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We discuss the prospects for production and detection of fermiophobic bosons (exotic bosons decaying

only to standard model gauge bosons) at the LHC, and describe simple methods for determining spin. We

consider two complementary approaches to spin determination: the search for decays in the diphoton

channel, and the comparison of events with no extra spectator jets to those with one extra jet. We show that

these approaches can together allow the fermiophobic boson’s spin to be determined over a wide range of

parameter space. We study both even and odd parity states.
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I. INTRODUCTION

In this paper we will study the phenomenology of
massive fermiophobic bosons (denoted throughout this
paper as X). Fermiophobic bosons dominantly couple to
standard model gauge bosons. We consider possible strat-
egies for distinguishing a spin-0 fermiophobic resonance
from a spin-1 resonance (we consider both even and odd
parity). We will find that there are two effective comple-
mentary strategies: a search for diphoton events, and a
comparison of events with no spectator jets to those with
one spectator jet.

Fermiophobic bosons have been studied in a variety of
contexts [1–14], particularly in the context of a fermiopho-
bic Higgs boson [15]. Fermiophobic bosons can arise
naturally in models where a hidden sector couples domi-
nantly to exotic heavy fermions or scalars. If these matter
fields are heavy enough, then they cannot be directly
produced at the LHC. But if these fields are charged under
standard model gauge groups, then loops of heavy particles
mediate an effective coupling to standard model gauge
bosons. One-loop diagrams can thus mediate mixing
between standard model gauge bosons and fermiophobic
bosons, and search strategies for this effect have been well
studied [1–3,5–9]. An alternative strategy is to search for
triple-boson couplings, where X couples to two standard
model gauge bosons. This strategy can be especially useful
in cases where X does not mix with standard model gauge
bosons; examples include the case where X is a scalar, or
when the heavy fields mediating the interaction are not
charged under Uð1ÞY .

One would expect that the most effective way to search
for fermiophobic bosons with triple boson couplings would
be through the process gg ! X ! VV, where V is an
electroweak gauge boson. This process benefits from large
production rate associated with a gluon initial state, and
clean photon or lepton signals which are possible with an
electroweak boson final state. This channel was studied in
Ref. [13] for the case where X is a pseudovector. A variety

of experimental searches for fermiophobic bosons have
been conducted [16].
It is important to determine all quantum numbers of any

exotic resonance discovered at the LHC. The measurement
of the spin of a resonance has been studied by many
authors, particularly in the context of resonances similar
to the Higgs [17]. A typical method of spin determination
is to look at the angular distribution of the decay products
in the rest frame of the decaying particle. We will consider
two complementary approaches to spin determination
which do not require the use of angular information, but
instead rely on effects associatedwith Landau-Yang theorem
[18,19] selection rules.
According to the Landau-Yang theorem, a massive

vector boson cannot decay to two identical massless
vector bosons. Thus, if the decay X ! �� is observed,
it is clear that X is not spin-1. This is the reason why
it is clear that the recent exciting discovery at the LHC
of a boson with a mass of �125 GeV [20] cannot be
a spin-1 resonance. The Landau-Yang theorem also
implies that a massive vector cannot be produced from
an initial state of two on-shell gluons. This implies that
the production of a spin-1 fermiophobic boson from an
Xgg vertex must be accompanied by the emission of a
spectator jet. We will find that these two strategies can be
used together to distinguish between spin-0 and spin-1
fermiophobic bosons for a wide range of models. The
efficacy of each strategy depends primarily on the rela-
tive strength of the coupling of X to SU(2) and to Uð1ÞY
gauge bosons.
In Sec. II, we describe the coupling of fermiophobic

bosons to standard model gauge bosons in terms of higher-
dimension effective operators. In Sec. III we describe the
primary X production and decay processes. In Sec. IV we
describe our method of simulating signal and background
events, and in Sec. V we describe the sensitivity of the
LHC, and its ability to distinguish the spin of fermiophobic
resonances. We conclude in Sec. VI with a discussion of
our results.
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II. EFFECTIVE THEORY OF THE
FERMIOPHOBIC BOSON

The theory we consider consists of a new massive boson
X which has effective couplings to standard model gauge
bosons. We will assume X is not charged under standard
model gauge groups; the coupling can thus be written as an
effective operator of dimension 5 or 6 (depending on the
spin of X) which couples X to standard model field
strengths. We now list the possible (lowest dimensional)
effective operators for the four spin/parity assignments of
this boson.

For either a scalar or pseudoscalar, there is one lowest
dimension (dimension 5) effective operator:

Os ¼ 1

�
X Tr½F��F

���; (1)

Ops ¼ 1

�
�����X Tr½F��F���: (2)

For a (pseudo)vector X, the lowest dimensional operator
is of dimension 6. For the vector, we find four possible
operators:

O1
v ¼ 1

�2
X� Tr½F��@�F

���; (3)

O2
v ¼ 1

�2
X� Tr½@�F��F

���; (4)

O3
v ¼ 1

�2
@�X

� Tr½F��F
���; (5)

O4
v ¼ 1

�2
X� Tr½F��@�F

���; (6)

where we have written each operator only to quadratic
order in standard model gauge field strengths. For a fully
gauge-invariant operator, the partial derivative should be
replaced by a covariant derivative. The first three operators
are related by an integration by parts:

X� Tr½F��@�F
��� ¼ @�ðX� Tr½F��F

���Þ
� ðX� Tr½@�F��F

���
þ @�X

� Tr½F��F
���Þ:

Dropping the surface term, we find

O1
v ��ðO2

v þO3
vÞ:

We will in what follows assume X to be on shell. In this
case, we find that the operatorO2

v does not contribute. The
vertex function for this operator is

�
���
vð2Þ ðkX; k1; k2Þ ¼

1

�2
ðk�1 þ k

�
2 Þðk�1k�2 � g��k1 � k2Þ

¼ 1

�2
k
�
X ðk�1k�2 � g��k1 � k2Þ: (7)

Contracting this vertex function with the polarization vec-
tor for the X thus gives zero. The vertex function for O4

v is
identical, and so also does not contribute. Thus, the only
operators which contribute to the X coupling are O1

v and
O3

v, which are equivalent by an integration by parts. We
thus drop superscript labels and write

Ov ¼ 1

�2
X� Tr½F��@�F

���: (8)

Finally, for the pseudovector X, the only nonvanishing
operator is [13]

Opv ¼ 1

�2
X�����	 Tr½F��@�F

�	�: (9)

For non-Abelian fields Fa
��, covariant derivatives should

be used to act on the field strengths. The covariant deriva-
tives will give rise to higher point vertices, allowing decays
to 3 or more standard model bosons.1 For coupling to
gluons, the higher point interactions have a sizable contri-
bution to the production channel.
We will assume a higher-dimensional effective coupling

to all gauge groups of the standard model, though for
generality we will allow the couplings to be different. We
will thus characterize the couplings by an energy scale �,
and encode the relative strength of the coupling to SUð2ÞL
and Uð1ÞY in relation to SUð3ÞQCD by C1 and C2. The

effective operators are thus given as

Os ¼ 1

�s

XGa
��G

a�� þ C1

�s

XWi
��W

i��

þ C2

�s

XB��B
��; (10)

O ps ¼ 1

�ps

XGa
��

~Ga�� þ C1

�ps

XWi
��

~Wi��

þ C2

�ps

XB��
~B��; (11)

Ov ¼ 1

�2
v

X�Ga
��D�G

a�� þ C1

�2
v

X�Wi
��D�W

i��

þ C2

�2
v

X�B��D�B
��; (12)

Opv ¼ 1

�2
pv

X� ~Ga
��D�G

a�� þ C1

�2
pv

X� ~Wi
��D�W

i��

þ C2

�2
pv

X� ~B��D�B
��; (13)

1Extra terms arising from the covariant derivative will not
affect two-body decay widths. They do, however, affect two-
body branching fractions through their contribution to three-
body widths, and so we use the full covariant derivatives in all of
our couplings for event generation.
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with ~F�� ¼ 1
2 ���	
F

	
. Since field strengths are parity

even objects and ���	
 is parity odd, we see that the X in

Eqs. (11) and (13) is a pseudoscalar and pseudovector,
respectively.

We neglect any possible couplings to the standard model
Higgs boson in this analysis. One reason for this is the
model dependence of these couplings. If these couplings
are generated through loops of heavy exotic fermions, for
instance, then vectorlike fermions could generate cou-
plings to electroweak gauge bosons, but not to the Higgs
boson. Higgs couplings could only be generated by heavy
fermions which are chiral under SUð2Þ �Uð1ÞY , but these
fermions are strongly constrained by experiments.

More generally, Xhh couplings provide a signal which is
not as clean as that arising from couplings to electroweak
gauge bosons. We are interested in search channels that
allow full reconstruction of the X mass peak. An X decay-
ing through Higgs bosons would only be viable as a search
channel if the Higgs bosons decayed to ZZ ! 4l or ��,
both of which occur with small branching fractions.

III. PRODUCTION AND DECAY CHANNELS

Production at the LHC will be primarily through the
channels gg, gq, g �q, and q �q. Vector boson fusion is also a
viable production channel for the X [10], but will only
become important when coupling to SU(3) is small or zero.
Thus, we will not consider vector boson fusion as a

production channel in this analysis, though we note that
inclusion of this production channel will only add to the
2-jet cross section. We see (Fig. 1) that all but the gg
partonic production channels require the presence of a
spectator jet. If X is spin-1, the dominant gg ! X produc-
tion channel is forbidden for on-shell X; thus spin-1 X is
always produced with at least one accompanying jet. Since
this dominant production channel is available to the spin-0
X, we should in principle be able to determine spin by
simply comparing the zero-jet and one-jet cross sections
for any observed fermiophobic resonance. We will return
to this possibility in a later section. Interestingly, it turns
out that the matrix element for the gg ! Xg hard process
also turns out to be zero if X is spin-1, so production occurs
only through quark-gluon and quark-antiquark scattering.
We list the production cross sections for the different

spin/parity assignments in Table I, as calculated in
MADGRAPH5. Cross sections for production with zero and

one jet are listed separately. We see, as expected, that the
cross section for spin-1 X vanishes when there is no
accompanying jet. We also see that production for spin-1
X is parity dependent at low masses, while for spin-0 X
there is no noticeable dependence.

A. Decay channels

Since the X is in general coupled to all gauge groups of
the standard model, there is some nonzero branching

FIG. 1. Partonic production channels for the X.

TABLE I. Tree-level production cross sections (in fb) for Xþ 0-jet and Xþ 1-jet, as calcu-
lated by MADGRAPH5 for C1 ¼ 10, C2 ¼ 0, and either � ¼ 50 TeV (spin-0) or � ¼ ffiffiffiffiffiffi

10
p

TeV
(spin-1). Cross sections for parity even and parity odd are identical for a spin-0 X. Jets are
required to have pT � 50 GeV.

mX 500 GeV 1000 GeV 1500 GeV 2000 GeVffiffiffi
s

p ¼ 8 TeV
	ðpp ! XðpÞsÞ 4:70� 102 3:38� 101 4.31 6:82� 10�1

	ðpp ! XðpÞvÞ 0 0 0 0

	ðpp ! XðpÞs þ jÞ 2:71� 102 2:69� 101 4.03 7:04� 10�1

	ðpp ! Xv þ jÞ 7:26� 101 8.17 1.36 2:51� 10�1

	ðpp ! Xpv þ jÞ 2:51� 101 8.17 1.36 2:51� 10�1ffiffiffi
s

p ¼ 14 TeV
	ðpp ! XðpÞsÞ 2:25� 103 2:76� 102 5:91� 101 1:62� 101

	ðpp ! XðpÞvÞ 0 0 0 0

	ðpp ! XðpÞs þ jÞ 1:53� 103 2:53� 102 6:40� 101 1:94� 101

	ðpp ! Xv þ jÞ 7:48� 102 1:32� 102 3:72� 101 1:24� 101

	ðpp ! Xpv þ jÞ 1:24� 103 1:32� 102 3:72� 101 1:24� 101
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fraction to both gluons and electroweak gauge bosons. If X
decays via its coupling to gluons, the final state signal
would lie in the multijet events; two or more jets for a
spin-0 X and 4 or more jets for a spin-1 X (the matrix
elements for X ! gg, ggg vanish). As this is a difficult
experimental analysis, we focus instead on electroweak
decays, which lead to much cleaner signals at the LHC.
Furthermore, since we want to study an on-shell resonance,
it is necessary that we can fully reconstruct the X from its
decay products, and so we do not look in channels that
contain neutrinos in the final state. We will look in the
channels X ! ZZ ! 4l (the so-called golden channel),
X ! Z� ! 2lþ �, and X ! �� (the diphoton channel
is forbidden if X is spin-1).

Scalar decay widths are given by

�sðWWÞ
mX

¼ C2
1

2�

m2
X

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

W

m2
X

s �
1� 4m2

W

m2
X

þ 6
m4

W

m4
X

�
; (14)

�sðZZÞ
mX

¼ ðC1cos
2�w þ C2sin

2�wÞ2
4�

m2
X

�2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

Z

m2
X

s �
1� 4m2

Z

m2
X

þ 6
m4

Z

m4
X

�
; (15)

�sðZ�Þ
mX

¼ ðC1 � C2Þ2cos2�wsin2�w
2�

m2
X

�2

�
1� m2

Z

m2
X

�
3
; (16)

�sð��Þ
mX

¼ ðC1sin
2�w þ C2cos

2�wÞ2
4�

m2
X

�2
; (17)

�sðggÞ
mX

¼ 2

�

m2
X

�2
: (18)

Note that the functional structures are identical to those of
the standard model Higgs decay.
Pseudoscalar decay widths are given by

�psðWWÞ
mX

¼ C2
1

2�

m2
X

�2

�
1� 4m2

W

m2
X

�
3=2

; (19)

�psðZZÞ
mX

¼ ðC1cos
2�w þ C2sin

2�wÞ2
4�

m2
X

�2

�
1� 4m2

Z

m2
X

�
3=2

;

(20)

�psðZ�Þ
mX

¼ ðC1 � C2Þ2cos2�wsin2�w
2�

m2
X

�2

�
1� m2

Z

m2
X

�
3
;

(21)

�psð��Þ
mX

¼ ðC1sin
2�w þ C2cos

2�wÞ2
4�

m2
X

�2
; (22)

�psðggÞ
mX

¼ 2

�

m2
X

�2
: (23)

TABLE II. Partial widths (in MeV), as calculated by MADGRAPH5, for mX ¼ 500 GeV,
C1 ¼ 10, C2 ¼ 0, and either � ¼ 50 TeV (spin-0) or � ¼ ffiffiffiffiffiffi

10
p

TeV (spin-1).

V1V2 WW ZZ Z� �� gg 3-body Total

�s 680.2 190.1 128.8 21.73 31.83 89.63 1142

�ps 677.2 188.6 128.8 21.73 31.83 90.00 1138

�v 4.495 1.634 0.5762 0 0 0.3815 7.086

�pv 4.037 1.416 0.5762 0 0 0.3516 6.381
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FIG. 2 (color online). Contours of �tot=mX for spin-0 X, for coupling only to gluons (C1 ¼ C2 ¼ 0) (left) and for coupling to SU(2)
with C1 ¼ 10, C2 ¼ 0. For a vast majority of the parameter space width is less than 10% of the mass, and the narrow width
approximation is valid.
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It is interesting to note that the scalar and pseudoscalar
partial widths become equal as mZ;W=mX ! 0. This sug-
gests that all information concerning the parity of the X is
encoded in the longitudinal modes of the W and Z.

Vector decay widths are given by

�vðWWÞ
mX

¼ C2
1

48�

m4
X

�4

m2
W

m2
X

�
1� 4m2

W

m2
X

�
3=2

; (24)

�vðZZÞ
mX

¼ ðC1cos
2�w þC2sin

2�wÞ2
96�

m4
X

�4

m2
Z

m2
X

�
1� 4m2

Z

m2
X

�
3=2

;

(25)

�vðZ�Þ
mX

¼ ðC1 � C2Þ2cos2�wsin2�w
96�

m4
X

�4

m2
Z

m2
X

�
�
1þ m2

Z

m2
X

��
1� m2

Z

m2
X

�
3
: (26)

Lastly, pseudovector decay widths are given by

�pvðWWÞ
mX

¼ C2
1

48�

m4
X

�4

m2
W

m2
X

�
1� 4m2

W

m2
X

�
5=2

; (27)

�pvðZZÞ
mX

¼ ðC1cos
2�wþC2sin

2�wÞ2
96�

m4
X

�4

m2
Z

m2
X

�
1� 4m2

Z

m2
X

�
5=2

;

(28)

�pvðZ�Þ
mX

¼ ðC1 � C2Þ2cos2�wsin2�w
96�

m4
X

�4

m2
Z

m2
X

�
�
1þ m2

Z

m2
X

��
1� m2

Z

m2
X

�
3
: (29)

Again, we see that the parity-even and parity-odd widths
become equal as mZ;W=mX ! 0.
In Table II, we list the widths (in MeV) to each channel

for mX ¼ 500 GeV, C1 ¼ 10, C2 ¼ 0, and either � ¼
50 TeV (spin-0) or � ¼ ffiffiffiffiffiffi

10
p

TeV (spin-1). We see that
for all cases the narrow width approximation is valid. To
see that the narrow width approximation remains valid
throughout our parameter space, we plot the contours of
�tot=mX in �-mX space for both spin-0 (Fig. 2) and spin-1
(Fig. 3). We neglect any contributions from three-body
decays. We see that for spin-0, �tot=mX < 10% for a
majority of the parameter space, though at large values of
mX=� the narrow width approximation may break down.
In the case of a spin-1 X, the narrow width approximation
holds over a much wider region of parameter space.
We can now calculate the branching fractions, again

ignoring contributions from three-body decays, from
Eqs. (14)–(29). The branching fractions for spin-0 X
depend on two parameters, C1 and C2. We illustrate this

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

0.01

0.1

mX

C1 10, C2 0

mX GeV

TeV

FIG. 3 (color online). Contours of �tot=mX for spin-1 X. Also
shown is the line � ¼ mX, at which point the effective field
theory description is naively expected to break down. For
coupling to SU(2) with C1 ¼ 10 we find �tot=mX � 1 over a
vast majority of the parameter space, and the narrow width
approximation holds.
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FIG. 4 (color online). X decay branching fractions when X is spin-0 as a function of C2=C1. Here,mX ¼ 500 GeV and either C1 ¼ 1
(left panel) or C1 ¼ 10 (right panel).
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dependence in Fig. 4 by plotting branching fractions for a
certain choice of C1 and as a function of C2=C1.

For the spin-1 X, the branching fraction to gg (and ��)
vanishes, and so the overall scale of the electroweak cou-
plings in relation to the gluon coupling drops out. Thus, the
remaining branching fractions only depend on C2=C1, and
are constant with respect to overall scale �. These are
shown in Fig. 5.

Branching ratios in both cases are also dependent
on mX, but for mX * 500 GeV the dependence becomes
negligible. Similarly, differences between parity even and
parity odd become negligible. We also note that if X also
couples to the Higgs boson, the branching fractions for
X ! VV decay will be reduced, while the ratio of branch-
ing fractions to different electroweak gauge bosons will be
unchanged.

B. Three-body decays

In the previous section, we ignored three-body decay
widths due to the usual assumption that the reduction in
phase space and extra coupling constant factors render
these negligible. There are cases, however, where this
assumption cannot be made. We show in Table III the
three-body branching ratios for all four spin/parity assign-
ments at five different masses. We see that when X is spin-
0, the three-body branching fractions are small, but in
general they are not negligible. More importantly, we see
that if X is spin-1, the three-body decays strongly dominate
for mX � mW;Z. This behavior arises again from the

Landau-Yang theorem. For mX � mW;Z, the electroweak

gauge bosons can be considered approximately massless,
and the two-body decay becomes highly suppressed. We
see this clearly in the vector and pseudovector three-body
branching fractions for mX ¼ 10 TeV.
It is thus important to note that searches for two-body

resonances will be ineffective for very massive fermiopho-
bic spin-1 particles. Furthermore, any search for a three-
body resonance will be complicated by the fact that, for
electroweak decay products, full reconstruction using only
leptons and photons is impossible. The only three-body
electroweak decay modes for the X are WþW�Z and
WþW��; purely leptonic decays will always produce
missing momentum via neutrinos. Thus, for full recon-
struction we must rely on the hadronic channels (either
X ! gq �q or hadronic decays of electroweak gauge
bosons). Since a vector X must be produced with an
associated jet, this signal will be contained within events
containing 4 or more jets. Alternatively, a search can be
performed in channels in which intermediate electroweak
bosons are off shell.
For mX 	 2000 GeV, the branching fractions to elec-

troweak gauge bosons dominate, and we may still be able
to achieve discovery in the two-body decay channels. The
remainder of this paper will focus on this possibility, and
the possibility of distinguishing spin if a resonance is
indeed observed.

IV. COLLIDER SIMULATION

As outlined above, we will generate event samples in
which X is produced through the Xgg vertex and subse-
quently decays through electroweak couplings. We gener-
ate parton-level events in MADGRAPH5 [21], shower and
hadronize the events in PYTHIA [22], and perform detector
simulation using PGS4 [23] using the ATLAS detector
card. To generate the model files for MADGRAPH, we
have used the Mathematica package FEYNRULES [24],
to which we feed the effective interaction operators,
Eqs. (10)–(13), as input. We generated events for collider
energies of

ffiffiffi
s

p ¼ 8 TeV and
ffiffiffi
s

p ¼ 14 TeV.
For spin-0 X, we generate both pp ! X and pp ! Xj at

the parton level, in order to include all possible production
channels. These two processes are matched at the PYTHIA

level using the MLM algorithm in order to avoid over
counting between matrix element generated and initial
state radiation generated jet-containing events. For the
spin-1 cases, events are generated solely from the 1-jet
matrix element (which in this case is tree level).

A. Cuts

The following reconstruction cuts will be applied for the
three channels we study. These cuts are applied at the
detector level:
(i) X ! ZZ.—We require events to contain four

charged leptons ðe
; �
Þ with 
 	 2:5. These

WW

Z

ZZ

– 10 – 5 0 5 10
0.0

0.2

0.4

0.6

0.8

C2 C1

B
R

X
V

V

FIG. 5 (color online). X decay branching fractions for when X
is spin-1 as a function of C2=C1, for mX ¼ 500 GeV.

TABLE III. Three-body branching fractions, as calculated in
MADGRAPH5, for C1 ¼ 10, C2 ¼ 0, and either � ¼ 50 TeV
(spin-0) or � ¼ ffiffiffiffiffiffi

10
p

TeV (spin-1).

mX ¼ 500 GeV 1000 GeV 1500 GeV 2000 GeV 10 GeV

Xs 0.078 0.154 0.207 0.24 0.436

Xps 0.079 0.154 0.206 0.245 0.447

Xv 0.054 0.129 0.199 0.266 0.818

Xpv 0.055 0.129 0.199 0.267 0.816
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must consist of two pairs of same-flavor opposite-
sign leptons which each have invariant masses in
the range 80 GeV 	 mlþl� 	 100 GeV. The total
invariant mass must lie within 10% of mX.

(ii) X ! Z�.—We require events to contain a photon
as well as two same-flavor opposite-sign leptons
(
 	 2:5) whose invariant mass lies in the range
80 GeV 	 mlþl� 	 100 GeV. The two leptons and
photon then must have a total invariant mass which
lies within 10% of mX.

(iii) X ! ��.—We require events to contain two pho-
tons (
 	 2:5) which reconstruct to invariant mass
within 10% of mX.

In addition to these cuts, a number of standard isolation
cuts are applied at the MADGRAPH level, including requir-
ing �R> 0:4 for any pair of particles. At this point we do
not impose any cuts on the jet structure of the events.

B. Background

We generate background events using the same
MADGRAPH5 simulation chain. For the vast majority of

events where a lepton pair has an invariant mass between
80–100 GeV, the leptons arise from the decay of a Z boson.
Other sources of lepton pairs satisfying the cuts (including
lepton misidentification) are insignificant and can be
ignored. For the ZZ and Z� background channels, we
use 0-jet and 1-jet matrix elements, which are matched
using the MLM algorithm. For the �� channel, we use only
the 0-jet matrix element. Additionally, for the ZZ and ��
channels, we have included the backgrounds present from
standard model Higgs production, where we have assumed
mh ¼ 126 GeV. Cross sections for these channels, after
imposing the above-mentioned cuts in each X-mass win-
dow, are given in Table IVat LHC energies of 8 and 14 TeV
(see also Refs. [25,26]).

V. COLLIDER REACH

Since the narrow width approximation holds, the num-
ber of signal events in a given channel and at a given
luminosity L depends on the coupling constants C1 and
C2 only through the final state branching fractions. If we
denote by	prod the cross section for the production process

pp ! X þ ð0-and=or 1-jetÞ, and by � the fraction of such
events which pass the analysis cuts in any channel, then the
number of signal events is given by

Nsig ¼ 	prod � �� BRðX ! VVÞ �L

/ ��n � BRðX ! VVÞ �L; (30)

where n ¼ 2 for spin-0, and n ¼ 4 for spin-1. For a dis-
covery, we will require a 5	 (Gaussian equivalent) excess
of signal events over background events satisfying the
same cuts, and we require at least five signal events.
With Eq. (30) in mind, we define the LHC reach for any
integrated luminosity in terms of the quantity

RVV � �=½BRðX ! VVÞ�1=n: (31)

We find the reach for 10 and 30 fb�1 at center of mass
energy of

ffiffiffi
s

p ¼ 8 TeV, and 100 fb�1 at
ffiffiffi
s

p ¼ 14 TeV. For
the scalar and vector cases, the LHC reach is plotted
againstmX in Fig. 6. We plot the inclusive X ! ZZ channel
(both 0- and 1-jet events) and the inclusive X ! Z� chan-
nels separately. The reach plots for the pseudoscalar and
pseudovector case are essentially identical to the scalar and
vector cases, respectively. We see that in both channels,
we can probe higher scales in the spin-0 case, which is
expected from the additional �2 suppression coming from
the dimension 6 operators coupling a spin-1 fermiophobic
boson to the standard model. We also note that the Z�
channel is generally a better probe despite the higher back-
grounds. This is mainly due to the small Z ! lþl� branch-
ing fraction and the reconstruction cuts present in the ZZ
channel.
In addition, we show in Fig. 7 the reach for the ��

channel, present only for spin-0 X. Current LHC data can
probe well into the hundreds-of-TeV range.
Note that we have not accounted for next-leading-order

QCD corrections to the X production cross section. The
associated K factors are usually greater than one, indicat-
ing that a correct treatment of next-leading-order effects
would likely increase the LHC reach.

A. Spin determination

It is clear from the reach plots of the previous section
that the simplest way to distinguish a spin-0 resonance

TABLE IV. Inclusive cross sections (in fb) for standard model background in the ZZ, Z�, and �� channels, after reconstruction cuts
in each total invariant mass window.

mX

500 GeV 1000 GeV 1500 GeV 2000 GeV

	BGðpp ! ZZ ! lþl�lþl�Þ 2:11� 10�1 8:48� 10�3 1:45� 10�4 3:74� 10�5

8 TeV 	BGðpp ! Z� ! lþl��Þ 3.93 2:98� 10�1 2:55� 10�2 2:93� 10�3

	BGðpp ! ��Þ 1:80� 101 1.42 2:08� 10�1 4:66� 10�2

	BGðpp ! ZZ ! lþl�lþl�Þ 4:48� 10�1 2:72� 10�2 2:10� 10�3 2:21� 10�4

14 TeV 	BGðpp ! Z� ! lþl��Þ 8.42 4:16� 10�1 1:09� 10�1 2:72� 10�2

	BGðpp ! ��Þ 3:65� 101 2.79 8:73� 10�1 3:27� 10�1
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from spin-1 is to look to the �� channel. If there is an
observation in the �� channel, with or without a corre-
sponding observation in ZZ or Z�, the Landau-Yang theo-
rem implies that the decaying particle is not spin-1.

There are cases, however, where a spin-0 X will not
decay to two photons. We see from Fig. 4 and Eq. (17) that
the branching ratio BRðX ! ��Þ drops to zero for
C2=C1 ¼ �tan2�w (an explicit model where this occurs
is exhibited in the Appendix). The electroweak decay
channels for the spin-0 and spin-1 X are in this case
identical. We must in these cases resort to an alternative
method of determining spin.

Another way of distinguishing between spin-0 and spin-1
resonances is from the presence of extra jets; the 0-jet
process pp ! X ! ZZ, Z� is possible if X is spin-0,
but not if it is spin-1. As we saw, we can define the LHC

reach for X (spin-0) in terms of the quantity RVV ¼
�=BRðX ! VVÞ1=2. We thus see that a search in the ZZ
or Z� channel with zero extra jets will be more promising
than a search in the �� channel if

RZZ;Z�ð0-jetÞ
R��

�
BRðX ! ZZ; Z�Þ
BRðX ! ��Þ

�1
2
> 1: (32)

The ratios BRðX ! ZZÞ=BRðX ! ��Þ and BRðX ! Z�Þ=
BRðX ! ��Þ depend only on the quantitiesmX and C2=C1.
Having determined RZZðmXÞ and RZ�ðmXÞ for the 0-jet

sample from the generated signal and background events,
one can determine the range of C2=C1 (for any mX) over
which the ZZ or Z� 0-jet search provides better prospects
for discovery than the �� channel. These ranges are plotted
in Fig. 8; note that these ranges would not change signifi-
cantly after the LHC energy and luminosity upgrade.
Thus far, our analysis has focused on strategies for

determining if X is not spin-1. One might ask the converse
question: does the appearance of an excess in ZZ and/or
Z� events with one extra jet, unaccompanied by an
excess in 0-jet events or �� events, necessarily imply the
X resonance is spin-1? Essentially, this amounts to the
question of whether or not a spin-0 resonance can

FIG. 7. Collider reach for the �� channel, which is present
only for spin-0 X.

FIG. 6. Collider reach for both ZZ (top) and Z� (bottom) channels. Spin-0 X is shown at left, spin-1 X at right. The reach plots for
the parity odd bosons are essentially identical to their parity even counterparts.
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produce an excess in 1-jet events, without also producing
a statistically significant excess in 0-jet events or ��
events.

We can determine this by comparing the LHC reach for
0-jet events to the reach for 1-jet events in the ZZ or Z�
events, assumingX is spin-0. If the reaches are comparable,
then a spin-0 X coupling to the standard model in such a
way as to produce a 5	 excess in ZZ or Z� events with
one extra spectator jet would, for similar luminosity, also
produce an excess in events with no spectator jets.

An observed 5	 excess in 1-jet events without some excess
in 0-jet events would imply that X is not spin-0.
In Fig. 9 we plot RVVð0-jetÞ=RVVð1-jetÞ as a function of

mX for the ZZ and Z� channels (assuming X is spin-0).
From this plot, we see that for much of the range, an
observation of a resonance with one spectator jet, but an
absence of a excess with zero spectator jets, is sufficient to
demonstrate that the resonance is not spin-0. Furthermore,
we see that this conclusion is largely independent of the
collider energy, luminosity, and decay channel studied.

FIG. 8. Range of C2=C1 for which a ZZ-channel search (left) or a Z�-channel (right) search is more promising than a diphoton
search.

FIG. 9 (color online). Ratio of reaches RVVð0-jetÞ=RVVð1-jetÞ for X ! ZZ (left) and X ! Z� (right) in the case of spin-0 X. We see
that if the resonance is spin-0, we expect a similar number of 0-jet and 1-jet events.

FIG. 10 (color online). Ratio of reaches RVVð0-jetÞ=RVVð1-jetÞ for X ! ZZ (left) and X ! Z� (right) in the case of spin-1 X. We see
that if the resonance is spin-1, we expect to see many 1-jet events and very few 0-jet events.
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We also show (Fig. 10) RVVð0-jetÞ=RVVð1-jetÞ for the case
of a spin-1 X (in this case, the number of signal events is
proportional to R�4). As expected, we see that an obser-
vation in the 0-jet channel without a corresponding obser-
vation in the 1-jet channel is sufficient to demonstrate that
the resonance is not spin-1.

VI. CONCLUSIONS

The existence of exotic fermiophobic bosons is well
motivated theoretically. These types of bosons could reveal
themselves as resonances which decay to two or more
SM bosons at the LHC. We have established the efficacy of
the LHC in probing models of this type, and demonstrated
the viability of two methods for determining spin. The
existence of a diphoton decay channel establishes that the
resonance is not spin-1, as is well known. When a boson
does not decay to two photons, spin can be determined
through an inspection of the jet structure of the signal
events. Over much of the parameter space, a discovery
and a spin determination can be achieved in as few as
five events, thus requiring far fewer statistics than alter-
native methods of spin determination (e.g., analyses of
angular distributions of decay products).

The LHC has already discovered a new boson, and the
existence of diphoton decays shows definitively that this
new particle is not spin-1. We have shown that the LHC has
very good prospects for discovering fermiophobic bosons
in the near future, even if they are relatively heavy, or are
only coupled to the standard model by higher dimension
effective operators which are heavily suppressed. For
example, a 100 fb�1 run of the LHC at 14 TeV could
find 5	 evidence for a scalar with mX � 2 TeV, coupled
to the standard model by effective operators suppressed
by a mass scale�300 TeV. The reason for this large reach
is that a fermiophobic boson can be produced from gluon
couplings, but observed through electroweak decays, a
channel which is ideal for detection at the LHC. In par-
ticular, the diphoton channel is clearly the most promising,
as the signal is very clean and the background is very small.

But one typically expects an electrically neutral boson to
have a very small branching fraction for decay to ��. This
is the case for the 125 GeV boson discovered at the LHC.
Fermiophobic scalars are a major contrary example; the
branching fraction for diphoton decay can easily be Oð1Þ.
One can see why such large X ! �� branching fractions
are allowed by considering a high-energy theory where the
fermiophobic boson X couples to standard model gauge
bosons only through loops of heavy fermions and scalars
which are charged under standard model gauge groups. In
this scenario, since all decays arise from one-loop dia-
grams, the X ! �� branching fraction can be comparable
to that of other channels. This behavior is markedly differ-
ent from other scenarios in which some decays to standard
model particles occur at tree level. Fermiophobic bosons

are thus one of the most interesting prospects for future
discovery at an upgraded LHC.
Although the methods we have discussed here are ap-

plicable for spin determination, it is clear from our results
that parity information is generally not encoded in jet
number distributions. Alternative methods must be used
to determine the parity of the couplings, which would give
clues to the nature of the underlying physics of the new
resonance.
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APPENDIX: VANISHING BRðX ! ��Þ
The condition thatC2 ¼ �C1tan

2�w, which is necessary
for a vanishing branching ratio to two photons, can arise
naturally as follows. Let us assume that the X couples to
electroweak gauge bosons through triangle diagrams
involving extra heavy fermions. In this model there are
two extra vectorlike fermion multiplets. One is an SU(2)
doublet,

a
b

� �
; with Y ¼ �1;

which couples to X through a Yukawa interaction with
coupling constant �1. The other is an SU(2) singlet, c,
with Y ¼ �2 and which couples to X through a Yukawa
interaction with coupling constant �2. The electric charge
(Q ¼ T3 þ Y=2) of b and c is�e while the charge of the a
is zero.
Let us first consider the coupling to two photons. Only b

and c will contribute to the loop, so the amplitude is
proportional to

We see that for the X�� coupling to vanish, we must have
�1 ¼ ��2. Now, we look to the couplings to the SU(2) and
Uð1ÞY gauge bosons. For SU(2), only the doublet runs in
the loop, and we have

We can identify this factor as our coefficientC1. ForUð1ÞY ,
all three particles flow in the loop, and we find
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where in the last line we replaced �2 ¼ ��1. This coefficient can be identified with C2. Since g
0 ¼ g tan�w, we see that

C2 ¼ �C1tan
2�w as needed.

The above argument is strictly only valid if the particles coupling to the X—a, b, and c—have identical masses. If this
condition is relaxed, then the diphoton coupling will vanish only for �1 � ��2.
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