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The antisymmetry requirement of rishon bound state wave functions suggests a new rishon quantum

number called M spin. From M spin conservation and the Nussinov-Weingarten-Witten theorem we

predict the existence of a stable pseudoscalar dirishonic meson � that is lighter than the lightest neutrino.

Its mass is estimated as m� ¼ 10�9 eV. This particle could make up the major part of cold dark matter in

the Universe.
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I. INTRODUCTION

Among the various approaches to lepton and quark
substructure [1], the rishon model, which has only two
massless spin 1=2 building blocks T and V interacting
via color and hypercolor forces, stands out because of its
simplicity. The rishon model [2–6] provides answers to
fundamental questions that remain unanswered within the
standard model. For example, it explains why color triplet
quarks have fractional whereas color singlet leptons have
integer charges with jQj � 1, and why the electroweak
anomalies of leptons and quarks cancel [6]. Furthermore,
it explains the origin of weak interactions as a residual
force on the rishon bound state level [6,7] and suggests an
explanation of the generation number [8].

On the other hand, a major problem has not been suffi-
ciently clarified. This concerns the requirement that preon
bound state wave functions must be antisymmetric under
the interchange of two spin 1=2 preons (Pauli exclusion
principle). Originally, it was proposed that the overall anti-
symmetry of rishon bound states lies in the space-time
degrees of freedom [3], specifically, that three massless
rishons in the fundamental ð1=2; 0þ 0; 1=2Þ representation
of the relativistic space-time group SLð2; CÞ combine to
a totally antisymmetric product state. Another approach
employs quaternions, a noncommutative generalization of
complex numbers connected with four spatial dimensions,
and quaternionic quantum mechanics [9].

The Pauli exclusion principle is a general quantum
mechanical concept based on the indistinguishability of
identical particles and the permutation group Sn, and the
problem of constructing fully antisymmetric rishon bound
states may be formulated in a still different manner. The
problem can be most clearly seen in the case of the color
and hypercolor singlet positron eþðTTTÞ, which consists
of three T rishons. This is studied in more detail in Sec. II,
where we show that the Pauli principle can be satisfied if
rishons carry an additional conserved SUð2Þ-like quantum

number, called metaspin M. The possible origin of meta-
spin is discussed in Sec. V.
As an interesting consequence of metaspin conservation

we find in combination with the Nussinov-Weingarten-
Witten (NWW) theorem [10] an argument for the existence
of a stable dirishonic scalar bound state, which could be a
candidate for cold dark matter. The argument goes like this.
The NWW theorem applied to rishons requires a dirishonic
scalar bound state that is lighter than the lightest three-
rishon fermionic bound state, i.e., the neutrino. We call this
particle scalarino � . As a color and hypercolor singlet with
spin S ¼ 0 and electric charge Q ¼ 0, the scalarino does
not interact with ordinary matter via electromagnetic, weak
or strong forces but only via short-range scalar interactions
and gravitation. Scalarinos may have been produced via
primordial rishon-antirishon annihilation into a heavy
scalar boson, called scalaron �, which subsequently decays
into two scalarinos as depicted in Fig. 1. In Sec. III we argue
that the scalaron must have a mass above the grand unified
theory (GUT) scale of 1016 GeV to prevent fermionic rishon
bound states from having long-range scalarino mediated
interactions, which are not observed. Furthermore, we will
see that scalarinos have metaspin M ¼ 1. Therefore, they
cannot decay into massless gauge bosons with metaspin
M ¼ 0. This explains their stability once they have been
formed. Possible consequences for cosmology and particle
physics are studied in Secs. IV and VI.
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FIG. 1. Formation of a heavy scalaron � with mass m� >
mG ¼ 1016 GeV from a rishon-antirishon pair r�r and its decay
into scalarinos � .
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II. RISHON BOUND STATES, PAULI PRINCIPLE,
AND METASPIN

A. Statement of the problem

Rishons are spin 1=2 particles. Therefore, according to the
Pauli exclusion principle, rishon bound states must be fully
antisymmetric under the interchange of two rishons of the
same type. The consequences of this requirement are most
transparent for the positron eþ, the rishon content of which is
TTT. The positron is color andhypercolor neutral.As a result,
its color-hypercolor product state is necessarily fully sym-
metric with respect to permutation of the rishon constituents.

We assume that the eþ orbital ground state is totally
symmetric under permutation. Because the spin wave
function of the eþ is mixed symmetric, there must be
another degree of freedom in which the three T rishons
are in a state of mixed symmetry to generate an overall
totally antisymmetric wave function for the positron. This
additional degree of freedom cannot be SUð2Þ isospin as
in the quark model. For T and V rishons there is no global
SUð2Þ isospin symmetry because they are in different color
representations [3] as is evident from Table I. Thus, we
postulate that rishons carry a new SUð2Þ quantum number,
called metaspin M. Although the above argument requires
a noncovariant separation of spin and space coordinates, it
is not in conflict with special relativity. For particles with
nonzero rest mass, it is possible to define orbital and spin
symmetries separately [11].

The Pauli principle demands that the product wave
function of rishon bound states jBi

jBi ¼ jOi � jHi � jCi � jSi � jMi; (2.1)

must be a fully antisymmetric representation of the direct
product group of orbital (O), hypercolor (H), color (C),
spin (S) and metaspin (M) groups

Oð3ÞO � SUð3ÞH � SUð3ÞC � SUð2ÞS � SUð2ÞM: (2.2)

Individual T and V rishons are represented by Young
diagrams according to the quantum number assignments
of Table I as

noting that the V rishon is an SUð3ÞC antitriplet 3C
(see Table I) represented by two boxes just as an antisym-
metric two-rishon state.

We then form outer products of multirishon states in
orbital, color, hypercolor, spin, and metaspin space sepa-
rately. In the following, we discuss these outer products
for fermions (leptons, quarks, and hyperquarks [12]) and
spin 1 bosons (dirishons and six-rishons). Dirishonic bound
states with spin 0 are discussed in Secs. III and IV.

B. Leptons, quarks, and hyperquarks

We begin with the orbital wave function. For the three-
rishon bound states listed in Table II and their antiparticles,
we assume that the Oð3ÞO orbital wave function is the

fully symmetric Young tableau

Next, we construct the outer product of three rishons in
hypercolor and color spaces separately, and in a second
step, form hypercolor-color inner product states. For the
hypercolor and color singlet leptons containing three
preons of the same type (see Table II) one obtains, e.g.,
for the positron eþðTTTÞ,

Analogous results are obtained for the neutrino, so that
leptons have fully symmetric hypercolor-color product states.
For quarks, the hypercolor product state is again the fully

antisymmetric SUð3ÞH singlet, whereas in color space a color
triplet is required. For example, for auðTTVÞ quark, the outer
product (denoted by �) of the two color-triplet T and the
color-antitriplet V rishons leads to the following irreducible
SUð3ÞC representations with color dimensions as subscripts:

TABLE I. The hypercolor (H), color (C), electric charge (Q),
rishon number (P ), � number (�), intrinsic parity (�), spin (S),
and metaspin (M) of rishons and antirishons. The quantum
numbers P and � are defined as P ¼ ðnðTÞ þ nðVÞÞ=3 and
� ¼ ðnðTÞ � nðVÞÞ=3, where nðTÞ and nðVÞ are the number of
T and V rishons, respectively, and Q ¼ ðP þ�Þ=2.
Rishon H C Q P � � S M

T 3 3 þ 1
3 þ 1

3 þ 1
3 �1 1

2
1
2

V 3 �3 0 þ 1
3 � 1

3 þ1 1
2

1
2

�V �3 3 0 � 1
3 þ 1

3 �1 1
2

1
2

�T �3 �3 � 1
3 � 1

3 � 1
3 þ1 1

2
1
2

TABLE II. Allowed three-rishon bound states representing
leptons, quarks and hyperquarks and their quantum numbers.
Formally, the hyperquarks are obtained from the corresponding
quarks by interchanging: V $ �V.

Rishon

content

Bound

state H C P � Q S M

Leptons (VVV) ð�e; ��; ��Þ 1 1 þ1 �1 0 1
2

1
2

( �T �T �T ) ðe�; ��; ��Þ 1 1 �1 �1 �1 1
2

1
2

Quarks (TTV) ðu; c; tÞ 1 3 þ1 þ 1
3 þ 2

3
1
2

1
2

( �T �V �V ) ðd; s; bÞ 1 3 �1 þ 1
3 � 1

3
1
2

1
2

Hyperquarks (TT �V) ð~u; ~c;~tÞ 3 1 þ 1
3 þ1 þ 2

3
1
2

1
2

( �TVV) ð~d; ~s; ~bÞ 3 1 þ 1
3 �1 � 1

3
1
2

1
2
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The same irreducible representations are obtained if
one first combines the color-triplet T with the color-
antitriplet V. Because the latter is distinguishable from
the former, we need only antisymmetrize the T rishons.
This eliminates the diagrams arising from the symmetric
ðTTÞ6S . From the remaining two diagrams generated by
the coupling of the antisymmetric ðTTÞ3A and ðVÞ�3 Young
schemes, only the antisymmetric color triplet 3A (indicated
by the arrow) has the correct total color symmetry. While
Eq. (2.6) contains the proper SUð3ÞC dimension of the u
quark, with respect to the permutation group S3, we have
only three rishons and the permutational symmetry in
hypercolor-color space is represented by three boxes in a
single row as on the right-hand side of Eq. (2.5).

For leptons and quarks, our results concerning the per-
mutational symmetry of the combined hypercolor-color

product states are consistent with those of Harari and
Seiberg [3]. For hyperquarks, e.g., ~uðTT �VÞ, the role of color
and hypercolor is interchanged; otherwise, the construction
of hypercolor-color wave functions is analogous to that of
quarks. Thus, for leptons, quarks, and hyperquarks, the inner
product of hypercolor and color spaces is the completely
symmetric representation conjugate to the fully antisymmet-
ric spin-metaspin product representation constructed next.
From three rishons with spin 1=2 and metaspin 1=2 we

first construct mixed symmetric outer product states in spin
and metaspin space separately. These mixed symmetric
spin and metaspin parts are then combined to form a fully
antisymmetric inner product wave function common to all
fermionic bound states. In principle, two mixed symmetric
states can combine to fully symmetric, mixed symmetric,
and fully antisymmetric S3 product states

As indicated by the arrow we confine ourselves to the totally
antisymmetric product state. The reason for this choice is
particularly evident for the positron, where the orbital-color-
hypercolor product state is totally symmetric (see above).
As a result, the antisymmetry of fermionic rishon bound
states lies in the combined spin-metaspin space.

The overall product states of fermionic rishon bound
states are then

i.e., totally antisymmetricwith respect to permutations of the
rishon constituents. Thus, the metaspin hypothesis allows us
to construct fully antisymmetric three-rishon bound states.

In addition, metaspin explains why there are no leptons,
quarks, and hyperquarks with spin S ¼ 3=2. Spin 3=2
states are totally symmetric, which requires fully antisym-
metric metaspin wave functions. However, this is impos-
sible in SUð2ÞM, where the maximum number of rows in
any Young scheme is restricted to two. Interestingly, Harari

and Seiberg [3] could also exclude spin 3=2 lepton states
due to the antisymmetry of their relativistic space-time
wave function but needed an additional argument to
exclude spin 3=2 quarks.

C. Dirishons with spin S¼ 1

The dirishons NðVVÞ, UðT �VÞ, and ~UðTVÞ with spin
S ¼ 1 have been discussed in detail in Ref. [7], where
we have shown that the neutralonsNðVVÞ transform hyper-
quarks into quarks, while the U and ~U bosons are respon-
sible for transitions between leptons and quarks and
between leptons and hyperquarks, respectively. Hence, it
suffices to reproduce in Table III the quantum numbers of
these SUð9Þ gauge bosons.
As in the case of the three-rishon bound states, the

hypercolor-color product state of dirishons is fully sym-
metric. Because dirishons with spin S ¼ 1 are in a fully
symmetric representation in spin space, they must be in a
fully antisymmetric representation in metaspin space cor-
responding to M ¼ 0 to form completely antisymmetric
spin-metaspin inner product states:
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The total wave function of dirishons with S ¼ 1 is then
fully antisymmetric:

as in the case of fermionic rishon bound states.

D. Six-rishon bound states with spin S ¼ 1

Previously [7], we have seen that there are transitions
between dirishons and six-rishon bound states with S ¼ 1.
For example, in hyperbaryon decay, three neutralons
NðVVÞ can combine to a � boson:

3NðVVÞ ! �
VVV

VVV

 !
: (2.11)

Since neutralons have metaspin M ¼ 0, it follows that the
� boson has metaspin M ¼ 0 as well. Furthermore, as a
result of neutrino-antineutrino oscillations [7], the � can
oscillate into the weak Z boson and the ��:

� $ Z $ ��: (2.12)

Because the �, Z, and other six-rishons with spin S ¼ 1, as
well as the dirishons in Table III, belong to the same
supermultiplet of the effective SUð9Þ gauge group [7], we
conclude that all spin 1 gauge bosons, in particular pho-
tons, gluons, and hypergluons, have metaspinM ¼ 0. This
has consequences for the stability of the scalar dirishons to
be discussed in the next section.

III. NWW THEOREM AND THE
LIGHTEST DIRISHON

The Nussinov-Weingarten-Witten theorem [10], which
is valid in a QCD-like theory, provides an inequality
between baryon and meson masses. It has been proven
using n-flavor lattice QCD techniques by Weingarten and
independently by Nussinov using gluon exchange dynam-
ics and the variational principle. In QCD, the theorem
states that there is a colorless pseudoscalar quark-antiquark
bound state which is lighter than the lightest colorless

three-quark bound state. More specifically, this leads to
the following inequality [10]:

m� � 2

3
mN; (3.1)

where m� and mN are the pseudoscalar pion and nucleon
masses, respectively.
In QCD these inequalities appear to be connected with

spontaneous chiral symmetry breaking S�SB. However,
in the present vectorlike theory, chiral symmetry is pre-
served as required by ’t Hooft anomaly conditions. As
shown in his original paper, ’t Hooft’s anomaly matching
condition [13] can be satisfied in a vectorlike theory with
only two fundamental fermion flavors but not in QCD
with three quark flavors. Therefore, in QCD with three
(and more) quark flavors, chiral symmetry is necessarily
spontaneously broken. This need not be the case in
the present rishon model based on only two elementary
(T and V rishon) flavors. In this model, the presence of the
SUð3ÞC group and the possibility of obtaining a third class
of fermionic bound states (hyperquarks) affect the anom-
aly matching conditions and change the pattern of chiral
symmetry breaking compared to the one of a single hyper-
color SUð3ÞH group. Previously we have shown that for
the globalUð1Þ preon number and global B-L symmetries,
’t Hooft anomaly matching may be satisfied if a new group
of SUð3ÞC color singlet fermionic bound states, called
hyperquarks, is introduced [8]. Thus, there is some evi-
dence that ’t Hooft’s anomaly matching conditions are not
necessarily in conflict with vectorlike confining theories.
It is therefore not unreasonable to expect that spontaneous
chiral symmetry breaking can be avoided in the present
model.
Below we argue that S�SB is not a necessary condition

for the validity of the NWW theorem. First, the NWW
mass inequality MB � ð3=2ÞMM is also valid for the
zero mass case for both mesons and baryons thereby
excluding both the Nambu-Goldstone (massless pseudo-
scalars, massive fermions) and the Wigner-Weyl (massive
pseudoscalars, massless fermions) modes of chiral sym-
metry breaking. Second, baryon-meson mass inequalities
can be derived using a simple one-gluon exchange poten-
tial model and the variational principle. In particular, in
Nussinov’s one-gluon exchange model derivation the rela-
tion Vqq ¼ 2=3Vq �q solely based on the evaluation of the

color generators �1 � �2 for mesons and baryons is essen-
tial. This makes it clear that the validity of meson-baryon
mass inequalities is not limited to theories which display
S�SB. The latter is a sufficient but not a necessary condi-
tion for the validity of the NWW theorem. This allows the
existence of nearly massless pseudoscalar mesons which
are not the Goldstone bosons connected with S�SB
and of nearly massless fermionic preonic bound states.
In Ref. [14] it is clearly stated that S�SB implies the
existence of massless pseudoscalar particles but that

TABLE III. Quantum numbers of dirishonic bound states with
S ¼ 1 and M ¼ 0.

Dirishon H C P � Q

NðVVÞ �3 3 þ 2
3 � 2

3 0

�Nð �V �VÞ 3 �3 � 2
3 þ 2

3 0

UðT �VÞ 1 �3 0 þ 2
3 þ 1

3

�Uð �TVÞ 1 3 0 � 2
3 � 1

3

~UðTVÞ �3 1 þ 2
3 0 þ 1

3
�~Uð �T �VÞ 3 1 � 2

3 0 � 1
3
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the converse is not true; i.e., the existence of nearly
massless pseudoscalar particles (e.g., the dirishonic �)
does not imply that chiral symmetry is spontaneously
broken. As a result, the NWW theorem is valid in theories
that do not display spontaneously broken chiral symmetry.

When applied to rishons, the theorem requires the
existence of a hypercolor neutral, dirishonic, pseudoscalar
bound state with a mass smaller than the lightest hyper-
color neutral three-rishon bound state of the theory, i.e.,
the neutrino. The simplest hypercolor neutral, rishon-
antirishon bound state is the pseudoscalar combination
composed of T �T and V �V:

� ¼ 1ffiffiffi
2

p ðT �T � V �VÞ: (3.2)

We call this particle scalarino � . There is also an orthogo-
nal state, called scalaron �:

� ¼ 1ffiffiffi
2

p ðT �T þ V �VÞ: (3.3)

The scalarino � corresponds to the neutral pion j�0i ¼
ð1= ffiffiffi

2
p Þju �u� d �di, and the scalaron � to the heavy scalar

meson jf0i ¼ ð1= ffiffiffi
2

p Þju �uþ d �di in QCD.
As color and hypercolor singlets, the � and � have

fully symmetric hypercolor-color product wave func-
tions. Because these spin 0 states are composed of distin-
guishable particles (rishons and antirishons) we cannot
infer their metaspin quantum number from the requirement
of antisymmetry of the total wave function. However,
we have seen in Sec. II that dirishons with S ¼ 1, e.g.,
the NðVVÞ, must have metaspin M ¼ 0 for the spin-
metaspin wave function to be completely antisymmetric.
Likewise, for fermionic rishon bound states an antisymmet-
ric spin-metaspin wave function was required. Extending
this pattern to the scalar � and �, these states must have
M ¼ 1 (see Table IV). This assignment is supported by
considering the charged scalar partners of the �, which
necessarily have M ¼ 1, and their metaspin conserving
decays in Eq. (4.2).

Based on the NWW theorem, metaspin conservation,
and the preon-triality rule, we deduce that scalarinos �
have the following properties.

First, for the scalarino mass, the NWW theorem [10]
implies

m� � 2

3
m�e

: (3.4)

From our estimate for the neutrino mass m�e
ffi 10�8 eV

[7] follows that m� � 10�8 eV.
Second, because of metaspin conservation, the � with

metaspin M ¼ 1 cannot decay into massless photons and
gluons because the latter have metaspin M ¼ 0 as dis-
cussed in Sec. II.
Third, scalarinos do not interact with fermions below

the GUT scale MG. Otherwise, the small � mass would
entail a long-range scalar interaction between fermions
that is not observed. The suppression of fermion-scalarino
interactions is guaranteed by the preon-triality rule [7].
The latter states that below energies of order MG vacuum
creation and annihilation of dirishonic bosons is forbidden;
only a simultaneous vacuum creation and annihilation
of three preon-antipreon pairs is allowed. Therefore, for
E � MG ¼ 1016 GeV one has the following constraint
(preon-triality rule):

nð �TTÞ þ nð �VVÞ ¼ 3k; (3.5)

where nð �TTÞ, nð �VVÞ, and k are natural numbers. Thus, sca-

larinos have only been created above the GUT scale from
rishon-antirishon annihilation into a heavy scalaron and its
subsequent decay as depicted in Fig. 1, thereby violating
Eq. (3.5). For the same reason there is no � �� pair annihi-
lation into two photons or production of � �� pairs from two
photons below the GUT scale.
The � mass can also be estimated from the relation [15]

m� ¼ 1

fG
m�f�; (3.6)

where f� ffi 93 MeV is the pion decay constant and m� ffi
140 MeV is the pion mass. Here, fG is the scale where a
single rishon-antirishon pair can fuse via a preon-triality
breaking process into a dirishonic scalar � as in Fig. 1.
Originally, Eq. (3.6) withm� and fG replaced, respectively,

by the axion mass mA and the Peccei-Quinn symmetry
breaking scale v was derived using current algebra tech-
niques to obtain bounds on the mass and couplings of
the invisible axion. Here, we obtain with fG � MG ¼
1016 GeV a scalarino mass ofm� � 10�9 eV in agreement

with the bound obtained from the NWW theorem, Eq. (3.4).
The mass of the dirishonic � boson must then be in the
range fG < m� � 1017 GeV. Above 1018 GeV no bound
state can exist and rishons appear as asymptotically free
particles [7].
In summary, the scalarino is the lightest rishon bound

state, which is furthermore absolutely stable and inert.

IV. HEAVY DIRISHONIC SCALARS

In this section we briefly comment on another interesting
aspect of heavy dirishonic scalar bound states. The neutral
scalaron � with metaspin M ¼ 1 provides an additional

TABLE IV. Quantum numbers of scalar dirishonic bound
states with S ¼ 0 and M ¼ 1.

Dirishon H C P � Q �

�þðTTÞ �3 �3 þ 2
3 þ 2

3 þ 2
3 þ1

��ð �T �TÞ 3 3 � 2
3 � 2

3 � 2
3 þ1

�0ðT �T þ V �VÞ= ffiffiffi
2

p
1 1 0 0 0 þ1

�ðT �T � V �VÞ= ffiffiffi
2

p
1 1 0 0 0 �1
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binding force between rishons with metaspin 1=2 at a mass
scale of m� ffi 1017 GeV described by the Lagrangian

L � ¼ gM �c�M ���c ; (4.1)

where gM is the rishon-scalaron coupling constant, �M

is the metaspin Pauli matrix, �� is the metaspin vector
scalaron, and c is the rishon field.

The existence of a short-ranged attractive � exchange
interaction explains why the dirishonic bosons NðVVÞ,
UðT �VÞ, and ~UðTVÞ with S¼1 and M ¼ 0 (see Table III)
are bound with a strength gM > gG, where gG ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

4�	G

p
is the coupling strength of grand unification [7]. The bind-
ing of these colored and/or hypercolored gauge bosons
cannot be fully explained by color and hypercolor SUð3Þ
forces and requires an additional short-range scalar attrac-
tion. Without this scalar binding the situation would be as
in QCD where color unsaturated qq states do not exist.
The same scalar binding mechanism explains the relative
stability of six-rishon bound states, e.g., the weak gauge
bosons W and Z of the standard model and the gauge
bosons of the SUð6ÞP and SUð9ÞG gauge groups [7] with
saturated metaspin M ¼ 0.

The �-binding force is also responsible for the forma-
tion of dirishonic �þðTTÞ and ��ð �T �TÞ bound states
(see Table IV). Because these states do not occur in the
SUð9ÞG gauge group, they must be spin scalars and there-
fore have metaspin M ¼ 1 as discussed in Sec. III.
In analogy to fermionic bound states, where me >m�,
the charged scalars have a larger mass than their neutral
counterparts m�� � m�0 . Furthermore, because they par-
ticipate in both the � interaction and color-hypercolor
interactions they are expected to have a larger decay width
compared to the �0. Their prevalent metaspin conserving
decay modes are

�þ ! �0 þUþ ~U; �� ! �0 þ �Uþ �~U: (4.2)

Here, metaspinM ¼ 1 is carried by the scalars �� and �0,
whereas the vector bosons U and ~U have M ¼ 0
(see Table III). This completes our discussion of the spec-
trum of dirishonic scalars.

V. METASPIN AND A COMPACTIFIED
FOURTH SPATIAL DIMENSION

With the help of metaspin, we could construct fully anti-
symmetric rishon bound states and together with the NWW
theorem predict the existence of the lightest dirishonic bound
state � but have avoided the question of the origin of this
quantum number. At present we can only speculate that
metaspin appears to be connected with an extended space-
time symmetry involving a compactified fourth spatial dimen-
sion, as suggested by the isomorphism between SUð2ÞS �
SUð2ÞM 	 SOð4Þ, rather than being an internal symmetry.

This is reminiscent of Kaluza-Klein theory [16], which
provides a common framework for gravitational and

electromagnetic forces by extending the number of spatial
dimensions to four. Kaluza-Klein theory supplies a length
scale l for the rolled-up fourth spatial dimension [17]:

l ¼ ℏ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16�G

p
ec

¼ lPl
2ffiffiffiffiffiffiffi
	Q

p 	 10�33 m; (5.1)

where G is Newton’s gravitational constant, lPl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

p
is the Planck scale of quantum gravity and	Q¼e2=ð4�ℏcÞ
is the Sommerfeld constant. The length scale l corresponds
to an energy scale E	 1017 GeV.
Interestingly, this is close to the preon scale Mpr 	

1018 GeV, discussed in Ref. [7]. It is also in the energy
range 1017–1018 GeV where metaspin plays an important
role in preonic interactions, in particular in the formation
of rishonic bound states satisfying the Pauli principle. At
the same energy scale, the metaspin conserving decays of
the charged heavy scalars �� into the SUð9Þ gauge bosons
U and ~U and the scalaron �0 as in Eq. (4.2) occur.
Furthermore, at around 1017 GeV the latter decays into the
light scalarinos as shown in Fig. 1. Therefore, the length
scale where metaspin plays an important role coincides with
the scale l of the compactified fourth dimension according to
Kaluza-Klein theory. This suggests that the SUð2Þ metaspin
symmetry may be connected with the periodicity generated
by rolling up the fourth spatial dimension.
After leptons, quarks, and hyperquarks have been

formed, metaspin is still a conserved quantum number
but ceases to play an active role at larger length scales,
e.g., in the antisymmetrization of three-quark bound states.
Similarly, we need not antisymmetrize the quarks in one
hydrogen atom with those in the other when constructing
the wave function of the H2 molecule.

VI. DIRISHONIC COLD DARK MATTER

The properties of the light pseudoscalar � discussed in
Sec. III would make this particle an interesting cold dark
matter candidate as outlined below. Because of the preon-
triality rule in Eq. (3.5), the � was produced only primor-
dially at energies above MG via the decay of a heavy �
boson with mass m� >MG as shown in Fig. 1.
The large mass of the � implies that scalarinos were

created before quarks and leptons were formed. On the
other hand, due to their small mass, scalarinos may have
been more copiously produced than any other rishonic
bound state in the early Universe. An inflatory expansion
near the GUT scale decelerated the scalarinos to velocities
close to the nonrelativistic limit. Furthermore, the � has
metaspin M ¼ 1 and thus cannot decay into massless
photons and gluons with M ¼ 0 due to metaspin conser-
vation. As a result, below the GUT scale, the � appears as
an absolutely stable, inert, nearly massless particle.
What additional cosmological insights can be drawn

from this scenario? Given the scalarino mass deduced
from Eqs. (3.4) and (3.6), we can estimate the number of
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scalarinos in the Universe following the arguments in
Ref. [18]. It is known [19] that the ratio of baryonic density
to the dark matter density of the Universe is approximately

B=
DM ffi 0:2. Assuming that scalarinos are the only
source of dark matter, i.e., 
DM ¼ 
� , we get for the

corresponding matter densities the following expressions:


B ¼ nBmB ¼ �Bn�mB; 
� ¼ n�m�; (6.1)

where nB, n�, and n� are the number densities of

baryons, photons, and scalarinos, respectively. Furthermore,
mB ffi 1 GeV is the baryon mass and �B ¼ nB=n� ¼
6 � 10�10 is the baryon asymmetry [20]. We then get with
m� ffi 10�9 eV

n�
n�

¼ 
�


B

mB

m�

�B ¼ 3� 109: (6.2)

Therefore, the ratio of scalarino to photon number density is
approximately equal to the ratio of photon to baryon number
density; i.e., we have 109 times more scalarinos than photons
per volume. This suggests a very homogeneous distribution
of dirishonic cold dark matter in the Universe.

VII. SUMMARY

To satisfy the requirement of total antisymmetry of
rishon bound state wave functions we have introduced
an SUð2Þ-like quantum number M, called metaspin.
We could then construct totally antisymmetric fermionic
and bosonic rishon bound states. In each case, the anti-
symmetry resides in the spin-metaspin product space. As a
result, S ¼ 1 bosons necessarily have M ¼ 0, whereas

S ¼ 0 bosons have M ¼ 1. Because of the isomorphism
SUð2ÞS � SUð2ÞM 	 SOð4Þ, it has been suggested that
metaspin could be connected with the existence of a fourth
spatial dimension, which is compactified and limited to
distances near the Planck scale.
Based on the Nussinov-Weingarten-Witten theorem

applied to the rishon model, we have deduced the existence
of a pseudoscalar dirishonic meson, called scalarino � , that
is lighter than the lightest neutrino and hence is the lightest
rishon bound state. We have estimated the scalarino mass
to be of order m� ffi 10�9 eV.
The stability, abundance, and inertness of scalarinos

have been derived from the following arguments. First,
due to M spin conservation, scalarinos with M ¼ 1
cannot decay into massless gauge bosons with M ¼ 0.
Second, scalarinos were created only at energies above
the GUT scale of MG ffi 1016 GeV with a production rate
that vastly exceeds that of any other rishon bound state.
We have estimated the ratio of cosmic scalarino and
photon number densities as n�=n� 	 109. Third, below

the GUT scale, scalarinos interact with other particles
only via gravitational interaction and induced higher
order electromagnetic interactions, which will make
their detection difficult. Nevertheless, it appears that its
properties make the scalarino a viable cold dark matter
candidate.
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