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Regularization dependence of the Nambu–Jona-Lasinio model leaves room for improvement. To help in

choosing a suitable regularization scheme, we investigate the phase diagram on the temperature-chemical

potential plane in the Nambu–Jona-Lasinio model with the dimensional regularization. While the structure

of the resulting diagram shows resemblance to the one in the frequently used cutoff regularization, some

results of our study indicate a striking difference between these regularizations. Diagrams in the dimensional

regularization always indicate the first-order phase transition at high chemical potential, while the first-order

transition does not occur in the cutoff method for some parameter sets.
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I. INTRODUCTION

The phase diagram of the quark matter has been actively
investigated for decades [1]. Quarks are confined inside
hadrons and cannot be observed as free particles at low
energy. On the other hand, at high energy, quarks become
free particles due to the asymptotic freedom of the strong
interaction. Therefore, it is expected that quarks undergo
the phase transition between confined and deconfined
states which is one of the most important issues in theo-
retical and experimental particle physics.

The fundamental theory to describe quark matter is quan-
tum chromodynamics (QCD), the theory of strong interac-
tion. It is, however, not practical to extract reliable predictions
at low energy due to the necessity of complicated nonpertur-
bative calculations in this area. For this reason some effective
approaches are used such as the Nambu–Jona-Lasinio (NJL)
model [2] and its Polyakov-loop incorporated version, the
PNJL model [3], the linear sigma model [4], the chiral per-
turbation theory [5], and the lattice QCD simulations [6].

In this paper, we will consider the NJL model known as
a low-energy effective theory of QCD (for reviews, see,
Refs. [7–10]). At low temperature,T, and chemical potential,
�, constituent quarks are heavy due to the chiral symmetry
spontaneous breaking, while they are expected to be light
at high T and/or � where the chiral symmetry is getting
restored. Thus the quark system is closely related to the
phenomenon of the chiral phase transition. The NJL model
actually predicts the chiral symmetry breaking at low energy
and its restoration at high energy. Many investigations of
the phase diagram are based on the NJL and PNJL models
(see, e.g., Refs. [11–25]).

Since the NJL model is not renormalizable, the model
predictions inevitably depend on a regularization procedure
applied. The most frequently used method is probably the
three-momentum cutoff regularization which introduces the
cutoff scale �. The model in the cutoff scheme may miss
an important contribution when the quark density becomes
comparable to the cutoff scale. There is an alternative
method, the dimensional regularization (DR) [19,26–28],
to avoid the issue [29]. In the DR, divergences coming
from fermion loop integrals are regularized by lowering the
dimension of the integration through an analytic continuation
in the dimension variable. The DR preserves gauge symme-
try and chiral symmetry, as well as Lorentz invariance. Thus
the DR method respects more symmetries than the cutoff
method.
Using various regularization ways is interesting, because

we believe that the regularization scheme is a dynamical
part of the NJLmodel, related to the effective size and shape
of the quark interaction as discussed in Ref. [30]. Thus the
choice of regularization has direct effect on the reliability
of the NJL model. It was found that the model with the DR
nicely describes quark systems at low energy, specifically
such characteristics as the phase structure and meson prop-
erties [29–32]. Note that if we make some assumptions, the
Schwinger-Dyson equation coincides with the gap equation
in the two-dimensional NJL model at the leading order of
1=Nc expansion [33].
We shall study in this paper the phase diagram in the

three-flavor NJL model with the DR. It is interesting
because the recent work by the present authors [30] indi-
cates that the phase structure, especially the order of the
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transition, may differ drastically from the one in the cutoff
regularization.

The structure of this paper is as follows: In Sec. II, the
three-flavor NJL model and its parameters are presented.
Section III is devoted to the explanation on the procedure
of drawing the phase diagram. We then display the result-
ing phase diagram of the model in Sec. IV. We also
evaluate the Columbia plot for two regularization methods
in Sec. V. The concluding remarks are given in Sec. VI.

II. THREE-FLAVOR NJL MODEL

A. The model

The Lagrangian of the three-flavor model is

LNJL ¼ X

i;j

�qiði6@� m̂Þijqj þL4 þL6; (1)

L4 ¼ G
X8

a¼0

��X

i;j

�qi�aqj

�
2 þ

�X

i;j

�qii�5�aqj

�
2
�
; (2)

L6 ¼ �K½det �qið1� �5Þqj þ H:c:�; (3)

where m̂ij represents the diagonal mass matrix

diagðmu;md;msÞ with flavor indices i, j. G and K are the
four- and six-fermion couplings, �a are the Gell-Mann

matrices in flavor space with �0 ¼
ffiffiffiffiffiffiffiffi
2=3

p � 1. The determi-
nant inL6 runs over flavor space, so this leads to the six-point
interaction known as the Kobayashi-Maskawa-’t Hooft
term [34,35].

The vacuum of the model is determined by the minimum
of the thermodynamic potential� ¼ � lnZ=ð�VÞ with the
partition function Z, the inverse temperature� ¼ 1=T, and
the volume of the system V. Applying the mean-field
approximation, we can calculate the potential � in the
imaginary time formalism,

� ¼ �v þ�0 þ�T; (4)

�v ¼ 2Gð�2
u þ�2

d þ�2
sÞ � 4K�u�d�s; (5)

�0 ¼ � 2D=2Nc

2

Z dD�1p

ð2�ÞD�1
½Eu þ Ed þ Es�; (6)

�T ¼ � 2D=2Nc

2
T
Z dD�1p

ð2�ÞD�1

X

i;�
ln½1þ e��E�

i �: (7)

Here �v corresponds to the vacuum contribution by the
chiral condensates, �0 and �T denote the temperature-
independent and -dependent contributions, �ið� h�iiiÞ is
the chiral condensate for each quark which is the order
parameter of the model, and Ncð¼ 3Þ is the number of
colors. D denotes dimensions in the fermion loop integral,

Ei ¼ ðp2 þm�2
i Þ1=2 is the energy of the quasiparticle with

the constituent quark mass m�
i , E

�
i ¼ Ei �� with a quark

chemical potential �ð¼ �u ¼ �d ¼ �s).
The fermion loop integral in Eq. (6) diverges, therefore

we will perform the analytic continuation in D to regular-
ize it by decreasing the dimension D as discussed in
Refs. [30,31]. In the cutoff scheme, the divergent contri-
bution is dropped by introducing the momentum cutoff �.
To be more precise, the regularization in the DR and cutoff
schemes is performed by the following replacements

Z dD�1p

ð2�ÞD�1
! 2ð4�Þ�ðD�1Þ=2

�½ðD� 1Þ=2�M
4�D
0

Z 1

0
dppD�2; (8)

Z dD�1p

ð2�ÞD�1
! 1

2�2

Z �

0
dpp2; (9)

where M0 is the renormalization scale that is needed to
render physical quantities in correct mass dimensions.
As mentioned in the Introduction, the constituent quark

mass

m�
i ¼ mi � 4G�i þ 2K�j�k; ði � j � k � iÞ (10)

is closely related to the chiral symmetry breaking, namely to
the value of �i. The self-consistent gap equations (10) are
obtained as the condition for the thermodynamic potential to
be at the extremum, @�=@�i ¼ 0. Equations (10) explicitly
show that the difference between constituent and current
quark masses is due to the underlying chiral symmetry
breaking.
It is worth mentioning that the anomalous UAð1Þ trans-

formation can be used to ensure that all quark masses are
positive. However, the UAð1Þ transformation leads the
positive chiral condensates which are not consistent with
the study of QCD sum rules [36]. The sign of the mass
should be studied when considering CP-violating gauge
couplings [37]. The detailed arguments on the UAð1Þ trans-
formation and the CP problem are discussed in the
Appendix. The sign of the constituent quark masses does
not change the phase diagram of the chiral transition in the
NJL model.
Note that the constituent quark masses can be positive

if one performs the renormalization by introducing coun-
terterms which are necessary to eliminate the divergences
coming form loop integrals [38]. However, the renormal-
ized models in DR generate results similar to those in the
cutoff method, which is not of interest in this paper.

B. Model parameters

The NJL model with the DR has seven free parameters:
current quark mass mu, md, ms, the four- and six-point
couplings G, K, the dimension D, and the renormalization
scale M0.
We consider, for simplicity, the isospin symmetric case,

md ¼ mu, and set several values for muð¼ 3; 4; 5; 5:5;
6 MeVÞ. We then fix the remaining parameters by
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choosing five physical quantities from among those listed
below:

m� ¼ 138 MeV; f� ¼ 92 MeV;

mK ¼ 495 MeV; m�0 ¼ 958 MeV;

m� ¼ 548 MeV; �1=4 ¼ 170 MeV:

(11)

Following Ref. [30], we name the parameter sets as case �
andm� depending on which quantities are selected. Case �

(m�) is fitted by fm�; f�;mK; m�0 ; �ðm�Þg. The parameter

setting was performed in Ref. [31], and we shall employ
three parameter sets, Case mLD

� , m� and �, which are

shown in Tables I, II, and III. Note that case m� has two

parameter sets for mu ¼ 3 MeV; to distinguish between
them, we use the superscript LD (lower dimension).

For the sake of comparison we also align the parameters
of the cutoff case in Table IV. In the cutoff case, we fix four
parameters, ms, G, K and � with fm�; f�;mK; m�0 g.
Unfortunately, there is no solution to simultaneously repro-
duce the above listed quantities for mu * 5:87 MeV.

III. CRITICAL BEHAVIOR

In this section we explain how to draw the phase dia-
gram of the model through the analysis of the thermody-
namical potential and the gap equations.

A critical temperature Tc or chemical potential �c are
given by the maxima of

@�u

@t
; ðt ¼ T or �Þ: (12)

To be precise, in the case of t ¼ T, the critical temperature,
Tc, is given by a value of T at which the two-variable
function, @�uð�; TÞ=@T, reaches the maximum. Thus the
critical temperature, Tc ¼ Tcð�Þ, is a function of �. The
critical chemical potential, �cðTÞ, is defined analogously.
We apply t ¼ Tð�Þ for low � (T) in the crossover

region. The above quantity, @�u=@T, becomes infinite at
Tcð�cÞ when the transition is of the first order. In this case
we determine the transition boundary by the point where
the discontinuous change of the chiral condensate �u

occurs by directly searching the minimum of the thermo-
dynamic potential. It is obvious that this procedure is
consistent with the criterion of Eq. (12), because a diver-
gent point coincides with the maximum point.

A. Thermodynamic potential

To see the tendency of the phase transition, we show the
behavior of �ð¼ �ð�u;�sÞ ��ð0; 0ÞÞ for the cases m�

and cutoff, withmu ¼ 4 MeV near the transition boundary
in Fig. 1. The curves are plotted along the line �s ¼
0:36�u þ 0:83�0

u for T ¼ 10, 75 and 85 MeV with
� ¼ 480 MeV in the upper panel, and along the line

TABLE III. Case �.

mu ms G K M0 D

3.0 77.1 �0:0168 2:23� 10�7 120 2.28

4.0 106 �0:0143 2:11� 10�7 116 2.36

5.0 134 �0:0119 1:80� 10�7 112 2.43

5.5 150 �0:0109 1:62� 10�7 110 2.47

6.0 166 �0:00992 1:48� 10�7 109 2.50
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FIG. 1. Upper panel: 0:1 ��=M4
0 along the line �s ¼

0:36�u þ 0:83�0
u in case m� with mu ¼ 4 MeV for T ¼ 10,

75, 85 MeVand � ¼ 480 MeV. Lower panel: 100 ��=�4 along
the line �s ¼ 0:103�u þ 1:43�0

u in the case Cutoff with mu ¼
4 MeV for T ¼ 10, 20, 30 MeV and � ¼ 290 MeV. Here � ¼
�ð�u;�sÞ ��ð0; 0Þ and �0

u denotes the chiral condensate at T,
� ¼ 0 for each case. The circles indicate the global minima.

TABLE II. Case m�.

mu ms G K M0 D

3.0 79.0 �0:0130 2:29� 10�7 107 2.37

4.0 106 �0:00748 8:26� 10�8 92.0 2.52

5.0 134 �0:00357 1:99� 10�8 73.2 2.69

5.5 147 �0:00231 8:40� 10�9 62.4 2.77

6.0 162 �0:00142 3:23� 10�9 50.9 2.87

TABLE I. Case mLD
� .

mu ms G K M0 D

3.0 84.9 �0:0195 9:02� 10�7 118 2.29
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�s ¼ 0:103�u þ 1:43�0
u for T ¼ 10, 20, 30 MeV with

� ¼ 290 MeV in the lower panel. These lines are chosen
so as to show the global minima for lower T ¼ 75ð10Þ MeV
and higher T ¼ 85ð30Þ MeV, which are indicated by the
circles, near the transition temperature Tc ’ 80ð20Þ MeV.
�0

u denotes the chiral condensate �u at T, � ¼ 0 for each
case.

There exists a bump between two stable minima in the
DR case, which means that the transition is of the first order
between T ¼ 75 and 85 MeV for mu ¼ 4 MeV in the Case
m�. The shape of the potential with a bump does not change

drastically if one chooses different parameter sets. On the
other hand, the cutoff case (lower panel) produces rather
monotonous curves with no bump when we choose the
parameter sets with a small value of mu, which leads to a
smooth crossover. This different tendency may stem from
the fact that the ratio of the thermal contribution (� depen-
dence)�T=ð�v þ�0Þ in the DR case is larger than that in
the cutoff case at low T.

B. @�u=@T

In the crossover region, it is technically easier to analyze
Eq. (12) through solving the gap equations because �u

changes continuously with respect to Tð�Þ. We show the
numerical results in Fig. 2. One sees that the maximum
point moves toward lower T with increasing �, and the
peak becomes large at high �. The peak actually diverges
when T and � coincide with the critical point ðTCP;�CPÞ.
Below TCP, the transition becomes first order, and the
analysis by Eq. (12) is no longer practically useful for
the determination of the transition boundary as mentioned
above.

IV. PHASE DIAGRAM

We are now ready to discuss the phase structure of the
NJL model with the DR.

A. Transition on �u

Figure 3 displays the typical structure of the phase
diagram in the model with the DR in the Case mLD

� . This

is a reasonable picture of a system in the chiral symmetry
broken phase at low T and �, and in the chiral symmetry
restored phase at high T and/or �. The solid (dashed) line
represents the first-order (crossover) transition, and the
circle indicates the critical point. Note that the transition
temperature, Tc ¼ 184 MeV for � ¼ 0, is comparable
with the lattice QCD prediction, 150–200 MeV. The criti-
cal point is located at ðTCP;�CPÞ ¼ ð99 MeV; 239 MeVÞ,
and it is interesting to see that TCP is close to one obtained
in the PNJL model with the cutoff regularization, TCP ¼
102 MeV, for the frequently used parameter set of [9],
whereas TCP ¼ 48 MeV in the NJL model [24]. Note
that the obtained critical point is close to one obtained in
a NJL-type model with the smooth form factor [20],
ðTCP;�CPÞ ¼ ð101 MeV; 211 MeVÞ and in the linear
sigma model [39], ðTCP;�CPÞ ¼ ð99 MeV; 207 MeVÞ.
Below we make a more detailed comparison between the
DR and the cutoff schemes.
Figure 4 shows the phase diagrams in the casesm� and�

for various mu. We note that in the case m�, the region of

the chiral symmetry broken phase becomes smaller with
choosing the smaller value of mu. On the other hand, the
case � produces similar curves for differentmu. The differ-
ent behavior can be explained by the fact that the constitu-
ent quark mass m�

u gets smaller with decreasing mu in the
case m�, while it almost does not change in the case � as

discussed in Ref. [31]. In the cutoff case (Fig. 5) the region
of the chiral symmetry broken state shrinks when mu is
lowered as observed in case m�. It is very interesting to

TABLE IV. Case Cutoff.

mu ms G�2 K�5 �

3.0 89.5 1.55 8.34 960

4.0 110 1.60 8.38 797

5.0 128 1.71 8.77 682

5.5 136 1.81 9.17 630

5.87 139 2.09 10.1 580
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note that the critical point disappears below mu ¼ 5 MeV,
where the transition is crossover for all T and �.

A striking difference between the two regularizations is
that the critical point moves towards higher temperature
with decreasingmu in the DR, while it moves to the opposite
direction in the cutoff case. The difference may be under-
stood by observing the value of the six-point coupling K,
which becomes larger (smaller) with decreasing mu in the
DR (cutoff) procedure, since the Kobayashi-Maskawa-’t

Hooft term shown in Eq. (3) tends to drive the first-order
phase transition [24].

B. Partial transition on �s

As discussed in Ref. [30], chiral condensates undergo
two discontinuous changes at low T in the DR scheme.
Figure 6 displays the typical behavior of �u and �s as
functions of � at low Tð¼ 10 MeVÞ, plotted in the case
mLD

� with mu ¼ 3 MeV. One clearly observes two gaps:

one is located around �ðuÞ
c ’ 300 MeV and the other is

around�ðsÞ
c ’ 365 MeV. Here we call these discontinuities

as first and second gaps for lower and higher chemical
potential, respectively. The first gap comes from the effect
of the approximate SULð2Þ � SURð2Þ restoration and the
second one comes from that of the partial SULð3Þ �
SURð3Þ restoration. Two gaps are also observed in the
NJL model with the cutoff regularization under the charge
neutrality condition [40]. Thus it may be interesting to
study the phase structure concerning the second transition
as well.
To draw the phase diagram on the second transition, we

set the criterion of the transition by using the following
quantity

@�s

@t
; ðt ¼ T or �Þ: (13)

Then below �CP, namely in the crossover region, the above
quantity has only one maximum, which determines the
crossover transition on �s. While above �CP, the quantity
@�s=@� shows nontrivial behavior; it becomes infinite at

�ðuÞ
c and has second maximum at �ðsÞ

c . So @�s=@� has

typical two maxima at �ðuÞ
c and �ðsÞ

c below TCP, as seen in
Fig. 6. Here we call the transition point corresponding to the

second maximum �ðsÞ
c , ‘‘the second phase boundary.’’ To

distinguish between the two phase transitions, we call the
transition line on �u, discussed in the previous subsection,
‘‘the first phase boundary.’’
In the phase diagram on the first and second phase

boundaries (Fig. 7), the dashed and dotted lines represent
the crossover transition on �u and �s, respectively.
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The solid line for lower (higher) chemical potential indi-
cates the discontinuous change on the first (second) gap.
We see that the crossover line on �s is observed at a bit
lower temperature than that on �u for �<�CP. It should
be noticed that the critical curves on�u and�s intersect at
the critical end point (TCP, �CP) on �u. Because the value
of �s is affected by �u, as is clearly seen from Fig. 6, �s

shows discontinuous change at the point where �u has a
gap. Then @�s=@t blows up and approaches infinity near
the critical point where @�u=@t is divergent. Below TCP,
@�s=@� has two maxima appearing at the first gap and
higher chemical potential. The first maximum coincides
with the red solid line and the second one is plotted by the
blue line in Fig. 7. The transition on the second boundary
also has the critical point whose location is exhibited by the
blue circle at higher chemical potential.

We also studied the other cases, m� and �, with various

mu, and found that the qualitative behavior does not show
remarkable difference; the critical point on �s moves
toward higher temperature with decreasing mu as seen in
the �u case. Therefore, we only displayed the case mLD

�

here.

V. CRITICAL BOUNDARY

Having obtained the phase diagram for the NJL model in
the DR scheme, it may be interesting to discuss the chiral
critical boundary, so called Columbia plot [41]. The critical
boundary is drawn by searching the order of the phase
transition for various mu and ms while the remaining
parameters discussed in Sec. II B are fixed. Thus the cur-
rent quark masses, mu and ms, are treated as free parame-
ters when one studies the critical boundary.

Figure 8 displays the critical boundary for the cases m�

(upper panel) and cutoff (lower panel) for various mu. We
first note that the values of the critical mass in the DR are
considerably smaller than in the cutoff case with mu ¼ 5:0

and 5.5 MeV. We also note that the region of the first-order
phase transition in the case m� does not depend drastically

on the choice of the parameter sets. However, the first-
order phase transition region shrinks with decreasing mu

and disappears atmu ¼ 4 MeV in the case Cutoff. This is a
sharp contrast seen between the cases with DR and Cutoff
regularization.
We have also evaluated the critical boundary for the

cases mLD
� and � and found that the obtained curves

indicate similar pictures to those in case m�. Here we

have only shown the results for case m�.

VI. CONCLUDING REMARKS

We studied the phase diagram of the NJL model with the
DR and cutoff regularization. We found that the phase
diagram on the T-� plane in the model with the DR for
various parameter sets shows qualitatively similar pictures.
The typical transition temperatures are around 170, 350,
250 and 170 MeV in the cases mLD

� , m�, � and Cutoff,

respectively. The critical points are located around TCP ¼
100–150 MeV in the DR, and TCP ¼ 50–100 MeV in the
cutoff method. Interestingly enough, the temperature of
the critical point TCP increases with decreasing mu in the
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DR case, while it rapidly becomes small in the cutoff case
as confirmed in Fig. 5. This is a sharp qualitative difference
between the two cases.

In Sec. V we drew the Columbia plot for the case of
DR and cutoff regularization to study the order of phase
transition in more detail. We saw that in the Columbia plot
(� ¼ 0), the cutoff way leads to a larger region of the first-
order phase transition than that of the DR. However, the
first-order transition region disappears when one chooses
the parameter sets with smaller mu in the cutoff case.
On the other hand, the first-order transition region remains
in the DR, which is again the distinguishing difference
between the two regularizations.

We have also studied the phase structure on the change
of �s in Sec. IVB, where we found that the approximate
SULð2Þ � SURð2Þ symmetry and the partial SULð3Þ �
SURð3Þ symmetry restore at a similar temperature for low
chemical potential, �<�CP. It may be difficult to distin-
guish between the two lines experimentally, because
the transitions are smooth crossovers at low chemical
potential.

From the obtained phase diagrams and the Columbia plot,
we conclude that the first-order phase transition persists for
low mu in the model with the DR method. The finding is
consistent with the current symmetry analysis–based con-
sensus [42], stating that the chiral phase transition is of the
first order in the chiral limit,mu;d;s ! 0. This tendency may

be understood by the following reasoning. The loop contri-
bution from the lower integration momenta is enhanced by
lowering dimension. It introduces nonlocality in the model
with the DR. The infrared behavior of the loop integral is
important for thermal corrections. It can raise the critical
end-point temperature, TCP.

Finally, because the parameter difference crucially
affects the location of the critical point as confirmed in
this paper, we think it is interesting to study the related
issues, such as the case with the chiral limit and the
analysis in the next-to-leading order approximation of the
1=Nc expansion.
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APPENDIX: UAð1Þ AND STRONG CP VIOLATION

We start from a primordial 	 term,

L	 ¼ g2s
16�2

	
���Fa
��F

a
�; (A1)

where Fa
�� is the field strength for gluons, and gs is the

strong coupling constant. The anomalous UAð1Þ transfor-
mation induces the following additional contribution,

L0
	 ¼

g2s
16�2

ð	þ arg det m̂�Þ
���Fa
��F

a
�

¼ g2s
16�2

ð	þ �Þ
���Fa
��F

a
�; (A2)

with m̂� ¼ diagðm�
u; m

�
d; m

�
sÞ. In evaluating the second line,

we assume that all the constituent quarkmasses are negative.
The term breaks CP symmetry and generates the neutron
electric dipole moment. The coefficient is experimentally
constrained as in Ref. [43],

	þ � & 10�9: (A3)

This is a fine-tuning problem, which is known as the strong
CP problem [44].
Then theCP symmetry is almost restored after the chiral

condensation. The primordial 	 may be tested in the phe-
nomena at high T and �, where the chiral symmetry is
partially restored. One of these possibilities may be found
in the process for the baryongenesis, but it is beyond the
scope of the present study based on the NJL model.
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