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Generalized scaling ansatz and minimal seesaw mechanism
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Generalized scaling in flavor neutrino masses M;; (i, j = e, wu, 7) expressed in terms of fsc and

the atmospheric neutrino mixing angle 6y; is defined by M;./M;, =

—Kty; (i = e, u, 7) with k, = 1,

k, = B/Aand k, = 1/B, where 1y; = tanf;, A = cos’fsc + sin*fsct3; and B = cos?Osc — sin*Ogc13;.
The generalized scaling ansatz predicts the vanishing reactor neutrino mixing angle 6,3 = 0. It is shown
that the minimal seesaw mechanism naturally implements our scaling ansatz. There are textures satisfying
the generalized scaling ansatz that yield vanishing baryon asymmetry of the Universe (BAU). Focusing
on these textures, we discuss effects of 6,3 # 0 to evaluate a CP-violating Dirac phase 6 and BAU and
find that BAU is approximately controlled by the factor sin’6,5sin(28 — ¢), where ¢ stands for the
CP-violating Majorana phase whose magnitude turns out to be at most 0.1.
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L. INTRODUCTION

The recent observation of the nonvanishing reactor mixing
angle 6,5 [1] opens a new window to clarify properties of CP
violation in neutrino physics. CP violation occurs in neutrino
oscillations [2] and in leptogenesis [3] based on the seesaw
mechanism [4]. In the seesaw mechanism, neutrinos are
almost Majorana particles generated by heavy Majorana
neutrinos as heavy as O(10'°) GeV and turn out to be
extremely light so that they are compatible with experimental
observations [5-9]. Effects of CP violation in the lighter
Majorana neutrinos are characterized by phases of the
Pontecorvo-Maki-Nakagawa-Sakata (PMINS) unitary matrix
Upmns [10], which converts massive neutrinos vy, 3
into flavor neutrinos v, , ;. Three phases, one CP-violating
Dirac phase 6 and two CP-violating Majorana phases ¢ 3,
are involved in Upyns [2]. On the other hand, CP violation in
leptogenesis is characterized by phases related to heavy
Majorana neutrinos. These two types of CP violation are,
in principle, independent of each other. However, they can
be correlated if there are some constraints that reduce the
number of degrees of freedom, which result in relating two
different types of CP phases. It is known that the minimal
seesaw mechanism utilizing two heavy neutrinos [11]
involves three physical CP-violating phases in leptogenesis,
which are equivalent to 6 and ¢, 3; therefore, CP violation in
leptogenesis can be controlled by 6 and ¢, ;.

The observed sin?6,5 is found to be sin’6,3 = 0.025
[12,13], close to sin20]3 = 0, which suggests a theoretical
principle that sin?6,5 vanishes as the first approximation
and that a certain perturbation induces nonvanishing
sin’,5. There have been various theoretical ideas that
give sin’f;3 = 0 [14-23]. Among others, the generalized
scaling ansatz in flavor neutrino masses, which is an
extended version of the scaling ansatz [22], is proposed to
discuss a new aspect of neutrinos [23]. The generalized
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scaling is described by two angles, fsc and the atmospheric
neutrino mixing angle 6,3, which provide the following
scaling rule among Majorana flavor neutrino masses M;;

(i,j=-e, u, 7):
Mi’T
M

— = TKily (i=e u, 1), (D
in

where 1,3 = tanfys, (k,, k,, ;) = (1, B/A, 1/B) and
A= COSzasC + Sinzesct§3,

@)

— o2 — an? 2
B = cos“0gc — sin“Ogc135.

It can be proved that Eq. (1) indices 8,3 = 0. The condition to
obtain 6,3 = 0 consists of the following two relations [21]:

Me‘r = _t23Me/u (3)
1— 15
MTT:M,U.,U, +7M,u.’ry (4)
I3

where Eq. (1) turns out to satisfy these relations and the
generalized scaling maintains 6,3 = 0. The angle Oy itself
is defined from M., /M, = —k 153 to be [23]

C%3(Ml”' + tZSMM,LL) (5)
(1- t%3)MMT + t23M,uM’

Sil’l2 HSC =

where c,3 = cosf,3.

In this article, we would like to demonstrate that the
generalized scaling rule is naturally realized in the minimal
seesaw mechanism and to discuss the creation of the
baryon asymmetry of the Universe (BAU) via leptogenesis
[24]. In Sec. II, some of the seesaw textures that satisfy the
generalized scaling ansatz are found to yield the vanishing
BAU. In these textures, it is expected that breaking effects
of the generalized scaling ansatz initiate creating BAU
and simultaneously inducing Dirac CP violation as a result
of A5 # 0. In Sec. III, we describe leptogenesis based
on the minimal seesaw mechanism and show theoretical
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arguments to make predictions on possible correlations
between BAU and CP-violating phases. In Sec. IV, a
numerical analysis is performed to estimate the sizes of
BAU and of Dirac and Majorana CP violations, which will
be compared with our theoretical predictions. The final
section, Sec. V, is devoted to a summary.

II. SEESAW TEXTURES

The minimal seesaw mechanism introduces two heavy
Majorana neutrinos N;, into the standard model. We
understand that a 2 X 2 heavy neutrino mass matrix Mp
and a charged lepton mass matrix are transformed into
diagonal and real ones. After the heavy neutrinos are
decoupled, the minimal seesaw mechanism generates a
symmetric 3 X 3 light neutrino mass matrix M, given by

M, = —mpMg'm}, where my, is a 3 X 2 Dirac neutrino
mass matrix. We parametrize My by
MR=<M1 0) (M > M), (©6)
0 M,
and mp by

VMia,
VM ia,
VM a3

M,b,
JMyb; |, @)
M, b5

mp =

which results in

Mee Me,u MeT
M,=M, My, M,

MeT M}LT MTT

a%-ﬁ-b% ala2+b1b2 a1a3+b1b3
=1 a1a + b1b2 a% + b% aras + b2b3 , (8)
a1a3+b1b3 dza3+b2b3 a§+b§

where the minus sign in front of the mass matrix is dis-
carded for later discussions. One of the masses of v, 3 is
required to vanish owing to det(M,) = 0.

To obtain the seesaw version of the generalized scaling
ansatz, we describe the basic conditions on M, Egs. (3)
and (4), in terms of seesaw mass parameters a;,3 and
by ,3 and search their solutions in much the same way

that Eq. (1) is derived. These conditions are readily
converted into

(a3 + tyzax)ay + (bs + ty3by)by =0, 9)

(tyzaz — ax)(az + tr3a;) + (ta3b3 — by)(b3 + ty3by) = 0.
(10)
The minimal seesaw mechanism that keeps 6,3 vanished

should satisfy Egs. (9) and (10). The simpler solutions to
Egs. (9) and (10) can be either
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(1) as + tza, = b3 + t23b2 = O, leading to

VMia, VM, b,

mp = VM a, VM, b, , (1D
VM (—ty3a;)  /My(—123b,)
or
(2) a, = O, hay — a, = 0 and b3 + t23b2 = 0, lead-
ing to
0 Ay
mp =\ Ma, VM> by (12

Miay /[ty \JMy(—123D,)

and a solution with b; = 0 is

VMja, 0
VMia, VMyby | (13)
VM (—tyay) [Mayby /1

mp =

Although there are other solutions,' the above solutions
suffice to show consistent results with the generalized
scaling ansatz.

For Eq. (11), case 1, we find that

M,, = —ty(aya, + biby) = —t3M,,, (14)
and
M,, = a% + b%,
M, = —tp(a} + b)), (15)
M., = t3;(a} + b3),
from which Eq. (5) leads to
sin2fgc = 0, (16)

corresponding to the inverted mass hierarchy with m; = 0
[22]. On the other hand, for Eq. (12), case 2, we find that

M, = —ty3b1by = —13M,,, (17)
and
_ 2 2 _ 1, 2
M’u#—az‘f‘bz, M#T—gaz_tz_gbz,
| (18)
MTT = 761% + l%'j»b%’
133
from which Eq. (5) leads to
2
c o (a2/123)
sin“fgc = . (19)
(ay/153)* + (123h,)?
'A solution can be supplied by b, = —ty3ay, by = t§3/a3 and

by = a, with t%3 = 1, which describes a p-7 symmetric seesaw
model [25].
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Similarly, we obtain that

(by/123)?
(13a,)* + (by/153)*’

for Eq. (13). These definitions of sin?6c, depending upon
the types of seesaw textures, provide the seesaw version of
Eq. (5).

Since the case with m3 = 0 is described by Eq. (11),
Egs. (12) and (13) should describe the normal mass hier-
archy with m; = 0. In other words, the inverted mass
hierarchy with m; = 0 realized at 6;3 # 0 does not
approach the ideal textures Eqgs. (12) and (13) at 8,5 = 0.
This is because, for ;3 # 0, we obtain that, for an arbitrary
parameter Xx,

My, +2xM,. + x*M . = (a, + xa3)* + (by + xb3)?,
(2D

Sil’l2 esc = (20)

as well as
My, +2xM,,. + x*M,,
= (—ca3812 — $23C12813 + (523512 — €23¢12873))
+ (cx3c1n = 523812813 — X(s23¢1 + €23812873)) 1y,
(22)

where s5;; = sinf;; and ¢;; = cosb;; (i, j = 1, 2, 3) for 6,
being the solar neutrino mixing angle, and §,3 = s,3¢’® and
i, = mye % (a=1, 2, 3) for ¢, being Majorana
phases.? At x = 1/1,3, Eq. (22) vanishes if 6,3 = 0; there-
fore, Eq. (21) vanishes as well. On the other hand, at x =
1/ty3, it is Eq. (11) that gives the vanishing of Eq. (21). At
015 = 0, Eq. (11) is, thus, derived. When m3 # 0, such as in
a seesaw mechanism with a 3 X 3 myp, is taken, Eqgs. (12)
and (13) can describe the inverted mass hierarchy.

III. CP VIOLATION AND LEPTOGENESIS

Leptogenesis creates BAU whose estimate contains the
factor (mjng)lz [3] which turns out to be ajb; + a3b, +
a3b;. It is found that BAU vanishes for the seesaw textures,
Egs. (12) and (13), which yield a{b; + a3b, + a3b; =0
[26]. If these textures of mj, are adopted, CP violation of
leptogenesis and of the Dirac type for flavor neutrinos
becomes active only if sources of 6,3 # 0 are present
[27]. For the rest of the discussions, we focus our attention
on these seesaw textures to discuss how the creation of
BAU relates to CP violation for flavor neutrinos. We
restrict ourselves to discussions based on Eq. (12), from
which results from Eq. (13) can be obtained by the inter-
change of a;,3 <> by, 3 unless otherwise specified.

To obtain 63 # 0 and the nonvanishing BAU, we
include breaking terms of the generalized scaling ansatz,
which are denoted by daz and b5 to give

*The CP-violating Majorana phase ¢ is defined by ¢ = ¢35 — ¢,
form; = 0 and ¢= ¢, — ¢, for mz = 0.
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a
a3 = =+ 3@3,

b3 = _t23b2 + 6b'§ (23)
123

The angle g is still defined by Eq. (5), and the i = 7 part
of the generalized scaling rule Eq. (1) gets broken accord-
ing to

b
MTT + K7t23M,u,T = (613 + [23612)603 + <b3 - t—2)8b3
23

(24)

The nonvanishing BAU is generated owing to ajb; +
asby + aib; # 0, which is calculated to be

Ed Ed ES 1 ES * ES
albl + (libz + a3b3 = ga28b3 - 123803b2 + 8a33b3.

(25)

On the other hand, the CP-violating Dirac phase &, which
is contained in a specific version of Upyng defined by the
Particle Data Group [28], is estimated to be [29]

1
0= arg[(t—M;T + M, + 5Mi7)6MeT
23
+ M, 6M;, — t23MeM6MTT], (26)

for the normal mass hierarchy, where 6M,, and oM,
calculated from

6Me7' = MeT + t23Me,w (27)

1-1
M., =M, — (MW +—= Mw),

I3
turn out to be
5M€T == b] 5b3,

28
1+13, (28)

SMTT = (a25a3 - b26b3) + (6613)2 + (81)’;)2

At the same time, 6,3 is calculated by the following
formula [30]:

2c236Me7'
(s33M ,, + c3M o+ 2503¢03M )€ — M e

(29)

tan2013 =

We can further approximate Eqgs. (25), (26), and (29) to
see that the breaking b5 is a main source to start creating
BAU and inducing the nonvanishing é and €,5. The normal
mass hierarchy demands that |M,, ;.| > M. .yl
which is equivalent to |a3 4| > |b{,;|. For the region
where second order terms with respect to 6as; and 6b;
are safely neglected, we obtain

1
ayb, + azb, + aib; = ga§8b3, (30)
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& =~ arg(ay’b, 8b3), €2))

as well as

b,8b;
a3

tan2613 = 2C23S%3 ’ (32)

for sin’fgc =~ 1. Therefore, we understand that the main
source of CP violations and 03 # 0 is the single breaking
term 6b5. It should be noted that, for the b; = 0 texture,

aiby + a3b, + a3b;y = tibzﬁa; (33)
23
is derived in place of Eq. (30).

We describe various seesaw parameters to estimate BAU
from leptogenesis based on the minimal seesaw mecha-
nism. The recipes to calculate BAU are given as follows
[31,32]:

(1) The heavy neutrinos are taken to satisfy the hier-
archical mass pattern of M| < M,, where the CP
asymmetry from N, is washed out.

(2) The CP asymmetry from the decay of N, is given by
the flavor-dependent € (a = e, u, 7):

w_ 1 Im[(m;r))la(mo)az(mzr)ma)lz]_ M,
© 87TU2 (m;r)mD)” f(Ml),

(34)

where v =~ 174 GeV and

flx)= x[l — 1+ x2)1n<1 * xz) + ﬁ] (35)

x2

leading to f(x) = —3/2x, for x > 1, which is the
present case.

(3) The washout effect on ¢ is controlled by n(mS,),
which takes the form

) (8.25 X 1073 eV N ( X )1.16)—1
.x = )
K X 2% 104 eV
(36)
where
« (m‘r)la(mD)al
Mo = DT (37)

represents an effective mass.

(4) For 10° = M, =< 10" to be taken as our adopted
range of M, the created lepton asymmetry Y,,
which becomes flavor dependent, is calculated to be

112 417
Y, = — —| (e + e*)n| == (a, > + lay/? )
L= e em(Ggg Qe +laap)

390
+ yn(@wz)], (38)

where g, is the effective thermodynamical number
of the relativistic degree of freedom that is estimated
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to be 106.75 for the standard model at a cosmic
temperature greater than 300 GeV and

3M1 Im[a’i‘bl(a’fbl + [l;bz + d;b:;)]

8 == — ’
167v? lai > + lay)? + las|?

o — 3M, Imla;by(aib; + asb, + aibs)]
167v? la;1? + la,|* + las|? ’

o 3M, Im[a3bs(aib, + a3b,y + a3bs)]

 16m? la, > + |ay|? + |as)?

(39)

The obtained Y; is related to the baryon asymmetry Yp:
Yp = —0.54Y;, and the final baryon-photon ratio
np(= (np — ng)/n,) is estimated to be nz = 7.04Yp.

To make theoretical predictions on 7, let us choose the
flavor-independent estimation of 7y, where 7 is propor-
tional to Im[(ajb; + a5b, + a’b3)*]. To see the depen-
dence of 1z on & and ¢, we evaluate 6b; appearing in
Eq. (30). For the normal mass hierarchy, using the relations

QZQO-,LLM‘\/M;L,W a3zo-TTVMTT blzo-eeVMeer
ep

py=Men oy Mer (40)
0-66 MC@ 0-36 Mee
where 00 .- = Tl and o, = 0, is required for dasz

to vanish at 6,3 = 0, we find that Eq. (28) yields

_ TeeS13C13 €113
NN

from 6M,, expressed in terms of m, 3 [29]. As a result,

] s13¢ ’m s 8
ayb, +asb, +asbs=o,.0,, 13713 m—3m3€’(5_7) 42)
2

Sbs A1)

$12€23

S12
is derived from Eq. (30). Since np « Im[(ajb, + a3b, +
a;b3)?], we reach mp o sin’63sin(28 — ¢), which is
the relation for the a; = 0 texture. On the other hand,
for the b; = 0 texture, we similarly find that 5y «
—sin’@,3sin(28 — ¢) from Eq. (33). Including M,, we
conclude that
Np & fBMlSin20]3 Sln(25 - d)) (43)
serves as a good prediction of ng, where 5 = 1 (é5 = —1)
for the a; = 0 (b; = 0) texture.
We also derive the relation between 6 and ¢ from the

i = u part of Eq. (1) equivalent to Eq. (5), which can be
rephrased in terms of m;, 5 as follows:

2 2 —i
(Asyzci3003¢13 + Biyzsiyel)mae
= [A(cp3c1n — $23812573)(523¢12 + €23512573)
— Btys(cazcin — $23512833) Ima. (44)

Therefore, we find that ¢ = 0 at 6,5 = 0. For 63 # O,
the right-hand side of Eq. (44) can be approximated to be
(1 = ty3115873)35¢3,m,, from which we derive
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tanqﬁ = —InlrS513 Sil’l(s, (45)

numerically leading to tan¢p = —0.1 siné for the observed
data. We expect that the magnitude of ¢ is at most 0.1.

Since we would like to discuss effects of the
CP-violating Dirac phase 6 on the creation of Y, we
may consider the renormalization effects that modify the
magnitude of 6 when 6 is promoted to Y;. It has been
discussed that the renormalization effect is rather insignifi-
cant for neutrinos in the normal mass hierarchy [33], where
we reside now.

IV. NUMERICAL ANALYSIS

We perform a numerical calculation of 1z by adopting
the following parameters obtained from neutrino
oscillations [12]:

Am3,[1075 eV?] = 7.62 = 0.19, (46)
Am3,[1073 eV2] = 2.55+00¢
sin?6,, = 0.32070916
Sinfy, = 0.427700% @7
sin20]3 = 0. 0246t888%g’

where Amy; = mi —mj for m; specifying a mass of
v; (i=1, 2, 3). There is another similar analysis that
has reported the slightly smaller values of sin’f,; =
0.365-0.410 [13]. The created nz should be consistent

with the WMAP observed data [34] of
np = (6.2 £0.15) X 10719, (48)

To study the dependence of 5 on 63, 6 and ¢, we use Yg))
as an appropriately normalized Y/M,, which becomes

YO o £p5in26,5 sin(28 — ). (49)

We have searched acceptable parameter regions by
changing M, up to 10'?> GeV for the a; = 0 texture and
upto5 X 10'" GeV for the b, = 0 texture to see how BAU
is created and how BAU depends on 63 and . The
neutrino masses, mixing angles and 7p are constrained
by their experimental data, Eqgs. (46)—(48), unless they
are specified. Our theoretical predictions, which have
been obtained by using certain approximations, are to be
compared with numerical results obtained without such
approximations. The results of our numerical analysis are
shown in Figs. 1-9:

(1) InFig. 1(a) for sin’6,3 =< 0.04, the angle As¢ should
satisfy 0.87 =< sin?fgc =< 0.99 to cover the observed
range of Am3,.

(2) Figure 1(b) for sin?6;3 = 0.04 shows to what extent
the general scaling rule of M,./M,, = — K ty; is
satisfied, and this scaling rule turns out to be satis-
fied within 70%.
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M sin® 6, <0.04

sin” g, <0.04

0-0 " .
0.87 0.90 0.93 0.96 0.99

102
sin” G,

85 090 095 1.00
sin® 6.

FIG. 1 (color online). Am%l as a function of sin?@gc, where the
grey rectangle denotes the experimentally allowed region of
Am3,, and (b) |(M,,/M,,) + Kk 1| as a function of sin*@sc,
where sin?fgc is restricted to reproduce the observed Am%l,
neither of which depends on the texture type.
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sin” 6,
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Dt et =l=l==T=1

<
(=1
<

4
0.01 0.02 003
Sin2 9]3 ' 0.04

-

-1.0

FIG. 2 (color online). Yg)), the appropriately normalized
Yp/M, as a function of sin?f 5 and & for (a) the a; = 0 texture
and (b) the b; = 0 texture.

(3) Figure 2 shows how Yfgo), the appropriately normal-
ized Yz/M,, evolves with sin?6,5 and §:

(a) The feature that Yg)) increases as sin’6;

increases appears for both textures, although it
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Y sin® 6, =0.0246 70023 ¢=—tan"' (0.1sin &)
[arbitrary] (a) (v) ¢ (a) (v)
(l)g ] A | 0.10
oA | A
e s a5 ;B! 7~ 0.05 - // \\
0.2 1—— — —+— 1 K
0.0 0.00
N ¥ —— 4
03 \H=\F ﬂi amr 0.05 | \ /
- - 1 -
AR | v | W \/
-1.0 -0.10 .
T T v T V4 V4 T T
—r == Z -r -= i r -Z 0 z -r -Z Z
T > 5 V4 T ) 0 2 T 4 5 5 V4 4 ) 5 V4
) ) ) )

FIG. 3 (color online). Yg)), the appropriately normalized FIG. 6 (color online). ¢ as a function of 6 for (a) numerical
Y/M,, as a function of § for (a) the a; = 0 texture and calculation of ¢ and (b) ¢ = —tan"'(0.1siné).
(b) the b; = 0 texture.

YO i 6, = 0.024600029 sin’ 6, = 0024658 10
[apiar] (a) (v) 5
(l)g T T —— ]
.8 8
oA A
0.4 T N Y W = o= T . 7
0.2 1 . i 1
A A 6
04 > 1 ¥ ﬁ’ 5
:83 i ] -
_1:0 - 1 - } ! } 4
-0.10-0.05 0.00 0.05 0.10 -0.10-0.05 0.00 0.05 0.10 3
(4 ¢ 2
FIG. 4 (color online). The same as in Fig. 3 but for ¢. 1
0
Y{" =sin (26 -9), ¢=—tan™' (0.1sin J)
v (@ ) g, =00246000% 0
1.0
0.8 yA va N A 9
0.6 H—} = f n - .
4 — T I J F S N A
8:; — .’Lﬁ \/ 7, [x107° 8
0.0 7
02 !l { Fi Il ‘\
0.4 - —— F— 10 6
0.6 - - v 7 \ } 8
(l):g it s wrs S N/ s 5
. _% 0 % z  -0.10-0.05 0.00 0.05 0.10 4 4
S [ 2 3
th 0 2
FIG. 5. Yl(g ) = §in(28 — ¢) with ¢ = —tan~'(0.1sind) as a )
function of (a) 6 and (b) ¢ for the a; = 0 texture, where figures
0

for the b; =0 texture are obtained by plotting th) = M, [xl()lo GeV}
—sin(26 — ¢) with ¢ = —tan~'(0.1 sind).
) ) FIG. 7 (color online). mp as a function of M, and § for (a) the
starts decreasing around sin’6,5 = 0.015 for the a; = 0 texture and (b) the b, = 0 texture.
b, = 0 texture, and the predicted proportional-

ity of ¥, E;O) to sin®63 in Eq. (49) is more visible (c) Leptogenesis starts creating BAU if 0 < § <
for the a; = 0 texture. /2 (mod ) for the a; = 0 texture and if
(b) The oscillating Y,(go) with 6 is compatible with —m/2 < 8 = 0 (mod 7) for the b; = 0 texture.
the prediction of Eq. (49), which is also com- (4) When 643 is restricted to the observed values, Figs. 3
pared with the results of Figs. 3 and 4. and 4 can be used to examine the oscillating
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-/2

29 _ +0.0029
sin® 6; =0.0246 5 j05¢

S,
—
Q
~
—_
<
~—~

”/2 ——— ——

-

0 20 40 60 80 100 0 10 20 30 40 50
M,[x10" GeV ] M,[x10" GeV |

FIG. 8 (color online). & as a function of M; to reproduce the
observed 7y for (a) the a; = 0 texture and (b) the by =0
texture.

M.,

FIG.

&)

(6)

s 2 +0.0029
sin” 5 =0.0246 7y )05¢

[meV] (a) (b)

Ul Ll

4.0 1

3.0 +

1.0 ‘ f f i ‘ f t !

0 20 40 60 80 100 0 10 20 30 40 50
M,[x10° GeV | M,[x10° GeV |

9 (color online). The same as in Fig. § but for |M,,].

behavior found in Fig. 2. The gross features of the
oscillating behavior of Yg)) in Fig. 3 and of the

Lissajous-like behavior of YI(SO) in Fig. 4 can be
accounted for by the prediction of Eq. (49)
as long as tan¢p = —0.1siné from Eq. (45) is used

to calculate ¢. Namely, two graphs of th) =
sin(26 — ¢) with tang = —0.1sind plotted in
Fig. 5 for the a; = O texture depict similar shapes
to those in Figs. 3(a) and 4(a). For the b; =0
texture, th) = —sin(26 — ¢) with tangp = —0.1sind
similarly accounts for the behavior of Yg]).
Figure 6 compares the result of the calculated ¢
as a function of § with our prediction of ¢ =
—tan"!(0.1sind), where we understand that our
prediction plotted in Fig. 6(b) can simulate ¢ well.
The minimum value of M; to reproduce the
observed mp can be determined by Fig. 7 and,
more explicitly, by Fig. 8 to be
(@) 1.5X 10" GeV (1.8 X 10! GeV) if 0 <6 <
7/2 (— 7 < 8 < —1/2) for the a; =0 texture;
(b) 6.5 X 10" GeV (4.5 X 10" GeV) if 7/2<
8 < (— 7w/2 < 6 <0) for the b; =0 texture.

Since BAU inversely depends on |a3| + [a3] + |&3],
a larger amount of 7y is expected for |af, ;| <
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|b3 5| corresponding to the b; = 0 texture that cer-

tainly allows M, to take smaller values as in (b).

(7) When mp and 65 are consistent with the observed
values, the correlation of 6 with M, is shown in
Fig. 8, where its behavior can also be explained by
the prediction of mgz < £gM;sin’5sin(28 — ¢)
with tan¢g =~ —0.1 siné.

(a) For the a; = 0 texture ({3 = 1), 6 tends to
approach 0 and 7/2 as M, increases, and this
behavior is consistent with the prediction of the
factor M, sin(26 — ¢) with |¢| < 0.1, which
tends to stay at the appropriate value corre-
sponding to the observed 1y and which requires
that |sin(26 — ¢)| gets smaller as M, gets
larger and either § = 0 or § = 7/2 (mod )
is a target value.

(b) For the b; = 0 texture ({5 = —1), the same
reasoning leads to the behavior that é tends to
approach 77/2 and 7 (mod ) as M, increases.

(c) Near the threshold to start creating the observed
1g, O points to the value such that | sin(26 — ¢)|
with |¢| < 0.1 is nearly maximal and § = /4
(mod 77) is selected for the a; = 0 texture as can
be read off from Fig. 8(a), while § = —w/4
(mod ) is selected for the b; = 0 texture as in
Fig. 8(b).

(8) |M,,| to be measured by neutrinoless double beta
decay [35] is computed to show Fig. 9 when np
and 6,3 are consistent with the observed values,
which describes the correlation of |M,,| with M.
We find that
(a) 1.2 meV = |M,,| < 4.0 meV,

(b) [M,,| starting around 3 meV increases up to
around 4 meV or decreases down to around
1.5 meV as M, increases.

The behavior of |M,,| is consistent with the known
estimation of |M,,| = |c25s3,mye$729 + 52.m;]
once the constraint that M sin26 is nearly constant
is taken into account. For the a; = 0 texture, at 6 =
0,8 = m/4and § = /2 selected as the key values
in list 6, the scales of 4.3 meV, 3.3 meV (around the
threshold) and 1.7 meV can be, respectively, calcu-
lated for ¢ = 0. Then, we expect that |M,,| starting
around 3.3 meV increases toward 4.3 meV or
decreases toward 1.7 meV as shown in Fig. 9(a).
The same explanation is possible for the b; = 0
texture in Fig. 9(b).

V. SUMMARY

We have found minimal seesaw models compatible
with the generalized scaling ansatz of Eq. (1). The angle
fsc is determined to be sin?Osc=c33(M,,,+13M,,)/
[((1—133)M ,, +123M,,, ], which satisfies 0.87 <sin’fsc =
0.99, where Am3, can stay in the observed range. The first
seesaw texture is described by
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VM a, VM, b,
mp = VM ay VM3 by ., (50)

«/Ml(_tzg)az + 503) \/Mz(_tzg,bz + 5b3)

where sin’fgc = 0 is derived. The second seesaw texture
consists of

0 Ay
JMra; Jb, (5D
VM (ay/ty3 + 8as) \/My(—123b, + 5b3)
where sin®0sc = (a5/123)*/[(a2/123)* + (1235,)*], and

\/Mlal O
\/Mlaz \/Mzbz ) (52)
VM| (—ty3ay + 8az) JMy(by/ty; + 8b3)

where sin?Ogc = (b,/123)?/[(t3a,)* + (b, /123)?]. However,
the second textures in the inverted mass hierarchy with
ms = 0 cannot be connected to those at ;3 = 0 but are
connected to the first texture with either a; = 0 or b; = 0.
Therefore, the second textures should yield the normal mass
hierarchy.

It is demonstrated that BAU vanishes for the second
textures in the exact scaling limit. For the a; = 0 texture,
the onset of CP violations and 63 # 0 is signaled
by the nonvanishing 6b;. Namely, BAU depends on
a30b;, the CP-violating Dirac phase is approximated to
be arg(a3?b,8b3), and 65 is evaluated to give tan26,3 =
2¢93533|b, 8b3/a3]. A similar conclusion is derived for the
b; = 0 texture.

Our main prediction is 7z * M;sin’6,5 sin(26 — ¢) for
the a; = 0 texture and 1z < —M,sin?6 5 sin(28 — ¢) for
the b; = 0 texture, together with tan¢ = —t,3¢;,5;3 sind.

mp=

mp=
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The features of 7 found in the numerical analysis based
on flavor-dependent leptogenesis turn out to be consistent
with our predictions based on the simplified flavor-
independent one:

(1) The proportionality of 7y to sin?6 5 shows up and is
more visible for the a; = 0 texture.

(2) When 6,5 is constrained to be the observed value,
the oscillating i with & and ¢ is well observed for
both textures and is consistent with the prediction
once the relation of tan¢p = —0.1 siné is included.

Leptogenesis starts creating a sufficient amount of BAU
compatible with the WMAP observation if
(1) My = 1.5 X 10" GeV with 0<8<m/2 and
M, = 1.8 X 10" GeV with —7 <8 < —7/2 for
the a; = 0 texture;
(2) M, = 65X 10" GeV with 7/2<8<w and
M, = 4.5 X 10" GeV with —7/2 < § <0 for the
b, = 0 texture.

The M, dependence of & to reproduce the observed np is
determined by the constraint that M, sin(26 — ¢) is nearly
constant. For M| to initiate leptogenesis, | sin(28 — ¢)| = 1
with [¢| =< 0.1 isrequired and & is predicted to be near 7/4
(mod 77). On the other hand, for larger M, sin(26 — ¢) = 0
isrequired tolead to = 0, 7/2 (mod 7). These two values
are smoothly connected to 8 = /4 (mod 7) in the inter-
mediate range of M,. For |M,,|, it is found that 1.2 meV =<
M,,| < 4.0 meV. The M, dependence of [M,,|, which is a
function of 26 — ¢, is understood in a similar way.
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