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We consider themost generalCP-conserving renormalizable effective scalar potential involving twodoublets

plus one singletHiggs and satisfying the electroweak gauge symmetry.After deriving the electroweak symmetry

breaking conditions,we focus on special cases, characterized by specific symmetry properties and/or relations to

supersymmetry-inspiredextensionsof theStandardModel [e.g., nearlyminimal supersymmetricStandardModel

(nMSSM), next-to-minimal supersymmetric Standard Model (NMSSM), Uð1Þ0 extended minimal supersym-

metric Standard Model (UMSSM)]. We then investigate the question of the reconstruction of the potential

parameters from theHiggsmasses andmixing angles and show that in some specific cases, such as the one of an

underlyingNMSSM, an accuracy at the order of leading logarithms is achievablewithminimal effort.Wefinally

study a few phenomenological consequences for this latter model. More specifically, we consider how our

parameter reconstructionmodifies theoutcomeof twopubliclyavailable codes:MICROMEGASandNMSSMTOOLS.

We observed noteworthy effects in regions of parameter space where Higgs-to-Higgs decays are relevant,

impacting the collider searches for light Higgs states and the prediction of the dark matter relic density.

DOI: 10.1103/PhysRevD.86.115024 PACS numbers: 14.80.Da

I. INTRODUCTION

The origin of electroweak symmetry breaking (EWSB)
stands as one of the critical questions in high-energy physics,
and a central goal of the Large Hadron Collider (LHC) is to
reveal its nature. The recent discovery of a new massive
boson around 125 GeV [1], reported by both the ATLAS
and CMS Collaborations [2] and supported by the broad
excess seen at TeVatron [3], represents a first step toward
the identification of the Higgs boson and the measurement of
the underlying Higgs potential, a task that only the next
generation of colliders is likely to complete. Although essen-
tially compatiblewith theHiggs boson of the StandardModel
(SM), this new statemay already be hinting toward some new
physics, in that the peaks of the diphoton and ZZ ! 4l
decays differ from what one would expect in the SM. The
stronger signal in the H ! �� channel, in particular, seems
of importance because this loop-induced process is particu-
larly sensitive to physics beyond the SM. One should also
consider the nonobservation of events at CMS—although
supported by very few statistics—in the H ! �� channel.
Testing the SM nature of this would-be Higgs state and
inspecting possible deviations in its coupling to SM particles
will represent amajor undertaking ofmodern particle physics
and a probable probe into the mechanism of EWSB.

The ‘‘Higgs mechanism’’[4], involving scalar elemen-
tary fields, is the most efficient way to generate masses for
the fermions and gauge bosons. Its implementation within
the SM is the minimal one: only one scalar field, trans-
forming as a doublet under SUð2ÞL, is introduced to break
the electroweak (EW) symmetry through its vacuum ex-
pectation value (VEV). Nevertheless, the Higgs sector is
still essentially undetermined and there is no reason to stick
to minimality if some benefits should emerge from a more

elaborate scalar sector. For instance, introducing a second
Higgs doublet allows for an implementation of CP viola-
tion through this sector [5]: CP violation appears in this
context because some of the parameters in the potential of
the two Higgs doublet model (2HDM) can be chosen
complex (nonreal). Yet the requirements relative to neutral
flavor conservation constrain this possibility significantly.
Large flavor-changing couplings of neutral Higgs bosons
can be avoided in the so-called ‘‘2HDM of type II,’’ where
the Higgs doublets Hu and Hd, of opposite hypercharges
Y ¼ �1, enter separately, and respectively, up- and down-
type Yukawa terms (at tree level). Another (more exotic)
possibility consists of requiring the alignment of the
Yukawa coupling matrices in flavor space (see Ref. [6]).
Although such 2HDMs may hold as autonomous exten-
sions of the SM, they can also be embedded within more
elaborate models: left-right gauge models and their grand
unification theory (GUT) ramifications—Pati-Salam,
SOð10Þ, etc.—offer a first framework for this operation,
in which the question of CP violation was originally
central [7]. From another angle, the well-documented
‘‘Hierarchy Problem’’ [8] underlines the theoretical diffi-
culties for understanding the stability of a Higgs mass at
the electroweak scale, with respect to new physics at very
high energies (GUT, Planck scales). Regarding the SM as
the low-energy effective theory of some more fundamental
model, the quadratic sensitivity of scalar squared masses to
new-physics masses would lead to a technically unnatural
fine-tuning of the Higgs-mass parameter in the more fun-
damental theory with the radiative corrections resulting
from the integrated-out new-physics states. . . unless new
physics appears sufficiently close to the electroweak scale,
typically at the TeV scale. Among the proposed solutions,
supersymmetry (SUSY) allows us to stabilize a scalar Higgs
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mass at the electroweak scale, due to the renormalization
properties of supersymmetric theories.However, SUSYbeing
obviously not realized in low-energy particle physics, viable
SUSY-inspired models need to include SUSY-breaking ef-
fects, which are parametrized within the Lagrangian through
the so-called ‘‘soft terms,’’ generate e.g., mass terms for all
non-SM particles and trigger the Higgs mechanism. This ad
hoc setup could yet remain an acceptable solution to the
hierarchy problem only if the supersymmetry-breaking scale
is near the electroweak scale. Other attractive properties of
SUSY-inspired models lie in the possibility of one-step uni-
fication, due to the more-convergent running of SM-gauge
couplings in the presence of the enlarged SUSY field content
[9] or in the dark matter (DM) sector, the lightest supersym-
metric particle being a stable (or long-lived) and viable
candidate in the presence of (approximate) R-parity [10].

Holomorphicity of the superpotential (cancellation of
gauge anomalies) dictates the requirement for at least two
SUð2ÞL Higgs doublets in a SUSY-inspired model, interven-
ing in a type II 2HDMfashion, so that both up-type and down-
type masses are generated. The simplest implementation of a
SUSY-inspired SM, known as the minimal supersymmetric
Standard Model (MSSM) [11] confines to this minimal
2HDM requirement. There, the quartic Higgs couplings are
determined by the EWgauge couplings, which results in tight
constraints on the tree-level mass of the lightest Higgs boson:
the latter is indeed bounded from above by theZ0-bosonmass
MZ. Radiative corrections improve this feature and can
arrange for fairly heavy Higgs masses, provided the SUSY-
scale is large enough; see for example [12]. Yet this last
necessity tends to conflict with the naturalness-dictated
&1 TeV SUSY-breaking scale. Accommodating for a Higgs
state at 125 GeV in the MSSM thus severely constrains the
parameter space of this model [13]. Another criticism to this
minimal setup, the so-called ‘‘�-problem’’ [14], points out the
necessity of tuning a supersymmetric mass term, the conven-
tionally baptized� parameter, at the electroweak/TeVscale in
order to ensure EWSB: being of supersymmetric origins, this
parameter is in principle unrelated to the SUSY-breaking scale
and would thus coincide with it out of sheer coincidence.

The introduction of an additional gauge-singlet super-
field S addresses both shortcomings of the MSSM. The �
term can indeed be generated effectively through a �SHu �
Hd term when the singlet takes a VEV s: �eff � �s [15].
Concerning the lightest Higgs mass, the presence of a new
superfield coupling to theHiggs doublets induces additional
contributions to the Higgs mass matrix, so that the MSSM
limit can be exceeded, already at tree level [16,17]. It is also
worth mentioning that the lightest CP-even Higgs state in
this context might well be dominantly of a singlet nature,
hence, the singlet decoupling from SM fermions and gauge
bosons, essentially invisible at colliders: the SM-like Higgs
state would then be the second lightest, and a small mixing
effect with the singlet would thus shift its mass toward
slightly higher values. In short, radiative corrections are

no longer the only mechanism able to generate a SM-like
Higgs state heavier than MZ in such a singlet extension.
The simplest version of such amodel with singlet-enlarged

superfield content is known as the next-to-minimal super-
symmetric Standard Model (NMSSM) [18,19]. It relies on a
Z3 discrete symmetry in order to forbid all dimensional
parameters (including �) in the superpotential, so that the
soft terms provide the only relevant scale in the scalar poten-
tial, triggering theEWSB.Several otherSUSYmodels engag-
ing a singlet in addition to the two Higgs doublets are to be
found in the literature, including the nearly minimal super-
symmetric Standard Model [nearly minimal supersymmetric
standard model (nMSSM), sometimes MNSSM] [20,21],
Uð1Þ0 extended MSSMs, with their simplest version known
as the UMSSM [22], models based on the E6 exceptional
group [23], SUSY/compositeness hybrids such as ‘‘fat Higgs
models’’ [24] and models using the Seiberg duality [25], etc.
In the present paper, we aim at studying the effective Higgs

potential involving 2 doublet þ1 singlet Higgs fields. The
relations between physical input, represented by the mass
matrices and mixing angles, and the parameters of the poten-
tial, as well as the trilinear Higgs couplings, shall be at the
center of this discussion, in view of a possible reconstruction
of the potential from such input at and beyond leading order
(LO). Similar analyses for the 1-doublet setup [26] or the
2-doublet setup, for instance in Ref. [27], with theMSSM as a
background model, have already been proposed in the litera-
ture. Given that the singlet extensions of the MSSM offer a
natural origin to our 2-doublet þ1-singlet setup, we shall
refer and return explicitly to such models in the course of our
discussion: specific attention will be dedicated in particular to
the n/NMSSM or the UMSSM. Most of our discussion
should, however, be generalizable to other models resulting
in a 2-doubletþ1-singlet Higgs potential,1 as long as match-
ing conditions and/or symmetry properties are satisfied. The
first part of the present paper shall be dedicated to the
presentation of the general framework, including notations,
the discussion of residual symmetries and the pattern of
EWSB leading to the Higgs spectrum. In the second part,
we shall focus on the question of the reconstruction of the
potential from a measurement of the Higgs masses and
mixing angles; beyond the general casewhere a large number
of undetermined parameters remain, the possibility of a
reconstruction in constrained models will be discussed at
leading order. The analysis of the large logarithms appearing
in the Coleman-Weinberg [29,30] approach shall convince
us, in particular, that a full reconstruction at the order of
leading logarithms should be achievable in theZ3-symmetric
case, represented by an underlying NMSSM. Concentrating

1We have already referred to left-right models and their GUT
extensions as an alternative approach to the 2HDM framework.
Note that the addition of a SM-gauge singlet is essentially an
undemanding requirement and may be arranged within such
models as well. An interpretation of DM in such a context has
actually been proposed in Ref. [28] (and references therein).
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on the NMSSM in the last part, we shall analyze the phe-
nomenological consequences for thismodel, both in terms of
constraints from Higgs-to-Higgs decays and computation of
the dark matter relic density. The decay h0i ! �� [31] will
also be revisited, although little impact is expected there.
This phenomenological analysis will rely on the numerical
output of several public codes, including NMSSMTOOLS_3.2.0

[32,33], MICROMEGAS_2.4.1 [34,35] and a version of SLOOPS
[36,37] adapted to the NMSSM [38].

II. TWO HIGGS DOUBLET PLUS ONE
SINGLET POTENTIAL

A. General parametrization

New physics effects are most conveniently encoded in
terms of effective Lagrangians. Under the guidelines of

Lorentz and gauge invariance, as well as possible additional
symmetries, one can write a list of all the operators, classified
according to their mass dimension. For the two SUð2ÞL dou-
blets and the singlet,we shall use the following notations (with
vd, vu and s representing the VEVs of these fields):

Hd ¼
vd þ ðh0d þ ia0dÞ=

ffiffiffi
2

p

H�
d

 !
;

Hu ¼
Hþ

u

vu þ ðh0u þ ia0uÞ=
ffiffiffi
2

p
 !

;

S ¼ sþ ðh0s þ ia0sÞ=
ffiffiffi
2

p
:

(2.1)

The most general Higgs potential involving these fields and
compatiblewith the electroweak gauge symmetry then reads
as follows when one restricts to renormalizable terms:

V S
eff ¼m2

Hu
jHuj2 þm2

Hd
jHdj2 � ðm2

12Hu �Hd þH:c:Þ þ�1

2
jHdj4 þ�2

2
jHuj4 þ�3jHuj2jHdj2

þ�4jHu �Hdj2 þ
�
�5

2
ðHu �HdÞ2 þ ð�6jHuj2 þ�7jHdj2ÞHu �Hd þH:c:

�

þm2
SjSj2 þ�2jSj4 þ

�
�TSþ�2

S

2
S2 þAS

3
S3 þ

~AS

3
SjSj2 þ�2

S

4
S4 þ ~�2

S

4
S2jSj2 þH:c:

�

þ ½AudSHu �Hd þ ~AudS
�Hu �Hd þ�MjSj2Hu �Hd þ�M

P S
�2Hu �Hd þ ~�M

P S
2Hu �Hd þH:c:�

þ�u
PjSj2jHuj2 þ�d

PjSj2jHdj2 þ ½ðAusSþ ~�u
PS

2ÞjHuj2 þ ðAdsSþ ~�d
PS

2ÞjHdj2 þH:c:�: (2.2)

The first two lines comprise the usual 2HDM potential, the
third line, the pure-singlet terms and the latter two, the

singlet-doublet mixing terms.m2
Hu
,m2

Hd
, �1, �2, �3, �4,m

2
S,

�2, �u
P and �

d
P are 10 real parameters, whilem2

12, �5, �6, �7,

�T , �
2
S, AS, ~AS, �

2
S, ~�

2
S, Aud, ~Aud, �M, �

M
P ,

~�M
P , Aus, Ads, ~�

u
P

and ~�d
P are, in principle, 19 complex parameters. One

parameter (e.g., �T) is superfluous and may be absorbed

in a translation of the singlet; three others (m2
S, m

2
Hu

and

m2
Hd
) can be traded for the field vacuum expectation values

through the minimization conditions. From now on, we
will consider, for simplicity, that all the parameters are
real, hence barring the possibility of CP violation. (We
will, however, continue to refer to the 19 potentially non-
real parameters as ‘‘complex’’ parameters.)

B. Symmetry classification

By imposing additional symmetries, the form of the
potential in Eq. (2.2) can be further constrained at the
classical level and the remaining parameters2 �cl

i will be
called ‘‘classical’’ parameters. At the quantum level,
all the eliminated terms �qm

j may reappear, in principle, if

the symmetry is broken, either directly by the quantum
fluctuations or spontaneously when the fields acquire
VEVs. In the later case, symmetry violation is a relic from

higher-dimensional operators at the nonsymmetric vacuum,
due to the truncation of the potential to dimension� 4 terms.
To be definite, if at high energy, beyond a certain scale�, the
symmetry holds, the potential V is then well approximated
by its classical form (the symmetry-violating effects being
negligible) and the �cl

i at the scale � may be chosen as
boundary conditions for the general parameters of Eq. (2.2),

�cl
i ¼ �ð�Þ; �qm

j ¼ 0 (2.3)

such that V � V ð�cl
i ð�ÞÞ. At scales � � �, however,

symmetry-violating effects are no longer negligible so that
nontrivial values of �qm are generated by the renormalization
group equations.
We shall now enumerate the following possible symme-

tries one can impose on the potential of Eq. (2.2):
(i) Discrete Zn symmetries are characterized by the trans-

formations � � e
2{�
n Q��, where � ¼ S, Hu, Hd and

QS;Hu;Hd
are the charges under the discrete symmetry

group. They allow for significant selectivity among the
complex terms of the general potential, while avoiding
theproblemofanaxion (unless thepotential they induce
is also accidentallyUð1Þ invariant). Spontaneous break-
downof these symmetries (throughHiggsVEVs), how-
ever, generically leads to cosmological difficulties, in
the form of a domain-wall problem [39], which should
then be addressed separately.
(1) The complex doublet terms are controlled

by QHu
þQHd

: QHu
þQHd

� 0½n� causes no

2We shall use the notation �i in order to concisely refer to any
parameter entering Eq. (2.2).
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constraint; for even n, QHu
þQHd

� n
2 ½n�

allows only for �5. Other choices forbid all the
corresponding terms.

(2) Complex mixing terms are governed by both
QHu

þQHd
and QS. Only in the case fQHu

þ
QHd

� 0½n�; QS � 0½n�g are they all allowed by
the Zn symmetry. Otherwise, the relative choice
of QS and QHu

þQHd
constrains them, with

the specific values QS � �ðQHu
þQHd

Þ½n�,
2QS � �ðQHu

þQHd
Þ½n� and up to the exclu-

sion of all these terms.
(3) The complex singlet terms are governed by QS,

ranging from conservation of all (QS � 0½n�) to
exclusion of all, with the special cases 2QS �
0½n�, 3QS � 0½n� and 4QS � 0½n�.

A typical example for such a discrete symmetry and
deserving particular attention is that of the Z3 sym-
metry with charges QS;Hu;Hd

¼ 1. This corresponds

to the case of an underlying NMSSM. Invariance

under � � e
2{�
3 � reduces the potential to the form,

V S
Z3
¼m2

Hu
jHuj2þm2

Hd
jHdj2þ�1

2
jHdj4þ�2

2
jHuj4

þ�3jHuj2jHdj2þ�4jHu �Hdj2þm2
SjSj2

þ�2jSj4þ
�
AS

3
S3þH:c:

�
þ�u

PjSj2jHuj2

þ�d
PjSj2jHdj2þ½AudSHu �Hd

þ�M
P S

�2Hu �HdþH:c:�: (2.4)

The tree-level conditions resulting from the
NMSSM read

�1¼g2þg02

4
¼�2; �3¼g2�g02

4
;

�4¼�2�g2

2
; �u

P¼�2¼�d
P;

�M
P ¼��; AS¼�A�;

Aud¼�A�; �2¼�2:

(2.5)

Our notations for the SUSY parameters follow those
of Ref. [18], except for the electroweak gauge cou-
plings which we denote as g0 and g for, respectively,
the hypercharge Uð1ÞY and the SUð2ÞL symmetry.

(ii) Continuous global symmetries are essentially global
phase transformations � � e{Q���, that is Uð1Þ
Peccei-Quinn (P.Q.) symmetries [40]. Such symme-
tries are spontaneously broken by the VEVs of the
Higgs fields so that they produce massless axions.
They are also chiral in nature, so that anomalies will
be generated at the quantum level (unless the field
content is enlarged so as to cancel them). Such
symmetries are thus likely to stand only as approxi-
mate limiting cases.
(1) fQHu

þQHd
¼ 0; QS ¼ 0g is automatically sat-

isfied; this is the hypercharge.
(2) fQHu

þQHd
¼ 0; QS � 0g preserves the dou-

blet potential while constraining drastically the
singlet couplings,

V S-S
PQ ¼ m2

Hu
jHuj2 þm2

Hd
jHdj2 � ðm2

12Hu �Hd þ H:c:Þ þ �1

2
jHdj4 þ �2

2
jHuj4

þ �3jHuj2jHdj2 þ �4jHu �Hdj2 þ
�
�5

2
ðHu �HdÞ2 þ ð�6jHuj2 þ �7jHdj2ÞHu �Hd þ H:c:

�

þm2
SjSj2 þ �2jSj4 þ �u

PjSj2jHuj2 þ �d
PjSj2jHdj2 þ ð�MjSj2Hu �Hd þ H:c:Þ: (2.6)

(3) fQHu
þQHd

� 0; QS ¼ 0g constrains severely the doublet sector, as well as the mixing terms, while leaving the

pure-singlet potential untouched,

V S-D
PQ ¼ m2

Hu
jHuj2 þm2

Hd
jHdj2 þ �1

2
jHdj4 þ �2

2
jHuj4 þ �3jHuj2jHdj2 þ �4jHu �Hdj2

þm2
SjSj2 þ �2jSj4 þ

�
�TSþ�2

S

2
S2 þ AS

3
S3 þ

~AS

3
SjSj2 þ �2

S

4
S4 þ ~�2

S

4
S2jSj2 þ H:c:

�

þ �u
PjSj2jHuj2 þ �d

PjSj2jHdj2 þ ½~�u
PS

2jHuj2 þ ~�d
PS

2jHdj2 þ H:c:�
þ ½AusSjHuj2 þ AdsSjHdj2 þ H:c:�: (2.7)

(4) fQHu
þQHd

� 0; QS ¼ �ðQHu
þQHd

Þg is the ‘‘usual’’ Peccei-Quinn symmetry (e.g., Ref. [41]) and, without

loss of generality, one may choose (QHu
¼ 1 ¼ QHd

, QS ¼ �2). It induces a potential of the same form as that

of the Z3 symmetry [Eq. (2.4)], with the further requirement that AS and �M
P vanish,

V S
PQ ¼ m2

Hu
jHuj2 þm2

Hd
jHdj2 þ �1

2
jHdj4 þ �2

2
jHuj4 þ �3jHuj2jHdj2 þ �4jHu �Hdj2 þm2

SjSj2

þ �2jSj4 þ �u
PjSj2jHuj2 þ �d

PjSj2jHdj2 þ ½AudSHu �Hd þ H:c:�: (2.8)
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(5) fQHu
þQHd

�0;QS¼QHu
þQHd

g is equivalent
to the preceding case with the replacement

S � ~S ¼ S�.
(6) fQHu

þQHd
� 0; QS ¼ 1

2 ðQHu
þQHd

Þg is a

variant, concerning the singlet-doublet mixing
sector. This is again a subcase of the Z3 poten-
tial [Eq. (2.4)], with vanishing AS and Aud; in a
coarse understanding of the term, this may be
considered as the ‘‘R-symmetric’’ potential,

V S
PQ0 ¼ m2

Hu
jHuj2 þm2

Hd
jHdj2 þ �1

2
jHdj4

þ �2

2
jHuj4 þ �3jHuj2jHdj2

þ �4jHu �Hdj2 þm2
SjSj2 þ �2jSj4

þ �u
PjSj2jHuj2 þ �d

PjSj2jHdj2
þ ½�M

P S
�2Hu �Hd þ H:c:�: (2.9)

Note that if one is interested in a SUSY-inspired
model, this PQ0 symmetry would a priori forbid
the �SHu �Hd term, resulting in vanishing tree-
level conditions for most of the parameters of
Eq. (2.9); it is therefore best understood as an R
symmetry at the SUSY level.

(7) fQHu
þQHd

�0;QS¼�1
2ðQHu

þQHd
Þg is equi-

valent to the preceding choice, with the replace-

ment S � ~S ¼ S�.
(8) fQHu

þQHd
� 0;QS ��f0; 12 ;1gðQHu

þQHd
Þg

forbids all the complex terms, hence leading to
another, more constrained subcase of the Z3

potential,

V S-C
PQ ¼m2

Hu
jHuj2 þm2

Hd
jHdj2 þ�1

2
jHdj4

þ�2

2
jHuj4 þ�3jHuj2jHdj2

þ�4jHu �Hdj2 þm2
SjSj2 þ�2jSj4

þ�u
PjSj2jHuj2 þ�d

PjSj2jHdj2: (2.10)

In the following, we shall focus only on V S
PQ and

V S
PQ0 , which both can be viewed as subcases ofV S

Z3
.

(iii) Uð1Þ0 gauge symmetries can be regarded as the
gauged version of the P.Q. symmetries, with the
important consequence that the P.Q. axion is now
unphysical. They emerge naturally from Uð1Þ0
SUSYmodels, containing SM singlets charged under
the additional Uð1Þ0 gauge symmetry and breaking it
spontaneously while acquiring VEVs. The simplest
version of suchmodels, with only one singlet, is called
UMSSM [22] and leads back to the Z3-invariant
Higgs potential, but with vanishing AS and �M

P , i.e.,
V S

UMSSM ¼ V S
PQ: see Eq. (2.8). The further tree-

level conditions are shifted from Eq. (2.5) according
to (withQS;Hu;Hd

as theHiggs charges under theUð1Þ0
symmetry and gZ0 as the coupling constant)

�1;2 ! �1;2 þ
g2Z0

2
Q2

Hu;d
;

�3 ! �3 þ g2Z0QHu
QHd

;

�u;d
P ! �u;d

P þ g2Z0Q2
Hu;d

;

�2 ¼ g2Z0

2
Q2

S:

(2.11)

Note that the SM fermion sector is also charged under
theUð1Þ0 gaugegroup, so as to ensure invarianceof the
usual Yukawa terms. To avoid a chiral anomaly of the
Uð1Þ0 symmetry, an exotic fermion sector will also be
necessary.

One may also write tree-level conditions of a different
form, not protected by any symmetry. This is the case, for
instance, in the nMSSM, where a ZR

5 or a ZR
7 symmetry [21]

is imposed at the level of the superpotential, so as to forbid all
renormalizable pure singlet terms, then broken explicitly by
gravity effects in order to arrange for an effective tadpole
term (so as to break the resulting P.Q. symmetry), broken also
explicitly by the soft terms. The tree-level potential then
differs from the Z3 case (2.4) by the following requirements:

�M
P ¼ � ¼ AS ¼ 0; �T; m

2
12 � 0: (2.12)

We hence define

V S
T ¼ m2

Hu
jHuj2 þm2

Hd
jHdj2 � ðm2

12Hu �Hd þ H:c:Þ

þ �1

2
jHdj4 þ �2

2
jHuj4 þ �3jHuj2jHdj2

þ �4jHu �Hdj2 þm2
SjSj2 þ ½�TSþ H:c:�

þ �u
PjSj2jHuj2 þ �d

PjSj2jHdj2
þ ½AudSHu �Hd þ H:c:�: (2.13)

While the absence of a residual symmetry at low energy is a
deliberate feature of the nMSSM(in order to circumvent both
axion and domain-wall problems), the resulting lack of pro-
tection of the tree-level couplings at low energy will lead to
sizeable consequences for the parameter reconstruction at the
loop level, as we will see later.

C. Mass matrices

Spontaneous symmetry breaking is achieved when the
scalar fields develop a VEV,

hHui ¼
0

vu

 !
; hHdi ¼

vd

0

 !
; hSi ¼ s: (2.14)

Imposing the minimization conditions associated with
the most general potential in Eq. (2.2), one may trade
the parameters m2

Hd
, m2

Hu
, m2

S for the VEVs vu, vd, s.

Introducing the usual definitions v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
u þ v2

d

q
’

174 GeV, tan� � vu=vd, we can write these relations as3

3We use the shorthand notations c� ¼ cos�, s� ¼ sin�,
s2� ¼ sin2�, t� ¼ tan�, etc.
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m2
Hd

¼ ½Aud þ ~Aud þ ð�M
P þ ~�M

P þ �MÞs�st� � ½2Ads þ ð�d
P þ 2~�d

PÞs�s� �1v
2c2� � ð�3 þ �4 þ �5Þv2s2�

þ ð�6v
2s2� �m2

12Þt� þ 3v2s2��7

m2
Hu

¼ ½Aud þ ~Aud þ ð�M
P þ ~�M

P þ �MÞs�st�1
� � ½2Aus þ ð�u

P þ 2~�u
PÞs�s� �2v

2s2� � ð�3 þ �4 þ �5Þv2c2�

þ ð�7v
2c2� �m2

12Þt�1
� þ 3v2s2��6

m2
S ¼ ½Aud þ ~Aud þ 2ð�M

P þ ~�P
M þ �MÞs�

v2s2�
2s

� ½AS þ ~AS þ ð2�2 þ �2
S þ ~�2

SÞs�s

� ½ðAus þ 2 ~�u
PsÞs2� þ ðAds þ 2~�d

PsÞc2��
v2

s
� �u

Pv
2s2� � �d

Pv
2c2� � �T

s
��2

S: (2.15)

The quadratic terms in H�
u;d provide us with the charged Higgs mass matrix,

M2
H� �

�
ðAud þ ~Aud þ ð�M

P þ ~�M
P þ �MÞsÞs�

�
1

2
ð�4 þ �5Þs2� � �6s

2
� � �7c

2
�

�
v2 �m2

12

� t�1
� 1

1 t�

" #
: (2.16)

Its diagonalization expectedly delivers (massless) charged Goldstone bosons G� � cos�H�
d � sin�H�

u and the physical
charged Higgs H� � cos�H�

u þ sin�H�
d with mass,

m2
H� ¼ 2

s2�

�
ðAud þ ~Aud þ ð�M

P þ ~�M
P þ �MÞsÞs�

�
1

2
ð�4 þ �5Þs2� � �6s

2
� � �7c

2
�

�
v2 �m2

12

�
: (2.17)

We turn to the CP-odd squared mass matrix, written in the basis ða0d; a0u; a0sÞ,
M2

P11 ¼ ½ðAud þ ~Aud þ ð�M
P þ ~�M

P þ �MÞsÞsþ ð�6s
2
� þ �7c

2
� � �5s2�Þv2 �m2

12�t�
M2

P22 ¼ ½ðAud þ ~Aud þ ð�M
P þ ~�M

P þ �MÞsÞsþ ð�6s
2
� þ �7c

2
� � �5s2�Þv2 �m2

12�t�1
�

M2
P33 ¼ ½Aud þ ~Aud þ 4ð�M

P þ ~�M
P Þs�

v2s2�
2s

�
�
3AS þ

~AS

3
þ ð4�2

S þ ~�2
SÞs
�
s

� ½ðAus þ 4~�u
PsÞs2� þ ðAds þ 4~�d

PsÞc2��
v2

s
� 2�2

S �
�T

s

M2
P12 ¼ ½Aud þ ~Aud þ ð�M

P þ ~�M
P þ �MÞs�sþ ð�6s

2
� þ �7c

2
� � �5s2�Þv2 �m2

12

M2
P13 ¼ ½Aud � ~Aud � 2ð�M

P � ~�M
P Þs�vs�

M2
P23 ¼ ½Aud � ~Aud � 2ð�M

P � ~�M
P Þs�vc�: (2.18)

The neutral Goldstone boson G0 � cos�a0d � sin�a0u can be isolated through the rotation with angle �, and we are left
with the 2	 2 matrix M2

P0 in the basis ða0D; a0SÞ, with a0D � cos�a0u þ sin�a0d,

M2
P011 ¼

2

s2�
½ðAud þ ~Aud þ ð�M

P þ ~�M
P þ �MÞsÞs� ð�5s2� � �6s

2
� � �7c

2
�Þv2 �m2

12�

M2
P022 ¼ ½Aud þ ~Aud þ 4ð�M

P þ ~�M
P Þs�

v2s2�
2s

�
�
3AS þ

~AS

3
þ ð4�2

S þ ~�2
SÞs
�
s

� ½ðAus þ 4~�u
PsÞs2� þ ðAds þ 4~�d

PsÞc2��
v2

s
� 2�2

S �
�T

s

M2
P012 ¼ ½Aud � ~Aud � 2ð�M

P � ~�P
MÞs�v: (2.19)

M2
P0 is diagonalized in the subblock of the physical states ða0D; a0SÞ by the orthogonal matrix P0 to give the two physical

CP-odd squared mass m2
a0
1

, m2
a0
2

, such that

diagðm2
a0
1

; m2
a0
2

Þ ¼ P0M2
P0P0�1: (2.20)

Finally, the CP-even squared mass matrix, in the basis ðh0d; h0u; h0SÞ, reads
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M2
S11 ¼ ½ðAud þ ~Aud þ ð�M

P þ ~�M
P þ �MÞsÞsþ ð�6s

2
� � 3�7c

2
�Þv2 �m2

12�t� þ 2�1v
2c2�

M2
S22 ¼ ½ðAud þ ~Aud þ ð�M

P þ ~�M
P þ �MÞsÞsþ ð�7c

2
� � 3�6s

2
�Þv2 �m2

12Þ�t�1
� þ 2�2v

2s2�

M2
S33 ¼ ½Aud þ ~Aud�

v2s2�
2s

þ ½AS þ ~AS þ 2ð2�2 þ �2
S þ ~�2

SÞs�s� ðAuss
2
� þ Adsc

2
�Þ

v2

s
� �T

s

M2
S12 ¼ �½Aud þ ~Aud þ ð�M

P þ ~�M
P þ �MÞs�sþ ½ð�3 þ �4 þ �5Þs2� � 3ð�6s

2
� þ �7c

2
�Þ�v2 þm2

12

M2
S13 ¼ �½Aud þ ~Aud þ 2ð�M

P þ ~�M
P þ �MÞs�vs� þ 2½Ads þ ð�d

P þ 2~�d
PÞs�vc�

M2
S23 ¼ �½Aud þ ~Aud þ 2ð�M

P þ ~�M
P þ �MÞs�vc� þ 2½Aus þ ð�u

P þ 2~�u
PÞs�vs�;

(2.21)

which is diagonalized by a 3	 3 orthogonal matrix S,
resulting in three CP-even squared masses m2

h0
1

, m2
h0
2

, m2
h0
3

,
such that

diagðm2
h0
1

; m2
h0
2

; m2
h0
3

Þ ¼ SM2
SS

�1: (2.22)

We are thus finally left with seven physical Higgs particles
once the three Goldstone bosons G0, G�, giving mass to
the W� and Z0 bosons, have been discarded. In the par-
ticular case of theUð1Þ0 gauge symmetry, however, the P.Q.
axion (associated to the vanishing eigenvalue of M2

P0) is
also unphysical (giving mass to the Z0-boson gauge field of
the Uð1Þ0 symmetry [22]), so that we are left with only one
CP-odd physical mass.

III. RECONSTRUCTION OF THE
EFFECTIVE PARAMETERS

A. Masses and mixing angles as physical input

From an experimental point of view, the �i parameters
are not directly accessible: they will enter as combinations
within the expressions for the Higgs masses and self-
couplings. The latter can hopefully be accessed through
the experimental measurement of physical quantities.
Inverting the system, we can therefore trade some �i

parameters for such physical input. In the simplest case,
one would directly use the Higgs masses and their mixing
angles, assuming these can be measured (e.g., from fermion/
gauge couplings), as the new, physical input. For the
2-doubletþ1-singlet system, such quantities provide us with
12 conditions (input measurements) on the�i’s: the masses of
the two CP-odd bosons, three CP-even and one (complex)
charged Higgs; the mixing angles from the CP-even (3),
CP-odd (1) and the Goldstone (1: �) sectors; finally, the

electroweak VEV, v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
u þ v2

d

q
(from MW for example).

Should those 12 relations prove insufficient to determine
all the �i’s (as is obviously the case for the most general
potential), one would have to resort to Higgs self-couplings
(or input from another sector) in order to fully determine the
parameters. Accessing such self-couplings would require that
double or triple Higgs productions are kinematically open.
This task would most comprehensibly be done at future linear
colliders. In the meanwhile, the measurements of masses and
mixing angles still allow for a partial inversion.

We will assume in the following that all the Higgs
masses have been measured. Note that this hypothesis is
somewhat optimistic since singlet-like fields do not couple
directly to SM fermions and gauge bosons and, hence, are
essentially elusive: only when there is substantial mixing
with the doublet states can we expect to access them
without having to rely on multi-Higgs couplings. As for
the mixing angles, assuming all the Higgs states have been
observed in SM decay channels, one can derive them from
the couplings to fermions (note that leptonic decay chan-
nels are likely to give cleaner information) and gauge
bosons. For a type II model, we have (taken from Ref. [18])

h0i tLt
c
R ¼ � Ytffiffiffi

2
p Si2 h0i bLb

c
R ¼ Ybffiffiffi

2
p Si1

h0i �L�
c
R ¼ Y�ffiffiffi

2
p Si1 a0i tLt

c
R ¼ �i

Ytffiffiffi
2

p c�P
0
i1

a0i bLb
c
R ¼ i

Ybffiffiffi
2

p s�P
0
i1 a0i �L�

c
R ¼ i

Y�ffiffiffi
2

p s�P
0
i1

HþbLtcR ¼ Ytc� H�tLbcR ¼ �Ybs�

H�	�L�
c
R ¼ �Y�s�; (3.1)

where

Yt¼ mt

vs�
; Yb¼ mb

vc�
; Y�¼ m�

vc�
; (3.2)

and (we mention here only the one Higgs to two gauge
couplings; note that, albeit more difficult to measure, two
Higgs to one gauge as well as quartic couplings shall play a
very important role for testing the model),

h0i Z�Z	 ¼ g�	

g02 þ g2ffiffiffi
2

p vðc�Si1 þ s�Si2Þ

h0i W
þ
�W

�
	 ¼ g�	

g2ffiffiffi
2

p vðc�Si1 þ s�Si2Þ:
(3.3)

Combining Higgs couplings to the vector bosons with
those to up/down fermions, one can access e.g., Si1=Si2.
Moreover, one may be tempted to use Higgs decays into
two photons to extract information about the mixing
angles: even admitting that such processes are dominated
by quark loops, the corresponding relation of branching
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ratios to mixing angles is already nontrivial and would
require an involved extraction procedure for exploitation.

Unitarity relations could also prove useful. For example, a
‘‘missing’’ matrix element Sij could be reconstructed from

X3
k¼0

SikSjk¼
ij¼
X3
k¼0

SkiSkj i;j¼1;2;3: (3.4)

A possible (naive) strategy to reconstruct the mixing
angles would be the following: having measured the
charged Higgs decay into third generation quarks, one
could then deduce t�, since the ratio mt;b=v is fixed by

SM measurements. Then the (doublet) elements Si1, Si2,
P0
i1 could be obtained unambiguously from the decays of

neutral Higgs states into fermions and gauge bosons. The
unitarity relations would finally provide the magnitude of
the Si3 and P0

i2 (singlet) elements.

Note finally that while a full experimental determination
of the Higgs mass matrices may seem overly optimistic in
the short run, there exists a practical case where we have
access to such data: it is that of the output of spectrum
generators (e.g., the publicly available NMSSMTOOLS, [32]).
Wewill resort to that practical application in the last part of
the present paper.

B. Partial reconstruction in the general case

Considering the general potential of Eq. (2.2) and discard-
ing any assumption as to an underlying model, a complete
reconstruction of the 29 parameters (28 of which are relevant)
cannot succeed with only the 12 mass/mixing conditions,
which calls for the measurement of Higgs self-couplings.
Yet, information from Eqs. (2.17), (2.20), and (2.22) can
already be implemented in a partial reconstruction,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

½ðAud þ �M
P sÞs�m2

12� 2
s2�

¼ m2
a0i
P02
i1 þ �1

P

ðAud � 2�M
P sÞv ¼ m2

a0i
P0
i1P

0
i2 þ �12

P

�3ASsþ ðAud þ 4�M
P sÞ v

2s2�
2s � �T

s ¼ m2
a0i
P02
i2 þ �2

P

2
s2�

�
ðAud þ �M

P sÞs� �4

2 v
2s2� �m2

12

�
¼ m2

H� þ ��

½ðAud þ �M
P sÞs�m2

12�t� þ 2�1v
2c2� ¼ m2

h0i
S2i1 � �1

S

½ðAud þ �M
P sÞs�m2

12�t�1
� þ 2�2v

2s2� ¼ m2
h0i
S2i2 � �2

S

ASsþ 4�2s2 þ Aud
v2

2s s2� � �T

s ¼ m2
h0i
S2i3 � �3

S

�ðAud þ �M
P sÞsþ ð�3 þ �4Þv2s2� þm2

12 ¼ m2
h0i
Si1Si2 � �12

S

�ðAud þ 2�M
P sÞvs� þ 2�d

Psvc� ¼ m2
h0i
Si1Si3 � �13

S

�ðAud þ 2�M
P sÞvc� þ 2�u

Psvs� ¼ m2
h0i
Si2Si3 � �23

S

; (3.5)

where �1;2;3
P , �12

P , ��, �
1;2;3
S , �12;13;23

S are given by

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�1
P¼� 2

s2�
½2ð ~Audþð~�P

Mþ�MÞsÞs�ð�5s2���6s
2
���7c

2
�Þv2�

�12
P ¼ð ~Aud�2~�P

MsÞv
�2
P¼�ð ~Audþ4~�M

P sÞv
2s2�
2s þ

�
~AS

3 þð4�2
Sþ ~�2

SÞs
�
sþ½ðAusþ4~�u

PsÞs2�þðAdsþ4~�d
PsÞc2��v2

s þ2�2
S

��¼� 2
s2�

�
ð ~Audþð~�M

P þ�MÞsÞs�
�
1
2�5s2���6s

2
���7c

2
�

�
v2

�

�1
S¼½ð ~Audþð~�M

P þ�MÞsÞsþð�6s
2
��3�7c

2
�Þv2�t�

�2
S¼½ð ~Audþð~�M

P þ�MÞsÞsþð�7c
2
��3�6s

2
�Þv2�t�1

�

�3
S¼ ~Aud

v2s2�
2s þ ~ASsþ2ð�2

Sþ ~�2
SÞs2�ðAuss

2
�þAdsc

2
�Þv2

s

�12
S ¼�ð ~Audþð~�M

P þ�MÞsÞsþ½�5s2��3ð�6s
2
�þ�7c

2
�Þ�v2

�13
S ¼�½ ~Audþ2ð~�M

P þ�MÞs�vs�þ2ð2~�d
PsþAdsÞvc�

�23
S ¼�½ ~Audþ2ð~�M

P þ�MÞs�vc�þ2ð2~�u
PsþAusÞvs�

: (3.6)
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Our (arbitrary) choice in ordering the parameters within
Eqs. (3.5) and (3.6) was guided by the terms that are
relevant at leading order in the n/NMSSM and the
UMSSM potentials. Beyond m2

Hd
, m2

Hu
, m2

S, which are
common to the three models, those are given by

NMSSM: �1–4; �
u;d
P ; �M

P ; �
2; Aud; AS

nMSSM: �1–4; m
2
12; �

u;d
P ; �T; Aud

UMSSM: �1–4; �
u;d
P ; �2; Aud:

These parameters were collected on the left-hand side of
Eq. (3.5), while the remaining ones enter the right-hand
side through Eq. (3.6).

Note that the relations of Eq. (3.5) hold at any order
(since Eq. (2.2) is the most general renormalizable poten-
tial satisfying the gauge symmetry). A practical use of
Eq. (3.5) would lie in a model-independent analysis of a
2-doublet þ1 singlet potential (in order to discriminate
among models, constrain them through precision tests).
Then the 12 mass conditions can be used to simplify 12
(arbitrarily chosen) parameters, hence leaving the remaining
couplings as the relevant degrees of freedom intervening in/to
be determined from the Higgs self-couplings. Not much
predictivity should be expected, however, in this general case.

C. Reconstruction at the classical level
in the constrained models

We focus here on the specific cases inspired by the
SUSY models: V S

T , V S
PQ, V S

PQ0 and V S
Z3
. Note that

such potentials are considered at the classical order: quantum
effects and explicit/spontaneous breaking of the symmetries
in principle destabilize those potentials to generate the most
general one. At this leading order, however, the Eqs. (3.6)
vanish, leaving Eqs. (3.5) in a very simple form. Note addi-
tionally the further requirements for each potential:

V S
Z3
: m2

12 ¼ �T ¼ 0

V S
T : AS ¼ �2 ¼ �P

M ¼ 0

V S
PQ: AS ¼ �P

M ¼ m2
12 ¼ �T ¼ 0

V S
PQ0 : AS ¼ Aud ¼ m2

12�T ¼ 0:

We end up with 11 classical parameters and 11 con-
ditions4 for both the potentials V S

PQ and V S
PQ0 . In these

cases, all the parameters in the Higgs potential can thus be
reconstructed (at leading order) from Higgs masses and
mixings: this procedure is explicitly carried out in
Appendix A, Eqs. (A5) and (A6).

In the case ofV S
Z3
, the 13 classical parameters cannot be

fully determined from the twelve conditions. The remain-
ing degree of freedom is conveniently chosen as the singlet

VEV s; the reconstruction is also given in Appendix A,
Eqs. (A1) and (A2). Several tracks can be followed in order
to determine this remaining degree of freedom. The first
one, sticking to the Higgs potential, would consist in rely-
ing on trilinear couplings, such as h0i H

þH� or h0i a
0
ja

0
j ,

where the neutral Higgs fields would be largely singlet in
nature: kinematical limits and the elusive nature of singlets
would tend to disfavor this strategy. Another possibility
would be to input information from some other sector (if
any): measurement of the Higgsino masses in the NMSSM
could provide the missing information. Finally, a more
predictive option would be to enforce some additional
requirement, such as relations among the tree-level cou-

plings: the tree-level relations of the NMSSM,
�u
P

�d
P

¼ 1 or

�2ða�u
Pþb�d

PÞ
ð�M

P Þ2�ðaþbÞ ¼ 1 (where a, b are real numbers), for instance,

or a measure of the P.Q. symmetry breaking, such as
ðaþbÞ�M

P

a�u
Pþb�d

P


 �
� , may be used as guidelines.

Finally for V S
T , we have 12 parameters and 12 condi-

tions. Yet a full inversion is not possible either, because
CP-even and CP-odd singlet masses are explicitly degen-
erate in this potential, leaving a bound system. The remain-
ing degree of freedom is again chosen as the singlet VEV s
in Appendix A, Eq. (A7), but could be replaced by e.g., �T ,
as a measure of the violation of Z3, for example.
So far, we have considered only the Higgs potentials

separately. Moving explicitly to the underlying SUSY
models, however, the �i’s are further constrained by the
tree-level relations resulting from their supersymmetric
origins: we count seven parameters in the nMSSM Higgs
sector (�T , m2

12, m2
Hu
, m2

Hd
, m2

S, �, A�), seven in the

NMSSM as well (m2
Hu
, m2

Hd
, m2

S, �, A�, �, A�) and six in

the UMSSM (m2
Hu
,m2

Hd
,m2

S, �, A�, gZ0 ; note that we regard

the Higgs charges under Uð1Þ0 as fixed). Those parameters
are then overconstrained by Eq. (3.5) and one should thus
consider the remaining conditions as a measurement of the
deviation from tree-level conditions due to higher orders
(we remind here that the tree-level relations induced by the
model of origin among the parameters of the potential are
likely to be spoiled by quantum corrections). Depending on
the information at our disposal in the remaining spectrum
(e.g., SUSY masses), such conditions may be used to
estimate the missing parameters (e.g., sfermion masses or
trilinear soft couplings) or regarded as precision tests of the
model. Note that if the SUSY spectrum is sufficiently
documented as well, this measurement of the Higgs pa-
rameters at leading order would allow for a (perturbative)
computation of all the �i’s within the specific models at
higher orders.

D. Reconstruction at the loop level:
NMSSM vs nMSSM

Now we want to apply this formalism to higher-order
effects. The purpose is simple: it has been shown that, in

4The explicit presence of a P.Q. axion, identified as a01, leads to
one trivial condition in the CP-odd sector.
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the MSSM, the bulk of the corrections in Higgs-to-Higgs
couplings could be absorbed in writing such couplings
in terms of the corrected masses (see for example
Refs. [42,43] and the third reference in Ref. [44]); could
a similar recipe apply to the 2-doubletþ1 singlet setup? A
first strategy is the one presented at the end of the previous
subsection. In a definite model, the Higgs spectrum may
allow for a determination of the Higgs parameters at lead-
ing order; then, provided sufficient information from the
other sectors stands at our disposal, reconstructing all the
�i’s at higher order is simply a matter of perturbative
calculations. Yet, this approach relies on a heavy machi-
nery and on input which is external to the Higgs sector. We
would like to consider cases where input from the Higgs
sector only (or almost only) would already improve on the
simple tree-level expression for the Higgs self-couplings.

In principle, whatever the potential looked like at the
classical level, quantum corrections will generate contri-
butions to all the parameters in the general potential—
Eq. (2.2)—(unless a symmetry protects certain parameters,
but we have seen that such symmetries are spontaneously
broken by the Higgs VEVs anyway). Therefore, while the
partial inversion of the general case [Eqs. (3.5) and (3.6)] is

still possible, little predictivity or practical use is to be
expected from such relations, because the number of
undetermined parameters is high. To extract meaningful
information, beyond the leading order, from the Higgs
spectrum, one would need the corrected potential to retain
a sufficiently simple form beyond the classical order.
To be more specific, we consider a tree-level potential of

the form (H representing any of the Higgs fields, �2, a
bilinear, A, a trilinear, and �i, a quartic coupling),

V tree ¼ �2H2 þ AH3 þ �H4: (3.7)

We now include the radiative corrections, which shift the
potential as

V eff ¼ ð�2 þ 
�2ÞH2 þ ðAþ 
AÞH3 þ ð�þ 
�ÞH4

þ 
 ~�2H2 þ 
 ~AH3 þ 
~�H4; (3.8)

where 
�2, 
A and 
� represent corrections to parameters

existing at tree level, while 
 ~�2, 
 ~A and 
~� denote new
couplings that were forbidden by symmetries at tree level
and emerge only at the radiative level. Neglecting numeri-
cal coefficients, the corrected Higgs mass m2 and the tri-
linear self-coupling g will read (schematically)

8<
:m2 ’ �2 þ 
�2 þ 
 ~�2 þ ðAþ 
Aþ 
 ~AÞhHi þ ð�þ 
�þ 
~�ÞhHi2 ¼ m2

tree þOð
; ~
Þ
g ’ Aþ 
Aþ 
 ~Aþ ð�þ 
�þ 
~�ÞhHi ¼ gtree þOð
; ~
Þ (3.9)

(with the short-hand notation 
=~
 for loop-induced cor-
rections to parameters present/absent at tree level.) We now
assume that we have access to the mass m2, either from
experimental data or from a spectrum generator. Using gtree
in the computation of physical quantities (branching ratios,

cross sections) will result in an error of order Oð
; ~
g Þ. If we
use the expression for the corrected mass to inverse (par-
tially) the relation between mass and tree-level parameters,

we obtain 
 ¼ 
m2 þOð~
Þ, where 
m2 symbolizes the
result of the inversion procedure. The trilinear couplings

then provide gm2 ¼ gþOð~
Þ, resulting in an error ofOð~
gÞ
at the level of cross sections/branching ratios. Claiming
that the inversion procedure carries any improvement with
respect to a simple tree-level evaluation holds at the sole
condition that radiative corrections 
 to tree-level parame-
ters are more important, in magnitude, than the contribu-

tions ~
 to other operators. Otherwise, even if we identify
the parameters subject to large contributions, it is unlikely
that the mass matrices would suffice in determining both
these parameters and those intervening at tree level, unless
we input some additional tree-level relations, as in the case
of the matching conditions in Eqs. (2.5), (2.11), and (2.12).

This discussion shows that, to extract some benefits—
beyond the leading order—from the conditions relating
masses to effective parameters, we need to identify which
terms are potentially subject to large radiative corrections.

A simple criterion can be invoked at the one-loop level: it is
that of the leading logarithms. To identify those, we simply
resort to the Coleman-Weinberg [29] one-loop effective
potential and analyze the outcome for the special case of
the SUSY-inspired models under scrutiny. This method has
long been employed for the computation of corrections to
the Higgs masses, both in the MSSM [44] and in the
NMSSM [18,32] (and references therein). In this approach,
the effective corrections to the scalar potential at a scale �
are determined by the field-dependent, tree-level mass
matrices M2

�ðS;Hd;Hu; . . .Þ of the various fields � enter-

ing the spectrum, according to (in the DR-scheme, but note
that we shall be interested in the logarithms only)

�V�
effðS;Hd;Hu; . . .Þ ¼ 1

64�2

X
�

C�M
4
�

�
ln

�
M2

�

�2

�
� 3

2

�
:

(3.10)

Here C�, which counts the degrees of freedom, takes the
values 1 for real scalar fields, 2 for complex ones, �2 for
Majorana fermions, �4 for Dirac fermions and 3 for real
gauge fields. Note that we are interested in the Higgs
potential solely, so that we will retain dependence on
S, Hd, Hu only, within M2

�. Moreover, we consider no

EW-violating effects so that we will not expand the
doublet fields Hd, Hu around their VEVs (except within

G. CHALONS AND F. DOMINGO PHYSICAL REVIEW D 86, 115024 (2012)

115024-10



logarithms). Additionally, the SUð2ÞL symmetry can then
be invoked to retain only the neutral Higgs fields S,H0

d,H
0
u

(the dependence on the charged Higgs fields can then be
restored afterwards in virtue of SUð2ÞL: only the �3 and �4

parameters cannot be disentangled in this fashion, but both
parameters being present at tree level in the models we
consider, this will be of little consequence for our analy-
sis). We then determine the contributions to the parameters

of Eq. (2.2) by letting the singlet take its VEV, S ¼ sþ ~S,
then truncating Eq. (3.10) to renormalizable terms, finally
projecting on the couplings of Eq. (2.2).

The results of our analysis of the large logarithms, in the
cases of the NMSSM and nMSSM, are provided in
Appendix C. The situation of the NMSSM is quite simple:
leading logarithms favorZ3-conserving terms. We can thus
claim, for this model, that the inversion procedure for the
Z3-conserving potential, presented in the previous subsec-
tion and Eqs. (A1) and (A2), improves on the tree-level
implementation of the couplings and actually includes
leading logarithms automatically. Note that, as defined in
Eqs. (A1) and (A2), the effective Z3-conserving parame-
ters are directly determined in terms of physical quantities,
meaning that they do not depend on the renormalization
scale �: they are simply the parameters of the effective
Z3-conserving potential associated with the physical
Higgs spectrum. What we checked explicitly in the
Coleman-Weinberg approach (which depends on the
renormalization scale �) is that this constrained form of
an effective potential was legitimate at least up to leading
logarithms. Beyond, the effect of the Z3-violating terms
(due to the truncation of the potential to operators of
mass dimension � 4) cannot be neglected. In the case of
the nMSSM, however, potentially large logarithms affect
nonclassical terms. In fact, all the sectors contribute to the
Z3-conserving parameters (including those vanishing at
tree level in this model). Additionally, logarithms originat-
ing from the nMSSMHiggs sector (the only sector which is
sensitive to the breakdown of Z3 at tree level) also affect
Z3-violating terms. Inclusion of the leading higher-order
effects from the inversion procedure of subsection III C,
Eq. (A7), thus seems dubious in this case. It seems natural
to ascribe this difference of behavior, between nMSSM
and NMSSM, to the protection of the parameters by the
Z3-symmetry, which albeit spontaneously broken by the
singlet VEV, continues to favor Z3-conserving terms
within the NMSSM. We should thus expect a similar
property, whatever the Z3-symmetric model is (SUSY or
not), and, beyond the Z3-symmetry, in any model retaining
a symmetry (or approximate symmetry) at low energy, e.g.,
PQ or PQ0.

IV. PHENOMENOLOGICAL CONSEQUENCES
FOR THE NMSSM

We now explain how, with the formalism derived above,
we can improve the computation of some observables in

the NMSSM. As we have already highlighted, there is one
practical case where the Higgs spectrum is fully available:
it is that of the spectrum generators. The Higgs masses are
often, in such a case, corrected, while couplings are typi-
cally taken at tree level. In the case of the NMSSM,we have
shown that leading quantum corrections could be absorbed
within the tree-level parameters of the Higgs potential. This
allows us, at a very cheap cost, to improve the accuracy of
the Higgs self-couplings by reexpressing them in terms
of the Higgs masses and mixing angles provided by
the spectrum generator. We refer to Appendix B for the
explicit expressions of the couplings in terms of the effec-
tive parameters. We implement this recipe both within
NMSSMTOOLS_3.2.0 [32,33] and within SLOOPS [36,37] and

investigate phenomenological consequences.

A. Impact on Higgs constraints
within NMSSMTOOLS_3.2.0

NMSSMTOOLS_3.2.0 includes several phenomenological

constraints on the NMSSM parameter space, originating
e.g., from LEP [45], TeVatron [46], B- and �-physics [47]
as well as early (now outdated but in the process of getting
updated) LHC data [48]. The Higgs sector evidently plays
a central part in the interplay of these experimental limits,
and we would like to investigate whether our analysis
could have meaningful consequences at this level.
The basic routine MHIGGS.F of the NMSSMTOOLS

package computes the corrections to the Higgs mass
matrices, incorporating typically leading logarithmic ef-
fects (although leading two-loop contributions from the
fermion sector are also implemented) at a scale determined
by the stops and sbottoms, then rescaling the fields at
the EW scale, finally adding pole corrections (this whole
procedure is more precisely described in Appendix C.3 of
Ref. [18]). In this subsection, we shall be relying on this
routine for the calculation of the Higgs masses and mixing
angles from the NMSSM parameter input. Note, however,
that NMSSMTOOLS offers a second possibility, which con-
sists of the evaluation of the Higgs masses according to
Ref. [49], including the full one-loop corrections as well
as the two-loop Oð�t�s þ �b�sÞ (with �t;b ¼ Y2

t;b=4�)

effects in the effective potential approach. This option
will be used in the next subsections. Whatever the source
of the masses and mixing matrices, however, we will treat
the latter as input for the physical Higgs matrices, allowing
us to compute the �i’s.
The Higgs couplings implemented within

NMSSMTOOLS_3.2.0 are actually not purely tree-level cou-

plings; potentially large radiative corrections from the
quarks of the third generation are included as well as
explained in the last paragraph of Appendix A.2 of
Ref. [18]. One can check that these corrections arise
from (s)fermion contributions to �1;2 (as one can recover,

considering our results for the Coleman-Weinberg anal-
ysis in Appendix C); such effects are thus in principle
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automatically incorporated within our procedure (given
that the corresponding contributions to the Higgs mass
are also implemented within NMSSMTOOLS). The choice
of the singlet VEV s deserves an additional comment, since
it cannot be extracted from the masses. After comparing
with a few variants leading to minor deviations (a few
percent) at the numerical level, we settled for the simple
definition s ¼ �eff=�, with �eff and � the parameters
inputed in NMSSMTOOLS. Note that this choice is coherent
with the recurrent use of �eff=� as the singlet VEV within
the routines of NMSSMTOOLS.

To perform the comparison, we simply implement our
corrected �i’s [see Eqs. (A1) and (A2)] and the ensuing
triple Higgs couplings [Eqs. (B7)–(B9)] within the routine
DECAY.F of NMSSMTOOLS, computing the Higgs decays.

A flag enables us to choose between the original setup of
NMSSMTOOLS and our modified version, which we denote

in the following as NMSSMTOOLS*.
Admittedly, the modification is essentially a fringe ef-

fect, and one needs to go to a region of the parameter space
where the Higgs self-couplings intervene very finely to
discover substantial deviation between the two approaches.
We thus consider a specific region in the NMSSM parame-
ter space, characterized by a light CP-even Higgs with
mass typically under 100 GeV, sizeable singlet-doublet
mixing S213 
 0–100% and a light CP-odd Higgs with

mass <10:5 GeV, allowing for h01 ! 2a01 decays. Such a

scenario is possible e.g., in an approximate Peccei-Quinn
limit �

� � 1, with the following parameters (NMSSMTOOLS

input: refer to Refs. [32,33]; we use the index ‘‘sferm’’
to denote any of the sfermions): tan� ¼ 5, � ¼ 0:5, � ¼
0:05, 6M1 ¼ 3M2 ¼ M3 ¼ 1:2 TeV ¼ msferm ¼ �Asferm,
�eff 2 ½100; 900� GeV, jA�j < 30 GeV and MA 2
½0; 4� TeV. Incidentally for those points, the doublet-like
state h0i (i ¼ 1 or 2, depending on the specific point)
reaches a mass of
125 GeV in the limit of singlet-doublet
decoupling S2i3 
 0. Note, however, that we did not spe-

cifically attempt to preserve this feature of a Higgs state at

125 GeV (so that for significant mixing, we may have
typically m2

h0
1


 90 GeV while m2
h0
2


 150 GeV): we sim-

ply mean to show that our procedure is liable to affect the
output of NMSSMTOOLS. Note finally that, for simplicity, we
discard constraints from ðg� 2Þ�, whichmay be taken care

of separately by tuning the slepton sector. All other collider
constraints—from LEP,B� =�-physics, TeVatron or early
LHC data—within NMSSMTOOLS_3.2.0 are kept.
We first specialize to the case �eff ¼ 300 GeV:

the lightest CP-even Higgs is then dominantly singlet
(S213 
70–100%). We display our results for this scenario

in Fig. 1. The black dots represent points onwhichwe scanned
(with no collider constraints applied; note that their distribu-
tion is an artifact of the scan and should not be paid particular
attention), and the white dots represent the output of
NMSSMTOOLS with the original Higgs couplings. Our results

(NMSSMTOOLS*),with correctedHiggs couplings, are depicted
by the light gray dots. Since we scan over two variables, the
output is two-dimensional in the ðma0

1
; S213Þ plane. In the plane

ðmh0
1
; S213Þ, the constraint ma0

1
< 10:5 GeV � mh0

1
reduces

the apparent dimensionality to one. To investigate the whole
ðmh0

1
; S213Þ-plane, one may additionally scan on the parameter

�eff , whichwe showon Fig. 2. There, however, the plot on the
left-hand side corresponds to the case of purely tree-level
couplings (for thewhite dots),whichweobtainedby removing
the fermion corrections from the original couplings imple-
mented in NMSSMTOOLS. The obvious conclusion is that,
although partially compatible, the white and light gray dots
donot exactly coincide, so that the details of the constraints are
affected by our procedure. Note that both points admitted by
NMSSMTOOLS while excluded by NMSSMTOOLS* and points

admitted by NMSSMTOOLS* while excluded by NMSSMTOOLS

are to be found.
We insist, however, on the fact that such displacement

effects in the acceptable points of the parameter space are
noticeable only because we considered a region where
phenomenological constraints on the Higgs spectrum and

2 4 6 8 10
m a1 GeV

0.7

0.8

0.9

1.0
S13

2

20 40 60 80
m h1 GeV

0.7
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S13

2

FIG. 1 (color online). Constraints in the planes defined by ðma0
1
; S213Þ (left-hand side) and ðmh0

1
; S213Þ (right-hand side) for �eff ¼

300 GeV. Black dots correspond to the points on which we perform the scan (without collider constraints); yellow (white) dots are allowed
byNMSSMTOOLS_3.2.0 while red (light gray) dots signal points allowedwith self-Higgs couplings defined as in our procedure NMSSMTOOLS*.
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decays are particularly severe, due to the presence of very
light Higgs states that need to be sufficiently ‘‘invisible’’
to escape experimental limits. A slight perturbation of
the �i’s is then liable to result in insufficient h0i ! 2a01
(invisible) branching ratio, excessive decays into e.g., SM
fermions and/or excessive a01-signals in B-physics; in such

cases, an increased ‘‘invisibility’’ of the light Higgs states,
that is increased singlet components, is required. If, on the
contrary, the perturbation of the �i’s stabilizes the invisi-
bility of the light Higgs states, additional parameter space
becomes available. Given the sensitivity of such regions to
perturbations and the complex interplay of constraints at
stake there, it is very difficult to predict to what extent the
allowed parameter space would be shifted. In any case, a
detailed new analysis on the NMSSM parameter space is
beyond the scope of thiswork. Our procedure simply ensures
the consistency of the calculation at leading-log order, the
couplings being adequately related to the spectrum.

B. Implementation in SLOOPS

In SLOOPS, the complete spectrum and set of vertices are
generated at tree level from the NMSSM—SUSY and
soft—parameters through the LANHEP package [50].
There, g, g0, vu, vd are determined by the physical input
MZ, MW , v and tan�. Then the radiative part of the Higgs
potential needs to be implemented: the tree-level Higgs
parameters �0

i , given in Eq. (2.5), are thus shifted as �i ¼
�0
i þ ��i, ��i defining the radiative corrections to the

parameters �i of Eq. (2.4). Yet, the corrected Higgs masses
are not computed within SLOOPS, but imported from
NMSSMTOOLS through the SLHA interface. Applying the

inversion procedure [Eqs. (A1) and (A2)], we obtain the
Z3-invariant ��i’s from the inputed masses, diagonalizing
angles and tree level �0

i ’s. From now on we will call this
procedure the ‘‘effective physical potential approach’’
(PhA). The complete set of Feynman rules is then derived
automatically in the FORMCALC [51] conventions, the latter
performing the calculation of the decay width.

A powerful feature of SLOOPS is the ability to check
gauge invariance of results through a generalized nonlinear
gauge fixing, which was adapted to the NMSSM [38].
The gauge-fixing Lagrangian can be written in a general
form

LGF¼� 1

�W

FþF�� 1

2�Z

jFZj2� 1

2�A

jFAj2; (4.1)

where the nonlinear functions of the fields F are given by

Fþ ¼ ð@� � ie~�A� � igcW ~�Z�ÞW�þ

þ i�W

g

2
ðvþ ~
1H1 þ ~
2H2 þ ~
3H3

þ ið~�G0 þ ~�1A1 þ ~�2A2ÞÞGþ

FZ ¼ @�Z
� þ �Z

g

2cW
ðvþ ~
1H1 þ ~
2H2 þ ~
3H3ÞG0

FA ¼ @�A
�: (4.2)

The parameters ~�; ~�; . . . ; ~
3 are generalized gauge-fixing
parameters. We also set �A;Z;W ¼ 1 to keep a simple form

for the gauge boson propagators.
The ghost Lagrangian LGh is established by requiring

that the full effective Lagrangian is invariant under
BRST transformations. This implies that the full quantum
Lagrangian, with LC the classical Lagrangian,

LQ ¼ LC þLGF þLGh; (4.3)

be such that 
BRSLQ ¼ 0 and hence 
BRSLGF ¼
�
BRSLGh [52]. The BRST transformation for the gauge
fields can be found for example in Ref. [52]. The NMSSM
specific transformations for the scalar fields can be found
in Ref. [38]. For the decay h0i ! ��, not all the parameters

are relevant, only ~� and ~
.

C. The decay H ! ��

The diphoton decay is an interesting process to inves-
tigate due to the relevance of this channel in the recent
discovery at LHC and because the gauge invariance is fully
at play there. Indeed, in the SM, the W-boson loop,
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FIG. 2 (color online). Constraints in the plane defined by ðmh0
1
; S213Þ for �eff 2 ½100; 900� GeV. On the left-hand side, the scan with

the white dots uses tree-level Higgs couplings, while the corresponding one on the right-end side is obtained with the couplings
implemented in NMSSMTOOLS, adding fermion corrections. The color code is otherwise similar to that of the previous figure.
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together with the top-quark one (the latter being of course
gauge invariant, as the remaining contributions), dominate
the decay. The calculation of the diphoton rate in the non-
linear gauge was originally performed in Ref. [53] in order
to simplify the calculation of the Higgs decay into two
photons in the SM. In short details, with the specific choice
~� ¼ �1, the W�G�� coupling vanishes and the gauge-
boson loop calculation is made easier. In our calculation we
will refrain from adopting this choice in order to preserve the
ability of checking the cancellation of the unphysical gauge-
dependent part in the gauge loops.Wewill discuss this effect
only at one-loop order,meaning thatwe consider only theLO
decay width; this will be sufficient for our purposes sincewe
do not aim at a more precise evaluation. Nevertheless, it is
worth reminding that the full two-loop EWþ QCD correc-
tions for the SM-like Higgs decay into �� are known and
under 2% [54] below the WþW� threshold. The full two-
loop SUSY corrections are as yet unknown; furthermore, our
procedure would not be suited for such a calculation as the
renormalization of the tree-level Higgs potential would be
mandatory whereas our renormalization is effective and
explicitly breaks SUSY. We only aim at showing how one
may consistently use the radiatively corrected Higgs masses
for an improved LO calculation of this decay.

Once we trade the ‘‘�i’’ parameters for the masses, using
Eqs. (A1) and (A2), we can reexpress the Higgs self-
couplings, obtained from the restricted Z3-invariant
potential, in terms of them. From now on we will call
‘‘� representation’’ of the trilinear Higgs couplings their
expression in terms of the �i’s. Moreover, when the �i’s are
explicitly replaced by Higgs masses, VEVs and mixing
angles, we will speak of ‘‘mass representation.’’ As far as
the diphoton signal is concerned, the relevant couplings are
those connecting the CP-even Higgs with the charged ones
but also with the charged Goldstones. In the mass repre-
sentation they are given by5

gh0i HþH� ¼ 1

v
ffiffiffi
2

p
�
m2

h0i

�
sin�2

cos�
Si1 þ cos�2

sin�
Si2

�

þ 2m2
H�ðcos�Si1 þ sin�Si2Þ �

2m2
a0j
P0
j1P

0
j2Si3

3 sin2�

�m2
a0j
P02
j1

�
Si1
cos�

þ Si2
sin�

� 4

3

v

s
Si3

��

gh0i GþG� ¼ 1

v
ffiffiffi
2

p fm2
h0i
ðcos�Si1 þ sin�Si2Þ þ 2M2

W
~
ig;

(4.4)

where m2
h0i
, m2

a0i
and m2

H� are the physical masses and the

mixing elements Sij, P
0
ij form the matrices diagonalizing

the effective mass matrices Eqs. (2.20) and (2.22). Note

also that in the nonlinear gauge the h0i G
þG� couplings

depend explicitly on the gauge through the parameters ~
i.
These parameters also appear within the ghost sector in the
couplings h0i �c

�c�, where �c�, c� are the charged ghost fields.

The nonlinear gauge parameter ~� also appears in the course
of the calculation. It originates from couplings with physical
fields like W�W��, W�W��� and unphysical ones
G�W��, �c�c��, �c�c��� (see for example Ref. [52]).
The latter quartic coupling emerges from the nonlinear gauge
condition only. All these couplings arise purely from the ghost
and Goldstone part of the gauge sector and are not modified
by the effective potential of the Higgs sector.
For the numerical evaluation, as explained before, we

obtain the Higgs masses and the mixing elements from
NMSSMTOOLS and the values are fed into SLOOPS through

the SLHA interface. Here we use the second possibility
offered by NMSSMTOOLS to compute the Higgs masses
following Ref. [49]. There pole-mass corrections can be
taken into account or not. In both cases the mixing matrices
are computed in the effective potential approximation
(i.e., at p2 ¼ 0, where p is the external momentum enter-
ing the Higgs self-energies).
As an illustration of the gauge invariance of the parameter

reconstruction [Eqs. (A1) and (A2)], we considered two
benchmark points from Ref. [55], named NMP2 and
NMP5 after the conventions in Ref. [55]. Their respective
Higgs sector parameters are recalled in Table I, together
with the soft SUSY-breaking masses of the stop sectorM ~Q3

L
,

M~tR and of the gluino sector M3. All remaining soft masses

and trilinear parameters that are not given in Table I are set
at 1 TeV. The resulting Higgs spectrum is summarized in
Table II and computed within NMSSMTOOLS according to the
procedure [49] with and without the pole-mass corrections.
In addition to the masses given in the SLHA output, we

also need the mixing elements Sij and P0
ij to obtain the

couplings entering the diphoton decay width. In the effec-
tive potential approach (EPA) used in Ref. [49], they are
obtained by diagonalizing the radiatively corrected Higgs
mass matrices in the DR scheme anew. However, the
definition of the diagonalizing matrices is ambiguous since
the self energies entering the radiatively corrected mass

TABLE I. Benchmark points taken from Ref. [55] for the
diphoton decay width.

Parameter NMP2 NMP5

tan� 2 3

� 0.6 0.66

� 0.18 0.12

�eff [GeV] 200 200

A� [GeV] 405 650

A� [GeV] �10 �10
M ~Q3

L
[GeV] 700 600

M~tR [GeV] 700 600

M3 [GeV] 600 600

5For the sake of clarity we reproduce the expression of the
charged Higgs coupling. It can also be found in Appendix B,
together with its general expression in the � representation.
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matrices depend on the externalmomentum. InRef. [49] the
rotation matrices are defined as those that diagonalize the
mass matrices at p2 ¼ 0. Then, whether pole-mass correc-
tions are taken into account or not leads to the same diag-
onalization matrices S and P0. This can be seen formally as
a missing higher-order correction, but, in this fashion, the
physicalHiggsmassmatrixwould not correspond to theDR
one in the EPA. This inconvenience is circumvented in the
physical effective approach (PhA) as we force the radia-
tively corrected mass matrices to be the physical ones by
imposing Eqs. (A1) and (A2).

To reproduce the EPA method using pole masses within
SLOOPS, we take the DR masses for the reconstruction of

the potential of Eq. (2.4) but the pole masses for the
kinematics of the process. Therefore the Higgs mass
appearing in the coupling of Eq. (4.4) is the DR mass,
which differs from the energy at which the decay is eval-
uated. This mismatch in the EPAwith pole masses will lead
to a violation of gauge invariance within our generalized
nonlinear gauge, as we will show numerically. On the other
hand, in the PhA, we reconstruct the potential of Eq. (2.4)
(and consequently the Higgsmassmatrices as well) directly
from the pole masses, which are also still used in the
kinematics. This procedure will guarantee that gauge

invariance is maintained because Eqs. (A1) and (A2) are
fulfilled. At the numerical level wewill vary the parameters

~�, ~
i within SLOOPS to exemplify the gauge invariance of
the calculation in the PhA method. The results are presented
in Table III. They were cross-checked with the standard
NMSSMTOOLS version and with NMSSMTOOLS*. The corre-

sponding output of NMSSMTOOLS, whether in the standard or
modified version, does not check internally any consistency
requirement, such as gauge-invariance, and simply uses an
analytic, precomputed expression for the effective h0i ��
couplings. The excellent agreement among the results of
NMSSMTOOLS and the computation of SLOOPS for vanishing

nonlinear gauge parameters (i.e., in a linear gauge) is there-
fore a welcomed feature. The sources for possible discrep-
ancies between SLOOPS and NMSSMTOOLS lie in the treatment
of the sfermion sector: in SLOOPS it is treated purely at tree
level, whereas NMSSMTOOLS includes several corrections to
the spectrum and couplings [33]. For the two benchmark
points investigated this difference is almost invisible because
the sfermion sector is essentially decoupled.
These illustrative examples show however evidently that

the EPA calculation is not gauge invariant. The origin of
this breakdown can be traced back to the observation that
Eqs. (A1) and (A2) are not satisfied. In more restricted
gauges the gauge dependence would be seen at higher
orders only. As stated above, setting ~� ¼ �1 removes

the G�W�� coupling and varying ~
1;2 then gives gauge-

invariant results in both procedures; they differ only by a
finite and gauge-independent piece. This is due to the fact

that the ~
1;2 gauge-dependent parts only appear propor-

tionally to M2
W=v

ffiffiffi
2

p
. On the contrary, in the general case,

~�-dependent parts are proportional to the Higgs mass mh0i
,

originating from the kinematics (i.e., the center of mass
energy

ffiffiffi
s

p
), and the gh0i GþG� coupling, see Eq. (4.4). Recall

that in the EPA the mass appearing in the coupling gh0i GþG�

is not equal to the pole mass, which is used for the on-shell

TABLE II. Higgs spectrum of the benchmark points consid-
ered. For the NMP2 point the lightest CP-even Higgs is SM-like
and for NMP5 it is the second-tolightest one.

Mass [GeV]

NMP2 NMP5

No pole Pole No pole Pole

mh0
1

129.4 126.5 96.1 95.6

mh0
2

133.1 132.4 128.9 126.5

mh0
3

470.8 464.5 659.9 655.8

ma0
1

116.4 115.7 93.9 93.2

ma0
2

468.7 462.8 660.1 656.5

mH� 454.4 454.5 644.8 644.9

TABLE III. Gauge invariance test for the computation of �ðh01;2 ! ��Þ (in GeV) in the EPA
and PhA procedures. Only the PhA approach passes the gauge invariance test within SLOOPS.
There is no such test available with NMSSMTOOLS, whether or not it is the modified version.

NMP2

�ðh01 ! ��Þ ~� ¼ ~
1 ¼ 0 ~� ¼ ~
1 ¼ 10
SLOOPS (EPA) 1:138108952362:10�5 4:490893854783:10�5

SLOOPS (PhA) 1:125710969262:10�5 1:125710969261:10�5

NMSSMTOOLS_3.2.0 1:12699441:10�5

NMSSMTOOLS* 1:12737737:10�5

NMP5

�ðh02 ! ��Þ ~� ¼ ~
2 ¼ 0 ~� ¼ ~
2 ¼ 10
SLOOPS (EPA) 1:053756232511:10�5 3:628709516521:10�5

SLOOPS(PhA) 1:044860481657:10�5 1:044860481613:10�5

NMSSMTOOLS_3.2.0 1:04342526:10�5

NMSSMTOOLS* 1:04361857:10�5
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decay. The gauge-dependence of the EPA is precisely
caused by this mismatch between the ‘‘kinematical’’
mass and the mass appearing in the coupling of Eq. (4.4)
if pole-mass corrections are applied. In the opposite case,
that of the PhA, the kinematical mass and the one appear-
ing in the coupling are the same and the gauge- dependent
part / ~� vanishes. We can render the EPA approach gauge
invariant if no pole-mass corrections are applied (this
would then be a ‘‘PhA with DR masses’’). However, in
this last case, some precision is lost since looking back to
Table II, there is a 2–3 GeV mass difference between pole
and running masses. Within our reconstruction, the charged
Higgs contribution is modified through the gh0i HþH� cou-

pling: we do not expect significant modifications with
respect to previous calculations, in the MSSM limit of the
NMSSM, since it is known that the charged Higgs contri-
bution to the diphoton decay width in the MSSM remains
small (see for example Ref. [12]). In theNMSSMwith large
� (a form of the so-called ‘‘�-SUSY’’ models [16], which
typically leads to a Landau pole below theGUT scale) and a
relatively light charged Higgs mass, one could modify
significantly gh0i ;HþH� , without requiring large doublet-

singlet mixing. This was explicitly shown in Ref. [56].
Note, however, that a serious issue would arise with the

gauge-dependent calculation of h0i ! �� if one would
choose to use it in order to derive some fundamental
parameters at the Lagrangian level, which should prefera-
bly be determined from gauge-independent observables.
As a final remark concerning this section, beyond
maintaining gauge invariance, the PhA is clearly advanta-
geous as it enables us to use the pole masses easily in
the calculation of the decay width, in a consistent way,
without resorting to the technical task of computing the
‘‘pole-corrected’’ mixing elements Sij, P

0
ij.

D. Comparison with MICROMEGAS

A comparable approach, based on an effective potential
approach, had been carried out in MICROMEGAS [34,35], a
code computing the DM relic density ��h

2 in (e.g.,)

the NMSSM. Since light Higgs states can be present,
annihilation channels into h01h

0
1, h

0
1a

0
1, a

0
1a

0
1 can contribute

significantly to ��h
2 and such channels are affected by

radiative corrections in the Higgs sector. The effective
scalar potential was implemented in this code as (see
Ref. [35], where a slightly different version was proposed),

V rad ¼ �M
1 jHuj2 þ �M

2 jHdj2 þ �M
3 jHuj2jHdj2

þ �M
4 jHu �Hdj2 þ �M

5

2
½ðHu �HdÞ2 þ H:c:�

þ �s
1jSj2jHuj2 þ �s

2jSj2jHdj2

þ
�
�s
5

2
S2ðHu �HdÞ þ �s

pS
4 þ H:c

�
þ �s

s

2
jSj4:

(4.5)

This potential is to be understood as a radiative potential,
which means that all the parameters are loop induced. To
make a connection with our conventions we have

��1 ¼ �M
2 ; ��2 ¼ �M

1 ;

��3 ¼ �M
3 ; ��4 ¼ �M

4 ;

��u
P ¼ �s

1; ��d
P ¼ �s

2; ��2 ¼ �s
s;

(4.6)

where the��i are the loop-induced part of the �i parameters
appearing inEq. (2.4)whenwe split themas�i ¼ �0

i þ��i.
The remaining parameters�s

p, �
M
5 and�s

5 have no equivalent

in our restricted potential of Eq. (2.4) but correspond, in our
conventions for the general potential [Eq. (2.2)], to

�M
5 ¼�5; �s

p¼ ~�2
S=4;

~�M
P ¼�s

5=2: (4.7)

Conversely, our parameters Aud, AS and �M
P receive no

correction in the MICROMEGAS approach, which, obviously,
does not rely on the Z3 symmetry. As a consequence, while
an inversion procedure is also possible with the potential of
Eq. (4.5), the radiative corrections to the masses will be
distributed in a different way among the �i’s, leading to
differences at the level of the Higgs self-couplings.
We remind here that if one aims at improving on the

tree-level couplings, as is obviously the purpose of a
radiative potential, i.e., of Eq. (4.5), it becomes crucial to
identify the �i’s that are subject to large quantum correc-
tions: that was our discussion in Sec. III C. An arbitrary
truncation of the potential, albeit allowing for an inversion
in terms of the Higgs masses provided it is sufficiently
simple, is not a receivable option because the accuracy
contained within the couplings brings no improvement
with respect to the tree-level evaluation. Our study of the
large logarithms within the Coleman-Weinberg approach
tends to convince us that our choice of a Z3-invariant
potential should be preferred, while the choice in
Eq. (4.5) seems arbitrary. Possible reasons for this choice
within MICROMEGAS could lie on the facts that the loop
corrections to �5 are sizeable in the MSSM, and one could
have expected the same behavior in the NMSSM, while the

parameters �s
p and �s

5 (or rather ~�2
S and ~�M

P in our con-

ventions) appear in the trilinear couplings h0i h
0
jh

0
k and

h0i a
0
ja

0
k with a factor s (questionably an enhancement

factor in the MSSM limit): see Eqs. (B5) and (B6).
However, other parameters in the general potential of
Eq. (2.2) share this latter property and are still arbitrarily
absent. We will see in a numerical example that ensuing
deviations between our implementation and that in
MICROMEGAS could be significant.

We considered a point in the NMSSM parameter space
where the DM relic density ��h

2 is in the correct experi-

mental range (at the 2� level: 0:1 & ��h
2 & 0:124 [57]),

when computed with MICROMEGAS_2.4.1 and the Higgs
radiative potential of Eq. (4.5). This specific point passes
warnings from NMSSMTOOLS_3.2.0 as well, and features a
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SM-like CP-even Higgs mass around 125 GeV. The
NMSSMTOOLS input for this point is given in Table IV.

The main channel contributing to ��h
2 is ~�0

1 ~�
0
1 ! a01a

0
1

(at 72%) and the rest of the contributions involve fermions
in the final state, dominated by the b �b final state. The
process ~�0

1 ~�
0
1 ! a01a

0
1 is dominated by the s-channel ex-

change of the SM-like Higgs h02 close to its mass shell, as
can be seen on Table V, where the Higgs spectrum, the
lightest neutralino massm~�0

1
and the resulting relic density

are provided.
The decay modes h02;3 ! 2a01 are kinematically open.

Let us compare these decay widths within the three codes:
SLOOPS, with our effective implementation [Eq. (A1) and

(A2)], MICROMEGAS using the radiative potential in
Eq. (4.5) and NMSSMTOOLS_3.2.0, where only the leading
logarithms in top/bottom corrections are taken into
account. The output of NMSSMTOOLS* is also considered.
The results are displayed in Table VI. We observe signifi-
cant discrepancies between SLOOPS/NMSSMTOOLS*_3.2.0

(which are in remarkable agreement), on one side,
MICROMEGAS_2.4.1/NMSSMTOOLS_3.2.0 (which also show

some disagreement between them), on the other. Our cal-
culation for the main channel h02 ! 2a01 [that we denote

henceforth as �Sðh02 ! a01a
0
1Þ] is about a factor 1.2 larger

than the MICROMEGAS result (labeled as �Mðh02 ! a01a
0
1Þ].

Giving the modified prediction of ��h
2 within our

procedure is beyond the scope of this work, but we can
nevertheless make a rough estimation of this quantity. As
the process ~�0

1 ~�
0
1 ! a01a

0
1 is dominated by the h02 reso-

nance, and only the h02a
0
1a

0
1 coupling is modified, we can

reasonably approximate,

�Sð~�0
1 ~�

0
1 ! a01a

0
1Þ

�Mð~�0
1 ~�

0
1 ! a01a

0
1Þ

 �Sðh02 ! a01a

0
1Þ

�Mðh02 ! a01a
0
1Þ

 1:2: (4.8)

Denoting�M
r as the contribution of the rest of the processes

to the cross sections involved in �M
� h

2, the relic density

computed within MICROMEGAS, we can write the sum of all
contributions �M

totð~�0
1 ~�

0
1 ! XÞ as, X standing for any rele-

vant final state,

�M
totð~�0

1 ~�
0
1 ! XÞ ¼ X

X

�Mð~�0
1 ~�

0
1 ! XÞ

¼ �Mð~�0
1 ~�

0
1 ! a01a

0
1Þ þ �M

r : (4.9)

The MICROMEGAS calculation gives �Mð~�0
1 ~�

0
1 ! a01a

0
1Þ=

�M
totð~�0

1 ~�
0
1 ! XÞ ¼ 72%, as we already mentioned, and

the ratio of relic densities in both approaches is approxi-
mately determined by �M

� h
2=�S

�h
2 ’ �S

tot=�
M
tot, where

�S
�h

2 is the relic abundance in our calculation and

�S
tot ¼ �Sð~�0

1 ~�
0
1 ! a01a

0
1Þ þ �S

r : (4.10)

Moreover, we have �S
r ¼ �M

r , since the remaining relevant
contributions are annihilations into light fermions and
hence unaffected by corrections in the Higgs sector. Thus
we obtain the following estimate:

�S
�h

2 ’ 0:090: (4.11)

A reduction of the relic density with respect to the
MICROMEGAS calculation was to be anticipated since in

our computation the annihilation into light pseudoscalars
is enhanced, thus depleting the abundance of relic neutra-
linos more efficiently. In turn, and contrarily to the predic-
tion of MICROMEGAS, this point would actually lie outside
the cosmologically interesting region if one relies on our
estimate. Of course the derived value of��h

2 also depends

crucially on the precision of the evaluation ofmh0
2
(andm~�0

1
)

since the annihilation ~�0
1 ~�

0
1 ! a01a

0
1 occurs at the h02 reso-

nance. These considerations are of particular significance
when one considers that the PLANCK satellite [58] should
improve the experimental determination of cosmological
parameters [59] soon. For a discussion concerning the

TABLE IV. SUSY point for the comparison between
MICROMEGAS, SLOOPS and NMSSMTOOLS. M~l and M~q are com-

mon sleptons and squarks soft masses.

Parameter Value Parameter Value

M1 [GeV] 84.49 t� 2

M2 [GeV] 359 � 0.63

M3 [GeV] 1200 � 0.05

Af [GeV] �1500 A� [GeV] 694

M~l [GeV] 200 A� [GeV] 0

M~q [GeV] 600 �eff [GeV] 300

TABLE V. Resulting spectrum and ��h
2 from the data point

presented in Table IV.

Spectrum

m~�0
1
[GeV] 63.2

mh0
1
[GeV] 110.9

mh0
2
[GeV] 126.4

mh0
3
[GeV] 727.8

ma0
1
[GeV] 59.7

ma0
2
[GeV] 732.4

mH� [GeV] 721.7

Relic density

��h
2 0.103

TABLE VI. Comparison of the decay widths h02;3 ! 2a01.

Decay [GeV] �ðh02 ! a01a
0
1Þ �ðh03 ! a01a

0
1Þ

SLOOPS 3:56610�2 1:90010�4

MICROMEGAS_2.4.1 2:96010�2 4:66510�5

NMSSMTOOLS_3.2.0 2:73010�2 1:23310�4

NMSSMTOOLS*_3.2.0 3:56610�2 1:90010�4
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accuracies required from colliders to match the precision of
the relic density measurement, see for example Ref. [60].

V. CONCLUSIONS

This study of the Higgs potential with two Higgs dou-
blets and one gauge singlet has put forward several points
of interest that we would like to summarize briefly here.

The most general effective renormalizable Lagrangian
of the 2-doublet þ1-singlet setup contains 28 (plus one
superfluous) parameters, far beyond the 11 parameters of
the 2HDM, even after complex phases have been dis-
carded. Therefore, if future experimental measurements
should point toward such a rich Higgs sector, a full recon-
struction of its potential through experimental data in the
Higgs sector could succeed only after an exhaustive mea-
surement of the Higgs self-couplings, beyond that of the
masses and mixing angles: if the purpose for such a recon-
struction is sound from the point of view of model identi-
fication and precision tests, it is also probably condemned
to a very long delay, as far as the experimental phase is
concerned. This situation is eventually that of most models,
albeit constrained, once considered at the radiative level, for
symmetries are spontaneously broken by the Higgs VEVs,
and loop corrections end up contributing to all possible
terms in the potential. We emphasize, however, that a
precise determination, in a general parametrical form, of
the potential at future (linear) colliders, shall help discrimi-
nate among such models and constrain their parameters: in
turn, the predictions of specificmodels for the parameters of
the Higgs potential should be known at the radiative level so
as to allow for comparison/precision tests.

Requirements for additional symmetries, beyond the
EW-invariance, or matching conditions originating from
more elaborate models, may constrain the effective poten-
tial at the classical order. Provided its form is simple
enough, an identification at leading order of the parameters
of the underlying model is achievable from the Higgs
spectrum solely. Then, assuming the remaining sectors of
the model are sufficiently documented as well, a full
determination of the effective potential within the more
fundamental model is essentially a matter of perturbative
calculation. We lent particular attention to the Z3-invariant
and PQ-conserving potentials, which could both be
embedded within a SUSY extension of the SM, the
NMSSM or the UMSSM, respectively; the PQ’-conserving
potential (R-symmetric limit of the NMSSM); or the po-
tential driven by an underlying nMSSM. A reconstruction
of the classical parameters was explicitly carried out, at
leading order, for those models.

Further achievements seemed within reach in models
ensuring a residual symmetry at the EW scale. Our test
model here was the NMSSM, and the study of the large
logarithms within the Coleman-Weinberg approach con-
firmed that the leading logarithmic effects would not spoil
the Z3 symmetry, extending the validity of our parameter

reconstruction in terms of the Higgs spectrum to this order.
By contrast, in the nMSSM, where no residual symmetry is
present at low energy, logarithms do not observe the clas-
sical form, spoiling a reconstruction beyond LO.
We finally considered a few phenomenological conse-

quences of this parameter reconstruction at the leading
logarithmic order in the NMSSM. We based our discus-
sion on the Higgs spectrum computed in the public code
NMSSMTOOLS and implemented the reconstruction both

within NMSSMTOOLS, directly, and within SLOOPS. The
latter allowed us to visit the diphoton decay of the SM-
like CP-even scalar again and clarified the conditions for
a gauge-independent implementation. Comparison with
the previous implementation of an effective Higgs poten-
tial within MICROMEGAS was also carried out: different
choices in the radiative potential result in different Higgs-
to-Higgs couplings at the order of leading logarithms, as
the radiative effects encoded within the masses are dis-
tributed differently among the parameters of Eq. (2.2);
while the form in Eq. (4.5) is seemingly arbitrary, our
choice [Eq. (2.4)] is justified by the analysis of the
logarithms appearing in the Coleman-Weinberg approach
and should thence prove a priori more reliable. As far as
the phenomenology of the NMSSM is concerned, we
found fine effects in collider constraints or the calculation
of the DM relic density, appearing essentially for points
of the parameter space which rely heavily on Higgs-to-
Higgs couplings, such as those entering the processes
h01 ! a01a

0
1 or ~�0

1 ~�
0
1 ! a01a

0
1, mediated by a CP-even

Higgs in the s channel.
Finally, let us mention that although the state discovered

at LHC is in a favorable mass range for singlet extensions
of the MSSM, a long stage of experimental measurements
and identifications of additional Higgs states lies ahead of
us, should the 2-doublet þ1-singlet setup be realized at all
in nature.
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APPENDIX A: PARAMETER RECONSTRUCTION
FOR SIMPLE CLASSICAL POTENTIALS

We provide here the results of the inversion procedure
described in Sec. III C for a few classical potentials. Note
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that, for completeness, one should also replace the parame-
ters within Eq. (2.15) to fully determine the potential.

Z3-invariant potential V S
Z3
:

The quartic doublet couplings are entirely determined by
the Higgs mass matrices:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

�1 ¼ 1
2v2

�m2

h0
i

S2i1

cos2�
�m2

a0i
P02
i1tan

2�

�

�2 ¼ 1
2v2

�m2

h0
i

S2
i2

sin2�
�

m2

a0
i

P02
i1

tan2�

�

�3 ¼ 1
2v2

�
2m2

H� þ
2m2

h0
i

Si1Si2

sin2� �m2
a0i
P02
i1

�

�4 ¼ 1
v2 ½m2

a0i
P02
i1 �m2

H��

: (A1)

One degree of freedom remains, which can be chosen
conveniently as the singlet VEV s. One then obtains for
the remaining parameters,

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

Aud ¼ 1
3

�
sin2�
s m2

a0i
P02
i1 þ 1

vm
2
a0i
P0
i1P

0
i2

�

�M
P ¼ 1

3s

�
sin2�
2s m2

a0i
P02
i1 � 1

vm
2
a0i
P0
i1P

0
i2

�

AS ¼ 1
3s

�
v2sin22�

2s2
m2

a0i
P02
i1 �m2

a0i
P02
i2 � v sin2�

2s m2
a0i
P0
i1P

0
i2

�

�2 ¼ 1
4s2

�
m2

h0i
S2i3 þ 1

3m
2
a0i
P02
i2 � v2sin22�

3s2
m2

a0i
P02
i1

�

�u
P ¼

m2

h0
i

Si2Si3

2sv sin� þ 1
3s tan�

�
sin2�
s m2

a0i
P02
i1 � 1

2vm
2
a0i
P0
i1P

0
i2

�

�d
P ¼
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h0
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Si1Si3

2sv cos� þ tan�
3s

�
sin2�
s m2

a0i
P02
i1 � 1

2vm
2
a0i
P0
i1P

0
i2

�

:

(A2)

In replacement of s, one may use any combination of these
latter equations to define a new parameter. For instance,

"ða;bÞ � �M
P ðaþ bÞ

a�u
P þ b�d

P

, s ¼
v sin2�m2

a0i
P02
i1½1� 2"ða;bÞð a

tan� þ b tan�Þ�
2m2

a0i
P0
i1P

0
i2½1� "ða;bÞ

2 ð a
tan� þ b tan�Þ� þ 3"ða;bÞm2

h0i
Si3ða Si1

sin� þ b Si2
cos�Þ

: (A3)

"ða;bÞ coincides with �=� in the NMSSM at tree level and may be regarded as a measurement of the breakdown of the
Peccei-Quinn symmetry. Alternatively,

�ud � �u
P

�d
P

� 1 , s ¼
2v sin2�m2

a0i
P02
i1½1� ð1þ �udÞtan2��

m2
a0i
P0
i1P

0
i2½1� ð1þ �udÞtan2�� � 3m2

h0i
Si3½ Si1

cos� � ð1þ �udÞtan2� Si2
sin��

: (A4)

�ud vanishes at tree level in the NMSSM and may represent another possibility.
Peccei-Quinn-invariant potential V S

PQ:

The system is fully determined by the following mass matrices:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�1 ¼ 1
2v2

�m2

h0
i

S2
i1

cos2�
�m2

a0
2
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�

�2 ¼ 1
2v2

�m2
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S2
i2

sin2�
�
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P02
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�

�3 ¼ 1
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�
2m2

H� þ
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Si1Si2
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2

P02
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�

�4 ¼ 1
v2 ½m2
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2

P02
21 �m2

H��

Aud ¼
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a0
2
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v

s ¼ v
2 sin2�

P0
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P0
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�2 ¼ ðP0
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=P0

21
Þ2

v2sin22�
½m2

h0i
S2i3 �m2

a0
2

P02
22�
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P ¼ 1

2v2sin2�

P0
22
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21

�m2

h0
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Si2Si3

cos� þm2
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2v2cos2�
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�m2

h0
i

Si1Si3
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: (A5)
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Peccei-Quinn’-invariant potential V S
PQ0 :

The system is fully determined by the mass matrices:8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�1 ¼ 1
2v2

�m2

h0
i
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�
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�
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�
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Si1Si2

sin2� �m2
a0
2

P02
21

�

�4 ¼ 1
v2 ½m2

a0
2

P02
21 �m2

H��

�M
P ¼

m2

a0
2

P02
22

2v2 sin2�

s ¼ �v sin2�
P0
21

P0
22

�2 ¼
m2

h0
i

S2
i3

4v2sin22�

�
P0
22

P0
21

�
2

�u
P ¼ 1

4v2sin2�

P0
22

P0
21

�
m2

a0
2

P0
21P

0
22 �

m2

h0
i

Si2Si3

cos�

�

�d
P ¼ 1

4v2cos2�

P0
22

P0
21

�
m2

a0
2

P0
21P

0
22 �

m2

h0
i

Si2Si3

sin�

�

: (A6)

nMSSM-inspired potential V S
T:

Although only 12 parameters are to be determined within the potential, application of the constraints of
Eq. (2.5) leave one degree of freedom, due to the degenerescence of the CP-even and CP-odd singlet in this model,
m2

h0i
S2i3 ¼ m2

a0i
P02
i2. We again choose s to be this degree of freedom. The remaining parameters read8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

�1 ¼ 1
2v2

�m2

h0
i

S2i1

cos2�
�m2

a0i
P02
i1tan

2�

�

�2 ¼ 1
2v2

�m2

h0
i

S2
i2

sin2�
�

m2

a0
i

P02
i1

tan2�

�

�3 ¼ 1
2v2

�
2m2

H� þ
2m2

h0
i

Si1Si2

sin2� �m2
a0i
P02
i1

�

�4 ¼ 1
v2 ½m2

a0i
P02
i1 �m2

H��
�T ¼ v

2 sin2�m2
a0i
P0
i1P

0
i2 � sm2

a0i
P02
i2

m2
12 ¼ m2

a0i
P0
i1P

0
i2

s
v �m2

a0i
P02
i1

sin2�
2

Aud ¼
m2

a0
i

P0
i1P

0
i2

v

�u
P ¼ 1

2vs

�m2

h0
i

Si2Si3

sin� þ
m2

a0
i

P0
i1P

0
i2

tan�

�

�d
P ¼ 1

2vs

�m2

h0
i

Si1Si3

cos� þm2
a0i
P0
i1P

0
i2 tan�

�

: (A7)

APPENDIX B: TRILINEAR HIGGS-TO-HIGGS COUPLINGS

In this Appendix we give the physical trilinear Higgs-to-Higgs couplings h0i H
þH�, h0i a0ja0k and h0i h

0
jh

0
k in the �

representation obtained from the general potential Eq. (2.2) and in the mass representation from the restricted Z3 potential
Eq. (2.4) only (as in the general potential the results are cumbersome). In the following, the matrix Pij is defined

as the 3	 3 diagonalization matrix which rotates the gauge eigenstates ða0d; a0u; a0sÞ directly to the physical basis

ða01; a02; G0Þ such that,
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a1

a2

G0

0
BB@

1
CCA ¼

P0
11s� P0

11c� P0
12

P0
21s� P0

21c� P0
22

c� �s� 0

2
664

3
775

a0d

a0u

a0S

0
BB@

1
CCA ¼

P11 P12 P13

P21 P22 P23

P31 P32 P33

2
664

3
775

a0d

a0u

a0S

0
BB@

1
CCA (B1)

with P0 defined from Eq. (2.20). To cast the couplings in a more compact form, we also define the following mixing
elements combinations,

ð�AÞa;b;ci;j;k ¼ Sia½PjbPkc þ PjcPkb� (B2)

ð�SÞa;b;ci;j;k ¼ SiaSjbSkc þ SiaSjcSkb þ SibSjaSkc þ SibSjcSka þ SicSjaSkb þ SicSjbSka: (B3)

1. Trilinear couplings in the � representation

CP-even Higgs to charged Higgses h0
iH

þH� coupling

gh0i HþH� ¼�1vs�s2�Si1ffiffiffi
2

p þ�2vc�s2�Si2ffiffiffi
2

p þ ffiffiffi
2

p
�3v½c3�Si1þ s3�Si2��

ð�4þ�5Þvs2�ffiffiffi
2

p ½s�Si1þc�Si2�

��6vc�ffiffiffi
2

p ½s2�Si1�ð1�3c2�ÞSi2�þ
�7vs�ffiffiffi

2
p ½ð1þ3c2�ÞSi1� s2�Si2�þ

s2�ffiffiffi
2

p ½Audþ ~Audþ4ð�M
P þ ~�M

P þ�MÞsÞ�Si3
þ ffiffiffi

2
p ½ðAdsþð�d

Pþ2~�d
PÞsÞs2�þðAusþð�u

Pþ2~�u
PÞsÞc2��Si3: (B4)

CP-even Higgs to two CP-odd Higgs h0i a
0
i a

0
j

gh0i a0ja0k ¼
�1vc�ffiffiffi

2
p ð�AÞ1;1;1i;j;k þ �2vs�ffiffiffi

2
p ð�AÞ2;2;2i;j;k þ ð�3 þ �4Þvffiffiffi

2
p ½c�ð�AÞ1;2;2i;j;k þ s�ð�AÞ2;1;1i;j;k � �

�7vs�ffiffiffi
2

p ð�AÞ1;1;1i;j;k

� �6vc�ffiffiffi
2

p ð�AÞ2;2;2i;j;k � vð�5c� � �6s�Þffiffiffi
2

p ð�AÞ1;2;2i;j;k � vð�5s� � �7c�Þffiffiffi
2

p ð�AÞ2;1;1i;j;k

� ffiffiffi
2

p
v½ð�5c� þ �6s�Þð�AÞ2;1;2i;j;k ð�5s� þ �7c�Þð�AÞ1;2;1i;j;k � þ

Aud � 2�M
P sffiffiffi

2
p ð�AÞ1;2;3i;j;k þ Aud � 2�M

P sffiffiffi
2

p ð�AÞ2;1;3i;j;k

þ Aud þ 2�M
P sffiffiffi

2
p ð�AÞ3;1;2i;j;k �

~Aud � 2~�M
P sffiffiffi

2
p ð�AÞ1;2;3i;j;k �

~Aud � 2~�M
P sffiffiffi

2
p ð�AÞ2;1;3i;j;k þ

~Aud þ 2ð~�M
P þ �MÞsffiffiffi
2

p ð�AÞ3;1;2i;j;k

þ Ads þ 2~�d
Psffiffiffi

2
p ð�AÞ3;1;1i;j;k þ Aus þ 2~�u

Psffiffiffi
2

p ð�AÞ3;2;2i;j;k � 3AS � ~AS � 3ð2�2 � 3~�2
SÞs

3
ffiffiffi
2

p ð�AÞ3;3;3i;j;k

� ffiffiffi
2

p ð�M
P � ~�M

P Þv½s�ð�AÞ3;1;3i;j;k þ c�ð�AÞ3;2;3i;j;k � þ
�d
Psffiffiffi
2

p ð�AÞ3;1;1i;j;k þ �u
Psffiffiffi
2

p ð�AÞ3;2;2i;j;k

þ ½ð~�M
P � �MÞs� � 2~�d

Pc��vffiffiffi
2

p ð�AÞ1;3;3i;j;k þ ½ð~�M
P � �MÞc� � 2~�u

Ps��vffiffiffi
2

p ð�AÞ2;3;3i;j;k : (B5)

Triple CP-even Higgs coupling h0i h
0
jh

0
k

gh0i h0jh0k
¼ �1vc�ffiffiffi

2
p ð�SÞ1;1;1i;j;k þ �2vs�ffiffiffi

2
p ð�SÞ2;2;2i;j;k þ ð�3 þ �4Þvffiffiffi

2
p ½c�ð�SÞ1;2;2i;j;k þ s�ð�SÞ2;1;1i;j;k �

� �6vffiffiffi
2

p ½c�ð�SÞ2;2;2i;j;k þ 3s�ð�SÞ1;2;2ijk � � �7vffiffiffi
2

p ½s�ð�SÞ1;1;1i;j;k þ 3c�ð�SÞ2;1;1ijk � þ ð�d
Pc� � �M

P s�Þvffiffiffi
2

p ð�SÞ1;3;3i;j;k

þ ð�u
Ps� � �M

P c�Þvffiffiffi
2

p ð�SÞ2;3;3i;j;k þ �d
Psffiffiffi
2

p ð�SÞ3;1;1i;j;k þ �u
Psffiffiffi
2

p ð�SÞ3;2;2i;j;k þ ð2~�d
Pc� � ð�M þ ~�M

P Þs�Þvffiffiffi
2

p ð�SÞ1;3;3i;j;k

þ ð2 ~�u
Ps� � ð�M þ ~�M

P Þc�Þvffiffiffi
2

p ð�SÞ2;3;3i;j;k þ ffiffiffi
2

p ð~�d
Psð�SÞ3;1;1i;j;k þ ~�u

Psð�SÞ3;2;2i;j;k Þ �
Aud þ 2�M

P sffiffiffi
2

p ð�SÞ3;1;2i;j;k

þ AS þ 6�2s

3
ffiffiffi
2

p ð�SÞ3;3;3i;j;k �
~Aud þ 2ð�M þ ~�M

P Þsffiffiffi
2

p ð�SÞ3;1;2i;j;k þ
~AS þ 3ð�2

S þ ~�2
SÞs

3
ffiffiffi
2

p ð�SÞ3;3;3i;j;k : (B6)
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2. Trilinear couplings in the mass representation for the Z3-conserving potential

To obtain the mass representation we trade the Z3-conserving �i’s of the couplings in the � representation (see previous
subsection) against the masses, mixing angles and VEVs [Eqs. (A1) and (A2)] and set the remaining ones to zero.

CP-even Higgs to charged Higgses h0i H
þH� coupling

gh0i HþH� ¼ 1

v
ffiffiffi
2

p
�
m2

h0i

�
sin�2

cos�
Si1 þ cos�2

sin�
Si2

�
þ 2m2

H�ðcos�Si1 þ sin�Si2Þ

�
2m2

a0j
P0
j1P

0
j2Si3

3 sin2�
�m2

a0j
P02
j1

�
Si1
cos�

þ Si2
sin�

� 4

3

v

s
Si3

��
: (B7)

CP-even Higgs to two CP-odd Higgs h0i a
0
i a

0
j

gh0i a0ja0k
¼X3

l¼1

m2
h0
l

2
ffiffiffi
2

p
�
S2l1
vc�

ð�AÞ1;1;1i;j;k þ S2l2
vs�

ð�AÞ2;2;2i;j;k þ S2l3
s
ð�AÞ3;3;3i;j;k þ Sl1Sl2

�ð�AÞ1;2;2i;j;k

vs�
þ ð�AÞ2;1;1i;j;k

vc�

�

þ Sl3

�
Sl1

�ð�AÞ3;1;1i;j;k

vc�
þ ð�AÞ1;3;3i;j;k

s

�
þ Sl2

�ð�AÞ3;2;2i;j;k

vs�
þ ð�AÞ2;3;3i;j;k

s

��

þX2
l¼1

m2
a0
lffiffiffi
2

p
�
Pl1Pl2

�ð�AÞ1;2;2i;j;k � t�ð�AÞ1;1;1i;j;k

2vc�
þ ð�AÞ2;1;1i;j;k � t�1

� ð�AÞ2;2;2i;j;k

2vs�

þ 4

3s
ðt�ð�AÞ3;1;1i;j;k þ t�1

� ð�AÞ3;2;2i;j;k þ ð�AÞ3;1;2i;j;k Þ þ
v

3s2

�
s�ð�AÞ1;3;3i;j;k þ c�ð�AÞ2;3;3i;j;k � 4ðs�ð�AÞ3;1;3i;j;k þ c�ð�AÞ3;2;3i;j;k

�

� 2vs2�
s

ð�AÞ3;3;3i;j;k

�
þPl1Pl3

�
1

2v

�ð�AÞ1;2;3i;j;k

s�
þ ð�AÞ2;1;3i;j;k

s�
� ð�AÞ3;1;2i;j;k

3s�
� ð�AÞ3;1;1i;j;k

3c�

�

þ 1

3s

�
ð�AÞ3;1;3i;j;k þ t�1

� ð�AÞ3;2;3i;j;k � ð�AÞ1;3;3i;j;k � t�1
� ð�AÞ2;3;3i;j;k

2
þvc�ð�AÞ3;3;3i;j;k

2s

��

þPl2Pl3

�
1

2v

�ð�AÞ1;2;3i;j;k

c�
þ ð�AÞ2;1;3i;j;k

c�
� ð�AÞ3;1;2i;j;k

3c�
� ð�AÞ3;2;2i;j;k

3s�

�

þ 1

3s

�
ð�AÞ3;2;3i;j;k þ t�ð�AÞ3;1;3i;j;k � ð�AÞ2;3;3i;j;k � t�ð�AÞ2;3;3i;j;k

2
þvs�ð�AÞ3;3;3i;j;k

2s

��
þP2

l3

2s
ð�AÞ3;3;3i;j;k

�
: (B8)

Triple CP-even Higgs coupling h0i h
0
jh

0
k

gh0i h0jh0k
¼ X3

l¼1

m2
h0
l

2
ffiffiffi
2

p
�S2l1ð�SÞ1;1;1i;j;k

vc�
þ S2l2ð�SÞ2;2;2i;j;k

vs�
þ Sl1Sl2

�ð�SÞ2;1;1i;j;k

vc�
þ ð�SÞ1;2;2i;j;k
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�

þ Sl1Sl3
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s

�
þ Sl2Sl3

�ð�SÞ3;2;2i;j;k

vs�
þ ð�SÞ2;3;3i;j;k

s

�
þ S2l3ð�SÞ3;3;3i;j;k

s

�

þX2
l¼1

m2
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l

2
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2

p
�
P2
l1

�t�1
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þ 4

3s

�
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� ð�SÞ3;1;2i;j;k þ vc2�
s

�ð�SÞ1;3;3i;j;k

2s�
� vð�SÞ3;3;3i;j;k

6s

���

þ P2
l2

�t�ð�SÞ1;2;2i;j;k � ð�SÞ2;2;2i;j;k

vs�
þ 4

3s

�
ð�SÞ3;2;2i;j;k þ t�ð�SÞ3;1;2i;j;k þ vs2�

s

�ð�SÞ2;3;3i;j;k

2c�
� vð�SÞ3;3;3i;j;k

6s

���

� Pl1Pl3

3

�ð�SÞ1;1;1i;j;k

vc�
þ ð�SÞ3;1;2i;j;k

vs�
� t�1

� ð�SÞ1;3;3i;j;k

s
þ vc�

6s2
ð�SÞ3;3;3i;j;k

�

� Pl2Pl3

3

�ð�SÞ2;2;2i;j;k
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þ ð�SÞ3;1;2i;j;k
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s
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�
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: (B9)
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APPENDIX C: COLEMAN-WEINBERG
ANALYSIS OF THE HIGGS POTENTIAL

IN THE NMSSM AND THE nMSSM

The two models under consideration essentially differ, at
tree level, by their Higgs sectors. Additionally, one should
require the limit �2 ! 0 in the nMSSM neutralino sector,
with respect to that of the NMSSM.

SM fermion contributions:
In the base of Dirac fermions ðu; d; 	e; eÞ, the squared

mass matrix of SM fermions in terms of neutral Higgs
fields reads (we omit color and generation indices)

M2
fðH0

u;dÞ ¼

Y2
ujH0

uj2 0 0 0

0 Y2
djH0

dj2 0 0

0 0 0 0

0 0 0 Y2
e jH0

dj2

2
666664

3
777775 (C1)

leading to the potential


V�;f
eff ðH0

u;H
0
d;SÞ¼� 1

16�2

X
f

Y4
fjH0

fj4
�
ln

�Y2
fjH0

fj2
�2

�
�3

2

�

’� 1

16�2

X
f

Y4
fjH0

fj4 ln
�Y2

fv
2
f

�2

�
þ��� ;

(C2)

where we have kept only the leading, SUð2ÞL-invariant,
logarithmic terms. We deduce the following corresponding
contributions to the Higgs potential:

8>>><
>>>:
�f
1 ’ � 1

8�2

P
f¼d;e

Y4
f ln

�
m2

f

�2

�

�f
2 ’ � 1

8�2

P
u
Y4
u ln

�
m2

u

�2

� : (C3)

SM gauge boson contributions:
In the base of real vector fields ð�0; W1;W2; Z0Þ, the

squared mass matrix of SM gauge bosons in terms of
neutral Higgs fields reads

M2
GðH0

u;dÞ ¼
1

2

0 0 0 0

0 g2 0 0

0 0 g2 0

0 0 0 g2 þ g02

2
666664

3
777775ðjH0

uj2 þ jH0
dj2Þ;

(C4)

leading to the potential (note that in the SUð2ÞL-conserving
limit, these fields are massless)


V�;f
eff ðH0

u; H
0
d; SÞ ¼

3

64�2

�
g4

2
ðjH0

uj2 þ jH0
dj2Þ2

�
ln

�
g2ðjH0

uj2 þ jH0
dj2Þ

2�2

�
� 3

2

�

þ ðg2 þ g02Þ2
4

ðjH0
uj2 þ jH0

dj2Þ2
�
ln

�ðg2 þ g02ÞðjH0
uj2 þ jH0

dj2Þ
2�2

�
� 3

2

��

’ 3

256�2

�
2g4 ln

�
M2

W

�2

�
þ ðg2 þ g02Þ2 ln

�
M2

Z

�2

��
ðjH0

uj2 þ jH0
dj2Þ2 . . . ; (C5)

providing us with the couplings8>>>>>>>><
>>>>>>>>:

�G
1 ’ 3

128�2

�
2g4 ln

�
M2

W

�2

�
þ ðg2 þ g02Þ2 ln

�
M2

Z

�2

��

�G
2 ’ 3

128�2

�
2g4 ln

�
M2

W

�2

�
þ ðg2 þ g02Þ2 ln

�
M2

Z

�2

��

�G
3 þ �G

4 ’ 3
128�2

�
2g4 ln

�
M2

W

�2

�
þ ðg2 þ g02Þ2 ln

�
M2

Z

�2

��
: (C6)

Sfermion contributions:
The sfermion squared mass matrix, in the base ð ~FL; ~F

c�
R Þ for a flavor f, is given by

M2
~F
ðS;H0

u; H
0
dÞ ¼

m2
~FL
þ jYfH

0
fj2 þ g02Yf

L�2g2If
3

4 ðjH0
uj2 � jH0

dj2Þ YfðAfH
0
f � �S�H0�

~f
Þ

YfðAfH
0�
f � �SH0

~f
Þ m2

~FR
þ jYfH

0
fj2 þ g02Yf

R

4 ðjH0
uj2 � jH0

dj2Þ

2
664

3
775: (C7)

Defining T ~F ¼ ðM2
~F
Þ11 þ ðM2

~F
Þ22 and R2

~F
¼ ½ðM2

~F
Þ11 � ðM2

~F
Þ22�2 þ 4jM2

~F
j212, we obtain the eigenvalues m2

~F�
¼

1
2 ½T ~F �

ffiffiffiffiffiffi
R2

~F

q
� and the Higgs potential


V�; ~F
eff ðH0

u; H
0
d; SÞ ¼

1

128�2

X
f

�
ðT2

~F
þ R2

~F
Þ
�
ln

�T2
~F
� R2

~F

4�4

�
� 3

�
þ 2T ~F � R ~F ln

�
T ~F þ R ~F

T ~F � R ~F

��
: (C8)
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One derives the following couplings:

ðm2
Hu
Þ ~F ¼ 1

16�2

X
f

�

fuY

2
f½A ~F

LþA ~F
RþA2

fB
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4
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4
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�
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f½A ~F
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where we have used the notations
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Chargino contributions:
The chargino squared mass matrix, in a base of Dirac (winos, Higgsinos), is given by

M2
��ðS;H0

u; H
0
dÞ ¼

M2
2 þ g2jH0

dj2 gðM2H
0�
u þ �SH0

dÞ
gðM2H

0
u þ �S�H0�

d Þ �2jSj2 þ g2jH0
uj2

" #
: (C11)
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One can derive the following couplings:
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Neutralino contributions:
The (Hermitian) neutralino squared mass matrix is determined by its entries in the base of Weyl spinors
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One can expand its eigenvalues in terms of doublet fields,
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The associated potential is then given by:
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M2
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The OðH2Þ masses also come without much effort,
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from which we can derive the following couplings (we focus on the logarithmic terms):
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: (C19)

The limit �2 ! 0 for the nMSSM is straightforward.
Charged-Higgs contributions—NMSSM:
In the base ðH�

u ; H
�
d Þ, the Hermitian squared mass matrix of charged-Higgs bosons in terms of neutral Higgs fields reads

(we use the general notation of a Z3-conserving potential; those parameters should be replaced, in practice, by their tree-

level value; we also define �:
P, replacing �u;d

P , which coincide at tree-level; same thing for �:, replacing �1;2):

ðM2
H�Þ11ðS;H0

u;dÞ ¼ M2
EW þ ðAud þ �M

P sÞ
s

tan�
þ �:jH0

uj2 þ �3jH0
dj2 þ �:

PðjSj2 � s2Þ
ðM2
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ðM2

H�Þ12ðS;H0
u;dÞ ¼ AudSþ �M

P S
�2 � �4ðH0

uH
0
dÞ�:

(C20)

We have introduced M2
EW to replace constant terms generated by the electroweak VEV and regularizing the (otherwise-

vanishing) Goldstone mass (which does not correspond to a Goldstone boson since SUð2ÞL is conserved in our approach).
In practice, this M2

EW should be chosen as M2
W , typically, since it replaces the longitudinal component of W bosons.

Now, defining T � TrM2
H�ðS;H0

u;dÞ and R2 � T2 � 4 detM2
H�ðS;H0

u;dÞ, we obtain the two eigenvalues m2
h=HðS;H0

u;dÞ ¼
1
2 ½T�=þR�, as well as the potential,
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� 3

�
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��
: (C21)

Then we focus on the following logarithms (the notation h�i means that Higgs fields are replaced by their VEVs):

8>>><
>>>:
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þ � � � � � ln

�
m2

h

m2
H

	
þ � � �

: (C22)
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Expanding their coefficients, we obtain the leading charged-Higgs contributions to the Higgs-potential parameters. Note

that the coefficients multiplying lnhm2
h

m2
H

i are in general very complicated. Here, for simplicity, we give only the leading term

in sin2� ! 0 (tan� ! 1),
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Charged-Higgs contributions—nMSSM:
The charged-Higgs boson squared mass matrix now reads
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(C24)

Applying the same recipe as in the previous paragraph, we obtain the following corrections:
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Neutral Higgs contributions—NMSSM:
The 6	 6 symmetric squared mass matrix is given by its entries, in the base ðh0u; h0d; h0S; a0u; a0d; a0SÞ,
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uj2 � ReðH02

u ÞÞ þ ð�3 þ �4ÞjH0
dj2

ðM2
H0Þ55 ¼ M2

EW þ ðAud þ �M
P sÞs tan�þ �:

PðjSj2 � s2Þ þ �:ð2jH0
dj2 � ReðH02

d ÞÞ þ ð�3 þ �4ÞjH0
uj2

ðM2
H0Þ45 ¼ Aud ReðSÞ þ �M

P ReðS2Þ þ 2ð�3 þ �4Þ ImðH0
uÞ ImðH0

dÞ
ðM2

H0Þ66 ¼ �3ASs� 2ASðReðSÞ � sÞ þ 2�2ð2jSj2 � ReðS2Þ � s2Þ þ �:
PðjH0

uj2 þ jH0
dj2Þ þ 2�M

P ReðH0
uH

0
dÞ

ðM2
H0Þ46 ¼ Aud ReðH0

dÞ � 2�M
P ReðS�H0

dÞ þ 2�:
P ImðSÞ ImðH0

uÞ
ðM2

H0Þ56 ¼ Aud ReðH0
uÞ � 2�M

P ReðS�H0
uÞ þ 2�:

P ImðSÞ ImðH0
dÞ ðM2

H0Þ14 ¼ �:ImðH02
u Þ

ðM2
H0Þ15 ¼ Aud ImðSÞ � �M

P ImðS2Þ þ 2ð�3 þ �4ÞReðH0
uÞ ImðH0

dÞ
ðM2

H0Þ16 ¼ Aud ImðH0
dÞ þ 2�M

P ImðSH0�
d Þ þ 2�:

P ImðSÞReðH0
uÞ

ðM2
H0Þ24 ¼ Aud ImðSÞ � �M

P ImðS2Þ þ 2ð�3 þ �4Þ ImðH0
uÞReðH0

dÞ ðM2
H0Þ25 ¼ �:ImðH02

d Þ
ðM2

H0Þ26 ¼ Aud ImðH0
uÞ þ 2�M
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ðM2
H0Þ34 ¼ Aud ImðH0

dÞ þ 2�M
P ImðS�H0
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P ReðSÞ ImðH0
dÞ

ðM2
H0Þ36 ¼ �2AS ImðSÞ þ 2�2 ImðS2Þ � 2�M

P ImðH0
uH

0
dÞ: (C26)

One can expand its eigenvalues in terms of doublet fields,

m2
i ðS;H0

u; H
0
dÞ ¼ m2ð0Þ

i ðSÞ þm2ð1Þ
i ðS;H0

u; H
0
dÞ þm2ð2Þ

i ðS;H0
u; H

0
dÞ þOððH0

u;dÞ5Þ: (C27)

The associated potential is then given by


V�;H0

eff ðH0
u; H

0
d; SÞ ¼

1
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X
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i ðS;H0
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0
dÞ
�
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dÞ
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�
� 3

2

�

¼ 1

64�2

X
i

�
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i ðSÞ
�
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�
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i ðSÞ
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�
� 3

2

�
þ 2m2ð0Þ

i ðSÞm2ð1Þ
i ðS;H0

u; H
0
dÞ
�
ln

�
m2ð0Þ

i ðSÞ
�2

�
� 1

�

þ
�
2m2ð0Þ

i ðSÞm2ð2Þ
i ðS;H0

u;H
0
dÞ
�
ln

�
m2ð0Þ

i ðSÞ
�2

�
� 1

�
þm4ð1Þ

i ðS;H0
u; H

0
dÞ ln

�
m2ð0Þ

i ðSÞ
�2

��
þOðH5

u;dÞ
�
:

(C28)

The large logarithms are then those terms multiplying lnðm2ð0Þ
i ðSÞ
�2 Þ ’ lnðm2ð0Þ

i ðsÞ
�2 Þ þ � � � . Thus, our primary task is diagonal-

izing M2
H0 perturbatively with respect to the doublet fields.
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We first consider M2
H0ðS;H0

u;d ¼ 0Þ in order to obtain m2ð0Þ
i ðSÞ. We denote as jEii � ð
ijÞj¼1;...;6 the elements of the

canonical base ofR6. The subspacesVecfjE1i; jE2i; jE4i; jE5ig andVecfjE3i; jE6ig obviously decouple inM2
H0ðS;H0

u;d¼0Þ.
In the doublet sector, one notices that the eigenstate equation ðM2

H0ðS;H0
u;d ¼ 0Þ �m2ÞPi¼1;2;4;5xijEii ¼ 0 is equivalent to

ð ~M2 �m2Þðz1; z2ÞT ¼ 0, where z1 � x1 þ {x3, z2 ¼ x2 � {x4 and
~M2 is the 2	 2 (complex) Hermitian matrix determined

by the following entries:

~M2
11 ¼ M2

EW þ ðAud þ �M
P sÞ

s

tan�
þ �:

PðjSj2 � s2Þ
~M2

22 ¼ M2
EW þ ðAud þ �M

P sÞs tan�þ �:
PðjSj2 � s2Þ

~M2
12 ¼ �AudS

� � �M
P S

2:

(C29)

One recognizes M2
H�ðS;H0

u;d ¼ 0Þ up to the sign of the off-diagonal terms. ~M2 is diagonalized by the eigenstates,

m2
h0=H0 ¼ M2

EW þ ðAud þ �M
P sÞs

sin2�
þ �:

PðjSj2 � s2Þ�=þ
��ðAud þ �M

P sÞs
sin2�

�
2 þ ðjAudS

� þ �M
P S

2j2 � ðAud þ �M
P sÞ2s2Þ

�
1=2

ðz1Þh0 ¼
m2

H0 � ~M2
11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2
H0 � ~M2

11Þ2 þ j ~M2
12j2

q � xD; ðz2Þh0 ¼
� ~M2�

12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H0 � ~M2
11Þ2 þ j ~M2

12j2
q � �y�D

ðz1ÞH0 ¼
~M2

12ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

H0 � ~M2
11Þ2 þ j ~M2

12j2
q � yD; ðz2ÞH0 ¼ m2

H0 � ~M2
11ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2
H0 � ~M2

11Þ2 þ j ~M2
12j2

q � xD: (C30)

The following relations will prove useful later:

x2D þ jyDj2 ¼ 1; x2D � jyDj2 ¼ 2

tan2�

ðAud þ �M
P sÞs

m2
h0
ðSÞ �m2

H0ðSÞ ; xDyD ¼ AudS
� þ �M

P S
2

m2
h0
ðSÞ �m2

H0ðSÞ : (C31)

Z1 � ððz1Þh0 ; ðz2Þh0ÞT and Z2 � ððz1ÞH0 ; ðz2ÞH0ÞT are eigenvectors of ~M2 in the complex sense. In the real sense, {Z1 and
{Z2 form two other linearly independent (and degenerate to Z1, Z2) eigenstates. We thus obtain the following doublet
eigenstates of M2

H0ðS;H0
u;d ¼ 0Þ:

m2
h0
;

8<
: jh01i ¼ xDjE1i � ReðyDÞjE2i � ImðyDÞjE4i
jh02i ¼ �ImðyDÞjE2i þ xDjE3i þ ReðyDÞjE4i

:

m2
H0 ;

8<
: jH0

1i ¼ ReðyDÞjE1i þ xDjE2i þ ImðyDÞjE3i
jH0

2i ¼ �ImðyDÞjE1i þ ReðyDÞjE3i � xDjE4i

(C32)

For the remaining singlet states, M2
H0ðS;H0

u;d ¼ 0Þ is diagonalized by

mh0
S
=a0

S
¼ ð�AS þ 2�2sÞsþ 4�2ðjSj2 � s2Þþ=� 2½jASSþ �2S�2j2�1=2;

8<
: jh0Si ¼ xSjE3i � ySjE6i
ja0Si ¼ ySjE3i þ xSjE6i

:

xS �
M2

H0ðS; 0Þ66 �m2
h0
SffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2

H0ðS; 0Þ66 �m2
h0
S

Þ2 þ jM2
H0ðS; 0Þ36j2

q ; yS �
M2

H0ðS; 0Þ36ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðM2
H0ðS; 0Þ66 �m2

h0
S

Þ2 þ jM2
H0ðS; 0Þ36j2

q :

(C33)

It is convenient to introduce the notation zS ¼ xS þ {yS and note the following relations:

jzSj2 ¼ 1; z2S ¼ 4
ASSþ �2S�2

m2
h0
S

ðSÞ �m2
a0
S

ðSÞ : (C34)

At this stage, one can already determine the pure-singlet parameters of the potential. Similarly to the charged case
[Eq. (C21)], one can formulate the first term in Eq. (C28) in terms of TD ¼ 1

2 ðm2
H0 þm2

h0
Þ, RD ¼ 1

2 ðm2
H0 �m2

h0
Þ, TS ¼

m2
h0
S

þm2
a0
S

and RS ¼ m2
h0
S

�m2
a0
S

. Moreover, the contributions from the doublet are trivially identical to those in the

charged case and here, as well, we give only the leading term in sin2� ! 0 for the coefficient multiplying lnhm2
h

m2
H

i. The
logarithmically enhanced parameters are then
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: (C35)

The next step consists in consideringOðH2Þ corrections to the neutral eigenvalues. Note that, for the eigenvaluem2ð0Þ
i ðSÞ

of M2
H0ðS;H0

u;d ¼ 0Þ, with Tri the trace on the corresponding eigenspace,

Tri½m2ð2Þ
i ðS;H0

u; H
0
dÞ� ¼ Tri

�
M2ð2Þ

H0 þX
j�i

M2ð1Þ
H0 PjM

2ð1Þ
H0

m2ð0Þ
i ðSÞ �m2ð0Þ

j ðSÞ
�
; (C36)

whereM2ð1;2Þ
H0 stands for the matrices with terms ofOðH1;2Þ inM2

H0 , and Pj corresponds to the projector on the eigenspace
of the eigenvalue m2ð0Þ

j . Defining � ¼ 1; �1 for D ¼ H0; h0 and 
 ¼ 1; �1 for S ¼ h0S; a
0
S and using the relations (C31)

and (C34), we obtain the following matrix elements:
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TrDhDjM2ð2Þ
H0 jDi � hDSi þ �
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hDAi hDSi ¼ ½2�: þ�3 þ�4�ðjH0
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Getting back to (C28), one obtains the OðH2Þ coefficients,

ðm2
Hu
ÞH0 ’ 1

64�2

��
A2
ud þ 4�:

�
M2

EW þ �:
Ps

2 þ 2cos2�
ðAud þ �M

P sÞs
sin2�

�
þ 2ð�3 þ �4ÞðM2

EW � �:
Ps

2

þ 2sin2�
ðAud þ �M

P sÞs
sin2�

��
ln

�
m2

hm
2
H

�4

	
þ ½A2

ud � 2�:
PsðAS þ 2�2sÞ� ln

�m2
h0
S

m2
a0
S

�4

	
þ � � �

�

ðm2
Hd
ÞH0 ’ 1

64�2

��
A2
ud þ 4�:

�
M2

EW þ �:
Ps

2 þ 2sin2�
ðAud þ �M

P sÞs
sin2�

�
þ 2ð�3 þ �4Þ

�
M2

EW � �:
Ps

2

þ 2cos2�
ðAud þ �M

P sÞs
sin2�

��
ln

�
m2

hm
2
H

�4

	
þ ½A2

ud � 2�:
PsðAS þ 2�2sÞ� ln

�m2
h0
S

m2
a0
S

�4

	
þ � � �

�

ðAudÞH0 ’ 1

32�2

�
ð�3 þ �4 þ �:

PÞAud ln

�
m2

hm
2
H

�4

	
þ ð�:

PAud þ 2�M
P ASÞ ln

�m2
h0
S

m2
a0
S

�4

	
þ � � �

�

ð�u
PÞH0 ’ 1

32�2

�
ð�:

Pð2�:�3 þ �4 þ �:
PÞ þ �M2

P Þ ln
�
m2

hm
2
H

�4

	
þ 2ð�:

Pð4�2 þ �:
PÞ þ 2�M2

P Þ ln
�m2

h0
S

m2
a0
S

�4

	
þ � � �

�

ð�d
PÞH0 ’ 1

32�2

�
ð�:

Pð2�:�3 þ �4 þ �:
PÞ þ �M2

P Þ ln
�
m2

hm
2
H

�4

	
þ 2ð�:

Pð4�2 þ �:
PÞ þ 2�M2

P Þ ln
�m2

h0
S

m2
a0
S

�4

	
þ � � �

�

ð�M
P ÞH0 ’ 1

32�2

�
�M
P ð�3 þ �4 þ 2�:

PÞ ln
�
m2

hm
2
H

�4

	
þ 2�M

P ð�2 þ �:
PÞ ln

�m2
h0
S

m2
a0
S

�4

	
þ � � �

�
: (C38)

G. CHALONS AND F. DOMINGO PHYSICAL REVIEW D 86, 115024 (2012)

115024-34



The logarithms involving ratios of Higgs masses (symbol-
ized by. . .) are too complicated to write down explicitly.
They also appear within contributions to the Z3-violating
parameters. We could check however that such contribu-
tions to Z3-violating parameters vanished in relevant limits

(m2
h0
S
;a0

S

� m2
H0

L
sin2� ! 0, m2

H0 � m2
h0
S
;a0

S

, m2
a0
S

! 0).

We skip the computation of corrections to the quartic
doublet parameters here as well as for the neutralino con-
tributions: such a task, although straightforward (perturba-
tive calculation of the eigenvalues of a matrix up to the
fourth order), promises to be technically tedious.

Neutral-Higgs contributions—nMSSM:
We can draw some conclusions from the study in the

NMSSM case. For simplicity, we will confine here contri-
butions to pure singlet parameters, so that we need only
consider M2

H0ðS;H0
u;d ¼ 0Þ. Obviously, doublet and sin-

glet sectors will decouple again, and the doublet sector will
generate the same corrections to the �i’s as the charged
Higgs sector. As for the singlet sector, it is particularly
simple in the nMSSM since no dependence in S appears.
We thus obtain the leading logarithms to the following
pure-singlet coefficients:
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Summary of the analysis:
Among the potentially large logarithms, we may

distinguish among those of the form lnm
2

�2 , which com-

pare a given sector to the scale �, typically chosen as
the mass of the third-generation squarks, or to another
sector, and those sensitive to hierarchies within a

sector ln
m2

i

m2
j

.

In the case of the NMSSM, the logarithms lnm
2

�2 obvi-

ously appear only in the corrections to the Z3-conserving
parameters. Moreover, when logarithms of the type

ln
m2

i

m2
j

appear within Z3-violating parameters, they tend

to be balanced by prefactors vanishing in the hierarch-

ical limit (typically
m2

i m
2
j

ðm2
i�m2

j Þ ), so that they cannot be

regarded as an enhancement factor (contrary to when

they appear in Z3-conserving parameters, where the

prefactor does not necessarily vanish in this limit).

One can thus conclude that leading logarithms preserve

the Z3-induced structure of the potential.

For the nMSSM, the Z3 symmetry is actually still

present at tree level in all the sectors of the spectrum,

with the exception of the Higgs sector, where it is

explicitly violated. Consequently, large logarithms still

favor the Z3-conserving terms (even though they are

not all present at the classical level), while

Z3-violating effects perdure in the Higgs sector. In that

case, large logarithms seem likely to destroy the classi-

cal structure.
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