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We show that the eigenvectors of the PT -symmetric imaginary cubic oscillator are complete, but do

not form a Riesz basis. This results in the existence of a bounded metric operator having intrinsic

singularity reflected in the inevitable unboundedness of the inverse. Moreover, the existence of nontrivial

pseudospectrum is observed. In other words, there is no quantum-mechanical Hamiltonian associated with

it via bounded and boundedly invertible similarity transformations. These results open new directions in

physical interpretation of PT -symmetric models with intrinsically singular metric, since their properties

are essentially different with respect to self-adjoint Hamiltonians, for instance, due to spectral instabilities.
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I. INTRODUCTION

At the turn of the millennium, Bender et al. came up
with the idea to extend quantum mechanics by considering
Hamiltonians that are invariant under a space-time reflec-
tion PT rather than being Hermitian [1,2]. The develop-
ment of the so-called PT -symmetric quantum mechanics
was in fact initiated in these papers by considering a
prominent Hamiltonian

H ¼ � d2

dx2
þ ix3: (1)

While this operator is manifestly non-Hermitian, it is in-
variant under a simultaneous space reflection P (x��x)
and time reversal T (complex conjugation). Moreover,
numerical studies suggested that the spectrum of H is
real, which was later proved in Ref. [3]. The Hamiltonian
(1) can be considered as a prototype of many other ex-
amples of PT -symmetric Hamiltonians that have been so
far studied in the still growing literature (see Ref. [4] and
references therein). PT -symmetric models found applica-
tions in various domains of physics—namely in optics [5],
solid state [6], Bose-Einstein condensates [7], LRC circuits
[8], superconductivity [9], electromagnetism [10], and
reflectionless scattering [11].

It is commonly accepted that a quantum-mechanical
interpretation of PT symmetry must be implemented
through a similarity transformation �, i.e.,

h :¼ �H��1; (2)

where h is a self-adjoint operator, i.e., h ¼ hy. This inter-
twining relation is closely related to the quasi-Hermiticity
[12,13]

�H ¼ Hy�; (3)

where � is a positive operator often called a metric opera-
tor (its special variant PC was suggested in Refs. [2,14]).
Hamiltonian H with property (3) is called quasi-Hermitian
because it is actually Hermitian with respect to the

modified inner product h�;��i. The relation between �
and � is the decomposition of a positive operator � ¼
�y�. The essential idea is that a non-Hermitian H can be
viewed as an alternative representation of a Hermitian
operator h.
The advantage of the above-described representation (2)

stems from the observation that the Hermitian counterpart
h for a differential albeit non-Hermitian operator H has
typically a nonlocal and very complicated structure. This was
demonstrated for a class of operators with non-Hermitian
(not necessarily PT -symmetric) point interactions in
Ref. [15], where, in addition, explicit formulas for the simi-
larity transformation �, metric operator �, C operator, and
similar self-adjoint operator h were presented in a closed
form. Nevertheless, the non-Hermiticity and nonlocality are
not always equivalent in the described sense [16,17].
Partly motivated by the relevance of the cubic interac-

tion in quantum field theory, the problem of similarity of
the Hamiltonian (1) to a self-adjoint operator was inves-
tigated in several works [14,18]. However, due to the
complexity of the task, the approach used in these papers
was necessarily formal, based on developing the metric
into an infinite series composed of unbounded operators.
There has been no proof of the quasi-Hermiticity of the
imaginary cubic oscillator so far. The objective of the
present paper is to establish the following intrinsic facts
about the metric of (1):
(1) There exists a bounded metric. That is, operator (1) is

quasi-Hermitian in the sense of (3) with bounded�.
(2) No bounded metric with bounded inverse exists.

That is, any metric operator for (1) necessarily
possesses an inevitable singularity.

We have chosen the prominent Hamiltonian (1) to prove
the negative result 2 just because the ix3 potential is
considered as the fons et origo of PT -symmetric quantum
mechanics [1,2]. However, the absence of a bounded or
boundedly invertible metric is by far not restricted to the
Hamiltonian (1) only. For instance, the method of the
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present paper also applies to an equally extensively studied
x2 þ ix3 potential and many others, see Eq. (17) and the
surrounding text.

Our results have important consequences for the physical
interpretation of the PT -symmetric Hamiltonians. If the
metric happens to be singular (i.e., unbounded, not invertible
or unboundedly invertible), the quantum-mechanical inter-
pretation using the similarity transformation is lost. Indeed,
the eigenvectors, despite possibly being complete, do not
form a ‘‘good’’ basis, i.e., an unconditional (Riesz) basis. The
spectrum of such highly non-self-adjoint operators does not
contain sufficient information about the system, and in addi-
tion to the reality and (algebraic) simplicity of the spectrum,
more involved spectral-theoretic properties (such as basicity,
pseudospectrum, etc.) must be taken into account.

Our result about the singularity of any metric may seem
negative at first glance. However, we believe that in the
same way as the exceptional points represent one of the
most interesting configurations, where important physical
phenomena arise, the established intrinsic singularities in
the metric operator are precisely the point where new
developments of the physics of PT -symmetric models
may originate.

This paper is organized as follows. In Sec. II we empha-
size some aspects of unbounded operators and defects of
quasi-Hermiticity based on singular metrics. In Sec. III we
recall known facts about the imaginary cubic oscillator and
perform our proofs of the new properties regarding themetric
operator. Finally, in Sec. IV we refer to some open problems
and comment on possible extensions of our results.

II. INFINITE-DIMENSIONAL SUBTLETIES

While the concepts of similarity to a self-adjoint opera-
tor and quasi-Hermiticity work smoothly if the dimension
of the underlying Hilbert space is finite, i.e., for matrices,
essential difficulties may appear in the infinite-dimensional
spaces. The reason is obviously in the unboundedness of
operators, which unavoidably restricts their domains of
definitions to a nontrivial subset of the Hilbert space.
Therefore, the sense in which equalities (2) and (3) hold
must be carefully explained. We focus on the metric op-
erator further; nonetheless, the similarity transformation
may be discussed along the same lines.

Relation (3) is an operator equality and as such it requires
that the operator domains Domð�HÞ and DomðHy�Þ are
equal in addition to the validity of the corresponding vector
identity �Hc ¼ Hy�c for every c 2 Domð�HÞ \
DomðHy�Þ. Problems arise if the involved operators are
unbounded, since one of the operator domains of the prod-
ucts or their intersection might be reduced to a single
element 0. To avoid such pathological situations, it is
usually assumed that the metric operator � is bounded.
Then the above requirements reduce to the mapping prop-
erty �½DomðHyÞ� � DomðHÞ and the quasi-Hermitian
identity should hold for every c 2 DomðHÞ.

If, in addition to the boundedness, � is boundedly
invertible, then some fundamental and extremely useful
properties of self-adjoint operators are valid for H as well:
real spectrum, spectral decomposition, spectral stability
with respect to perturbations, unitary evolution (in a topo-
logically equivalent Hilbert space), etc. However, if the
metric becomes singular, none of the mentioned properties
is guaranteed by the validity of (3). As a matter of fact, as
we demonstrate in this paper, the imaginary cubic oscil-
lator and many other PT -symmetric Hamiltonians,
despite possessing real spectra, exhibit pathological fea-
tures with respect to self-adjoint behavior due to the in-
trinsic singularities of the metric (and therefore also in C
operators and similarity transformations). Let us demon-
strate the defects of the theories with singular metrics in the
following subsections.

A. Spectrum

Let H be a complex Hilbert space. The spectrum is
meaningfully defined only for closed operators, i.e., those
operators H for which the elements fc ; Hc g with c 2
DomðHÞ form a closed linear subspace ofH �H . IfH
were finite dimensional then the spectrum of H, �ðHÞ,
would be exhausted by eigenvalues, i.e., those complex
numbers � for which H � � is not injective. In general,
however, there are additional parts of spectra composed by
those � which are not eigenvalues but H � �: DomðHÞ !
H is not bijective: depending on whether the range
RanðH � �Þ is dense in H or not, one speaks about the
continuous or residual spectrum, respectively. In other
words, the complement of the spectrum of H, called the
resolvent set of H, �ðHÞ, is composed of all the complex
numbers z for which the resolvent operator ðH � zÞ�1:
H ! H exists and is bounded.
It is an important property of self-adjoint operators that

their (total) spectrum is always nonempty, real, and that the
residual spectrum is empty. For non-self-adjoint operators,
however, the spectrum can be empty or cover the whole
complex plane, see, e.g., Refs. [16,19].
Let us demonstrate how singular metrics lead to

pathological situations as regards spectral properties. Let
H be an operator with purely discrete spectrum (i.e., just
isolated eigenvalues with finite multiplicities) and assume
that the similarity relation (2) holds with unbounded ��1.
Then Ranðh� �Þ � Ranð�Þ � H for every �2C.
Consequently, the whole complex plane except for the set
of eigenvalues of H belongs to the continuous spectrum of
h. Summing up, the continuous spectrum is not preserved by
unbounded similarity transformations. It is a striking phe-
nomenon since the continuous part of spectrum contains
physical energies corresponding to scattering/propagating
states.
A similar argument shows that unbounded� satisfying (3)

with Domð�Þ � DomðHÞ and �½DomðHÞ� � DomðHyÞ
cannot exist for closed operators H with a physically
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reasonable property �ðHÞ � C. In this way, one can also
show that the C operator of Kuzhel [20] for (1) cannot exist.

B. Eigenbasis

Eigenfunctions of self-adjoint operators corresponding
to different eigenvalues are mutually orthogonal.
Furthermore, the set of all eigenfunctions fc ng1n¼1 of a
self-adjoint operator with purely discrete spectrum can be
normalized in such a way that it forms a complete ortho-
normal family in the Hilbert space H . Recall that the
completeness means that the orthogonal complement in
H of the linear span of the family consists only of the zero
function. A necessary and sufficient condition for com-
pleteness of an orthonormal family fc ng1n¼1 is the validity
of the Parseval equality

8c 2 H ;
X1

n¼1

jhc n; c ij2 ¼ kc k2: (4)

In this case we also have the unique expansion

8c 2 H ; c ¼ X1

n¼1

cnc n: (5)

That is, fc ng1n¼1 is a basis in H .
Eigenfunctions of non-Hermitian operators are typi-

cally not orthogonal. Even worse, they may not form a
basis or even not a complete family. In this respect, it is
absolutely essential to stress that the completeness of a
nonorthonormal family fc ng1n¼1 does not imply that any
c 2 H admits a unique expansion (5); see, e.g., Ref. [21]
for further details.

The notion of ‘‘eigenbasis’’ is so important in quantum
mechanics that one needs to have a replacement for (4) in
the case of eigenfunctions of non-Hermitian operators.
This is provided by the notion of Riesz basis

8c 2H ; C�1kc k2�X1

n¼1

jhc n;c ij2�Ckc k2 (6)

with a positive constant C independent of c .
Eigenfunctions of an operator H with purely discrete spec-
trum form a Riesz basis if and only ifH is quasi-Hermitian
(3) with bounded and boundedly invertible metric �.

As in the case of spectrum, Riesz-basicity property is
not preserved by unbounded transformations. As a matter
of fact, it is the objective of the present paper to show
that the eigenfunctions of (1) do not form a Riesz basis so
that the metric � is necessarily singular. Any claim of the
type ‘‘(1) is similar to a self-adjoint operator’’ is thus neces-
sarily of doubtful usefulness for physics, since H and h
appearing in (2) would have very different basicity properties.

C. Pseudospectrum

The notion of pseudospectra arose as a result of the
realization that several pathological properties of highly
non-Hermitian operators were closely related. We refer to
the classical monographs by Trefethen and Embree [22]

and Davies [21] for more information on the subject,
physical and numerical applications, and many references.
Given a positive number ", we define the pseudo-

spectrum of H by

�"ðHÞ :¼ fz 2 C j kðH � zÞ�1k> "�1g; (7)

with the convention that kðH � zÞ�1k ¼ 1 for z 2 �ðHÞ.
The pseudospectrum always contains an "-neighborhood
of the spectrum:

fz 2 C j distðz; �ðHÞÞ< "g � �"ðHÞ: (8)

Since equality holds here if H is self-adjoint (or more
generally normal), it follows that the notion of pseudospec-
tra becomes trivial for such operators. On the other hand, if
H is ‘‘highly non-self-adjoint,’’ the pseudospectrum �"ðHÞ
is typically ‘‘much larger’’ than the "-neighborhood of the
spectrum.
For non-Hermitian operators the pseudospectra are much

more reliable objects than the spectrum itself. Probably the
strongest support for this claim is due to the phenomenon of
spectral instability: very small perturbations may drasti-
cally change the spectrum of a non-Hermitian operator. For
instance, new complex eigenvalues can appear very far
from the original ones. On the other hand, perturbations
whose norm is less than " still lie inside �"ðHÞ. These
effects were extensively studied in numerics, hydrodynam-
ics, optics, etc. (see Ref. [22] and references therein).
Of course, such pathological situations do not occur for

self-adjoint operators whose spectrum is changed at most by
the norm of the perturbation. It is also impossible for opera-
tors similar to self-adjoint operators by bounded and bound-
edly invertible similarity transformations. On the other hand,
the pseudospectrum is not preserved by unbounded trans-
formations (we refer to Ref. [23] for a warning discussion of
the shifted harmonic oscillator in this context). The pseudo-
spectrum thus represents a useful test whether a given non-
Hermitian operator can be similar to a self-adjoint one via a
physically reasonable transformation. In this paper we show
that the pseudospectrum of (1) is highly nontrivial.

D. Singular metric?

The observations made in previous subsections consti-
tute strong support for our belief that the singular metrics
are not relevant objects for physical interpretation of non-
Hermitian Hamiltonians, since they yield only singular
similarity transformations. However, putting it differently,
singular metrics necessarily lead to fundamentally new
physics, since the transformed operators exhibit com-
pletely different properties.
In this context we feel it necessary to mention that

there exists a recent attempt of Mostafazadeh [24] repro-
ducing equivalently the original idea of Kretschmer and
Szymanowski [25] to include singular metric operators into
the notion of quasi-Hermiticity. It involves a construction of
a self-adjoint operator to which the original non-Hermitian
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operator with purely discrete real spectrum is similar ‘‘at
any cost.’’ Analogous ideas for unbounded C operators can
be found in Ref. [26]. However, any such strategy has
important drawbacks that cannot be avoided. The problem
with a singular metric is mentioned already in Ref. [13],
where an example of an operator possessing a bounded
metric operator without a bounded inverse and having non-
real spectrum was constructed. As a corollary, Diedonné
states, ‘‘in spite of the quasi-Hermiticity (without bounded
inverse of �), there is for instance no hope of building
functional calculus that would follow more or less the same
pattern as the functional calculus of self-adjoint operators.’’

The drawbacks are that the aforementioned non-self-
adjoint pathologies of H are completely ignored when
analyzing the ‘‘similar’’ self-adjoint operator h instead.
This can be illustrated already for two-by-two matrices: a
Jordan-block matrix H and a diagonal matrix h with the
same real eigenvalues. Although the matrices possess the
same (real) spectrum, their respective properties are very
different, particularly the basicity properties of eigenvec-
tors and spectral stability with respect to small perturba-
tions. But the construction of Refs. [24,25], when used in
finite dimension, simply means that the authors disregard
the Jordan-block structure of the non-Hermitian matrix H
and associate to it just the diagonal matrix h with the same
eigenvalues. The metric operator and ‘‘similarity transfor-
mation’’ are noninvertible in this case. However, equality
(3) and a weaker variant of (2), i.e., �H ¼ h�, do hold.
Stating that h should in any reasonable sense representH is
obviously very doubtful, since, for instance, all the physics
of exceptional points would be omitted.

In infinite-dimensional spaces the situation is even more
complex, since another possibility of a singularity of metric
exists, namely, the unboundedness of the inverse. Although
this may seem to be a minor issue or only a technical
problem of infinite dimension, such an interpretation is
very misleading. The pathological properties of non-self-
adjoint H with only unboundedly invertible metric may be
much more serious than the existence of finite-dimensional
Jordan blocks, i.e., usual exceptional points. In the latter
case, although the metric cannot be invertible, the eigenvec-
tors together with generalized ones may form a Riesz basis.
In other words, except for a finite-dimensional subspace, H
is similar to a self-adjoint operator. Therefore, a version of
the spectral decomposition (generalized Jordan form) may
be available and the spectrum of H may be stable with
respect to small perturbations. This is not the case of the
imaginary cubic oscillator where there is no Riesz basis of
eigenvectors and no spectral stability: complex eigenvalues
may appear very far from the unperturbed real ones even
though the norm of the perturbation is arbitrarily small.

III. IMAGINARY CUBIC OSCILLATOR

Let us begin by properly introducing the Hamiltonian (1)
as a closed realization in the Hilbert space L2ðRÞ. We

consider the maximal realization of the differential expres-
sion (1) by taking for the operator domain of H the maxi-
mal domain

DomðHÞ :¼ fc 2 L2ðRÞ j � c 00 þ ix3c 2 L2ðRÞg: (9)

By an approach of Edmunds and Evans [27], Sec. VII.2,
based on a distributional Kato’s inequality, it follows that
such a defined operator H is m-accretive and that it coin-
cides with the closure of (1) initially defined on infinitely
smooth functions of compact support. (The difficulties
with the existence of different closed extensions,
cf. Ref. [28], do not arise here since Re V is trivially
bounded from below.)
Now it can be rigorously verified that H is

PT -symmetric, i.e., ½H;PT � ¼ 0, where the commutator
should be interpreted as PTHc ¼ HPT c for all c 2
DomðHÞ, with ðP c ÞðxÞ :¼ c ð�xÞ and ðT c ÞðxÞ :¼ c ðxÞ.
Moreover, since the adjoint Hy of H is simply obtained by
taking �i instead of i in the definition of the operator
(including the operator domain), it can be also verified
that H is P -self-adjoint, Hy ¼ PHP , and T -self-adjoint,
Hy ¼ THT . The latter is a particularly useful property
for non-self-adjoint operators since it implies that the
residual spectrum of H is empty [29].
As an immediate consequence of the fact that H is m-

accretive, we know that the spectrum of H is located in the
right complex half-plane. Furthermore, it has been shown
in Ref. [3] that all eigenvalues of H are real and simple
(in the sense of geometric multiplicity). The algebraic
simplicity has been established in Ref. [30]. The fact that
the spectrum of H is purely discrete follows from the
compactness of its resolvent. The latter can be deduced
from the identity

Dom ðHÞ ¼ fc 2 H2ðRÞ j x3c 2 L2ðRÞg (10)

established in Ref. [31] and the compact embedding of this
set into L2ðRÞ. Furthermore, the authors of Ref. [31] show
that the resolvent of H is a Hilbert-Schmidt operator. The
key ingredient in the proof is the explicit knowledge of the
resolvent kernel of H�1 that can be written in terms of
Hankel functions with known asymptotics. A deeper analy-
sis of the resolvent of H reveals that it actually belongs to
the trace class [32]; alternatively, one can use a general
result of Robert [33].

A. Completeness of eigenfunctions

Let us show that the eigenfunctions of H form a com-
plete set in L2ðRÞ. Recall that the completeness of fc ng1n¼1

means that the span of c n is dense in L2ðRÞ, or equiva-
lently ðspanfc ng1n¼1Þ? ¼ f0g. Nevertheless, we stress that
the result on completeness does not imply that any c
admits the unique expansion (5).
The m-accretivity of H implies Rehc ; Hc i � 0 for all

c 2 DomðHÞ. Consequently, �iH is dissipative; i.e.,
Imhc ; Hc i � 0 for all c 2 DomðHÞ. It is then easy to
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check that the imaginary part of the resolvent of �iH at
� < 0 is non-negative, i.e.,

1

2i
ðð�iH � �Þ�1 � ðiHy � �Þ�1Þ � 0 (11)

in the sense of forms. Since the resolvent is trace class, it is
enough to apply the completeness theorem [[34], Thm.
VII.8.1] to the operator ð�iH � �Þ�1.

More specifically, it follows by this result that H has a
complete system of eigenvectors and generalized eigenvec-
tors. The latter, however, do not appear in our situation since
all the eigenvalues are algebraically simple (see above).

B. Existence of a bounded metric

Already at this stage we can show that there exists a
bounded metric for H. We would like to emphasize that
this follows actually in general from the reality and simplic-
ity of eigenvalues and completeness of eigenfunctions forH.
We remark that Hy shares these properties due to the sim-
plicity of eigenvalues and T - or P -self-adjointness of H.

In detail, let H be a densely defined and closed operator
such that �ðHÞ \ �ðHyÞ \ R � ; and let z0 be a number
from this intersection. Then the existence of a bounded
positive � satisfying (3) is equivalent to the fact that the
resolvent of H satisfies (3), i.e.,

�ðH � z0Þ�1 ¼ ðHy � z0Þ�1�: (12)

Thus we can transfer the problem of finding the metric for an
unboundedH to the same problem for its bounded resolvent.
Using Ref. [13], Prop. 3, which is in fact the construction of
a bounded metric using the well-known formula

� :¼ X1

n¼1

cn�nh�n; �i (13)

with�n being the eigenfunctions ofH
y and cn > 0 tending

to zero sufficiently fast, yields the following: If all the
eigenvalues ofHy are real and the associated eigenfunctions
�n are complete, then a boundedmetric for ðH � z0Þ�1, and
therefore for H, exists.

In our situation, we know that all the eigenvalues of (1) as
well as its adjoint are simple and real; for z0 we can take any
negative number due to m-accretivity of H and Hy, and we
have shown that the eigenfunctions ofH and therefore alsoHy
are complete. Hence, the existence of a bounded� follows.

C. Singularity of any metric

After the two preceding positive results, we show now
that any metric for the imaginary cubic oscillator is singu-
lar, i.e., either unbounded or unboundedly invertible. We
proceed by contradiction. Let there exist a bounded posi-
tive operator � with bounded inverse satisfying (3). Then
the following norm estimate for the resolvent holds

kðH � zÞ�1k � C

jImzj (14)

for every z 2 C such that Imz � 0, where C is a positive

constant bounded by k ffiffiffiffiffi
�

p kk
ffiffiffiffiffiffiffiffiffiffi
��1

p
k. By establishing a

lower bound to the resolvent appearing in (14), we show
that the inequality (14) cannot hold. The lower bound
follows by a direct construction of a continuous family of
approximate eigenstates of complex energies far from the
spectrum due to Davies [35].
Using the strategy in Ref. [35], Thm. 2, we consider

kðH � �zÞ�1kwith �> 0 large and 0< argz < �=2. By a
simple scaling argument in x, the problem can be trans-
ferred into a semiclassical one, namely, kðH� �zÞ�1k ¼
��1kðHh � zÞ�1k, where

Hh :¼ �h2
d2

dx2
þ ix3; (15)

with h :¼ ��5=6. In order to apply [[35], Thm. 1], we have
to verify that ImV 0ðaÞ � 0, where VðxÞ :¼ ix3 and a is
obtained from the relation z ¼ �2 þ ia3 with � 2 R n f0g.
However, this can be easily checked for ImV0ðaÞ ¼ 3a2

and a � 0 since Imz � 0 by assumption. It then follows
from Ref. [35], Thm. 1, that the norm of the resolvent ofHh

diverges faster than any power of h�1 as h ! 0. More
specifically, there exists positive h0 and for each n > 0 a
positive constant cn such that if h 2 ð0; h0Þ then

kðHh � zÞ�1k � cn
hn

: (16)

The relation between H and Hh provides an analogous
claim for kðH � �zÞ�1k and therefore the resolvent bound
(14) when combined with (16) cannot hold if n is chosen
sufficiently large (namely, n > 6=5).

IV. CONCLUDING REMARKS

Although the imaginary cubic oscillator (1) is
PT -symmetric with purely real and discrete spectrum, it
cannot be similar (via a bounded and boundedly invertible
transformation) to any self-adjoint operator or, equiva-
lently, the eigenfunctions ofH cannot form the Riesz basis.
We remark that the question whether eigenvectors of H
form a basis remains open.
We established the existence of a boundedmetric, which is

in fact equivalent to the completeness of eigenfunctions that
we proved and the reality and simplicity of eigenvalues.
However, the singular nature of any metric is inevitable.
The latter was established by semiclassical tools, namely
the pseudomode construction due toDavies [35]. Themethod
of proof implies that (1) possesses a very nontrivial pseudo-
spectrum and regions of strong spectral instabilities, cf. (7)
and (16). In the language of exceptional points, the imaginary
cubic oscillator possesses an ‘‘intrinsic exceptional point’’
that is much stronger than any exceptional point associated
with finite Jordan blocks, cf. Secs. IID and IIIC.
The method of this paper, namely the disproval of quasi-

Hermiticity with bounded and boundedly invertible metric
based on the localized semiclassical pseudomodes, does
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not restrict to the particular Hamiltonian (1). It also applies
to the already mentioned x2 þ ix3 potential and to many
others. As a large class of admissible operators, let us
mention, for instance, the Schrödinger operators consid-
ered by Davies [35]:

� d2

dx2
þ X2n

m¼1

cmx
m; (17)

where the constant c2n has positive real and imaginary
parts; then the corresponding closed realization is an m-
sectorial operator. Later, the results of Ref. [35] were
substantially generalized to higher dimensions and pseudo-
differential operators in Refs. [36,37].
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