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The two-loop contributions to the chiral vortical conductivity are considered. The Kubo formula

together with the anomalous Ward identity of the axial vector current suggest that there may be a nonzero

correction to the coefficient of the T2 term of the conductivity.
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The chiral magnetic effect and the chiral vortical effect
(CVE) have been actively investigated in recent years.
Because of the triangle anomaly, an external magnetic field
and/or a fluid vorticity will induce an electric current, a
baryon current, and an axial vector current in a relativistic
plasma. These currents will lead to separations of electric
charges, the baryon numbers, and chirality, which may be
observed in the quark-gluon plasma created through heavy
ion collisions [1,2]. To the order of the linear response,
we have

~Jem ¼ �B
em

~Bþ �V
em ~!;

~Jb ¼ �B
b
~Bþ �V

b ~!;

~J5 ¼ �B
5
~Bþ �V

5 ~!;

(1)

for the currents driven by the magnetic field and the fluid
vorticity. The anomalous transport coefficients (the �’s)
above have been explored from a field theoretic point of
view and by the holographic method [1,3–10]. An impor-
tant question regarding the former approach is whether
these coefficients—like their origin, the triangle anomaly—
are free from the higher-order corrections of coupling
constants. In case of the chiral magnetic effect, the non-
renormalization of �B

em in the homogeneous limit of a
static magnetic field has been established [11–13] and the
classical expression [1]

�B
em ¼ Nc

X
f

q2f
e2�5

2�2
; (2)

holds to all orders of electromagnetic and SUðNcÞ gauge
coupling, where Nc is the number of colors, qf is the

charge number of each flavor, and �5 is the chemical
potential of the axial charge. The same conclusion for
chiral magnetic effect can also be reached following the
argument in Ref. [14]. In this paper, we shall address the

parallel issue for the chiral vortical conductivity �V
5 to see

whether it is subject to higher-order corrections.
The anomalous transport coefficient �V

5 was first intro-

duced in Ref. [7] where the anomalous Ward identity
together with the second law of thermodynamics yields
for a relativistic plasma with an axial charge chemical
potential �5 the expression [15]

�V
5 ¼ �2

5

2�2
: (3)

It was soon realized in Ref. [17] that the general solution
to the thermodynamic condition employed in Ref. [7] is
given by

�V
5 ¼ �2

5

2�2
þ cT2; (4)

where c is an undetermined constant. Then came the
Kubo formula [16] and the one-loop calculation in
Ref. [18] which confirms the general structure (4) and
yields c ¼ 1

12 . This result is also confirmed by kinetic

theories [19]. The authors of Refs. [18,20,21] related the
T2 term to the gravity anomaly and a recent analysis [22]
from a geometric point of view within a general hydro-
dynamical framework suggests the nonrenormalization of
the T2 term. But a field theoretic aspect regarding the
higher corrections remains murky.
In a recent work [14], the authors addressed the issue

based on diagrammatic analysis. They generalized the
Coleman-Hill theorem [23] to the stress tensor insertion
and proved the nonrenormalization of �V

5 for a � model.

As with gauge theories, they argued that the nonrenormal-
ization remains valid in the large Nc limit because of the
structure of the anomaly. Upon a close examination of their
argument for a gauge theory plasma at the two-loop level,
we found a diagram that is not covered. We shall point out
this diagram and compute its contribution to �V

5 below.
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For the sake of clarity, we shall consider a QED plasma
with the Lagrangian density

L ¼ � 1

4e20
V��V�� � i �c��D�c þ 1

2
h��T�� þ A�J5�;

(5)

where V�� ¼ @�V� � @�V� is the electromagnetic field

tensor with the gauge potential V�, the covariant derivative

D� ¼ @� � iV�; (6)

and we have added couplings to an external axial vector
field A� and a metric perturbation h�� with the axial vector
current

J5� ¼ i �c���5c (7)

and the stress tensor

T�� ¼ V
�
�V�� � 1

4
���V

��V��

þ 1

4
ð�D�

�c��c �D�
�c��c Þ

þ 1

4
ð �c��D�c þ �c��D�c Þ: (8)

We have set A� ¼ h�� ¼ 0 in the expression of T�� above.

The anomalous Ward identity of J5� reads

@�J
�
5 ¼ e20

16�2 ffiffiffiffiffiffiffi�g
p 	����V��V��; (9)

with g being the determinant of the metric g��¼
���þh��.

Following Ref. [16], the chiral vortical conductivity �V
5

is given by the correlators between the axial current density
and the energy flux density as GijðQÞ ¼ �V

5 	ijkqk in the

limit Q ¼ ð0; ~qÞ ! 0, where

GijðQÞ¼�
Z 1

0
dt
Z
d~re�i ~q� ~rTrfe�
H½J5ið ~r;tÞ;T0jð0;0Þ�g

Tre�
H
;

(10)

and can be evaluated perturbatively in terms of thermal
diagrams, whereH is the Hamiltonian corresponding to the
Lagrangian density (5) at A� ¼ h�� ¼ 0. All two-loop

diagrams are shown in Fig. 1. The one-particle reducible
diagram [Fig. 1(g)] does not contribute since the loop
attached to the axial vector vertex vanishes, as can be
checked explicitly. We have the two-loop contribution to
GijðQÞ,

Gð2Þ
ij ðQÞ ¼ GðaÞ

ij ðQÞ þ Gðb�fÞ
ij ðQÞ; (11)

with

GðaÞ
ij ðQÞ ¼ T

Z d3 ~p

ð2�Þ2
X
p0

�i�
ðP;QÞD�;0�ðP�ÞDj�;
ðPþÞ;

(12)

with P� ¼ P� Q
2 , Pþ ¼ Pþ Q

2 , and

Gðb�fÞ
ij ðQÞ ¼ T

Z d3 ~p

ð2�Þ2
X
p0

�ij�
ðP;QÞD�
ðPÞ; (13)

where p0 ¼ 2n�T with n ¼ 0;�1;�2; . . . is the
Matsubara energy and the photon propagators D��ðPÞ,
D�;��ðPÞ, and D��;�ðPÞ are given by

D��ðPÞ ¼ 1

P2

�
��� þ ð
� 1ÞP�P�

P2

�
;

D�;��ðPÞ ¼ � 1

P2
ðP���� � P����Þ;

D��;�ðPÞ ¼ D�;��ð�PÞ;
(14)

with P2 ¼ ~p2 þ p2
0 and 
 being the gauge parameter.

The momenta in Eq. (11) are all Euclidean with the
metric ���. The amplitudes�i�
ðP;QÞ and�ij�
ðP;QÞ of
Eqs. (12) and (13) are related to the anomalous triangle
diagram ���
ðK1; K2Þ, and the kernel of its metric per-

turbation ���
;��ðQ;K1; K2Þ, depicted in Fig. 2, via

FIG. 1. The two-loop diagrams for the chiral vortical
conductivity.

FIG. 2. The anomalous triangle and its metric perturbation.
���
ðK1; K2Þ in the text denotes the amputated part of (a) and

���
;��ðQ;K1; K2Þ denotes the sum of the amputated parts of

(b)–(f), where (�, 
) refer to the external photon lines with
outgoing momenta (K1, K2),� refers to the axial vector insertion
with incoming momentum Q, and (�, �) refers to the external
graviton.
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�i�
ðP;QÞ ¼ �i�


�
PþQ

2
;�PþQ

2

�
;

�ij�
ðP;QÞ ¼ �i�
;0jðQ;P;�PÞ:
(15)

If there were no axial anomaly, the sum of all diagrams
(a)–(f) in Fig. 1 would be of the order Oðq2Þ in the limit
Q ¼ ð0; ~qÞ ! 0 according to the Coleman-Hill-like argu-
ment employed in Ref. [14]. As to the contribution from the
anomaly, following an elegant argument of Ref. [14], the
sumof diagrams (b)–(f) in Fig. 2 couples only to the trace of
the metric perturbation. Therefore the anomaly does not
contribute to the diagrams (b)–(f) in Fig. 1 with the inser-
tion of an off-diagonal component. The anomaly contribu-
tion to diagram (a) in Fig. 1, however, is not covered by the
above argument and has to be examined separately.

The anomalous Ward identity (9) implies that

qi�i�
ðP;QÞ ¼ � e20
2�2

	�
�iP
�qi: (16)

Taking the derivative with respect to momentum ~q on both
sides, we derive

�i�
ðP;QÞ¼� e20
2�2

	�
�iP��qj
@

@qi
�j�
ðP;QÞ: (17)

In the absence of infrared divergence, we end up with a
nonzero limit as ~q ! 0,

�i�
ðP;QÞ ! � e20
2�2

	�
�iP�: (18)

Inserting this nonzero limit into Eq. (12), we find the
anomaly contribution

Ganom
ij ðQÞ ¼ � e20T

2�2
	�
�i

Z d3 ~p

ð2�Þ2
�X

p0

P�D�;0�ðP�ÞDj�;
ðPþÞ: (19)

Dropping the terms beyond linear order in ~q, we obtain

Ganom
ij ðQÞ

¼ e20T

2�2

Z d3 ~p

ð2�Þ2
X
p0

1

ð ~p2 þ p2
0Þ2

�
�
� 1

2
	iklplqkpj þ ð ~p2 þ p2

0Þ	ijkpk � 1

2
p2
0	ijkqk

�
¼ �Vð2Þ

5 	ijkqk; (20)

with �Vð2Þ
5 being the two-loop contribution to the CVE

coefficient, given by

�Vð2Þ
5 ¼ e20T

4�2

X
p0

Z d3 ~p

ð2�Þ3
1
3
~p2 � p2

0

ð ~p2 þ p2
0Þ2

: (21)

In the last step, we have dropped the second term in the
numerator of the integrand because it is odd in P, and have
replaced plpj by 1

3
~p2�lj. The integral of Eq. (21) can

be calculated by dimensional regularization. We have

�Vð2Þ
5 ¼ limd!3�

Vð2Þ
5;d , with

�Vð2Þ
5;d ¼ e20T

4�2

X
p0

Z dd ~p

ð2�Þd
1
d p

2 � p2
0

ðp2 þ p2
0Þ2

¼ e20T

16�2

ðd� 1Þ!d

2d�d�1 sin�d2

X
p0

jp0jd�2

¼ e20T
d�1

32�3

ðd� 1Þ!d

sin�d2
�ð2� dÞ; (22)

where !d is the solid angle in d dimensions. Therefore,

�Vð2Þ
5 ¼ e20

48�2
T2; (23)

and the coefficient c of Eq. (4) takes the form

c ¼ 1

12
þ e20

48�2
: (24)

Because of the universality of the axial anomaly, the
second term above is intact if the fermion number and the
axial charge chemical potentials are switched on. In other
words, the �2

5 of Eq. (4) is not renormalized by higher-

order terms and our result is not in contradiction with the
thermodynamic argument of Ref. [7].
To convince ourselves of the robustness of this result, we

have also evaluated �Vð2Þ
5 à la a Pauli-Villars-like regulari-

zation, which amounts to �Vð2Þ
5 ¼ limMs!1�

Vð2Þ
5;M , with

�Vð2Þ
5;M ¼ e20T

4�2

X
p0

Z d3 ~p

ð2�Þ3
"

1
3
~p2 � p2

0

ð ~p2 þ p2
0Þ2

�X
s

Cs

1
3
~p2 � p2

0

ð ~p2 þ p2
0 þM2

s Þ2
#
; (25)

where the coefficients Cs are chosen to make the integral
and the summation divergence-free. On writing

�Vð2Þ
5;M ¼ e20

4�2

�Z d4 ~P

ð2�Þ4 ½� � ��

þ
�
T
X
p0

�
Z 1

�1
dp0

2�

�Z d3 ~p

ð2�Þ3 ½� � ��
�
; (26)

we have for the first term inside the bracket

Z d4 ~P

ð2�Þ4 ½� � �� ¼
Z d4 ~P

ð2�Þ4
�
1

3
~P2 � 4

3
p2
0

�

�
�

1

ð ~p2 þ p2
0Þ2

�X
s

Cs

1

ð ~p2 þ p2
0 þM2

s Þ2
�

¼ 0; (27)

with P2 ¼ ~p2 þ p2
0 because of the four-dimensional rota-

tional symmetry once the integral is made convergent by
the regulators. As for the rest of the terms, following the
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standard treatment of the summation over p0 in terms of a
contour integral, we find

lim
Ms!1

�
T
X
p0

�
Z 1

�1
dp0

2�

�Z d3 ~p

ð2�Þ3 ½� � ��

¼
Z d3 ~p

ð2�Þ3
�
2

3

e
p
T

ðep
T � 1Þ2 �

1

3p

1

e
p
T þ 1

�
¼ T2

12
; (28)

which confirms Eq. (23).
Our analysis can be trivially generalized to a QCD-like

non-Abelian gauge theory with Nc colors and Nf flavors.

This amounts to replacing e20 of Eq. (18) by NftrT
lTl0g20 ¼

1
2�

ll0Nfg
2
0, with Tl being the SUðNcÞ generator for quarks

in the fundamental representation and g0 the Yang-Mills
coupling, and to summing Eq. (19) over adjoint gluons. On
writing

�V
5 ¼ NcNf

�
�2

5

2�2
þ cT2

�
; (29)

we have

c ¼ 1

12
þ N2

c � 1

2Nc

g20
48�2

; (30)

and the second term is not suppressed in the large Nc limit
for a fixed ’t Hooft couplingNcg

2
0. This makes the strong ’t

Hooft coupling limit nontrivial, an issue that may be
addressed by the holographic principle.

One possible loophole with the above analysis concerns
the generalization of the Coleman-Hill theorem to the stress
tensor insertion. In the case of the vector or axial current
insertion to a diagramwith only external gauge boson lines,
the transversality of the diagram post-insertion can be
established algebraically prior to integrating the loop mo-
menta [24] (formally for the axial current case). We find
that this is not obvious with the stress tensor insertion
corresponding to one-loop diagrams with one boson line
of each diagram of Fig. 1 cut open. Thismay be attributed to
the fact that the external lines of these diagrams do not carry
the conserved charges but do carry energies and momenta.
If there is no complication with the generalization of the
Coleman-Hill theorem, we do find a two-loop term of the
chiral vortical coefficient given by Eq. (23). In any case, it
would be interesting to verify or disprove this result through
an explicit calculation of all two-loop diagrams of Fig. 1.
Alternatively, the Matsubara formulation of the correlator
in Eq. (10) can also be evaluated nonperturbatively on a
lattice at �5 ¼ 0 without running into sign problems.
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