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I. INTRODUCTION

The charge asymmetry—respectively, forward-backward
(FB) asymmetry—in t�t production at the Fermilab Tevatron
stands out as perhaps the most prominent anomaly that the
data analysis of this collider has yet to explain. The observ-
able that has been used most often is the t�t rest-frame
asymmetry, whose definition is based on the difference
�y ¼ yt � y�t between the rapidities of the top quark and
antiquark, which is invariant under boosts along the beam
direction:

AFB ¼ Nð�y > 0Þ � Nð�y < 0Þ
Nð�y > 0Þ þ Nð�y < 0Þ ; (1)

where N denotes the respective number of t�t events. The
measurements of this asymmetry by the CDF [1,2] and D0
[3] Collaborations, which are in excess of the standard
model (SM) expectations [4–13], have triggered more
than a hundred theory papers that explain this anomaly
by new physics (see, for example, Refs. [14–19]). New
physics explanations of the anomalous Tevatron asymme-
try often predict new related effects at the Large Hadron
Collider (LHC) [20], including the observation of new
particles [21]. As yet, none of these effects have been
found at the LHC. But, of course, this does not rule out the
possibility that the Tevatron asymmetry results from new
physics, telling us that, if anything, this new physics is
perhaps not as simply modeled as by the hitherto existing
proposals.

A closer test of the Tevatron excess is provided by the
measurement of the t�t charge asymmetry at the LHC.
While the Tevatron FB asymmetry in Eq. (1) involves the
rapidity difference �y, the definition of the LHC charge
asymmetry used by the CMS and ATLAS experiments
employs the difference �jyj ¼ jytj � jy�tj between the
absolute values of the top and antitop rapidities in the
laboratory (LAB) frame [22]:

AC ¼ Nð�jyj> 0Þ � Nð�jyj< 0Þ
Nð�jyj> 0Þ þ Nð�jyj< 0Þ : (2)

This definition takes advantage of the fact that valence
quarks q ¼ u, d have a larger average momentum frac-
tion than antiquarks �q. This leads to a boost of the t�t
system along the direction of the incoming quark.
Therefore, an excess of top quarks in this direction—
that is, an FB asymmetry in the center-of-mass (CM)
frame of the initial partons—leads to more t than �t quarks
for large values jyj of the (anti-)top rapidity, while for
small values of jyj it is the other way around. Current
measurements of AC by the ATLAS [23] and CMS
[24,25] Collaborations have found agreement with the
SM predictions. However, these results are not incom-
patible with the Tevatron measurements per se [26–29],
since AFB and AC are different observables that result
from a different ‘‘weighting’’ of the ‘‘intrinsic’’ asym-
metries Au, Ad in u �u ! t�t, d �d ! t�t, respectively. (Notice
that gg ! t�t does not contribute to AFB and AC.) In this
way, models giving rise to different intrinsic asymmetries
Au, Ad lead to different predictions for the relation
between AC and AFB [30].
A direct test of the Tevatron anomaly has been

proposed [26] that consists in the extraction of the
asymmetries Au;d from the measurement of the suitably

binned asymmetries of Eqs. (1) and (2) at the Tevatron
and LHC, respectively, and the subsequent comparison
of the respective results. Their numerical values are
nearly the same at both colliders, up to corrections
that are much smaller than the experimental precision;
thus their denomination as ‘‘collider-independent’’.
The determination of the same quantities at the two
colliders could shed light on the origin of the Tevatron
anomalies and settle the apparent tension with the LHC
measurements.
The asymmetries Au;d can be extracted from the FB and

charge asymmetries in Eqs. (1) and (2) because they can be
written, to a good approximation, as

AFB ¼ AuFu þ AdFd; AC ¼ AuFuDu þ AdFdDd;

(3)
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provided we restrict ourselves to a narrow interval in the t�t
invariant mass mt�t. This will be shown below.1 The factors
Fq (which differ at the Tevatron and the LHC, and also

depend on the CM energy) can be interpreted at leading-
order QCD as the fractions of q �q-initiated t�t events. The
Dq are ‘‘dilution’’ factors that take into account that in t�t

production at the LHC it often happens that the initial
valence quark has a smaller momentum fraction than the
sea antiquark, thus leading to a dilution of the asymmetry
generated at the partonic level. Both Fq and Dq depend on

the longitudinal velocity of the t�t pair in the LAB frame,

� ¼ jpz
t þ pz

�t j
Et þ E�t

; (4)

where E, pz are the LAB-frame (anti)top energy and mo-
mentum along the beam direction, respectively. On the other
hand, for fixed ŝ, Au;d are �-independent. In practice, where
a finite mt�t interval has to be used instead of ŝ, Au;d become

mildly �-dependent. This � dependence can be weakened
by imposing an upper cut on the transverse momentum pt�t

T

of the t�t pair. Hence, for a chosen interval mL <mt�t < mU,
Au;d can be extracted from a fit to the distributions AFBð�Þ
and ACð�Þmeasured within thismt�t interval, as discussed in
Ref. [26], using the Fq and Dq factors computed in the SM,

e.g., by Monte Carlo.
In this paper we calculate Au;d in the SM at next-to-

leading order (NLO) in the QCD coupling, including
also electromagnetic and weak corrections. To be precise,
‘‘NLO’’ refers in this paper to the computation of the
numerators in Eqs. (1) and (2) to order �3

s including the
electroweak corrections of order �2

s�. In the next section
we derive Eq. (3) in detail for the SM at NLO. This
derivation also holds if there are new physics contributions
to the asymmetries Eqs. (1) and (2). In addition, we discuss
the role of gq contributions, which also lead to an asym-
metry at the LHC, albeit very small in the SM. In Sec. III
we present our numerical results.

II. DERIVATIONS

The following derivations apply to the computation of the
numerators of Eqs. (1) and (2) to NLO in the gauge cou-
plings (see above). These numerators receive nonzero con-
tributions only from terms in the squared matrix elements
that are asymmetric with respect to the exchange of the t and
�t momenta. As is well-known, respective contributions d�A

only arise from the matrix elements of q �q ! t�tðg; �Þ, where
q ¼ u,d, and of gqð �qÞ ! t�tqð �qÞ. To NLO in the gauge
couplings, the charge asymmetric terms d�A

qg are infrared-

finite, while for q �q initiated t�t production, the soft-gluon

divergence that is present in d�A
q �q (virtualþ soft) cancels

against the corresponding divergence in
R
d�A

q �qðt�tgÞ, and
likewise for real photon radiation. To NLO in the gauge
couplings, the numerators of Eqs. (1) and (2) are free of
initial-state collinear singularities—i.e., no collinear coun-
terterms are required to this order.
The NLO numerators are denoted byN1 in the following.

For definiteness, we consider the denominators of Eqs. (1)
and (2) to leading order (LO) and denote them by N0. Yet,
alternatively, NLO denominators may be used, and the
derivations are completely analogous to the ones presented
here. Quantities without subindices imply a sum over all
partonic subprocesses, whereas a subindex, if present, indi-
cates the corresponding subprocess. For brevity we label
with superscripts F, B the t�t events with �y _ 0, respec-
tively, and with superscripts>,< the events with�jyj _ 0.
To NLO, the numerator of Eq. (1) receives contributions

from q �q ! t�tðg; �Þ, q ¼ u, d. Top quark pair production by
gg fusion is symmetric, and contributions to the numerator
of Eq. (1) by qg, �qg processes are completely negligible at
the Tevatron. Then, the FB asymmetry takes the form

AFB ¼ N1;F
u �u � N1;B

u �u

N0
þ ðu ! dÞ

¼ N1;F
u �u � N1;B

u �u

N0
u �u

N0
u �u

N0
þ ðu ! dÞ

� AuFu þ AdFd: (5)

Likewise, the LHC charge asymmetry in Eq. (2) can be
written as

AC ¼ N1;>
u �u � N1;<

u �u

N0
þ N1;>

gu � N1;<
gu

N0
þ ðu ! dÞ

¼ N1;>
u �u � N1;<

u �u

N0
u �u

N0
u �u

N0
þ N1;>

gu � N1;<
gu

N0
u �u

N0
u �u

N0
þ ðu ! dÞ:

(6)

The denominators N0 in Eqs. (5) and (6) are the (binned)
LO QCD t�t cross sections at the Tevatron and LHC, respec-

tively. For ease of notation, we use the symbols N0, N1;F
q �q ,

etc., both for the Tevatron and the LHC. The SM contri-
butions to the numerator of the charge asymmetry from gq

subprocesses are rather small [11,13] and can be ignored.2

(We will explicitly compute them in the next section.)
Moreover, it will be shown below that, provided we restrict
ourselves to a narrow ŝ interval and to small values of pt�t

T ,

the differences N1;>
q �q �N1;<

q �q are related to the differences

N1;F
q �q �N1;B

q �q (where ‘‘forward’’ and ‘‘backward’’ refer to the

initial quark direction) by

1In fact, in the derivation of Eqs. (3), it is the partonic squared
CM energy ŝ that has to be fixed, which differs in general from
mt�t. But fixing mt�t instead of ŝ, which is required in applications
to data analysis, is good enough for our purpose.

2If these contributions were measurable, it would be more
adequate to use N1

gq for the relative normalization in Eq. (6),

instead of N0
q �q. On the other hand, our choice shows more clearly

the relative size of the gq asymmetries, compared to q �q.
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N1;>
q �q � N1;<

q �q ¼ DqðN1;F
q �q � N1;B

q �q Þ: (7)

Here Dq is a so-called dilution factor, defined, again for a

narrow interval in ŝ, by

Dq � Nðxq > x �qÞ � Nðxq < x �qÞ
Nðxq > x �qÞ þ Nðxq < x �qÞ : (8)

Using Eq. (7) and neglecting the gq contributions, the
charge asymmetry (6) can be written as

AC ¼ N1;>
u �u � N1;<

u �u

N0
u �u

N0
u �u

N0
þ ðu ! dÞ

¼ N1;F
u �u � N1;B

u �u

N0
u �u

N0
u �u

N0
Du þ ðu ! dÞ

� A0
uF

0
uDu þ A0

dF
0
dDd: (9)

Here, we have put primes on A0
q and F0

q to emphasize that

these quantities correspond to the LHC, while the unprimed
quantities refer to the Tevatron. However, as will be shown
below, the asymmetries A0

u;d are, for the same narrow inter-

val in ŝ, approximately equal to the Tevatron asymmetries
Au;d defined in Eq. (5).

We will first show the equality between Au;d and A0
u;d.

For the latter, the forward and backward directions are
defined with respect to the initial quark momentum direc-
tion. (Of course, this is impossible to tell event-by-event.)
Then, we derive Eq. (7). Our notation is as follows. We
denote by xi, i ¼ 1, 2 the momentum fractions of the initial
partons, and fpðxiÞ is the distribution function for parton p
in the proton with momentum fraction xi. The dependence
of the parton distribution functions (PDF) on the factoriza-
tion scale �F is not exhibited. The (anti)proton four-
momenta at the Tevatron and LHC, respectively, are
denoted by P1;2, and d�̂ denotes the differential cross

section of a partonic subprocess which includes the corre-
sponding phase-space measure d� and flux factor.

In the following, we consider binned asymmetries by
restricting the partonic CM energy ŝ to an interval
½ŝmin; ŝmax�. This is accomplished by a factor

H ¼ �ðŝ� ŝminÞ�ðŝmax � ŝÞ (10)

in the integrals.
At the Tevatron, the FB asymmetries Au;d are defined

with respect to the proton direction. Their numerators are,
in terms of the proton PDF,

N1;F
q �q �N1;B

q �q ¼
Z
dx1dx2fqðx1Þfqðx2Þd�̂1½qðx1P1Þ �qðx2P2Þ�

�½�ð�yÞ��ð��yÞ�H þ
Z
dx1dx2f �qðx1Þ

�f �qðx2Þd�̂1½qðx2P2Þ �qðx1P1Þ�
�½�ð�yÞ��ð��yÞ�H ; (11)

where d�̂1 denotes here the sum of the q �q initiated
NLO differential cross sections for two-particle and

three-particle final states, and �y is the difference of the
t and �t rapidities in the CM frame of the initial partons.
The second integral corresponds to events where the initial
antiquark comes from the proton and the quark from the
antiproton, and is much smaller than the first integral.
(It amounts to a dilution of order 10�3 in the asymmetry.)
Choosing ŝmax and ŝmin in (10) close enough to each other,
the factor H fixes ŝ within a suitably narrow interval, in
which

R
d�̂1, which are functions of ŝ, are nearly constant

and can then be taken out of the xi integrals. Dropping the
argument in d�̂1 for brevity,

N1;F
q �q � N1;B

q �q ¼
Z

d�̂1½�ð�yÞ � �ð��yÞ�

�
Z

dx1dx2fqðx1Þfqðx2ÞH : (12)

Notice that �y is independent of x1 and x2. The same can
be done for the LO denominators,

N0;F
q �q þ N0;B

q �q ¼
Z

d�̂0
q �q

Z
dxifqðx1Þfqðx2ÞH ; (13)

where d�0
q �q is the LO differential cross section for q �q ! t�t,

so the asymmetries are

Aq ¼
R
d�̂1½�ð�yÞ � �ð��yÞ�R

d�̂0
q �q

: (14)

The numerators of the LHC ‘‘FB’’ asymmetries A0
u, A

0
d

defined in (9) are

N1;F
q �q �N1;B

q �q ¼
Z
dx1dx2fqðx1Þf �qðx2Þd�̂1½qðx1P1Þ �qðx2P2Þ�

�½�ð�yÞ��ð��yÞ�H þ
Z
dx1dx2f �qðx1Þ

�fqðx2Þd�̂1½qðx2P2Þ �qðx1P1Þ�
�½�ð��yÞ��ð�yÞ�H ; (15)

where the forward and backward directions are defined with
respect to the incoming quark direction (note the opposite
signs in the arguments of the � functions of the second
integral). By rotational invariance, the second term is equal
to the first one, so we can concentrate on the former. Taking
again the phase-space integrated partonic cross sections out
of the xi integrals, we have

1

2
ðN1;F

q �q � N1;B
q �q Þ ¼

Z
d�̂1½�ð�yÞ � �ð��yÞ�

�
Z

dx1dx2fqðx1Þf �qðx2ÞH : (16)

The LO denominators N0
q �q ¼ N0;F

q �q þ N0;B
q �q of A0

u;d are

1

2
ðN0;F

q �q þN0;B
q �q Þ¼

Z
d�̂0

q �q

Z
dx1dx2fqðx1Þf �qðx2ÞH : (17)

Thus the LHC asymmetries A0
u;d are, for fixed ŝ, given by
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A0
q ¼

R
d�̂1½�ð�yÞ � �ð��yÞ�R

d�̂0
q �q

: (18)

They are equal to the ones at the Tevatron, Eq. (14).
Next we show under which conditions Eq. (7) holds.

The contribution from q �q initial states to the numerator of
the binned LHC charge asymmetry (6) is

N1;>
q �q �N1;<

q �q

¼
Z
dx1dx2fqðx1Þf �qðx2Þd�̂1½qðx1P1Þ �qðx2P2Þ�HE

þ
Z
dx1dx2f �qðx1Þfqðx2Þd�̂1½qðx2P2Þ �qðx1P1Þ�HE;

(19)

where the asymmetric terms are selected by the factor

E ¼ �ðjytj � jy�tjÞ � �ðjy�tj � jytjÞ: (20)

Here yt, y�t are the top and antitop rapidities in the laboratory
(LAB) frame, respectively. Using rotational invariance, the

first integral equals the second one, so we can concentrate
on the former.We nowperform a rotation-free boost to the t�t
rest frame. Using the fact that the sign of the difference of
the t and �t rapidities is frame-invariant, we obtain, with
some algebra, that in the limit of pt�t

T ! 0,

E ! ½�ðx1 � x2Þ � �ðx2 � x1Þ�½�ð�yÞ � �ð��yÞ�: (21)

Inserting Eq. (21) into Eq. (19) we obtain that for t�t events
with sufficiently small pt�t

T ,

1

2
ðN1;>

q �q �N1;<
q �q Þ¼

Z
dx1dx2fqðx1Þf �qðx2Þ�f�ðx1�x2Þ

��ð�yÞ��ðx1�x2Þ�ð��yÞ��ðx2�x1Þ
��ð�yÞþ�ðx2�x1Þ�ð��yÞg�d�̂1H :

(22)

Again, the factorH fixes ŝ within a suitably narrow inter-
val, in which the

R
d�̂1 are nearly constant and can be taken

out of the xi integrals:

1

2

�
N1;>

q �q �N1;<
q �q

�
¼
Z
d�̂1�ð�yÞ

Z
dx1dx2fqðx1Þf �qðx2Þ�ðx1�x2ÞH �

Z
d�̂1�ð��yÞ

Z
dx1dx2fqðx1Þf �qðx2Þ�ðx1�x2ÞH

�
Z
d�̂1�ð�yÞ

Z
dx1dx2fqðx1Þf �qðx2Þ�ðx2�x1ÞH þ

Z
d�̂1�ð��yÞ

Z
dx1dx2fqðx1Þf �qðx2Þ�ðx2�x1ÞH :

(23)

Now let us define

drq �
R
dx1dx2fqðx1Þf �qðx2Þd�̂q �q�ðx1 � x2ÞHR

dx1dx2fqðx1Þf �qðx2Þd�̂q �qH
¼

R
dx1dx2fqðx1Þf �qðx2Þ�ðx1 � x2ÞHR

dx1dx2fqðx1Þf �qðx2ÞH
;

dwq �
R
dx1dx2fqðx1Þf �qðx2Þd�̂q �q�ðx2 � x1ÞHR

dx1dx2fqðx1Þf �qðx2Þd�̂q �qH
¼

R
dx1dx2fqðx1Þf �qðx2Þ�ðx2 � x1ÞHR

dx1dx2fqðx1Þf �qðx2ÞH
:

(24)

Here d�̂q �q denotes the (LO or NLO) differential cross section for q �q ! t�tX. In the next section, we use d�̂0
q �q in (24). The

cancellation of the d�̂q �q in the ratios (24) works, for fixed ŝ, also to NLO, because all the terms in d�̂1
q �q, which is the sum

of the contributions from the tree-level term, virtual corrections, soft and hard gluon radiation, and the collinear counter-
term, are convoluted with the same product of the PDF.

Clearly, drq þ dwq ¼ 1. The integrals with respect to xi in Eq. (23) can be written in terms of drq and dwq , resulting in

1

2

�
N1;>

q �q � N1;<
q �q

�
¼

Z
d�̂1�ð�yÞdrq

Z
dx1dx2fqðx1Þf �qðx2ÞH �

Z
d�̂1�ð��yÞdrq

Z
dx1dx2fqðx1Þf �qðx2ÞH

�
Z

d�̂1�ð�yÞdwq
Z

dx1dx2fqðx1Þf �qðx2ÞH þ
Z

d�̂1�ð��yÞdwq
Z

dx1dx2fqðx1Þf �qðx2ÞH : (25)

Rearranging terms, we have

1

2

�
N1;>

q �q � N1;<
q �q

�
¼ ðdrq � dwq Þ

Z
dx1dx2fqðx1Þf �qðx2Þ

� d�̂1½�ð�yÞ � �ð��yÞ�H : (26)

Comparing with Eq. (16) we obtain Eq. (7), i.e.,

N1;>
q �q � N1;<

q �q ¼ ðdrq � dwq ÞðN1;F
q �q � N1;B

q �q Þ; (27)

where

drq � dwq ¼ Dq (28)

are the dilution factors introduced in Eqs. (7) and (8).
We recall that this derivation holds for fixed ŝ and

sufficiently small pt�t
T . On the other hand, the formula

(27) and the resulting formula (9) holds for arbitrary values
0<�< 1 of the longitudinal velocity of the t�t system.
In practice, the requirement of fixed ŝ must be replaced by
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choosing a reasonably narrow bin in the t�t invariant mass
mt�t, i.e.,

H ! �ðmt�t �mLÞ�ðmU �mt�tÞ: (29)

This will be done in the numerical computations of the next

section. Then the intrinsic asymmetries Að0Þ
u;d will become

�-dependent; that is, the formulas Eqs. (14) and (18)
no longer apply—for the computations one has to use

instead the definitions of Að0Þ
u;d given in Eqs. (5) and (9),

respectively. But we will show that, for a givenmt�t bin, this
� dependence is rather mild in the SM to NLO. More
importantly, as the results below will signify, A0

u and A0
d

remain equal to Au and Ad, respectively, to a good approxi-
mation, even if no upper cut is imposed on pt�t

T . In addition
we will show by numerical computation that neglecting
the gq contributions to the LHC charge asymmetry AC in
Eq. (6) is indeed justified, given the level of precision one
aims at in applying Eq. (6) to future data analysis.

III. NUMERICAL RESULTS

Our numerical calculations are based on the code
described in Refs. [7,13]. We compute the binned asymme-
tries of Eqs. (1) and (2), and the asymmetriesAu;d (Tevatron)

and A0
u;d (LHC, 7 and 8 TeV) for a sequence of intervals

mL <mt�t < mU. Within a specified interval ½mL;mU�, the
asymmetries AFB and AC are computed, for � bins of width
�� ¼ 0:2 for the Tevatron (i.e., 0<�< 0:2, etc.) and
�� ¼ 0:1 for the LHC (i.e., 0<�< 0:1, etc.).

In the numerators of Eqs. (1) and (2) and of Að0Þ
u;d we take

into account the Oð�3
sÞ QCD and the Oð�2

s�Þ electroweak
corrections. For definiteness, we evaluate the denominators
of all asymmetries considered in this paper with LO QCD
matrix elements, which is in the spirit of a consistent fixed-
order perturbative expansion of ratios like Eqs. (1) and (2).

The fractions Fð0Þ
q and the dilution factorsDq are computed

for the Tevatron and the LHC (7 and 8 TeV) using LOQCD
matrix elements both in the numerators and denominators.
We evaluate both the numerators and denominators of the

binned asymmetries and of Fð0Þ
q and Dq with NLO parton

distribution functions.

As emphasized above, the analysis for Að0Þ
u;d could also be

done by replacing, on the left- and right-hand sides of
Eqs. (5) and (6), the global normalization factors N0

(Tevatron and LHC) by the respective NLO factors N1.
We use mt ¼ 173:1 GeV (on-shell mass), the QED

coupling �ðmZÞ ¼ 0:008, and the weak mixing angle
sin2�W ¼ 0:23. We use the CTEQ6.6M PDF [31] and the
respective value of �sðmZÞ provided by this set. We put
�R ¼ �F ¼ �, and numerical results are given for � ¼
mt=2, mt, and 2mt. These scale choices are purely conven-

tional. In Ref. [26] the asymmetries Að0Þ
u;d were obtained for

a benchmark new physics model using a two-parameter fit
to the AFBð�Þ and ACð�Þ distributions, mimicking the

procedure that has to be eventually performed with real
data. That can be done, for the Tevatron and the LHC, by
minimizing

�2 ¼ X
i

½AFBð�iÞ � AuFuð�iÞ � AdFdð�iÞ�2
½dAFBð�iÞ�2

;

�2 ¼ X
i

½ACð�iÞ � A0
uF

0
uDuð�iÞ � A0

dF
0
dDdð�iÞ�2

½dACð�iÞ�2
;

(30)

with respect toAð0Þ
u and Að0Þ

d . Here i labels the different� bins

and dAFBð�iÞ, dACð�iÞ are the statistical uncertainties of the
binned asymmetries. Unfortunately, this procedure requires
extremely high Monte Carlo statistics in order to have the
two-parameter fit converging to the true values. Especially
at the LHC, the �-binned A0

u;d are obtained from the ratio

of a tiny asymmetry ACð�iÞ over a small FqDqð�iÞ factor.
Therefore, in order to save computing time, we calculate
the asymmetries with a one-parameter fit, considering u �u

and d �d contributions separately. The values of Að0Þ
u;d pre-

sented in Tables I, II, and III below are obtained from a
one-dimensional least-squares parameter fit,

Aq ¼
X
i

Aq �q
FBð�iÞ

½dAq �q
FBð�iÞ�2

�X
i

1

½dAq �q
FBð�iÞ�2

;

A0
q ¼

X
i

Aq �q
C ð�iÞ=Dqð�iÞ
½dAq �q

C ð�iÞ�2
�X

i

1

½dAq �q
C ð�iÞ�2

;

(31)

where the superscripts of AFB, AC indicate that we restrict
the calculation to these specific subprocesses, eventually
including gq contributions as well. We will demonstrate
below the consistency of both methods by showing that

the values of Að0Þ
u;d calculated using either (30) or (31) agree

very well within the expected experimental uncertainties.
The one-parameter fit is more precise.

TABLE I. Asymmetries Au;d at the Tevatron, without pt�t
T cut

(top) and for pt�t
T < 30 GeV (bottom).

� ¼ mt � ¼ 2mt � ¼ mt=2
mt�t [GeV] Au Ad Au Ad Au Ad

<400 0.058 0.039 0.054 0.036 0.061 0.044

400–450 0.096 0.066 0.091 0.060 0.102 0.073

450–500 0.123 0.086 0.116 0.079 0.131 0.095

500–550 0.145 0.102 0.137 0.092 0.154 0.113

550–600 0.164 0.115 0.156 0.106 0.176 0.128

� ¼ mt � ¼ 2mt � ¼ mt=2
mt�t [GeV] Au Ad Au Ad Au Ad

<400 0.069 0.046 0.065 0.042 0.075 0.051

400–450 0.117 0.078 0.110 0.071 0.126 0.087

450–500 0.150 0.101 0.141 0.092 0.161 0.113

500–550 0.178 0.120 0.167 0.109 0.191 0.135

550–600 0.201 0.137 0.190 0.125 0.217 0.153
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We estimate the statistical uncertainty of the �-binned
asymmetries by taking an integrated luminosity of
20 fb�1 for the Tevatron and 10ð30Þ fb�1 for the LHC
with 7 (8) TeV. This corresponds to an eventual combi-
nation of results from both experiments at the Tevatron
and LHC, respectively. A selection efficiency of �25% is
taken for the semileptonic t�t decay channels, similar to
that found in the experimental analyses [23,24]. This
results in a combined efficiency factor of about 7%.
The results for the Tevatron are collected in Table I and
for the LHC in Tables II and III, without and with an
upper cut pt�t

T < 30 GeV.
These tables show that the SM values of Au;d and A0

u;d

computed for the Tevatron and the LHC, respectively, are
in quite good agreement, which is remarkable given the
difference of roughly one order of magnitude between
the predictions for the inclusive asymmetries AFB and AC.
For illustration, in Fig. 1 the intrinsic asymmetries in
Tables I, II, and III are displayed, for� ¼ mt, as functions
of mt�t. For the Tevatron, only bins with mt�t < 600 GeV
are included. These plots show the increase of these
asymmetries with increasing mt�t and, furthermore, that
the upper cut on pt�t

T reduces the slight difference between
the Tevatron and LHC asymmetries, making them nearly
equal. We remark that the differences exhibited in the left
plot are irrelevant from an experimental point of view, as
we shall see below. We also point out that the differences
between the Tevatron and LHC results originate from
Monte Carlo statistics to some extent, as it can be noticed
from the fact that the smooth increase of the asymmetries
with mt�t is modulated by small fluctuations.
As we have emphasized before, at the LHC the contri-

butions from gq processes to A0
u;d are quite small. This can

be shown, for example, by using in the second of Eqs. (31)

the SM values of Aq �qþgq
C ð�iÞ instead of Aq �q

C ð�iÞ. The resul-
ting intrinsic asymmetries are presented in Table IV for
7 TeV, without pt�t

T cut. Comparison with the corresponding
numbers of Table II shows that the differences are negli-
gible. The differences are even further reduced if an upper
cut on pt�t

T is applied.
Next, we check the equivalence of the two- and one-

dimensional fits in determining the intrinsic asymmetries.
In Fig. 2 these asymmetries are plotted for the first four mt�t

bins. The dots represent the values calculated with one-
parameter fits (these are the numbers given in Tables I, II,
and III), and the ellipses are the two-dimensional 68% con-
fidence level (CL) regions from the two-dimensional fit,
where the center is the best-fit value giving the minimum
�2
min and the border corresponds to�

2 ¼ �2
min þ 2:3, includ-

ing statistical uncertainties only and assuming a perfect
reconstruction of the t and �t momenta. From these plots, it
is also clear that the slight differences between the Tevatron
and LHC asymmetries are irrelevant as to the anticipated
experimental uncertainty. This justifies the ansatz of extract-
ing the same quantities from two different sets of data.

TABLE III. Asymmetries A0
u;d at the LHC (8 TeV), without pt�t

T

cut (top) and for pt�t
T < 30 GeV (bottom).

� ¼ mt � ¼ 2mt � ¼ mt=2
mt�t [GeV] A0

u A0
d A0

u A0
d A0

u A0
d

<400 0.055 0.038 0.052 0.035 0.059 0.042

400–450 0.088 0.058 0.083 0.053 0.094 0.065

450–500 0.111 0.075 0.105 0.070 0.118 0.084

500–550 0.126 0.081 0.119 0.075 0.135 0.091

550–600 0.139 0.089 0.131 0.081 0.147 0.097

600–650 0.153 0.102 0.144 0.094 0.163 0.113

650–700 0.161 0.107 0.153 0.099 0.172 0.120

700–750 0.172 0.115 0.162 0.106 0.185 0.129

750–800 0.177 0.115 0.167 0.106 0.190 0.131

� ¼ mt � ¼ 2mt � ¼ mt=2
mt�t [GeV] A0

u A0
d A0

u A0
d A0

u A0
d

<400 0.073 0.040 0.068 0.050 0.078 0.061

400–450 0.115 0.074 0.108 0.070 0.123 0.086

450–500 0.147 0.101 0.139 0.092 0.159 0.113

500–550 0.170 0.118 0.159 0.102 0.183 0.124

550–600 0.191 0.128 0.179 0.113 0.205 0.141

600–650 0.209 0.148 0.197 0.126 0.227 0.157

650–700 0.229 0.157 0.215 0.139 0.246 0.168

700–750 0.242 0.164 0.225 0.147 0.261 0.186

750–800 0.258 0.174 0.243 0.155 0.277 0.193

TABLE II. Asymmetries A0
u;d at the LHC (7 TeV), without pt�t

T

cut (top) and for pt�t
T < 30 GeV (bottom).

� ¼ mt � ¼ 2mt � ¼ mt=2
mt�t [GeV] A0

u A0
d A0

u A0
d A0

u A0
d

<400 0.055 0.038 0.052 0.035 0.059 0.042

400–450 0.089 0.060 0.084 0.055 0.096 0.066

450–500 0.112 0.077 0.106 0.070 0.120 0.085

500–550 0.128 0.083 0.120 0.076 0.136 0.092

550–600 0.142 0.093 0.134 0.085 0.151 0.101

600–650 0.155 0.103 0.146 0.093 0.165 0.113

650–700 0.164 0.110 0.156 0.102 0.177 0.122

700–750 0.176 0.119 0.165 0.104 0.185 0.129

750–800 0.182 0.118 0.170 0.107 0.195 0.131

� ¼ mt � ¼ 2mt � ¼ mt=2
mt�t [GeV] A0

u A0
d A0

u A0
d A0

u A0
d

<400 0.071 0.054 0.068 0.047 0.077 0.059

400–450 0.115 0.078 0.108 0.071 0.124 0.087

450–500 0.149 0.103 0.140 0.093 0.160 0.114

500–550 0.170 0.110 0.159 0.100 0.183 0.124

550–600 0.193 0.128 0.180 0.116 0.209 0.144

600–650 0.211 0.143 0.197 0.127 0.227 0.159

650–700 0.229 0.153 0.215 0.140 0.247 0.169

700–750 0.245 0.165 0.228 0.148 0.261 0.184

750–800 0.262 0.177 0.244 0.158 0.282 0.194

J. A. AGUILAR-SAAVEDRA, W. BERNREUTHER, AND Z.-G. SI PHYSICAL REVIEW D 86, 115020 (2012)

115020-6



So far we have determined the intrinsic asymmetries

Að0Þ
u;d by simulating the proposed fitting procedure with

SM data: we have computed, for various mt�t bins, the

binned asymmetries AFBð�iÞ, ACð�iÞ, the fractions Fð0Þ
q

and the dilution factors Dq in the SM and performed the

fits using Eqs. (30) and (31). This leads, by definition, to

constant Að0Þ
u;d for eachmt�t bin. It remains to show that this is

an acceptable procedure—i.e., that the �-binned intrinsic
asymmetries are only mildly �-dependent within the mt�t

bins chosen above, as was claimed. This is shown in Fig. 3
for the first mt�t bin. (For the other mt�t bins the behavior
is quite similar.) This variation can be compared, for
example, with an increase in F0

u by a factor of 3 and Du

(Dd) by factors of 20 (40), between the bins 0<�< 0:1
and 0:9<�< 1. These results corroborate the assumption

of constant Að0Þ
u;d, especially when an upper cut on pt�t

T is

used. The LHC results shown in the plot in the right panel
of Fig. 3 exhibit some statistical fluctuations, which have
some effect on the resulting fit values of A0

u;d.

Finally we comment on the importance of the SM elec-
troweak contributions [10,11,13] of order �2

s� to the
charge asymmetries Au;d and A

0
u;d. The dominant contribu-

tions are due to the photonic corrections [10] whose size

with respect to the pure QCD asymmetries is roughly given
by the ratio Rq ¼ ð36QqQt=5Þð�=�sÞ. That is, these QED
contributions amount to a positive correction of �25% for

Að0Þ
u , while they are negative, ��13%, for Að0Þ

d . The pure

QCD contributions to Að0Þ
u;d may of course be computed also

with one of the generally available NLOQCDMonte Carlo
programs, e.g., with the codes of Refs. [12,32]. One should
keep in mind, however, that in Monte Carlo computa-
tions one normalizes the asymmetries with NLO QCD
denominators, while we have used denominators computed
at LO QCD.

IV. CONCLUSIONS

The formulas (3) allow one to extract the intrinsic
forward-backward asymmetries Au;d and A0

u;d from the

Tevatron t�t forward-backward asymmetry AFB and the
LHC charge asymmetry AC, respectively, if measured in
suitably chosen bins of the t�t invariant mass mt�t and
longitudinal velocity � of the t�t system. We have shown
under which conditions Eqs. (3) hold in the SM to NLO in
the gauge couplings. Our derivations of course also apply
to possible new physics contributions to these asymme-
tries. In particular, we have shown within the SM that the
intrinsic asymmetries are indeed collider-independent and,
furthermore, only mildly �-dependent for suitably narrow
mt�t bins, especially if an upper cut on the pt�t

T of the t�t
samples is applied. This corroborates the proposal of
Ref. [26] to use Eqs. (3) with constant Au and Ad for
performing a two-parameter fit to the respective Tevatron
and LHC data.
In order to apply Eqs. (3) to data analysis, one has to

compute the fractions Fq and factors Dq in the SM,3 either

to LO or NLO QCD for a specific PDF set and for chosen

values of the renormalization and factorization scales.
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FIG. 1 (color online). Summary of asymmetries for the Tevatron and the LHC (7 and 8 TeV), for � ¼ mt, without p
t�t
T cut (left) and

for pt�t
T < 30 GeV (right). The data correspond to the first two columns of Tables I, II, and III.

TABLE IV. Asymmetries A0
u;d at the LHC (7 TeV), without pt�t

T

cut, including gq contributions.

� ¼ mt � ¼ 2mt � ¼ mt=2
mt�t [GeV] A0

u A0
d A0

u A0
d A0

u A0
d

<400 0.056 0.038 0.053 0.035 0.060 0.042

400–450 0.091 0.060 0.086 0.055 0.097 0.067

450–500 0.115 0.078 0.108 0.071 0.123 0.087

500–550 0.132 0.085 0.124 0.078 0.141 0.095

550–600 0.147 0.097 0.139 0.088 0.157 0.106

600–650 0.161 0.108 0.152 0.097 0.172 0.118

650–700 0.172 0.115 0.163 0.107 0.186 0.129

700–750 0.184 0.125 0.172 0.110 0.195 0.136

750–800 0.191 0.125 0.178 0.113 0.205 0.139

3The present knowledge about the (differential) hadronic t�t
production cross section implies that possible new physics con-
tributions to these functions can be neglected.
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The outcome of the fits depend, of course, on these choices.

Needless to say, this would be extremely valuable infor-

mation. It has previously been shown, on a model-

independent basis [26] as well as for specific new physics
models [27–29], that current measurements of AFB at the

Tevatron and AC at the LHC are compatible. Therefore, the
comparison of the measured values A

exp
u;d with their SM

predictions ASM
u;d would reveal whether or not there is

agreement with the SM; if a deviation would be found, it
would show whether it is located in Au or Ad, or in both.
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FIG. 3 (color online). Dependence of Au;d on � in the SM, for mt�t < 400 GeV at the Tevatron (left) and the LHC with 7 TeV (right).
Black and gray triangles correspond to no pt�t

T cut and cut pt�t
T < 30 GeV, respectively.
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FIG. 2 (color online). Comparison between asymmetries obtained with two- and one-dimensional fits, for � ¼ mt, without p
t�t
T cut.

The mass range in the lower left corner indicates the mt�t bin (in GeV). The ellipses represent the 68% CL regions for the two-
dimensional fit, where only statistical uncertainties are considered.
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This could be achieved by a combination of the results
from measurements at the Tevatron and the LHC (and by
eventually testing whether they are consistent), and would
be a big step forward in pinning down the origin of the new
physics contribution(s), if there are any. The experimental
determination of Au and Ad will certainly be a challenge, as
it will involve in general a three-dimensional unfolding of
the data with respect to mt�t, �, and the (anti)top rapidity,
but it is certainly worth the effort for the aim of resolving
this puzzle.

ACKNOWLEDGMENTS

The work of J. A. A. S. has been supported by

MICINN by projects FPA2006-05294 and FPA2010-

17915, Junta de Andalucı́a (FQM 101, FQM 03048

and FQM 6552) and Fundação para a Ciência e

Tecnologia (FCT) project CERN/FP/123619/2011. The

work of W. B. was supported by DFG, SFB TR9 and that

of Z. G. Si by NSFC and by Natural Science Foundation

of Shandong Province.

[1] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D 83,
112003 (2011).

[2] T. Aaltonen et al. (CDF Collaboration), CDF note Report
No. 10807, 2012.

[3] V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 84,
112005 (2011).
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