hold in some systems that exhibit so-called
‘‘crackle noise’’ [35], and will be relaxed in future work. If
the probability density distribution Pð ~	Þ is time invariant,
then the creep noise is stationary and has a spectral density
given by

SXðfÞ ¼ 8�2R
Z

d ~	jXð ~	;!Þj2Pð ~	Þ; (48)

where R is the rate of the creep events. The d ~	 implies a
multidimensional integral over the parameter space of ~	.
Evaluating this expression for the model of the cylindrical
fiber, we get

SxðfÞ ¼ 2RhV2i
c2s

�
g

2�Nr

�
2 �Qð!� i�ÞGðkÞ; (49)

where

Qð!Þ ¼
���������

!

!s

cos

�
�

!

!s

�
!2

p �!2 sin

�
�

!

!s

����������2

(50)

and

GðkÞ ¼ 1

�l
f½1þ cos2ðklÞ� þ k�½2 sinð2klÞ þ kl�g: (51)

Here hV2i is the ensemble average of the ðvolumeÞ2 of the
creep events in the system. Naturally, this quantity is
meaningful only in our simple model for the creep events;
however, a term like this, representing the mean of the
squared intensity of the creep events, is expected in any
generic model for the localized creep events. The first term
in square brackets on the right-hand side of the above
equations is due to creep events generated near the attach-
ment points, while the second term is due to creep events
generated in the fiber’s bulk; in both of these the terms of
order k� have been neglected. It is clear that the noise
is strongly dominated by the creep events near the attach-
ment point.
The spectral density of noise due to the vertical length-

ening of the fibers is given by

SxvertðfÞ ¼ 2RhV2i�2

!2

�
g

N�r2l

�
2
Qvertð!� i�Þ; (52)

where

Qvertð!Þ ¼ j!2
vert �!2j�2: (53)

The plots for
ffiffiffiffiffiffiffiffiffiffiffi
SxðfÞ

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SxvertðfÞ

p
are shown in Fig. 2.

While the scale on the vertical axis of these plots is arbitrary,
since RhV2i is unknown, the spectral density shape and the
relative contribution of the two noises are fixed. We observe
that the direct horizontal coupling induces greater creep
noise than the vertical motion, at all frequencies except at
a narrow band around f ¼ !vert=ð2�Þ.

V. DISCUSSION

In this paper I have provided an elastodynamic calcu-
lation of the interferometer’s response to a creep event, and
found the functional form of the creep noise in the sta-
tionary limit. A simple model where the fiber was modeled
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as a cylinder of constant radius was considered in detail,
since this allowed me to obtain analytical expressions for
the test-mass response. Two interrelated qualitative fea-
tures of this model are worth noting: (1) Creep events near
the fiber’s ends receive a much stronger test-mass response
in the LIGO band than those at the center of the fiber, and
contribute the majority of the creep noise; and (2) the
dominant coupling to the interferometer’s readout is via
excitation of the violin and pendulum modes of the
suspension, and not via the lengthening of the fiber. I
should caution though that these conclusions may not
hold in a fiber with a more complex dependence of the
cross-sectional radius r on the height z. In particular, the
fibers in advanced LIGO suspensions are made signifi-
cantly thicker near the end points, in order to minimize
the suspension’s thermal noise. This thickening will reduce
the local tension stress, thus reducing both the coupling of
a creep event to the test-mass motion and the likelihood of
a creep event.

In a simple model for the creep noise, I have assumed
that the creep events are triggered homogeneously in the
suspension fiber. This may not be the case. The creep
events may be triggered preferentially (1) at the locations

where the fiber is welded to the test mass or the upper
suspension plate, although this is not very likely since
at the weld the fiber is much thicker than at its center
(r ¼ 1:5� 10�3 m), so the tension is small [25]; or
(2) near the locations where the ears that support the test
mass are bonded to it. The bonding material is nonmetallic
and nonglassy and is a potential source of problems [24]. In
future work I plan to explore the spatial distribution of the
expected creep events, as well as relax the assumption of
their statistical independence. I plan to also deal with the
issues of non-Gaussianity of the creep-event triggers; it can
presumably be mitigated by considering the output of
several independent interferometers.
Some comfort for the advanced interferometers can be

derived from the fact that experiments [19,22,23] have not
observed any influence of the creep noise on the violin-
mode motion. We note, however, that all of the measure-
ments in question have searched for the creep noise at high
frequencies corresponding to the resonant frequencies of
violin modes, from several hundred to several thousand
hertz. If the creep events are statistically independent
from each other, then the expected creep noise is red,

with
ffiffiffiffiffiffiffiffiffiffiffiffi
SXðfÞ

p / f�3 except near resonances; see Eqs. (49)
and (50). This is the same scaling as that for the suspension
thermal noise in the case where damping of the fiber’s
motion is structural (see, e.g., Ref. [36]). Therefore, one
may argue that since no creep noise that exceeds the
suspension thermal noise is observed at high frequencies,
none is expected to exceed the suspension thermal noise at
low frequencies as well. This argument, however, relies on
a very simple model for the creep noise that was developed
in Sec. IV, and in particular it relies on the creep events
being statistically independent. This assumption does not
hold in many systems that release their free energy via
spontaneous acoustic emission events (known as the
crackle noise); see Ref. [35] and references therein. Thus
further experimental and theoretical work is warranted for
the low-frequency domain.
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FIG. 2 (color online). Two amplitudes of the creep noise are
plotted: that due to the direct horizontal coupling (continuous),
and that due to the vertical lengthening of the suspension fibers
(dashed). While the units on the y axis are arbitrary, the ratio of
the two contributions depends on the elastodynamics only and is
robust. One can see that the horizontal coupling makes a domi-
nant contribution everywhere except in a narrow band near the
vertical resonance of the last stage of the suspension. The
parameters for the plot are those for advanced LIGO suspension
fused silica fibers: E ¼ 72 GPa, r ¼ 2� 10�4 m, l ¼ 0:6 m,
M ¼ 40 kg, N ¼ 4. For this plot, the Q factor of all the modes
is taken to be 103; this choice affects the height of the sharp
peaks in the figure. Realistic Q values will be several orders of
magnitude higher.
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APPENDIX: RESPONSE OF THE SUSPENSION
TO A PERIODIC FORCE APPLIED AT

THE TEST MASS

Here we provide a quick derivation; similar derivations
for more complicated situations when the test-mass tilt is
allowed are given in e.g., Appendix A of Ref. [37].
Suppose a periodic force

F ¼ F0e
i!t (A1)

is acting on the test mass and induces its periodic motion

Xtestmass ¼ X0e
i!t: (A2)

The fiber’s motion is given by

�ðz; tÞ ¼ sinðkzÞ
sinðklÞ X0e

i!t: (A3)

Here k ¼ !=cs ¼ ð�=lÞ!=!s is the tension-wave vector.
The horizontal component of the backreaction tension
force acting on the test mass is

Ffiber ¼ Ff0e
i!t ¼ �Mgk cotðklÞX0e

i!t: (A4)

The second Newton’s law gives

F0 þ Ff0 ¼ �M!2X0: (A5)

Substituting Eq. (A4) above we get

X0 ¼ F0

M

1

gk cotðklÞ �!2
; (A6)

which is equivalent to Eq. (20) in the text.
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