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The Einstein Telescope (ET) is conceived to be a third generation gravitational-wave (GW) observatory.

Its amplitude sensitivity would be a factor 10 better than advanced LIGO and Virgo and it could also extend

the low-frequency sensitivity down to 1–3 Hz, compared to the 10–20 Hz of advanced detectors. Such an

observatory will have the potential to observe a variety of different GW sources, including compact binary

systems at cosmological distances. ET’s expected reach for binary neutron star (BNS) coalescences is out

to redshift z ’ 2 and the rate of detectable BNS coalescences could be as high as one every few tens or

hundreds of seconds, each lasting up to several days. With such a signal-rich environment, a key question in

data analysis is whether overlapping signals can be discriminated. In this paper we simulate the GW signals

from a cosmological population of BNS and ask the following questions: Does this population create a

confusion background that limits ET’s ability to detect foreground sources? How efficient are current

algorithms in discriminating overlapping BNS signals? Is it possible to discern the presence of a population

of signals in the data by cross correlating data from different detectors in the ET observatory? We find that

algorithms currently used to analyze LIGO and Virgo data are already powerful enough to detect the

sources expected in ET, but new algorithms are required to fully exploit ET data.
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I. INTRODUCTION

After a decade of detector installation and commission-
ing, ground-based detectors looking for gravitational
waves (GWs) have reached or surpassed their design sen-
sitivities and are poised to open up a new window onto
the Universe, as well as allow coincident searches with
electromagnetic or neutrino detectors. The first generation
of interferometric observatories (GEO [1], LIGO [2] and
Virgo [3]) have already put interesting constraints, for
example, on the ellipticity of the Crab pulsar [4] and on
the cosmological stochastic background [5]. With the
second generation starting in a few years, one expects to
detect compact binary coalescences in the local Universe
[6], while third generation detectors, such as the Einstein
Telescope [7], should take GW astronomy to a new level,
due to the large numbers of high SNRs of detectable
sources, making it possible to address a range of problems
on a wide variety of astrophysical sources but also in
fundamental physics and cosmology.

The coalescence of binary neutron stars (BNS), binary
black holes (BBH) or a neutron star and a black hole
(NS-BH) are the most promising sources for terrestrial

detectors, due to the huge amount of energy emitted in

the last phase of their inspiral trajectory, merger, and ring-

down. The maximum distance probed with current detec-

tors is about 30Mpc [8] for BNS, but the next generation of

detectors should be taking data with a sensitivity approxi-

mately 10 times greater, pushing the horizon up to about

450 Mpc [6]. With the third generation Einstein Telescope,

the sensitivity will be increased by another order of mag-

nitude and the horizon of compact binaries is expected to

reach cosmological distances [9]. Among other things, this

will allow for a detailed study of the evolution of binary

coalescences over redshift [10], measurement of the mass

function of neutron stars and black holes and of the neutron

star equation of state [11,12], and the use of binary neutron

stars and neutron star-black hole binaries as standard sirens

to constrain dark energy and its time evolution [13–15]

(for a summary of ET science objectives see Ref. [9]). In

such a large volume, however, the number of sources can

be as large as a million and the waveforms may overlap to

create a confusion foreground, especially at low frequen-

cies where the signal can last for several days [16]. This

could affect our ability to make individual detections and

perform parameter estimation, and the issue deserves thor-

ough study.
With this in mind, we have simulated Einstein Telescope

detector noise and added signals from a population of
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compact binaries, with a view to issuing a mock data
challenge (MDC) to the gravitational-wave community.
This could be used to develop advanced data analysis
methods in order to separate the sources and measure the
properties of both individual sources and of the catalog
as a whole. Initially we used a simple BNS inspiral signal
model, but work is in progress to include other types
of sources and more sophisticated scenarios. In the
longer term we envisage issuing ET science challenges to
encompass not only detection of signals and parameter
estimation, but also the application of such results to out-
standing problems in fundamental physics, astrophysics
and cosmology.

In Sec. II, we present the Einstein Telescope; in Sec. III
we describe our procedure to simulate the mock data; in
Sec. IV we present the results of the search for both
individual sources and the integrated signal; in Sec. V
we discuss future developments for the mock data and
in the search methods; finally in Sec. VI we draw our
conclusions.

II. EINSTEIN TELESCOPE

A conceptual design study was recently concluded for the
proposed European project, the Einstein Gravitational-Wave
Telescope [for short, Einstein Telescope (ET)] [17]. The
goal of the study was to explore the technological challenges
and the scientific benefits of building a third generation
gravitational-wave detector that is a factor 10 better than
advanced detectors but also capable of observing at frequen-
cies down to 1–3 Hz [7]. In this section we will discuss the
optical configuration of ET, different design choices for its
sensitivity and ET’s response to gravitational waves and its
distance reach to compact binary coalescences.

A. Optical topology and sensitivity

Consideration of many factors including continuous ob-
servation (duty cycle), ability to resolve the two polar-
izations of GW, and capacity to support new designs over
many decades, led to the conclusion that the infrastructures
housing the current detectors will be inadequate to meet
the design goals of ET. The Einstein Telescope is envi-
sioned to consist of three V-shapedMichelson interferome-
ters with 60-degree opening angles, arranged in a triangle
configuration (see Fig. 1, left panel). These are to be placed
underground to reduce the influence of seismic noise.
The design goal to push the sensitivity floor at low

frequency down to 1–3 Hz comes from the requirement
that ET be sensitive to more massive coalescing binaries
than advanced detectors, i.e., intermediate mass BBH of
masses in the range 102–104M� [18–21], but also be
able to observe stellar mass binaries for far longer periods
before they merge. With better low-frequency sensitivity,
the subtle secular general-relativistic effects that occur
in strong gravitational fields will accumulate over
longer periods, as shown in Eq. (36), facilitating a deeper
understanding of GW sources. Additionally, in the case of
binaries where one or both components is a neutron star, the
improved low-frequency sensitivity will allow the source’s
redshift to be measured [15], by breaking the degeneracy
between the redshifted mass measured from the post-
Newtonian (PN) phase and the rest-frame mass measured
from the NS tidal deformation phase. In Ref. [15] a lower-
frequency cutoff of 10 Hz was used; if this cutoff is reduced
to 3 Hz, improving the accuracy of parameter estimation,
the errors on recovered redshift are reduced by tens of
percent, up to nearly a factor 2 improvement for sources
at redshift 4 [22].

FIG. 1 (color online). Left: Schematic configuration of the planned GW detector Einstein Telescope. Right: Sensitivity for the initial
configuration, ET-B, considered in the design study [17], and the most evolved configuration ET-D, compared to the sensitivity of first
generation detectors LIGO and Virgo and the projected sensitivity of second generation (advanced) detectors, here the aLIGO high-
power zero detuning sensitivity [27] and aVirgo [28].
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As the understanding of the achievable sensitivity for the
Einstein Telescope evolved during the design study, differ-
ent sensitivity curves were considered. Early in the study
the possibility was envisaged of pushing the low frequency
limit down to 1–3 Hz in a single interferometer, while still
achieving a broadband improvement of an order of magni-
tude in sensitivity over advanced detectors [23]. However,
this is highly challenging, and perhaps technically unfea-
sible, since the technology that achieves better high fre-
quency (* 100 Hz) sensitivity, i.e., higher laser power to
bring down the photon shot noise, is in direct conflict with
that required to improve low frequency (& 100 Hz) sensi-
tivity, i.e., lower thermal noise and radiation pressure
noise, since these are both worsened by higher laser power.

Another design subsequently considered is the so-called
xylophone configuration [24]. The idea is to install two
interferometers in each Vof the triangle, one that has good
high-frequency sensitivity and the other with good low-
frequency sensitivity [24,25]. Several other new technolo-
gies, for instance frequency-dependent squeezing of light,
have been studied in detail for the ET design [17] and must
be combined to achieve the sensitivity goals of third gen-
eration detectors [26].

The main design parameters for ET to achieve a factor 10
improved sensitivity over advanced detectors, while also
achieving good sensitivity in the 3–10 Hz region, are as
follows: 10-km arm lengths, 500Wof input laser and 3MW
of arm cavity power for the high frequency interferometer;
and 3 W of input laser and 18 kW of arm cavity power and
the use of cryogenic technology (mirrors cooled to 10 K),
for the low frequency interferometer [17,25]. Figure 1,
right panel, compares the sensitivity of the initial single-
interferometer configuration (ET-B) [23] with the xylo-
phone configuration (ET-D) [25] which was the latest and
most evolved design.1 Also plotted for comparison are
the design sensitivity curves of advanced LIGO (high
power, zero detuning: ‘‘aLIGO’’) [27] and advanced Virgo
(‘‘aVirgo’’) [28], and initial LIGO [29] and Virgo [30].

B. Response function and antenna pattern

Let us begin by looking at ET’s response to GW signals.
Far away from a source, gravitational waves emitted by a
system can be expressed in a suitable coordinate system as
a transverse and symmetric trace-free (STF) tensor hij (all
temporal components of the metric perturbation vanish)
whose only nonzero spatial components are

h11 ¼ �h22 ¼ hþ; h12 ¼ h21 ¼ h�: (1)

Let ðex; ey; ezÞ be an orthonormal triad in which the metric

perturbation takes the transverse-traceless form. Then, us-
ing basis polarization tensors defined as

eþ � ex � ex � ey � ey; e� � ex � ey þ ey � ex;

(2)

the metric perturbation can be written as

h ¼ hþeþ þ h�e�: (3)

ET’s interferometers can also be represented as STF
tensors:

d1 ¼ 1

2
ðe1 � e1 � e2 � e2Þ;

d2 ¼ 1

2
ðe2 � e2 � e3 � e3Þ;

d3 ¼ 1

2
ðe3 � e3 � e1 � e1Þ;

(4)

where e1, e2, and e3 are unit vectors along the three arms of
ET. The response hAðtÞ, A ¼ 1, 2, 3, of the interferometers
to an incident gravitational wave is just the inner product of
the detector tensor dA with the wave tensor h:

hAðtÞ ¼ dAijh
ij ¼ dAije

ij
þhþ þ dAije

ij
�h�; (5)

which motivates definition of the antenna pattern functions
FAþ and FA�:

FAþ � dAije
ij
þ; FA� � dAije

ij
�; (6)

in terms of which the response can be written as

hAðtÞ ¼ dAijh
ij ¼ FAþhþ þ FA�h�: (7)

Let us now choose a coordinate system fixed to ET such
that the three arms of ET’s triangle are in the xy plane and
the unit vectors along the arms are

e 1 ¼ 1

2
ð ffiffiffi

3
p

;�1;0Þ; e2 ¼ 1

2
ð ffiffiffi

3
p

;1;0Þ; e3 ¼ ð0;1;0Þ:
(8)

Let ð�;’Þ be the direction to the source in this coordinate
system with ðe�; e�Þ denoting directions of increasing �
and ’, respectively.
The unit vectors ex, ey and ez defining the radiation

frame can be obtained by successive counterclockwise
rotations about the z axis by an angle ’, about the new y
axis by an angle � and the final z axis by an angle c :

ex ¼ ð� sin’ sinc þ cos� cos’ cosc ; cos’ sinc

þ cos� sin’ cosc ;� sin� cosc Þ;
ey ¼ ð� sin’ cosc � cos� cos’ sinc ; cos’ cosc

� cos� sin’ sinc ;� sin� sinc Þ;
ez ¼ ðsin� cos’; sin� sin’; cos�Þ;

1Note that the low-frequency sensitivity floor of ET-D, com-
pared to ET-B, is determined by a more detailed and realistic
modeling of the suspension [25].

MOCK DATA CHALLENGE FOR THE EINSTEIN . . . PHYSICAL REVIEW D 86, 122001 (2012)

122001-3



where c is the polarization angle defined by
cosc ¼ e� � ex. The antenna pattern functions of the
interferometer whose arms are ðe1; e2Þ is

F1þ ¼ �
ffiffiffi
3

p
4

½ð1þ cos2�Þ sin2’ cos2c

þ 2 cos� cos2’ sin2c �; (9)

F1� ¼ þ
ffiffiffi
3

p
4

½ð1þ cos2�Þ sin2’ sin2c

� 2 cos� cos2’ cos2c �: (10)

The antenna pattern functions are a factor sin� ¼ ffiffiffi
3

p
=2

smaller than that of an L-shaped detector of the same
length, where � ¼ �=3 is the opening angle of ET’s inter-
ferometer arms.

The antenna pattern functions of the other two detectors
in ET, with arms ðe2; e3Þ and ðe3; e1Þ, are obtained from F1þ
and F1� by the transformation ’ ! ’� 2�=3:

F2þ;�ð�;’; c Þ ¼ F1þ;�ð�;’þ 2�=3; c Þ; (11)

F3þ;�ð�;’; c Þ ¼ F1þ;�ð�;’� 2�=3; c Þ: (12)

FAþ and FA� are sometimes called antenna amplitude
pattern functions to distinguish them from their squares
ðFAþÞ2 and ðFA�Þ2, which are called antenna power pattern
functions [31]. The overall response of an interferometer to
an incident wave depends on the square root of the sum of
the antenna power pattern functions F2þ þ F2�. The joint
response of all three detectors in the ET network is

F2 ¼ X3
A¼1

ðFAþÞ2 þ ðFA�Þ2; (13)

which can be shown to be equal to

F2 ¼ 9

32
ð1þ 6cos2�þ cos4�Þ: (14)

Thus, the joint antenna power pattern depends only on the
colatitude � of the source. ET’s response is smaller com-

pared to an L-shaped interferometer by a factor
ffiffiffi
3

p
=2 due

to the 60	 opening angle, but its three detectors enhance its

response by
ffiffiffi
3

p
, leading to an overall factor of 3=2. This is

indeed what we find: Fð0Þ ¼ 3=2. The response averaged

over � is
ffiffiffiffiffiffiffiffiffihF2ip ¼ ffiffiffiffiffiffiffiffi

2=5
p

Fð0Þ ’ 0:63Fð0Þ and its minimum

value is Fð�=2Þ ¼ Fð0Þ= ffiffiffi
8

p ’ 0:35Fð0Þ. With an average
response 63% of its optimum and a worst response 35% of
its optimum, and with no null directions, ET has virtually
all-sky coverage.

C. Null stream

It follows immediately from Eqs. (4) and (5) that the
sum of the individual responses

P
Ah

A is identically equal

to zero. The sum of the responses of any set of Michelson
interferometers forming a closed path is zero and is called
the null stream. As we shall discuss later, such a null
stream is an invaluable tool in data analysis.
Two L-shaped detectors with arm lengths of 7.5 km (and

total length of 30 km), rotated relative to each other by an
angle �=4, are completely equivalent to ET in terms of
their response and resolvability of polarizations. However,
their response cannot be used to construct a null stream.

D. Distance reach to compact binaries

In 1986 Schutz showed [32] that inspiraling binary
systems are standard candles whose (luminosity) distance
can be measured from the observed gravitational-wave
signal, without the need to calibrate sources at different
distances. Our detectors are able to measure both the
apparent and absolute luminosity of the radiation, and
hence to extract the luminosity distance of such a source:
the magnitude of the gravitational-wave strain gives the
apparent luminosity but the rate at which the signal’s
frequency changes gives the absolute luminosity.
For simplicity we shall consider a binary that is located

at an optimal position on the sky (overhead with respect to
the plane of ET) and optimally oriented (i.e., its angular
momentum is along the line of sight). The discussion
below holds good even when these assumptions are
dropped, but the measurement of the various angular
parameters would be essential in order to disentangle the
distance. This would require a network of three or more
detectors with long baselines to triangulate the source’s
position on the sky. We will also only consider the GW
quadrupole amplitude in this discussion; higher-order cor-
rections to the amplitude do not affect our conclusions on
ET’s distance reach.
The magnitude of the strain measured by our detectors

when the signal frequency reaches the value f is

h ¼ 4�2=3ðGMÞ5=3
c4D

fðtÞ2=3 cos
�Z t

0
fðt0Þdt0

�
; (15)

where c is the speed of light, G the gravitational constant,
M is the chirp mass of the binary, related to its total mass
M ¼ m1 þm2 and symmetric mass ratio � ¼ m1m2=M

2

byM ¼ �3=5M, andD is the proper distance to the source.
Note that this expression is valid in the limit of asymptoti-
cally flat, static spacetime; we will soon discuss the effect
of cosmological expansion on the observed signal.
In addition to the signal’s strain we can also measure the

rate at which its frequency changes2 via

2In reality we don’t directly measure the evolution of the
frequency but use matched filtering to dig out the signal buried
in noisy data. The end result, however, is the same. In fact, post-
Newtonian approximation has allowed the computation of very
accurate signal models which allows us to infer not only the
chirp mass but also the mass ratio of the system.
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df

dt
¼ 96�8=3

5

�
GM
c3

�
5=3

f11=3; (16)

) M ¼ c3

G

�
5

96�8=3

df

dt

�
3=5

f�11=5: (17)

Thus, measurement of the signal strain and rate of change
of frequency can together determine the system’s chirp
mass and its distance from Earth.

For cosmological sources, however, the distance recov-
ered by this method is not the comoving distance to the
source � (equivalent to D for a spatially flat Friedmann-
Robertson-Walker universe), but rather its luminosity dis-
tance DL ¼ ð1þ zÞ�. This may be explained as follows:
due to time dilation, the chirp mass of the system inferred
from Eq. (17) will be ‘‘redshifted’’ by a factor (1þ z); thus
the signal will appear to have come from a source whose
chirp mass is ð1þ zÞM. Thus, if we reconstruct the masses
of the binary from the frequency evolution of the waveform,
we will obtain redshifted masses a factor (1þ z) larger than
the physical masses of the system at redshift z. Symbols
such as m, M, M will denote physical masses, whereas
when discussing redshifted observed mass parameters we
will use a superscript z, for instance mz

1 � ð1þ zÞm1.

This increase in apparent mass does not, however,
mean that we will observe a greater signal amplitude:
gravitational-wave amplitude, being dimensionless, cannot
change due to redshift. Given this, and noting that Mf is
invariant under the effect of redshift, we find that a source
with physical chirp mass M will appear to us to have a
chirp mass ð1þ zÞM, and its apparent distance will be the
luminosity distance DL ¼ ð1þ zÞ�, instead of the proper
or comoving distance.

Let us now consider the distance reach of ET to an
inspiral signal from a compact binary of component
masses m1 and m2, at a luminosity distance DL and whose
orbit (assumed here to be quasi-circular) makes an angle �
with the line of sight. There exist different measures of the
distance reach of a detector: the horizon distance is com-
monly used in data analysis (see, for instance, Ref. [33]),
while detector range and range functions were defined by
Finn and Chernoff [34] and are routinely used as a measure
of detector performance. Our measures of distance reach
are inspired by all of these concepts.

The signal-to-noise ratio (SNR) �A for a given signal
(such as from an inspiraling binary), detected by
matched filtering with an optimum filter, in a detector
labeled A, is

�2
A ¼ 4

Z 1

0

jHAðfÞj2
SnðfÞ df; (18)

where HAðfÞ is the Fourier transform of the response of
detector A and SnðfÞ is the one-sided noise power spectral
density (PSD) of the detector, which we assume to be
the same for all three detectors in the ET array. A good

analytical fit [35] to the ET-B noise PSD is given by
SnðfÞ ¼ 10�50hnðfÞ2 Hz�1, where

hnðfÞ ¼ 2:39� 10�27x�15:64 þ 0:349x�2:145

þ 1:76x�0:12 þ 0:409x1:10; (19)

and where x ¼ f=100 Hz: We may write the detector
response in terms of two GW polarizations via HAðfÞ ¼
FAþHþ þ FA�H�, where

HþðfÞ ¼
ffiffiffiffiffiffi
5

24

s
ðGMzÞ5=6
�2=3c3=2DL

ð1þ cos2�Þ
2

f�7=6; (20)

H�ðfÞ ¼
ffiffiffiffiffiffi
5

24

s
ðGMzÞ5=6
�2=3c3=2DL

cos�f�7=6: (21)

The coherent SNR � for the ET network, for uncorrelated
noises in the three detectors, is simply the quadrature sum
of the individual SNRs: �2 ¼ P

�2
A. We discuss possible

correlated noise in Sec. III B, for the Gaussian noise
budget, and Sec. VA, concerning possible correlated noise
transients. For the present idealized sensitive range calcu-
lation we consider uncorrelated noises.
For low-mass systems such as BNS, the SNR is domi-

nated by the inspiral part of the signal; the coherent SNR
can then be shown to reduce to

�2 ¼ 5

6

ðGMzÞ5=3F 2

c3�4=3D2
L

Z f2

f1

f�7=3

SnðfÞ df; (22)

where f1 and f2 are lower and upper frequency cutoffs
chosen so that the integral has negligible (say, <1%)
contribution outside this range and F is a function of all
the angles given by

F 2 � X
A

�
1

4
ð1þ cos2�Þ2ðFAþÞ2 þ cos2�ðFA�Þ2

�
: (23)

Here FAþ�, A ¼ 1, 2, 3, are the antenna pattern functions of
the detector given by Eqs. (9)–(12). Substituting for the
antenna pattern functions and summing over the three
detectors gives

F 2ð�; ’; c ; �Þ ¼ 9

128
ð1þ cos2�Þ2ð1þ cos2�Þ2cos22c

þ 9

32
ð1þ cos2�Þ2cos2�sin22c

þ 9

32
cos2�ð1þ cos2�Þ2sin22c

þ 9

8
cos2�cos2�cos22c : (24)

The quantity F determines the SNR of a source of a
given (observed) chirp mass at any given distance.
Although the antenna power pattern F2 is independent
of ð’; c Þ, the quantity F is only independent of ’. For
certain source locations and orientations, the response is
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still independent of the polarization angle. For instance,
either when the source is ‘‘overhead’’ with respect to ET’s
plane (i.e., � ¼ 0, �) or face-on (i.e., � ¼ 0, �), F is
independent of c . It depends weakly on c for values of
� and � significantly different from these extreme values.
The maximum value F max ¼ 3=2 is obtained when
� ¼ � ¼ 0, while the value ofF 2 averaged over ð�; c ; �Þ is

�F 2 ¼ 1

8�

Z �

0

Z �

0

Z 2�

0
F 2 sin� sin� d� d� dc ¼ 9

25
:

So the root-mean-square value of F is F rms �
ffiffiffiffiffiffiffi
�F 2

p
¼

3=5. The horizon distance D̂L of a detector is defined as the
maximal distance at which an optimally oriented, overhead
binary (i.e., � ¼ � ¼ 0) can be detected above a threshold
SNR of � ¼ �T , chosen large enough to keep the false
alarm rate acceptably low; �T ¼ 8 is considered reason-
able for current detectors. Noting that F ¼ 3=2 when
� ¼ � ¼ 0, for ET the horizon is given by

D̂ L �
ffiffiffiffiffiffi
15

8

s
ðGMzÞ5=6
�2=3c3=2�T

�Z f2

f1

f�7=3

ShðfÞ df
�
1=2

: (25)

The horizon distance is not a very useful measure since
essentially no signals can be detected beyond this distance
with a SNR larger than �T . A more meaningful measure of
the reach is the distance �DL at which an ‘‘average’’ source,
meaning one for which F ¼ F rms ¼ 3=5, produces an
SNR of �T . For such a source we obtain

�D L ¼ 3

5
D̂L: (26)

For a binary consisting of two components of (physical)
mass 1:4M� and for a threshold �T ¼ 8, we find �DL ’
13 Gpc or z ¼ 1:8, and D̂L ’ 37 Gpc or z ¼ 4; these
distances can be larger for more massive binaries, and
our simulated binary component masses extend up to
3M�. In our simulations, we inject signals of different
orientations and polarization angles distributed uniformly
over comoving volume up to a redshift of z ¼ 6.

E. Efficiency vs distance

The efficiency of a detector at a given distance, and for
binary sources with given physical component masses, is
the fraction of such sources for which ET achieves an
expected SNR � 
 �T . ET will not be sensitive to every
BNS merger at any given distance, but only to those that
are preferentially located in certain sky directions and are
suitably oriented [34]. The fraction �ðDLÞ of sources de-
tected by ET at a given luminosity distance is given by

�ðDLÞ ¼ 1

8�

Z �

0

Z �

0

Z 2�

0
�ð�=�T � 1Þ

� sin� sin� d� d� dc ; (27)

where � is the unit step function �ðxÞ ¼ 0 if x < 0 and
�ðxÞ ¼ 1 if x > 0. Note that � is a function of all angles,

luminosity distance, redshift, etc. In Fig. 7, top right, we
plot ET’s efficiency as a function of redshift for binary
neutron stars: the blue solid curve shows the efficiency for
physical masses m1 ¼ m2 ¼ 1:4M�, choosing a SNR
threshold �T ¼ 8 and a lower frequency cutoff f1 ¼
1 Hz. As shown in this figure, ET should have 50%
efficiency at a redshift of z� 1:3, while its efficiency
at z ¼ 1:8 (distance at which the angle-averaged SNR
is 8) is 30%.

III. SIMULATION OF ET MOCK DATA

In this section we will discuss how ET mock data was
generated. We will describe the cosmological model used
and the rate of coalescence of binary neutron stars as a
function of redshift. We will also discuss how the back-
ground noise was generated and the waveform model used
in the simulation.

A. Simulation of the GW signal

We use Monte Carlo techniques to generate simulated
extragalactic populations of binary neutron stars and pro-
duce time series of the gravitational-wave signal in the
frequency band of ET. We first describe how the distribu-
tion of injected BNS sources over redshift and mass was
obtained, and then explain the simulation pipeline summa-
rized in Fig. 2.
We first consider the rate of BNS coalescences in the

Universe. We neglect the possible production of compact
binaries through interactions in dense star systems, and we
assume that the final merger of a compact binary occurs
after two massive stars in a binary system have collapsed
to form neutron stars and have inspiraled through the
emission of gravitational waves. The merger rate tracks

FIG. 2 (color online). Flow diagram of the Monte Carlo simu-
lation code.
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the star formation rate (SFR), albeit with some delay td
from formation of the binary to final merger. We use
the SFR of Ref. [36], which is derived from new measure-
ments of the galaxy luminosity function in the UV (SDSS,
GALEX, COMBO17) and far infrared wavelengths
(Spitzer Space Telescope), and is normalized by the
SuperKamiokande limit on the electron-antineutrino flux
from past core-collapse supernovas. This model is ex-
pected to be quite accurate up to z� 2, with very tight
constraints at redshifts z < 1 (to within 30–50%).

Following Ref. [16], we write the coalescence rate den-
sity _�cðzÞ (in Mpc�3 yr�1) as

_� cðzÞ /
Z 1

tmin
d

_��ðzfðz; tdÞÞ
1þ zfðz; tdÞPðtdÞdtd with _�cð0Þ ¼ _�0;

(28)

where _�� is the SFR of Ref. [36] (inM�Mpc�3 yr�1), z the
redshift when the binary system merges, zf the redshift

when the binary system is formed, PðtdÞ the probability
distribution of the delay connecting z and zf, and _�0 the

rate density in our local Universe. The normalization
condition reproduces the local rate density for z ¼ 0 and
the factor ð1þ zfÞ�1 converts the rate density in the source

frame into a rate density in the observer frame.
The redshifts zf and z are related by the delay time td

which is the sum of the time from the initial binary for-
mation to its evolution into a compact binary, plus the
merging time 	m after which emission of gravitational
waves occurs. The delay is also the difference in lookback
times between zf and z:

td ¼ 1

H0

Z zf

z

dz0

ð1þ z0ÞEð�; z0Þ ; (29)

where

Eð�; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� þ�mð1þ zÞ3

q
: (30)

In these simulations, we have assumed a flat Universe
with �m ¼ 0:3 and �� ¼ 0:7 and Hubble parameter
H0 ¼ 70 km s�1 Mpc�1.

We assume a distribution of the form PðtdÞ / 1=td, as
suggested by population synthesis [37], with a minimal
delay tmin

d ¼ 20 Myr, corresponding roughly to the time it

takes for massive binaries to evolve into two neutron stars
[38]. This broad model accounts for the wide range of
merger times observed in binary pulsars; it is also consis-
tent with short gamma ray burst observations in both late
and early type galaxies [39].

The coalescence rate per redshift bin is then given by

dR

dz
ðzÞ ¼ _�cðzÞdVdz ; (31)

where dV=dz is the comoving volume element:

dV

dz
ðzÞ ¼ 4�

c

H0

rðzÞ2
Eð�; zÞ ; (32)

where

rðzÞ ¼ c

H0

Z z

0

dz0

Eð�; z0Þ ; (33)

is the proper distance.

The average waiting time �t between signals is calcu-
lated by taking the inverse of the coalescence rate, Eq. (31),
integrated over all redshifts:


 ¼
�Z zmax

0

dR

dz
ðzÞdz

��1
: (34)

Figure 3, left panel, shows �t as a function of the redshift
out to which events are generated, given a local coales-
cence rate of _�0 ¼ 1 Myr�1 Mpc�3 corresponding to the
galactic rate estimated in Ref. [40], and which we adopt
here. In these simulations, we take an upper bound of z ¼ 6
and obtain �tj � 13:7 s.

We assume that signals arrive at the detector as a
Poisson process and draw the time intervals �t ¼
tjþ1
c � tjc between successive coalescences at times

tjþ1
c and tjc, from an exponential distribution Pð�tÞ ¼
expð��t=
Þ. Coalescence times tkc are generated between
the start time of the observation ti and the end time tf, to

which we add the maximal duration 	max that a source
can have in our frequency range (a 1:2þ 1:2M� system
at z ¼ 0).
Then, we proceed as follows for each source:
(1) The physical masses of the two neutron stars are

drawn from a Gaussian distribution with mean
1:4M� and variance 0:5M�, and are restricted to
the interval ½1:2; 3�M�.

(2) The redshift is drawn from a probability distribution
pðzÞ obtained by normalizing the coalescence rate
dR=dz in the interval0� zmax (see Fig. 3, right panel):

pzðzÞ ¼ 

dR

dz
ðzÞ: (35)

Next we calculate the duration of the waveform in our
frequency range:

	� 5:4 day

�
Mz

1:22M�

��5=3
�

f1
1 Hz

��8=3
; (36)

where f1 is the low-frequency cutoff of the detector;
due to computational limitations in this initial studywe
take f1 ¼ 10 Hz for the simulated signals.

(3) For each source visible in our observation time
window ½ti; tf�, the source’s location in the sky,

its orientation, the polarization angle and the
phase at the coalescence are drawn from uniform
distributions.

(4) The gravitational-wave signal hðtÞ ¼ FþðtÞhþðtÞ þ
F�h�ðtÞ of the source is calculated for each detector
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E1, E2 and E3 and for each observation time tko until
the frequency reaches f1, and is added to the time
series. In these simulations, we have used so-called
TaylorT4 waveforms [41], up to 3.5 post-Newtonian
order in phase �ðtÞ and only the most dominant
lowest post-Newtonian order term in amplitude:

hþðtÞ ¼ AðtÞð1þ cos2�Þ cos½�ðtÞ�; (37)

h�ðtÞ ¼ 2AðtÞ cos� cos½�ðtÞ�; (38)

where �, as before, is the inclination angle of the
binary with respect to the line of sight. The signal
amplitude is then

AðtÞ� 2� 10�21

�
1 Mpc

DL

��
Mz

1:2M�

�
5=3

�
fðtÞ

100 Hz

�
2=3

;

where the luminosity distance DL is in Mpc, Mz in
M�, and where fðtÞ in Hz is the instantaneous
gravitational-wave frequency (twice the binary’s
orbital frequency) which increases monotonically
as the system shrinks and gets closer to merger.
For a description of the TaylorT4 approximant and
how it relates to other waveform approximants, see
Ref. [42] and references therein.

Theoretically, neutron stars could have maximum di-
mensionless spins � ¼ cJ=ðGM2Þ, where J is the star’s
angular momentum and M its mass, as large as 0.5 to 0.7,
depending on the equation of state [43]. These are moder-
ately large spins and including spin effects in our wave-
form model would be essential for unbiased and accurate
parameter estimation in real searches. However, in this
exploratory work we neglect spins, as our main aim is to
investigate the difficulty of discriminating overlapping
signals. From an astrophysical point of view, neutron stars
in coalescing binaries, such as the Hulse-Taylor binary,
have rather small spins of �6� 10�3, which will not
significantly affect the phase evolution of the signal.

An example time series of the gravitational-wave signal
including sources up to a redshift z� 6 (before adding
simulated detector noise) is shown in the top plot of
Fig. 4, left panel. Although the sources overlap strongly
in time, they are well separated in frequency, or become so
when close to coalescence: an exception could be if two
BNS signals with similar redshifted chirp masses were
approaching coalescence within <1 s of each other. Due
to the form of the detector PSD, the main contribution to
the matched filter power of any binary coalescence signal
occurs when the chirping frequency is close to 100 Hz; the
‘‘chirp’’ is sufficiently rapid at (and after) this point
that different sources can be clearly resolved. This is
illustrated by the bottom plot of Fig. 4, left panel, showing
the optimal time domain filter, i.e., the inverse Fourier
transform of the frequency-domain signal weighted by
the noise power spectral density. The detector PSD acts
like a bandpass filter, weighting down the lower frequen-
cies where the signal spends most of its time. The effective
lengths of signals, as ‘‘seen’’ by ET, are, therefore, a lot
shorter than they actually are. Consequently, overlapping
signals seen in the upper panel do not lead to a loss in
detection efficiency as we shall show in Sec. IVB.

B. Simulation of the noise

In order to produce the data set, it is necessary to
use a model of the expected noise for the ET detectors.
To this end, we assume that the noise will be stationary
and Gaussian. Moreover, for the time being, we assume
that the noise realizations in the different detectors are
uncorrelated.
In reality the noise in collocated detectors will, most

likely, have some correlated components, as has been seen
in the two LIGO Hanford detectors. Different ET interfer-
ometers will be separately isolated in vacuum systems;
thus we do not expect correlations of thermal or quantum
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FIG. 3 (color online). Left: Average waiting time as a function of maximal redshift. Right: Probability distribution of the redshift,
assuming the star formation rate of Ref. [36], a distribution of the delay of the form PðtdÞ / 1=td with minimal delay of 20 Myr and a
local coalescence rate density of 1 Mpc�3 Myr�1.
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noises, which form the main contribution above about
10 Hz. Common noise arises most significantly as a result
of having end stations with similar physical environments
for two detectors: in particular, concerning ET’s low-
frequency sensitivity, seismic and Newtonian noise dis-
placements. For ET, however, it is envisaged to stagger
the end stations of the three interferometers by 1 km.
Whether this will reduce the common displacement noises
to the extent that the detectors can be considered indepen-
dent is a question under current investigation.

The noise for each detector was generated using the
following procedure: First, we generate a Gaussian time
series with a mean of zero, and unit variance. These time
series are Fourier transformed and colored by the relevant
ET sensitivity curve in the frequency domain. To get the
final time-domain representation of the noise, we apply an
inverse Fourier transform.

The noise curve used is based on the analytic fit
of Eq. (19) to the ET-B PSD discussed in Sec. II. To
alleviate the effects of possible discontinuities across
frame files, the PSD is gradually tapered to zero below
the low frequency limit fl ¼ 10 Hz, and above a frequency
of f2 � fNyquist=2. Figure 4, right panel, shows the noise

curve used to color the data, with the tapering applied, for a
sample rate of 8192 Hz. The taper essentially acts like a
bandpass filter and removes power outside the band
of interest. The absence of very high and very low fre-
quencies essentially assures continuity across the data
segments [44].

IV. FIRST ANALYSIS

A. Null stream

A null stream is a combination of the detector
output streams such that the gravitational-wave signal is

identically zero and only noise remains. The existence of
an ET null stream was noted already in Ref. [45] and is a
major motivation for the triangular triple Michelson topol-
ogy. Given an incident GW tensor hij, the three interfer-

ometer responses were derived in Eq. (5), from which, as
already remarked in Sec. II C, we find that the sum of the
three detector responses to any GW signal vanishes iden-
tically. We may define the null stream as the sum of the
strain time series xðtÞ for the three ET detectors. For each
single detector A we have

xAðtÞ � nAðtÞ þ dAijh
ijðtÞ; (39)

where nAðtÞ is the noise realization; thus

xnullðtÞ �
X3
A¼1

xAðtÞ

¼ X3
A¼1

nAðtÞ þ X3
I¼1

dAijh
ijðtÞ

¼ X3
A¼1

nAðtÞ; (40)

is free of GW signals, and will also not contain any
common (correlated) noise for which the sum over the
three detectors happens to vanish.
If the noise properties are homogeneous among the

detectors,

S1nðfÞ ’ S2nðfÞ ’ S3nðfÞ; (41)

and if correlations between detectors can be neglected, we
can use the null stream to estimate the average PSD in each
of the three detectors. In this case,
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FIG. 4 (color online). Left: Simulated time series of the gravitational strain at detector E1, for zmax ¼ 6 and f1 ¼ 10 Hz (top) and
the same time series after the Fourier transform has been divided by the noise power spectral density of ET. Right: The tapered
projected ET noise spectrum used to color the noise. Example audio files of the simulated GW signal alone or in the presence of noise
can be found at the ET MDC website: http://www.oca.eu/regimbau/ET-MDC_web/ET-MDC.html.
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hXnullðfÞX�
nullðf0Þi ¼

�X
A;B

NANB�
�

’
�X

A

NANA�
�

’ 3
1

2
�ðf� f0ÞŜAn ðfÞ; (42)

where XnullðfÞ is the Fourier transform of xnullðtÞ and, in the
last line, ŜAn ðfÞ is the noise PSD in any of the three
interferometers in the absence of a GW signal. Defining

hXnullðfÞX�
nullðf0Þi ¼

1

2
�ðf� f0ÞSn;nullðfÞ; (43)

we find

Ŝ A
n ðfÞ ’ 1

3
Sn;nullðfÞ; (44)

as an estimate for the individual single-interferometer
PSDs with the signals removed.

The null stream PSD, which we plot on the left panel of
Fig. 5, then has the advantage of giving a better represen-
tation of the noise content of the three detectors. The
typical sensitivity improvement is nonetheless fairly small,
about 1% in the 10–100 Hz band. As a proof of principle of
the effectiveness of the use of null stream PSD instead of
the single detector one, we computed the median over the
whole data set of the difference between (one third of) the
null stream PSD and the individual detector PSDs SAn ðfÞ.
These residuals should be consistent with the median PSD
of the injected signals in each detector:

SAn ðfÞ � 1

3
Sn;null ’ ĤðfÞ; (45)

where ĤðfÞ is the power spectral density of GW signals.
The result of this operation is shown in Fig. 5, right panel.

The residual spectrum between 10 and 400 Hz in each
detector is consistent with the theoretical expectation

ShðfÞ � f�7=3.

B. Compact binary coalescence analysis

We analyzed the triple coincident simulated data using
a modified version of the LIGO-Virgo ihope pipeline
[8,33,46,47] which is used to search for signals from
compact binary coalescences (CBC). This pipeline is a
‘‘coincident’’ analysis: data streams from different detec-
tors are separately filtered against template waveforms and
the resulting maxima of SNR are checked for consistency
between detectors. The main motivation of this procedure
is to reduce computational cost when analyzing data
from spatially separated detectors with a priori unknown
duty cycles.
Coherent analysis, where data streams are combined

before finding maxima of SNR, should in principle be
more sensitive at fixed false alarm rate if many detectors
are involved [48–52]. For ET, the detector outputs could be
combined into a null stream and synthetic þ and � de-
tectors, and for the two non-null streams, the coherent
detection statistic is then identical to the coincident one
[51]. Hence unless other sites contribute there is no gain
expected specifically from using a coherent analysis. In our
case we might expect a small gain in sensitivity by using
synthetic þ and � data, since it eliminates a fraction
of the noise from each detector (the contribution to the
null stream) while keeping all the signal power.3 However
to establish an initial benchmark we have kept the existing

FIG. 5 (color online). Left: Sample PSD calculated from the null stream, compared to the theoretical ETB fit (19). The null PSD is
estimated within data segments of length 2048 s by averaging nonoverlapping samples each of 1 s length, and is then averaged over all

segments of 2048 s in the data set. The figure shows
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn;nullðfÞ=3

q
. Right: Difference between (one third of) the null streamPSD and theEj

PSDs obtained by averaging over thewhole data set, as defined in Eq. (45). The residuals are consistent with the f�7=3 spectrum expected
from binary inspiral signals. To aid visibility, the quantities plotted have been scaled by 1049 and the constant 0.01 has been added.

3Alternatively, one can view this recombination as creating
two synthetic detectors with 90	 opening angles and slightly
better sensitivities than each of the original three detectors.
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framework where each physical detector is filtered
separately.

The stages of the coincident pipeline are as follows:
(i) Estimation of the PSD by median over several over-

lapping time chunks within a 2048-s segment. We

use the single-detector outputs rather than the null

stream to estimate the noise: in principle loud signals

could bias this estimation—however, as shown in

Fig. 5 any such bias is on average extremely small;

we also compared the estimated sensitivity over

different segments of single-detector data and found

negligibly small differences.
(ii) Generation of a template bank covering the chosen

parameter space of binary masses
(iii) Matched filtering of each template against the data

stream of each detector to generate an SNR time
series �ðtÞ

(iv) Trigger generation: for each template, maxima of
SNR over a sliding timewindow of length 15 s were
found, and a ‘‘trigger’’ was generated if any such
maxima exceeded an SNR of 5.5

(v) Clustering to reduce trigger numbers: if there are
multiple triggers within a small region of parameter
space (binary masses plus time [53]) the trigger with
largest SNR is selected and others in the region are
discarded

(vi) Coincidence between detectors: only pairs or triples
of triggers with consistent coalescence times and
masses [54] survive and are designated as events

(vii) Ranking of events by combined SNR2, �2
C (sum of

�2 over coincident triggers)

There are several differences compared to standard LIGO-

Virgo searches. The main ones concern the frequency

range of data searched, the parameter space of the search

and the method for determining the significance of candi-

date events.
The length of an inspiral template increases rapidly with

the lowest frequency that is matched filtered in the analysis

[Eq. (36)]. For technical reasons related to memory load

and PSD estimation, the standard matched filter code used

for LSC-Virgo analyses [46] cannot filter templates longer

than a few minutes: hence we chose to impose a lower

frequency cutoff of 25 Hz. This limitation should be ad-

dressed in future analyses, and may be relevant to analysis

of Advanced LIGO/Virgo data.
The template bank was chosen to cover the possible

range of redshifted (i.e., observed) mass pairs correspond-
ing to the BNS injections up to redshift 4. The minimum
component mass was taken as 1:2M�; with a maximum
injected component mass of 3M�, the observed total
mass at z ¼ 4 is then 15M�, which we took as our
maximum component mass, with a maximum total
mass of 30M�. The maximum injected mass ratio is
3=1:2 ¼ 2:5 corresponding to a ‘‘symmetric mass ratio’’

 ¼ m1m2=ðm1 þm2Þ2 ’ 0:204; thus templates with
< 0:2 were removed, considerably reducing the size of
the bank.
Since the simulated noise was Gaussian, signal-based

vetoes and data quality vetoes were not necessary to sup-
press detector artifacts, and events were ranked simply by
the quadrature sum of SNR over coincident triggers. The
noise background in our mock data is expected to be a
function of combined SNR alone; thus we set a threshold in
the value of �C above which we consider an event likely to
be a true GW signal.
Note that the time shift method used to estimate back-

ground event rates in LIGO-Virgo searches fails here. In
order for such methods to be valid, the number of detect-
able GW events over the search time should be small
(of order 1): otherwise, loud triggers due to true GW
signals may significantly distort the background distribu-
tion, by forming random time-shifted coincidences with
noise triggers. In the present case we see tens of thousands
of detectable signals; thus the distribution of loud time-
shifted coincidences is totally dominated by such ‘‘signal-
plus-noise’’ events.

1. Events found by CBC analysis

The CBC analysis outputs a list of loudest events
with the coalescence time, combined SNR, and the com-
ponent masses of the best-fitting template for each event.
The distribution over �C is plotted in Fig. 6 for both
double-and triple-coincident events. Given the single-
detector SNR threshold �t ¼ 5:5, the quietest possible

double coincidence has �C ¼ ffiffiffi
2

p
�t ’ 7:78 and the quietest

triple has �C ¼ ffiffiffi
3

p
�t ’ 9:53. The expected cumulative

distribution of events from an astrophysical population is
approximately proportional to the inverse cube of com-
bined SNR (thus to the cube of the luminosity distance, or
to the volume of space seen by the search). Deviations from

FIG. 6 (color online). Cumulative histogram of CBC events as
a function of combined SNR �C, divided into double (two-
detector) and triple (three-detector) coincidences.
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this inverse-cube behavior will arise for three reasons:
(i) due to evolution of the source population over redshift,
(ii) because the physical volume of space is no longer
exactly proportional to distance3 at large z, and (iii) since
the observed masses of a coalescing binary are larger than
the physical masses by a factor (1þ z), changing the
expected SNRs.

Over most of the range of �C the distribution of triple
coincidences is close to���3

C as expected; with decreasing

combined SNR values, an increasing fraction of signals are
seen as double coincidences. We see no significant back-
ground distribution of triples, which would be expected to
rise exponentially at small combined SNR. Thus in prin-
ciple the efficiency of the search could be improved by
lowering the SNR threshold.

The distribution of double coincidences shows two
components: an approximate power law at higher �C and
a more rapidly rising component below about �C ¼ 9. We
interpret these as a cosmological population of sources,
modulated by the variation in the proportion found as
doubles vs triples; and a Gaussian noise background, re-
spectively. Thus we expect that above a combined SNR
�C * 9 the great majority of events will be caused by
binary coalescence signals rather than random noise.

2. Efficiency and accuracy

We evaluate the search efficiency as a function of red-
shift by testing time coincidence between simulated signals
and found events (using a ‘‘coalescence time’’ at which the
chirping signal reaches a well-defined frequency) and
choose a time window of �30 ms. For a given event or
injection there are the following cases:

(i) False event: an event which does not fall within
30 ms of an injection

(ii) True event: an event falling within 30 ms of one or
more injections

(iii) Missed injection: a simulated signal which does not
fall within 30 ms of an event

(iv) Found injection: a simulated signal within 30 ms of
a found event

4However, if we have very frequent candidate events or
injections, we may encounter significant numbers of
wrongly found injections, meaning chance time coinci-
dences between injections and noise events where the
expected SNR of the injected signal is below the analysis
threshold. For these we do not expect the estimated mass
parameters and effective luminosity distance from the
analysis pipeline to correspond to those of the simulated
source; the fractional error in these parameters will be
order (1). Wrongly found injections would lead us to

overestimate the search efficiency and would degrade the
accuracy of recovered source parameters. To minimize
such effects whenever two or more simulated signals fall
within �30 ms of an event, we consider only the injection
with the lowest redshift to be found. In practice this ambi-
guity is found to affect only a small fraction (subpercent) of
signals. In order to minimize possible bias in assessing the
accuracy of recovered source parameters, we do not im-
pose any further requirement (for instance, on the chirp
mass) in order for an injection to be counted as found.
As mentioned above, we require a threshold on �C to

limit the number of false events caused by noise. Here we
choose to impose �C > 8:8, finding 36 774 events above
this threshold in the 2419 200 s of data analyzed. By
comparing these with the catalogue containing 177 350
simulated coalescence signals over the analysis time we
find 850 false events, giving a directly estimated false
alarm probability (FAP) of 2.3%. The efficiency of finding
injections as a function of redshift is summarized in Fig. 7,
top two panels.
In the top right plot we compare the efficiency of the

current analysis with the theoretical ideal efficiency de-
fined in Eq. (27), for two different values of the threshold
SNR �T and the low frequency cutoff f1. The ihope
analysis does somewhat worse than the corresponding
theoretical curve, which can in part be attributed to the
single-detector SNR threshold �t ¼ 5:5; the theoretical
calculation does not impose a lower limit on the amplitude
of signals in single detectors contributing coherently to the
significance of an event.
We evaluate the accuracy of the recovered (observed)

chirp mass Mz via the discrepancy ðMz
rec �Mz

injÞ=Mz
inj

plotted in Fig. 7, lower left plot.5 The vast majority of
events found have a well-recovered chirp mass with an
accuracy better than 0.5%, even for the small number of
sources recovered at redshift z > 4: the number of wrongly
found injections with violently inaccurateM is order (10).
The chirp mass is the chief parameter governing the fre-
quency evolution of a compact binary system due to its
emission of energy in GW; thus we can deduce the lumi-
nosity in GW of such systems with good accuracy out to
extremely large distances. But note again that we cannot
determine the system’s physical masses without an inde-
pendent determination of its redshift.
The distribution of errors in observed total mass Mz is

significantly broader: see Fig. 7, lower right plot, where
there is a slight overall bias towards overestimatingMz and
a small population of injections for which the total mass is
overestimated by 5–10%. We find that this population
consists of nearly equal-mass binaries which are found
with somewhat more asymmetrical templates. Since the

4Note that events are clustered over time windows of a few
seconds; thus more than one event cannot be found within a
30 ms window.

5The fractional error in observed chirp mass Mz is mathe-
matically identical to the fractional error in physical chirp
mass M.
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inspiral signal is significantly less sensitive to changes in
mass ratio or total mass keeping a fixedM than vice versa,
we expect a larger spread in recoveredM values than inM.
We might also expect a bias in the recovered mass parame-
ters due to taking the maximum SNR value over some
region of the template bank, since the density of templates
is greater at smaller M and at smaller . The recovered
mass ratio is also expected to be more sensitive to system-
atic differences in injected vs template waveforms.

C. Stochastic

The superposition of the GW signals from our popula-
tion of BNS creates a background which is expected to be
isotropic (the source position in the sky and polarization
were selected from a uniform distribution) and stationary
(the length of the data is much greater than the time
interval between successive events, and the duration of

the waveform). Its properties in the frequency domain
can be characterized by the dimensionless energy density
parameter [55]:

�gwðfÞ ¼ 1

�cr

d�gw

d lnf
; (46)

where �gw is the gravitational energy density and �cr ¼
3c2H2

0=ð8�GÞ the critical energy density needed to make

the Universe flat today.
This quantity is related to the one-sided (f > 0) power

spectral density in gravitational waves, at the detector
output (Sh):

�gwðfÞ ¼ 10�2

3sin2ð�ÞH2
0

f3ShðfÞ; (47)

where � is the opening angle of the interferometer arms.

FIG. 7 (color online). Top, left panel: Distributions of all BNS injections, and those found by the CBC pipeline, vs redshift. Here
events with �C > 8:8 were considered as candidate signals. Top, right panel: Efficiency of the CBC search vs redshift. We show the
theoretical (ideal) efficiency as defined in Eq. (27) for a threshold SNR of �T ¼ 8 and a low frequency cutoff f1 ¼ 1 Hz, and also for
�T ¼ 8:8, f1 ¼ 25 Hz for comparison with the signals found by the ihope pipeline. Bottom, left panel: Histogram of fractional errors
in chirp mass. Bottom, right panel: Histogram of fractional errors in total mass.
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Note that the background from BNS is not Gaussian at
frequencies >10 Hz, in the sense that the number of
sources overlapping at a given time is too small for the
central limit theorem to apply and for the distribution of the
sum of the amplitudes to have a Gaussian distribution.
Thus, knowledge of �gwðfÞ does not completely specify

the statistical properties of the background, as there may
be nonvanishing moments other than the variance. In par-
ticular, the amplitude distribution of the GW signal may
exhibit large tails compared to the Gaussian case.

For the population of neutron stars distributed according
to the probability distributions discussed in Sec. III A for
the mass, redshift, position in the sky, polarization and
inclination, the predicted �gw is shown in Fig. 8, right

panel, and can be derived from the expression [56–58]

�gwðfÞ ¼ 1

�crc
fFðfÞ; (48)

where the integrated flux at the observed frequency f is
given by the sum of all the individual contributions at all
redshifts:

FðfÞ¼
Z zmax

0

dz

4�D2
LðzÞ

dEgw

df
ðf; �Mð1þzÞÞdR

dz
ðzÞ; (49)

where DL is the luminosity distance,
dEgw

df the spectral

energy density averaged over orientation and �M is the
average physical chirp mass of the population.

In the quadrupolar approximation, and assuming a
circular orbit,

dEgw

df
ðf;MzÞ ¼ ðG�Þ2=3ðMzÞ5=3

3
f�1=3; for f < fzlso;

(50)

where fzlso ¼ ð1þ zÞ�1flso is the observed (redshifted)

frequency at the last stable orbit. The predicted energy

density parameter increases as f2=3 before it reaches a
maximum of �gw � 4� 10�9 at around 600 Hz, with a

reference value at 100 Hz of �ref ¼ 1:9� 10�9.
The strategy to search for a Gaussian (or continuous)

background, which could be confused with the intrinsic
noise of a single interferometer, is to cross correlate mea-
surements of multiple detectors. When the background is
assumed to be isotropic, unpolarized and stationary, the
cross correlation product is given by Ref. [55]

Y ¼
Z 1

0
~x�1ðfÞ ~QðfÞ~x2ðfÞdf; (51)

and the expected variance, which is dominated by the
noise, by

�2
Y ’

Z 1

0
S1nðfÞS2nðfÞj ~QðfÞj2df; (52)

where

~QðfÞ / �12ðfÞ�gwðfÞ
f3S1nðfÞS2nðfÞ

; (53)

is a filter that maximizes the signal-to-noise ratio (S=N). In
the above equation, S1n and S2n are the one-sided power
spectral noise densities of the two detectors and �12 is the
normalized overlap reduction function, characterizing the
loss of sensitivity due to the separation and the relative
orientation of the detectors: see Fig. 8, left panel. For
two V-shaped detectors (� ¼ �=3) separated by � ¼
2�=3 degrees, �12ð0Þ ¼ sin2ð�Þ cosð2�Þ ¼ �3=8. The
normalization ensures that �12 ¼ 1 for colocated and coal-
igned L-shaped detectors.
We analyzed the data with the cross correlation code

developed by the LIGO stochastic group. The data were
split into N ¼ 40320 segments of length Tseg ¼ 60 s, and

for each segment the cross correlation product and the

FIG. 8 (color online). Left: Overlap reduction function for two V-shaped ET detectors separated by 120 degrees. Right: Energy
density parameter of the background produced by the coalescence of binary neutron stars, as a function of observed frequency.

TANIA REGIMBAU et al. PHYSICAL REVIEW D 86, 122001 (2012)

122001-14



theoretical variance were calculated using a template

�� f2=3 in the range 10–500 Hz. The frequency resolu-
tion of our analysis was 0.25 Hz. The final point estimate
at 100 Hz is given by Refs. [59,60]

�̂ ¼ Yopt

Tseg

P
i
��2

Y;i

; (54)

where Yi and �2
Y;i are the cross correlations and variances

calculated for each segment via Eqs. (51) and (52), respec-
tively, and Yopt is the weighted sum

Yopt ¼
X
i

Yi�
�2
Y;i : (55)

The standard error on this estimate is given by

�� ¼
�X

i

��2
Y;i

��1=2
T�1
seg : (56)

We found a point estimate at 100 Hz of 2:00� 10�9 for
the pair E1-E2, 1:90� 10�9 for E2-E3 and 2:03� 10�9

for E2-E3 (an average of �1:97� 10�9), with error
�� ¼ 4:96� 10�12 for the three pairs, at 100 Hz, which
corresponds to the analytical expectation of �1:9� 10�9

with a precision better than 5%. Even if the background
from compact binaries is not a Gaussian continuous sto-
chastic background, but rather a popcornlike background
in the considered frequency range f > 10 Hz [16,58,61],
our analysis has shown that non-Gaussian regimes can still
be recovered by the standard cross correlation statistics,
confirming the results of Ref. [62].

V. FUTURE DEVELOPMENT

This first set of mock data included only a single type
of signal, although the BNS systems we simulated are
expected to be the most numerous and can thus yield
much interesting information for astrophysics and cosmol-
ogy. Moreover due to computational limitations we did not
extend the simulations below a frequency of 10 Hz, though
doing so might significantly improve the ability to extract
signal parameters. Future mock data sets should address
these and other points by

(1) Including more types of GW sources;
(2) Using more complete or realistic waveforms;
(3) Using a more sophisticated noise model.

Under the first heading, binary coalescence signals includ-
ing stellar mass or intermediate mass black holes (IMBH)
[18–21] are of particular interest. A small number of burst
sources such as Type II supernovae are expected in the ET
data set and numerical simulations (for instance Ref. [63])
could be used to produce injection waveforms. It is also
possible that primordial stochastic GW backgrounds exist
in the ET sensitive band [17]; detecting these and deter-
mining their parameters would be an interesting challenge
given the significant contribution of astrophysical sources.

For BNS coalescences, our injected waveforms could be
improved by extending the lower frequency cutoff, but also
by modeling the merger phase (which depends strongly on
the equation of state of NS matter, as well as the compo-
nent masses). We expect that significant science can be
extracted from BNS mergers, and from the tidal deforma-
tions occurring in the premerger phase, that are neglected
in the PN waveform model we currently use [11,12].
Finally, we can simulate more realistic noise by adding
occasional random glitches to the data, which may be
supposed to be of instrumental or environmental origin.
To create an interesting challenge, single-detector glitches
should be added with a higher rate than detectable signals.

A. Challenges for CBC analysis

The initial search for coalescing binaries presented
here, although moderately efficient below z ¼ 1, has
some significant drawbacks. Here we discuss how it could
be improved, and point to some current developments in
CBC data analysis.
In order to realize the full potential of ET’s low-

frequency sensitivity down to 10 Hz and below, waveforms
lasting on the order of an hour or more should be matched
filtered. For this a simple template bank as used in current
searches would be prohibitively computationally costly
[64,65] containing hundreds of thousands of templates or
more. Currently, multiband filter methods are being devel-
oped [66] which split up the waveform into time slices
with different frequency content: thus the earlier part of the
waveform can be downsampled, reducing computational
load. The resulting template banks for each time slice are
still large, and can be significantly reduced by singular
value decomposition [67,68] allowing a computationally
realistic search to be performed, while retaining the ability
to reconstruct the SNR for each of the original templates.
We saw that the sensitivity of the coincident analysis

was limited by the SNR threshold applied to single-
detector triggers. Due to this threshold, signals from distant
sources were often seen as double coincidences, which
compete with a much larger noise background rate than
triples. However, on lowering the threshold, the computa-
tional load would increase, as would the number of
background triple coincidences. As discussed earlier, re-
combining the three detector outputs into synthetic þ and
� data streams should improve the overall separation of
signal vs noise,
If detectors at other locations are operating at the same

time as ET, a coherent search should be performed to
maximize sensitivity; such searches are currently under
development, although facing an obstacle in their computa-
tional costs.
We did not implement the null stream estimate of

Eq. (44) for the single-detector PSD within the CBC
analysis. The difference with respect to the individual
detector PSDs, including the contribution of signals, was
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less than 1%, which we do not expect to cause a measur-
able change in efficiency; however, if the contributions of
GW signals were significantly higher, it might be benefi-
cial to use the null stream PSD for template placement and
matched filtering.

To obtain an unbiased estimate of the source parameters
for each signal, a Bayesian analysis of the strain data
should be performed [69–72]. The chief conceptual chal-
lenge is the likely presence of many signals within any
stretch of data longer than about a minute [16]. Naı̈vely, in
order to model them one would have to multiply the
dimensionality of the source parameter space by the num-
ber of signals; however more efficient methods should
exist. The problem is analogous to one faced in identifying
multiple galactic binary sources in mock LISA data:
[65,73] suggested that similar algorithms, for instance
Markov chain Monte Carlo based codes, could be used
for ET. There will also be computational challenges in
performing the analysis on hour-long stretches of data.

A conceptually difficult problem, not present in the
current set of ET mock data, is to identify signals among
an unmodeled background of non-Gaussian noise tran-
sients when the rates of signals and transients may both
be large. As seen in the initial CBC analysis, the method of
background estimation via time shifts between detectors is
invalid if signals are frequent. The broad sensitivity spec-
trum and increased length of binary coalescence signals
visible in ET gives us hope that signal-based vetoes based
on the distribution of matched filter power over frequency
[74] or over other parameters will be effective in separating
signals from noise transients. The null stream may also be
useful to identify times when non-Gaussian noise is likely
to produce loud false events, and to down-rank or veto
such events.

If there are common non-Gaussian noise transients in
more than one ET detector, which may be caused by
environmental disturbances, distinguishing these from
GW signals may be more difficult, though it is still
unlikely for such disturbances to cancel completely in the
null stream. In any case, the use of signal-basedvetoes should
greatly assist in mitigating the effect of common noise for
long-lived signals such as those from binary neutron stars.

Current methods for optimizing such vetoes involve
adding simulated signals to strain data which are assumed
not to contain real signals; these must be revisited for ET,
for example by using the null stream for simulations.
Single-detector triggers which fail a coincidence test could
also be used to train glitch rejection methods.

One way to interpret such methods is to define a detec-
tion statistic for candidate events, with larger values in-
dicating greater likelihood of signal vs noise—for instance
the ‘‘reweighted SNR’’ of Refs. [75,76]. Under the weak
assumption that some number of loud signals can be de-
tected with high confidence, we should see an astrophys-
ical event distribution over the statistic value of predictable

form, superimposed on a population of noise transients. If
the noise distribution is sufficiently different from that of
signals, ideally decreasing rapidly at high statistic values
[76], it may be possible to separate the two populations
simply by fitting the astrophysical component. However,
such a procedure would depend on the noise event popu-
lation being sufficiently well understood.

B. Challenges for stochastic background analysis

According to various cosmological scenarios, we are
bathed in a stochastic background of gravitational waves,
memory of the first instant of the Universe, up to the limits
of the Planck era and the big bang, and often seen as
the grail of GW astronomy. Proposed theoretical models
include the amplification of vacuum fluctuations during
inflation, pre-big-bang models, cosmic strings or phase
transitions (see Refs. [17,77]). In addition to the cosmo-
logical gravitational-wave background (CGB), an astro-
physical gravitational-wave background (AGB) may have
resulted from the superposition of a large number of un-
resolved sources since the beginning of stellar activity [56].
In the range of terrestrial detectors (up to f� 1 kHz) the
AGB is expected to be dominated by the cosmological
population of compact binaries, in particular BNS, and
could be a noise that would mask the background of
cosmological origin.
In this paper, we assume that the three ET detectors were

independent and thus had no common (correlated) noise.
A crucial prerequisite to searching ET data for stochastic
GW will be to identify and remove environmental noise
that can corrupt the result of cross correlation analysis with
colocated detectors. Relevant methods are under develop-
ment for the two coaligned and colocated LIGO Hanford
detectors [78].
One of the most important future tasks will be to subtract

the astrophysical contribution in order to allow detection of
the primordial background. This could be done either in the
frequency domain by modeling the power spectrum with
high accuracy from theoretical studies, characterizing its
shape using Bayesian analysis of the data [79], or in the
time domain by removing individual sources as previously
discussed.
The nature of the AGB may also differ from its cosmo-

logical counterpart, which is expected to be stationary,
unpolarized, Gaussian and isotropic, by analogy with the
cosmic microwave background. On the one hand, the
distribution of galaxies up to 100 Mpc is not isotropic
but strongly concentrated in the direction of the VIRGO
cluster and the Great Attractor, and on the other hand,
depending on whether the time interval between events is
short compared to the duration of a single event, the
integrated signal may result in a continuous, popcorn noise
or shot noise background [16].
In this paper we used the standard cross correlation

method for detection of stochastic GW background, but
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new techniques exist or are under development in
the LIGO/Virgo community to search for nonisotropic
[80,81] or non-Gaussian stochastic backgrounds [62,82],
and they will be tested in future challenges.

Finally, the astrophysical background is not only a noise
but it could carry crucial information about the star for-
mation history, the metallicity, the mass range of neutron
star and black hole progenitors, their physical properties,
and the rate of compact binary mergers: developing meth-
ods for parameter estimation will represent another impor-
tant task in future challenges.

VI. CONCLUSION

We have described the generation and first analyses
of a mock data set for the proposed Einstein Telescope
gravitational-wave observatory, containing a population of
binary neutron star (BNS) inspiral signals at cosmological
distances. Our motivation for this MDC is both for data
analysis, to consider the different challenges encountered
for data containing frequent and strong signals, and to
emphasize science challenges in relating the results of
data analysis to outstanding questions in fundamental
physics, astrophysics and cosmology [17].

The challenge carried out in this paper is, in many
ways, similar to the Mock LISA Data Challenge [79], but
there are some important technical differences. In the
case of LISA, the data analysis problem is not CPU or
memory intensive. Even year-long signals at a frequency of
10�3 Hz have only tens of thousands of samples. In the
case of ET, however, CPU and memory limit what prob-
lems current algorithms are able to address. With the
software and computer infrastructure that is presently
available, it is impossible to address the problem of ET
data analysis to the fullest extent. For example, a binary
neutron star starting at 1 Hz will last for about 5 days and
there is no way to filter such long signals with the matched
filtering algorithms accessible to us. It is necessary to
explore and develop new search algorithms which don’t
require the entire template to be available at once to carry
out a search. More importantly, future MDCs focus on the
challenge of extracting useful science from ET, not just
extraction of GW signals.

The design topology of the Einstein Telescope allows
the construction of a unique null stream [45] independent
of the sky position. We have demonstrated that it is pos-
sible to recover the average spectrum of the GW signals by
subtracting the ‘‘pure noise’’ power spectral density (PSD)
obtained from the null stream, from the PSD in each
individual detector. The recovered ‘‘residual’’ PSD has a

power-law character extremely close to the f�7=3 behavior
expected for inspiraling binary systems. The residual PSD
can either be used as a diagnosis tool for future mock data
challenges and stochastic analyses, or as a research tool
complementary to a more traditional stochastic analysis.

The null stream is also expected to be a powerful tool for
identifying and vetoing non-Gaussian features in the de-
tector outputs; however, since the current set of ET mock
data does not include such noise features, this use of the
null stream will be a topic for future investigation.
The analysis used to detect coalescing binary signals

was similar to current pipelines employed in searching
LIGO-Virgo data, and was able to recover a large fraction
of simulated signals at redshifts approaching unity. Some
signals were recovered up to redshifts greater than 3 with
good (< 1%) accuracy on chirp mass (the chief parameter
determining the frequency evolution of inspiral signals).
Overlap between two or more signals only rarely affected
the performance of the analysis; however this could be-
come a more critical issue if the lower frequency cutoff
(taken to be 25 Hz for the first CBC analysis) were reduced.
We also searched for the GW background created by

the superposition of all the binary inspiral signals up to a
redshift of z� 6 using the standard cross correlation sta-
tistic, considering the frequency range 10–500 Hz where
the spectrum can be well approximated by a power law

�gwðfÞ / f2=3. Our point estimate at 100 Hz is in good

agreement with the analytical expectation (with a precision
better than �5%), and our analysis shows that non-
Gaussian regimes can be probed by the standard cross
correlation statistics near optimal sensitivity, confirming
the work of Ref. [62].
Future mock data will include a wider range of signals,

encompassing CBC signals from BNS, NS-BH/BBH,
IMBH systems; a possible primordial stochastic back-
ground; and rare burstlike signals such as core-collapse
supernovae. The challenge will be not only to detect these
signals but to measure their parameters, and ultimately to
extract a unique range of information about astrophysics,
fundamental physics and cosmology from the data.
Information on future challenges, and on how to partici-

pate will be posted on the ET MDC Web site: http://
www.oca.eu/regimbau/ET-MDC_web/ET-MDC.html.
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[70] C. Röver, R. Meyer, G.M. Guidi, A. Vicere, and

N. Christensen, Classical Quantum Gravity 24, S607
(2007).

[71] J. Veitch and A. Vecchio, Classical Quantum Gravity 25,
184010 (2008).

[72] J. Veitch and A. Vecchio, Phys. Rev. D 81, 062003
(2010).

[73] S. Babak et al., Classical Quantum Gravity 25, 184026
(2008).

[74] B. Allen, Phys. Rev. D 71, 062001 (2005).
[75] B. Abbott et al. (LIGO Scientific Collaboration), Phys.

Rev. D 78, 042002 (2008).
[76] J. Abadie et al. (LIGO Scientific Collaboration and Virgo

Collaboration), Phys. Rev. D 85, 082002 (2012).
[77] M. Maggiore, Phys. Rep. 331, 283 (2000).
[78] N. Fotopoulos, J. Phys. Conf. Ser. 122, 012032 (2008).
[79] E. L. Robinson, J. D. Romano, and A. Vecchio, Classical

Quantum Gravity 25, 184019 (2008).
[80] S. Mitra, S. Dhurandhar, T. Souradeep, A. Lazzarini, V.

Mandic, S. Bose, and S. Ballmer, Phys. Rev. D 77, 042002
(2008).

[81] D. Talukder, S. Mitra, and S. Bose, Phys. Rev. D 83,
063002 (2011).

[82] L. Martellini and T. Regimbau (to be published).

MOCK DATA CHALLENGE FOR THE EINSTEIN . . . PHYSICAL REVIEW D 86, 122001 (2012)

122001-19

http://dx.doi.org/10.1088/0264-9381/26/8/085012
http://dx.doi.org/10.1088/0264-9381/26/8/085012
http://arXiv.org/abs/gr-qc/0509116
http://dx.doi.org/10.1088/0264-9381/22/18/S24
http://dx.doi.org/10.1103/PhysRevD.64.042004
http://dx.doi.org/10.1103/PhysRevD.64.042004
http://dx.doi.org/10.1088/0264-9381/19/7/333
http://dx.doi.org/10.1088/0264-9381/19/7/333
http://dx.doi.org/10.1088/0264-9381/19/7/327
http://dx.doi.org/10.1103/PhysRevD.83.084002
http://dx.doi.org/10.1103/PhysRevD.83.084002
http://dx.doi.org/10.1088/0264-9381/28/13/134009
http://dx.doi.org/10.1088/0264-9381/28/13/134009
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=36649
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=36649
http://dx.doi.org/10.1103/PhysRevD.78.062002
http://dx.doi.org/10.1103/PhysRevD.59.102001
http://dx.doi.org/10.1103/PhysRevD.59.102001
http://dx.doi.org/10.1088/1674-4527/11/4/001
http://dx.doi.org/10.1088/0004-637X/739/2/86
http://dx.doi.org/10.1103/PhysRevD.84.084004
http://dx.doi.org/10.1103/PhysRevLett.95.221101
http://dx.doi.org/10.1103/PhysRevLett.95.221101
http://dx.doi.org/10.1038/nature08278
http://dx.doi.org/10.1038/nature08278
http://dx.doi.org/10.1016/j.newar.2006.07.001
http://dx.doi.org/10.1016/j.newar.2006.07.001
http://dx.doi.org/10.1103/PhysRevD.67.082003
http://dx.doi.org/10.1103/PhysRevD.67.082003
http://dx.doi.org/10.1103/PhysRevLett.96.201102
http://dx.doi.org/10.1103/PhysRevLett.96.201102
http://dx.doi.org/10.1088/0264-9381/24/12/S10
http://dx.doi.org/10.1103/PhysRevLett.98.261101
http://dx.doi.org/10.1088/0004-637X/697/2/L133
http://dx.doi.org/10.1088/0004-637X/697/2/L133
http://dx.doi.org/10.1051/0004-6361/200810883
http://dx.doi.org/10.1103/PhysRevD.72.082002
http://dx.doi.org/10.1103/PhysRevD.72.082002
http://dx.doi.org/10.1007/s10714-010-1084-3
http://dx.doi.org/10.1007/s10714-010-1084-3
http://dx.doi.org/10.1088/0004-637X/748/2/136
http://dx.doi.org/10.1088/0264-9381/20/10/324
http://dx.doi.org/10.1088/0264-9381/20/10/324
http://dx.doi.org/10.1103/PhysRevD.84.084003
http://dx.doi.org/10.1103/PhysRevD.84.084003
http://dx.doi.org/10.1103/PhysRevD.75.062004
http://dx.doi.org/10.1103/PhysRevD.75.062004
http://dx.doi.org/10.1088/0264-9381/24/19/S23
http://dx.doi.org/10.1088/0264-9381/24/19/S23
http://dx.doi.org/10.1088/0264-9381/25/18/184010
http://dx.doi.org/10.1088/0264-9381/25/18/184010
http://dx.doi.org/10.1103/PhysRevD.81.062003
http://dx.doi.org/10.1103/PhysRevD.81.062003
http://dx.doi.org/10.1088/0264-9381/25/18/184026
http://dx.doi.org/10.1088/0264-9381/25/18/184026
http://dx.doi.org/10.1103/PhysRevD.71.062001
http://dx.doi.org/10.1103/PhysRevD.78.042002
http://dx.doi.org/10.1103/PhysRevD.78.042002
http://dx.doi.org/10.1103/PhysRevD.85.082002
http://dx.doi.org/10.1016/S0370-1573(99)00102-7
http://dx.doi.org/10.1088/1742-6596/122/1/012032
http://dx.doi.org/10.1088/0264-9381/25/18/184019
http://dx.doi.org/10.1088/0264-9381/25/18/184019
http://dx.doi.org/10.1103/PhysRevD.77.042002
http://dx.doi.org/10.1103/PhysRevD.77.042002
http://dx.doi.org/10.1103/PhysRevD.83.063002
http://dx.doi.org/10.1103/PhysRevD.83.063002

