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We analyze the bounds on the spectrum of composite Higgs models that come from flavor observables,
by means of simple two-site effective Lagrangians, which incorporate a custodial symmetry and a left-
right parity, and which could also be adopted in further phenomenological studies on composite Higgs
models. We derive, in particular, an important constraint on the masses of the (;, b; ) partners, which does
not depend on the flavor structure of the sector beyond the Standard Model. This bound is obtained from
the “infrared” contribution to b — s7y induced by the flavor-conserving effective vertex Wipby. We find
that the presence of a custodial symmetry can play a role in protecting this effective coupling and, as a
consequence, in attenuating the constraint, which, however, remains of the order of 1 TeV. In addition to
this bound, we calculate the constraints from the “ultraviolet” contribution to b — s, induced by loops

of heavy fermions, and to €'/e.
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I. INTRODUCTION

A possible solution to the hierarchy problem is based on
an analogy with the pion mass stabilization in QCD: the
Higgs, similarly to the pion, might be a composite state,
generated by a new strong dynamics; as such, its mass is
not sensitive to radiative corrections above the composite-
ness scale, assumed to be of the order of the TeV scale.
A further protection, that allows the Higgs to be naturally
lighter than the other resonances, exists if the composite
Higgs is also the pseudo-Goldstone boson of a spontane-
ously broken global symmetry [1]. A pseudo-Goldstone
boson Higgs is expected to be light and, as such, in
agreement with the indication from the LEP electroweak
precision data. In this project we will reconsider the bounds
on the spectrum of composite Higgs models (CHMs) that
come from flavor observables, with a special focus on b —
s7y. Instead of considering a full theory, we will work in an
effective description valid at low energy. In particular, we
will refer to a “two-site”” (TS) description [2,3], where two
sectors that comprise the Higgs—the weakly coupled
sector of the elementary fields and the composite sector—
are linearly coupled to each other through mass-mixing
terms [4]. After diagonalization, the elementary/composite
basis rotates to the mass eigenstate one, made up of
Standard Model (SM) and heavy states that are admixtures
of elementary and composite modes. Heavier particles
have larger degrees of compositeness: heavy SM particles,
like the top, are more composite, while the light ones are
almost elementary. In order for composite Higgs models to
be compatible with LEP precision data, the presence of a
custodial symmetry in the composite sector is strongly
suggested to avoid large corrections to the p parameter.
The absence of large flavor-changing neutral currents is
achieved instead by a sort of Glashow-Iliopoulos-Maiani
mechanism that naturally emerges when the connection
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between the elementary and the strong sector proceeds
via linear couplings [5]. In the absence of a symmetry
protection, the LEP data also point toward a small degree
of compositeness of the left-handed bottom quark (small
corrections to Zb, b, ) and, by gauge invariance, of the left-
handed top quark as well. This implies that, in order to
obtain a heavy enough top quark, it is necessary to have
an almost fully composite right-handed top quark. It has
been shown, however, that the corrections to Zb; b; can be
suppressed if the custodial symmetry of the strong sector
includes a left-right parity [6]. This can allow for a smaller
right-handed top compositeness. In order to study the
phenomenology at energies lower than the compositeness
scale, we derive two different models which incorporate
a custodial symmetry and a left-right parity. We label these
models TS5 and TS10. They describe the low-energy regime
of the minimal composite Higgs models (MCHMs) defined
in Refs. [7,8], in the limit in which only the leading
terms in an expansion in powers of the Higgs field are
retained.' In MCHMs, the Higgs arises as the pseudo-
Goldstone boson associated to the SO(5)— 0(4)
breaking in the composite sector; where O(4) includes
SO4) ~ SU2); X SU(2)g, as well as a parity P;p which
exchanges SU(2); with SU(2)g. Composite fermions
can be embedded in a 5 = (2,2) + (1, 1) representation
of SO(5) in the TS5 model andina 10 = (2,2) + (1, 3) +
(3,1) in the TS10. TS5 and TS10 extend the two-site
description of Refs. [2,3] to consider five and ten SO(5)
representations for composite fermions. In particular,
the TS5 model extends the two-site model of Ref. [3]
to include the composite fermions needed to give mass
to the bottom quark.

ISee Ref. [9] for two- and three-site effective theories where
the full Higgs nonlinearities are included.
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We find two important bounds on the masses of the
heavy fermions which do not depend on the flavor structure
of the sector beyond the SM (BSM). The first comes from
the measurement of the Zb, b, coupling, that we already
mentioned and that can be suppressed assuming a Pz
symmetry. The second is obtained from the infrared (IR)
contribution to b — sv induced by the flavor-conserving
effective vertex Wigbp. In composite Higgs models there
are two classes of effects that lead to a shift of the b — svy
decaying rate compared to the SM prediction: Loops of
heavy fermion resonances from the strong sector give an
ultraviolet (UV) local contribution; they generate, at the
compositeness scale, the flavor-violating dipole operators
0, and O}, which define the effective Hamiltonian for the
b — s7y decay. The virtual exchange of heavy resonances
also generates the effective V + A interaction of the W
boson and the SM quarks, Wt,bg, which in turn leads to a
shift to b — sy via a loop of SM particles. This latter IR
contribution is enhanced by a chiral factor m,/m; and,
since in this case the flavor violation comes entirely from
the SM V — A current, 7, y*s;, it gives a minimal flavor-
violating (MFV) lower bound on the heavy fermion
masses. We also discuss the role of a parity P, which is
a subgroup of the custodial SU(2)y, to protect the effective
coupling Whptp.

In general, stronger bounds can be obtained from the
UV CHM contribution to b — sy and from €'/eg [10];
however, these latter bounds are model dependent and in
principle could be loosened by acting on the New Physics
(NP) flavor structure (see, for example, Ref. [11]). The
bound from the IR contribution to » — sy, on the other
hand, is robust, since it is a MFV effect.

The paper is organized as follows: In Sec. II we intro-
duce our two-site models; in Sec. III we discuss the bound
from b — svy. We first calculate the MFV bounds from the
infrared contribution in a generic CHM, by naive dimen-
sional analysis (NDA), and in the specific TS5 and TS10
models; we then proceed to calculate the non-MFV con-
straints from b — sy and from €'/ex. We draw our con-
clusions in Sec. IV.

II. EFFECTIVE THEORIES FOR
COMPOSITE HIGGS MODELS

The idea behind composite Higgs models is that the
electroweak symmetry breaking may be triggered by a
new strong dynamics, in analogy with the chiral symmetry
breaking in QCD. In these theories a new strong sector
couples to a weakly coupled sector, which coincides with
that of the Standard Model without the Higgs. The Higgs,
as the pion in QCD, is a composite state coming from the
latter strong dynamics. Its composite nature allows for a
solution to the hierarchy problem. Indeed, its mass is not
sensitive to radiative corrections above the compositeness
scale, assumed to be of the order of the TeV scale. The
electroweak-symmetry-breaking (EWSB) is transmitted to
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SM fermions by means of linear couplings [4] (generated
by some UV physics at the UV scale Ayy) between ele-
mentary fermions ¢ and composite fermions:

AL = A4 0 + He. (1)

This way to communicate the EWSB can give a natural
explanation of the hierarchies in the quark masses (through
RG evolution of the elementary/composite couplings A;)
and avoid the tension which occurs when trying to generate
large enough quark masses and, at the same time, suppress
FCNC processes.2 As a consequence of linear couplings, a
scenario of Partial Compositeness of the SM particles
emerges. At energies below the compositeness scale, a
composite operator O can excite from the vacuum a tower
of composite fermions of increasing mass. Linear cou-
plings [Eq. (1)] thus turn into mass-mixing terms between
elementary fermions and towers of composite fermions y,,:

OIOIx) = A, L =D AP x, +He), ()

£ = ‘Eel + £com + ‘Emix- (3)

Because of the mass-mixing terms, the physical eigen-
states, made up of SM and (new) heavy states, are an
admixture of elementary and composite modes.

The low-energy phenomenology of such theories can be
exhaustively studied, and calculation can be made easier,
by considering a truncation of each tower of composite
fermions to the first resonance, while other heavy states are
neglected [2]. For example, the effective Lagrangian
describing one elementary chiral field ¢; and its compos-
ite partner Y is

We can rotate the fermions from the elementary/composite
basis to the mass eigenstate one, the light(SM)/heavy basis,
according to

A ‘|1ight>:COS€0L|¢L>_Sin€0L|XL> 5)

tanp; =— . :
m.. | |heavy) =sing; | )+ coser|xr)

Our eigenstate fields are thus a heavy fermion of mass m =

‘[mi + Ai and a light fermion, to be identified with the

SM field, that will acquire a mass after the EWSB. These
fields, as we see, are superpositions of elementary and
composite states. The angle ¢; parametrizes the degree
of compositeness of the physical fields. In particular, the

. . _ A, o
SM fermion has a sing; = N degree of composite

m

ness (and a cosg; = N degree of elementarity); the

mass-mixing parameter A; can be naturally much smaller

>Tension that, instead, affects Technicolor and Extended
Technicolor models.
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than the mass m.. of the composite fermion®; therefore, SM
fermions are in general mostly elementary with a small
degree of compositeness, while heavy fermions are mostly
composite with a small degree of elementarity. We have a
similar rotation, with angle ¢y, in the case of right-handed
fermions. SM fermions acquire a mass after the EWSB;
since the origin of this breaking resides, by assumption, in
the composite sector (the Higgs is a fully composite state),
the SM fermion mass arises from the composite part of
left-handed and right-handed SM fields:

my = Y*% sing; singg, (6)

where Y, is a Yukawa coupling among composites, from
which the SM Yukawa y = Y, sin¢g; singy originates.
In the following we will assume that the strong sector is
flavor anarchic, so that there is no large hierarchy between
elements within each matrix Y,, and the hierarchy in the
masses and mixings of the SM quarks comes entirely
from the hierarchy in the elementary/composite mixing
angles (such an “‘anarchic scenario” has been extensively
studied in the framework of 5D warped models; see
Refs. [5,12-15]). From Eq. (6) we can see that heavier
SM particles have larger degrees of compositeness: heavy
SM particles, like the top, have to be quite composite,
while the light ones are almost elementary.

Experimental data give hints on the type of the new
strong dynamics responsible for the EWSB. The LEP
precision data suggest the presence of a custodial symme-
try in the composite sector to avoid large corrections to the
p parameter. In order to protect p (or equivalently the
Peskin-Takeuchi T parameter) the composite sector must
respect, minimally, a global symmetry:

SUQ2), X SUQR)g X U(1)y,

where SU(2); X SU(2) is broken to the diagonal SU(2)y
after the EWSB; the unbroken SU(2)y invariance acts as a
custodial symmetry so that p = 1 at tree level.

The SM electroweak group SU(2); X U(1)y can be
embedded into SU(2); X SU(2)g X U(1)x, so that hyper-
charge is realized as Y = T + X. The composite Higgs
transforms as a bidoublet (2, 2) under SU(2); X SUQ2)g,
H = (H, H¢), where H is the composite Higgs doublet
and H¢ = ig>H* is its conjugate. The J{ vacuum expec-
tation value breaks the SU(2); X SU(2)z X U(1)x group
down to SUQR)y X U(l)y and leads to the EWSB.
Therefore, we have the following relation among charges:

Q=T; +T3 +X=T; +7V. (7)

This scheme can also result from models where the
Higgs arises as the pseudo-Goldstone boson associated to

?As a result of RG evolution above the compositeness scale.
The smallness of A parameters also allows for a sort of Glashow-
Iliopoulos-Maiani mechanism that suppresses large flavor-
changing neutral currents [5].
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a SO(5)— SO(4) ~ SU(2); X SU(2)r breaking in the
composite sector; or to a SO(5) — O(4) breaking, where
O(4) includes SO(4) ~ SU(2); X SUR2)g as well as a
parity P;r which exchanges SU(2); with SU(2)g. This
enhanced custodial symmetry can suppress the corrections
to the coupling Zb; b, , which are strongly constrained by
LEP data [6].

A. P; r and P. symmetries

In MCHMs [7], the Higgs arises as the pseudo-
Goldstone boson associated to the SO(5) — O(4) breaking
in the composite sector, where the enhanced custodial
symmetry O(4) includes SO4) ~ SU2);, X SUQ2)x as
well as a parity P;p, which exchanges SU(2); with
SU(2). As shown in Ref. [6], this P, parity, as well as
the P, symmetry, a subgroup of the custodial O(4), can
protect the coupling Zb, b, against large corrections from
the composite sector. Each composite operator has a defi-
nite left and right isospin quantum number, 7 ¢, and a
third component, 73 . We can also univocally assign to
each SM field definite quantum numbers, Ty g, T} . cor-
responding to those of the composite operator to which it
couples. P;r and P, are symmetries of the composite
sector, P;p exchanges SU(2); with SU(2)g, and P is
the subgroup of SU(2)y that transforms |T;, Tg; T3, T3) —
|T;, Tg; —T;, —T3). [SO(3) vectors transform with P =
diag(1, —1, —1)]. For Pz (P¢) to also be a symmetry of
the interacting terms between SM fields and composite
operators, AL = AyO + H.c., the SM fields ¢ have to
be eigenstates of P, (Pc). This implies

T, =Tg (T3 =T3) (P ginvariance), (8)

T3 =Ty =0 (P invariance). 9)

If the above formulas hold, we can see that the coupling
Zy i,
__ 8

— 3 _ Ocin?
COS¢9W(QL QOsin“6y), (10)

8y

is protected against large corrections. Indeed, the electric
charge Q is conserved, and the charge of the SU(2); third
component, Q3 , is conserved by custodial invariance plus
P; g symmetry and by P symmetry. By custodial U(1)y
invariance, §Q3, = Q% + 803 = 0;if thereis alsoa P4
invariance, 6Q% = 603, and therefore §Q; = 0. The
same conservation, 6Q; = 0, is obtained by P invari-
ance: the SM W; has an odd parity under P¢, W; — —W3;
if 4 is a P eigenstate it must have 7; = T = 0; then the
current i y* i is even under P, and it cannot couple to
W3, which is odd.

We will show (Sec. ) that the P- symmetry can also
protect in a similar way the effective coupling Wtgby and,
as a consequence, it can be responsible for an attenuation
of the bound on heavy fermion masses, coming from the
process b — svy.
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In what follows, we present the two-site models, TS5
and TS10, which incorporate a custodial symmetry and a
P, g parity.*

B. TS5

In the TS5 model, we consider composite fermions
filling the following SO(4) X U(l)y ~SU((2); X
SU(2)g X U(1)y representations:

T T -
9= [ i } =225 T=(1,1)ys

B Ty an
o =] B T e B=a)
-1/3 By B b 2)—1/3 »L)-1/3
and the composite Higgs in
1 +
5{=[ b @ ]=<2,2>0. (12
—¢" o

The SO(4) multiplets of composite fermions can be
embedded into the fundamentals 5,/3-y/3 of SO(5) X
U(1)x, that decompose as 5;/3-1/3) = (2,2)2/3-1/3) ®
(1, 1)3/3(-1/3 under SU(2), X SUQ2)g X U(l)x. [See
Ref. [17] for a study of the same representations in a
two-site description of SO(5)]. We are thus introducing
two classes of composite fermions: those filling a 5,3
representation, with X charge X = 2/3, and those in a
5_y/3, with X = —1/3. We want to consider, indeed, the
possibility that the SM quark doublet (7;, b;) couples to
two different BSM operators, ©,/; and Q'_,3: the first
responsible for generating the top mass, the second for
generating the bottom mass. (¢, b;) is linearly coupled
to (T, B) through a mass-mixing term we call A;;, and to
(T', B') through a mass-mixing term Aj,. fz and by couple
respectively to T through a mass-mixing term Ag;, and to
B through a mass-mixing term Ag,. The fermionic
Lagrangian reads, in the elementary/composite basis:

L = ghigq, + akiful + dyigdy + Tr{Q(if — My.)Q}

+ T(iff — Mp)T + Yoy T{Q HIT

+ Tr{Q(iff — M) Q') + B(iff — Mj.)B

+ YopTr{Q H}B — A1) (T, B) — Api T

— A3 (T, B') — AgybgB + Hee, (13)
where the superscript i runs over the three SM families
(i = 1’ 2’ 3)’ With qi = (tL’ bL)? u3 = tR’ d3 = bR' By
construction, the elementary fields couple to the composite

ones only through the mass-mixing terms, shown in the last
row of Eq. (13). This implies that the SM Yukawa

“The TS5 model has been already briefly described in
Ref. [16], where it was adopted to study the phenomenology
of heavy colored vectors at the LHC.
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couplings arise only through the coupling of the Higgs to
the composite fermions and their mixings to the elemen-
tary fermions. We further assume that the strong sector is
flavor anarchic, so that the hierarchy in the masses and
mixings of the SM quarks comes from the hierarchy in the
mixing parameters A ’L - In this case the mixing parameters
of the light elementary quarks can be safely neglected, and
one can focus on just the third generation of composite
fermions.”

As a consequence of the elementary/composite mass
mixings, the top and the bottom masses arise, after the
EWSB, from the Yukawa terms in the Lagrangian
[Eq. (13)], Y.y Tr{Q H T and Y,,Tr{Q'H}B. The top
mass will be proportional to A;;Ag;, and the bottom
mass to A;,Ag,. The small ratio between the bottom
and the top quark masses can be thus obtained both
for A, <A, (Agy~Ag)) and for Ap, <K Apg
(Apx ~ Ary).

For t;, br and their excited states, the rotation from
the elementary/composite basis to the mass eigenstate one,
the SM/heavy basis, is given by

Agy .
tanpg = ,  SR=SINQR, Cr=COSQg,
My,
_Ap _ . _
tang,g = M Spr =SIMNQpR,  Cpr = COSPppR,
B
— el __ Ficom — el __ pcom
g =crly — sgTg bgr = cprby — sprBY
Ty =gty + cgTE™ B = sprb + cpr BEY™

(14)

Here sg(s,z) defines the degree of compositeness,
Er(Epr), Of tr(bg); cglcyg) defines that of T(B), £5. We
will diagonalize analytically the mixing among ¢; and the
corresponding excited states by requiring the simplifying
assumption A;, < A; |, that can naturally follow, for ex-
ample, from the RG flow in the full theory [8]. The first two
generations of elementary quarks do not need a field rota-
tion from the elementary/composite basis to the mass
eigenstate basis, since they do not mix with the composite
fermions and can thus be directly identified with the cor-
responding SM states.

We can see that in this model ¢, and by are both P, and
P, r eigenstates, since they couple to SU(2); X SU(2)x
singlets [T, (T, B) = Tx(T, B), T; (T, B) = T3(T, B) = 0].
Instead, #; is a P,y eigenstate only in the limit (A;; = 0)
in which it decouples from T [T3(T) # T(T)]. Similarly,
b; is a Py eigenstate only for A;, = 0, in which case it
decouples from B’ [T; (B') # T3(B)].

SIn fact, once produced, heavy fermions of the first two
generations will also decay mostly to tops and bottoms, since
flavor-changing transitions are not suppressed in the strong
sector, while the couplings to the light SM quarks are extremely
small; see the discussion in Ref. [2].
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So far we have made field rotations to the mass eigen-
state basis before the EWSB. After the EWSB, the SM top
and bottom quarks acquire a mass, and the heavy masses
get corrections of order (7’;-*;—*)2. In the following, we

assume x = (7’;-*;—) < 1 and compute all quantities at lead-

ing order in x.

1L A, <Ay,

In this case, since A;, < A, b, is, approximately, a
P;r eigenstate, so approximately we have a custodial
symmetry protection to Zb, b, .

The small ratio between the bottom and the top quark
masses is obtained for Ay, << Ay (Agy ~ Ag;); we have

v

m, = \/—EY*UMSR» (15)
v

my, = \/_EY*Ds2sbRr (16)
AL|

where s, = sing; | = defines the (77, b;) degree

«/MZQ*+A%]

of compositeness £, , and s, is a rotation angle propor-
tional to A;,; 5, = IS—L,Z COSQy .
[

The physical masses of the heavy fermions read

Mgz = 1,M%* + A%z
{ My = My = [Mp, + Aj, NG

Mrs;3 = Mry3 = Mo = Mycy

MT/ = MB/ == “'MZQ’* + A%Z ZMQ/*

(Mp-1/3 = Mp_4/3 = Mg

where ¢; = cos¢; is the degree of compositeness, &p, of
the SU(2), doublet D = (T, B). Details can be found in
Appendix A, Section A 1.

In order for the strong sector to respect the custodial
invariance, as we have shown, composite fermions have to
fill multiplets of SU(2);, X SU2)g X U(1)yx. As a conse-
quence, the heavy partner of the SM doublet g3 = (t;, b;),
D = (T, B) ( = 2,/ under the SM electroweak group), is
embedded in a larger multiplet, the bidoublet Q,/; =
(2,2),/3, that includes another doublet of heavy fermions,
(Ts/3, T»/3)(= 276)- The heavy fermions Ts/3 and T3 in
this latter doublet are called custodians. They share the
same multiplet as the heavy partners of ¢; , but they do not
mix directly with the SM fermions. This implies that their
masses tend to zero in the limit in which ¢; becomes fully
composite. (See, for example, the discussion in Ref. [18]).
This can be seen from Eq. (17): Mys/32/3) is zero for
¢y = 0, i.e., for a fully composite #; (s; = 1).
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C. TS10

In TS10, we consider composite fermions embedded
into a 10,3 representation of SO(5) X U(1)y, that decom-
poses as 103 = (2,2);3® (1,3),/3® (3,1);/3 under
SU2);, X SU2)g X U(1)y. Therefore, we refer to this
field content in the composite sector:

[T T
Qo3 = B T ] =(2,2)y3
) (Ts3\
Q2/3 = T =(1, 3)2/3,
\ B
(T
Ql2/3 =| 7 | =G 1ys
\ 3 /
[ ol #7 ]
H = 0 = (2,2)o, (18)
| -6 &0 ’

and to the following fermionic Lagrangian in the elementary/
composite basis:

L =glifq) + triftg + bridbg + Tr{Q (iff — My.)Q}
+ T O (i — M) Q) + TH{Q(iff — M) Q')
+ Y, T{H Q O} + Y. TH{QH O} — A,G3 (T, B)
- ARIERT - ARZBRE + H.c. (19)

We have the following expressions for the top and bottom
masses:

v v
m; = —Y.51Sg, my = —=Y.515pr (20)

2 V2
and for the heavy fermion physical masses:

r

M; = ‘/MZQ* + A%
Mg = ,/MZQ* + A2, = Mjcg/cpr = Mycy

1 Mzsj3 = Myiss = My = Mg = Mzcg - @D

My =M= ,/M2Q* + A7,

| Mr2/3 = Mys;s = Mye,

More details can be found in Appendix A, Section A 2.
Besides the custodians Ts/3 and T5 /3, which are light in
the case of a composite g3, Ts 3 and the fermions in the
9/, /3 triplet become light for a 7z with a large degree of
compositeness. (B also becomes light in this case.) In this
model, both #; and by are not P, eigenstates, and only ?5
is a P, eigenstate, as a consequence of the couplings to Q
[T, (T, B) # Tg(T, B)]; in particular, by is not a P eigen-
state, since Tx(B) # 0. b, is exactly a P, eigenstate.
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D. Zb, b, in the TS models

Shifts in the Z coupling to b;, g7, have been extensively
studied in the literature. See, for example, the studies in the
context of Randall-Sundrum models [19] and in two-site
descriptions [20]. The shifts arise after the EWSB because
of electroweak mixings among b; and heavy fermions.
There is also a contribution from the mixing among neutral
gauge bosons; however, this mixing is of the order (M%)2 «l,

where M., stands for the heavy neutral boson mass, and we
will neglect it in what follows.

In two-site models without P;p symmetry, there is no
custodial symmetry protection to Zb; b, , and so the shift
on g;, is large. Naive dimensional analysis [21] gives the
following (see, for example, Refs. [22,23]):

Sguy  mp  Yivist
8Lb Mz*s Mz*

(22)

Thls formula has been obtained by approx1mat1ng q*
=~ 0. At g> = M2, the shift receives O(

v2Y2is? g2 ’3
o /Y

) corrections:

08Lp M%S%
8Lb M2Q>i~

When compared to Eq. (22), there is a suppression (Y%)2

(see, for example, Ref. [24]), so we will neglect it in the
following.

LEP and SLD experiments fix an upper bound of 0.25%
for the (positive) shift in the g;;, from its SM value.
Therefore, from Eq. (22), we derive the following bound
for the heavy fermion mass in models without custodial
symmetry protection to Zb; b, :

My, = (3.2)i TeV. (24)

SR

In order to respect this limit without requiring too-large
heavy fermion masses that would contrast with naturalness
arguments, it is necessary to have a quite composite right-
handed top (i.e., a not-small sz). On the contrary, in models
with custodial symmetry protection to Zb;b,, there is
no such restriction for the 7 degree of compositeness,
and bounds are weaker than the one in Eq. (24). Indeed,
in the TS5 model with A;, < A;;, where we have
approximately a custodial symmetry protection to Zb; b,
(the breaking is proportional to A;, and is thus small), we
obtain

581 _ (Y*U)z(szch )2[T2(1§) — T3(by)]

8Lb V2 \/EME
1 m% c‘gR 1 m? ﬁ 25)
C2M. sy 2 M,

As expected, the shift is proportional to s3 (i.e., it is
proportional to A?,, the size of the custodial symmetry
breaking), and it is small (notice that is also smaller than
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the effect at nonzero momentum). In the TS10 model, we
obtain, again, a small shift:

o8Lp (Y*U) st 3 3
= 17 B T; (b
o= () aat [l1i®) = Ti(00)
+(T3(B') — T3 (by))]
m: 2 — §2 m?2
— _ M2b 5 bR ~ — Mzb ) (26)

Despite b; being an exact P;p eigenstate in the TS10
model, there is still a small modification that comes from
the coupling of by that explicitly breaks P; . Notice that
6grp, = 0, if we have s, = 0.

III. BOUNDS FROM FLAVOR OBSERVABLES

A. Constraint from the process b — sy

We define, following Ref. [25], the effective
Hamiltonian for b — s7:
G
Her = =2 ViValCr(pp) 07 + Ch(p)) 051 27)

V2
where O, = zm,,ba“ F,,(1—7vs)s and O =
ﬁmbgaﬂ FW(I + vs5)s.

In the SM, the W boson has a purely V — A interaction
to the fermions, and so the contribution to the b — sy
process has to proceed through mass insertions in the
external legs (see Fig. 1). The Wilson coefficient C} is
thus negligible, because of a suppression by a factor
mg/m,, in respect to the Wilson coefficient C; that, eval-
uated at the weak scale w,,, is [25]

(8x7 + 5x7 —7x,)  x7(2 — 3x,) In(r,)
12(1 — x,)? 2(1 — x,)* ! ]

1
(28)
with x, = &
w
In composite Higgs models, there are two classes of
effects that lead to a shift of the b — sy decaying rate
compared to the Standard Model prediction. The first
comes from loops of heavy fermion resonances from the
strong sector that generate the flavor-violating dipole op-
erators O;, O} at the compositeness scale. We will refer to

Y

\

\

Y ~
S

V:n

FIG. 1 (color online).
the SM.

One-loop infrared contribution to C; in
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this as the UV contribution. The second contribution
comes from the tree-level exchange of heavy resonances,
which generates an effective V + A interaction of the W
boson and the SM quarks, which in turn leads to a shift to
b — sv via a loop of SM particles. This latter IR contri-
bution is enhanced by a chiral factor m,/m,. Since in this
case the flavor violation can come entirely from the SM
V — A current, it gives a quite model-independent lower
bound on the heavy fermion masses.

By taking into account the experimental average value
for the b — sy branching ratio [26] and the theoretical
calculation [27], we get, if the new physics contributions to
C7, C§M and to C), CM are considered separately, the
followmg bounds (see Appendix B):

—0.098 =< CSH(m,) = 0.028, (29)

|CCH(m.,)| < 0.37, (30)

where m.. denotes the mass of the heavy fermions in the
loop (taking m.. = 1 TeV).

The infrared contribution to b — sy from the composite
Higgs model is at the weak scale w,, instead of m.. (taking
Mw = My); therefore, we have to account for a scaling
factor

a,(m,) 1I6/21T a,(m,) 716/23
C§(u,) = [ L] e ]
a,(m,) a(u,)
(31)
CS§%(m.) = 0.79CS" (m..).
We get
~ 0,077 = C$H(u,,) = 0.023, (32)
|CH ()| = 0.29. (33)

While the infrared contribution to C; involves a flavor-
conserving operator and brings us to a MFV bound, the
infrared contribution to C’ as well as the ultraviolet con-
tributions to C; and to C}, involve flavor-violating opera-
tors. As a consequence, they will require some assumptions
on the flavor structure of the NP sector.

We will now evaluate the bounds on heavy masses that
come from the infrared contribution to C;. We will first
present estimates of such bounds in generic composite
Higgs models, which can be obtained by NDA. Then we
will calculate the bounds in the specific two-site models
TS5 and TS10, introduced in Secs. II B and II C.

B. MFYV bound from the infrared contribution to C,

The infrared contribution to the process b — s7 is a one-
loop contribution from the W boson accompanied by top
quarks, where a mass insertion in the intermediate top
quark states is allowed by the presence of a (V + A)
interaction of the W boson with the top and the bottom
quarks (Fig. 2). This interaction originates from a term
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v

t
Loy, S
> X >

w

FIG. 2 (color online). One-loop infrared contribution to C;.
The red blob denotes the effective coupling Wipbg, generated
from the composite sector.

L D CrOp, (34)

where Oy, is the dimension-6 operator
Og = H'iD,Hizy*bg + H.c. (35)
At low energy, after the EWSB, the interaction in Eq. (34)

gives

Crv?
Lo jibRy W (36)

This interaction gives a contribution to the Wilson coeffi-
cient C; in Eq. (27). We find

CRU m;

CSH R () = fRH(xt) (37)
where x, = M, , and fry(x,) is the loop function [28]:
1 2r x) 3
Fru(x) = {(1 %)’ 3 [ EI - Exz +2+3x, log(x,)]
1 x;
+—| =+ 67
(1- xt)3 [ 2 i
15 ,
o +2 —3x; log(x,)]}. (38)

fre = —0.777 for m, = 174 GeV and My, = 80.4 GeV.
We point out that the bound on the CHM contributions to
b — sy, C§" in Eq. (32), can be directly translated into a

bound on the effective vertex Wigpbg, vg = CRZUZ
sidering the bound in Eq. (32) and the relation in Eq. (37),
we obtain

— 0.0004 < v < 0.0013. (39)

This bound from b — sy can be compared with that
from the measurement of the Wb anomalous couplings
at colliders. Reference [29] reports an expected bound of
—0.012 < vp <0.024, that can be imposed by 14 TeV
LHC measurements with 30 fb~!. This latter can be
obtained from studies on cross sections and top-decay
observables (angular distributions and asymmetries) in
the single top production at the LHC. Present searches
for anomalous W couplings at the 7 TeV LHC [30] fix still
mild bounds on vg, —0.34 < vg < 0.39, with 0.70 fb~!.
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FIG. 3. The CHM contribution to the effective coupling
Wigbpg [at order (7}%%)2].

We can see that the bound obtained from b — sy is much
stronger than that from the v, measurement at the collider.

The CHM contribution to the effective coupling Wipbp
is given by the exchange of heavy fermions that mix
electroweakly with tx and by (Fig. 3). At the order x?,
only the SU(2); heavy doublets which are partners of
(1, by) contribute to Cg. This latter can be easily estimated
by NDA [21]:

_Yiéréwréh _uvi €D

Cr -5 (40)
Mp, My &
Equation (40) implies
_ mi ¢
C$H IR(MW) -~ M—;fRH(xz) TD (41)
D qL

Applying the condition in Eq. (32) to this infrared contri-
bution, we get the estimated bound

1.0(0.54) Te
qu

where the first number and the second number in paren-
thesis refer, respectively, to the cases of a positive and of
a negative CSHR contribution. Notice that in the case of a
positive CSH™R contribution we obtain a stronger bound
on Mp, since the constraint in Eq. (32) is asymmetric.

We find that a subgroup of the custodial symmetry
SU(2)y, the P, parity, can give a suppression to the
Wtrbg coupling and, as a consequence, to the CHM infra-
red contribution to b — sy. The estimates we have just
reported refer to generic composite Higgs models where
there is not such P protection.

M, = v, (42)

1. Protection by P parity

The P, protection against the generation of the Wizbp
vertex acts similarly to the P;z and P, protection against
large corrections to the Zb; b; coupling, which we have
discussed in Sec. ITA. P, is a symmetry of the sector
BSM, that is respected also by the interactions of ¢ and
bp if these latter are P eigenstates. Since P, acts as
diag(1, —1, —1) on SO(3) vectors, the W is not a P,
eigenstate (the composite partners of W! and W? do not
have the same P eigenvalue). In the case in which 7z and
bg are both P eigenstates, both the 7; and the by inter-
actions must respect the P parity. Then the Wiz by vertex,

PHYSICAL REVIEW D 86, 115011 (2012)

which is P, violating, since the W is not a P eigenstate,
can arise only by paying for an additional factor that gives
a suppression. By contrast, in models where t and by are
not both P eigenstates—and, as such, their interactions do
not have to respect the P parity—the Wtpby vertex can be
generated without suppressions.

The TS5 falls into the class of models with P protection,
since in the TS5 both t; and by are P, eigenstates.
Considering the TS5 model, we can evaluate the suppression
factor to Wtzbp due to the P protection. We can find it in
an easy way by promoting A;; and A;, to spurions, which
enforce a SU(2); X SU(2)g invariance:

— AL G (T, B) = —q3 Q23411
—A,; (T, B') — _qu/—l/BALZ’

where A;;=(A,,00=(1,2)16 and Ap, =(0,4,) =
(1,2),/6. We can thus write the O operator [Eq. (35)] in
the [SU(2); X SU(2)g]—invariant way:

1 .- .
@R = f_‘Zq%ALIV,U«AIQq%’y# + H.C., (43)

where f has the dimension of a mass gy = (g, bg) =
(1,2)6, and V,, = H'iD ,H. Since P is a subgroup of
the custodial SU(2)y, the [SU(2) X SU(2)]—invariant
operator in Eq. (43) is also P, invariant. We can notice
that the P invariance has brought an additional factor %
compared to Eq. (35). A

Without P protection, the D = (T, B) contribution to
the Wtrby effective vertex in the TS5 model reads

of Yev N2 mymy c%
SRSHRCT = 5 >
V2M ) Mp sy

the request for P, invariance brings the additional factor
%. For f? = My.M ., we obtain

Y.v \2 Ay Ap,
SRSHR

\/EMD MQ* MQ’*
Y.v \2 mym,
=\—=—) SrSprS152 = —>—, 44
(\/EMD> RPDR1°2 M% ( )
that is a suppression by a factor s7/ct = ¢}, /€5,

We can thus return to the estimated bounds on M from
CSH~IR in Eq. (42), and consider the case in which there is
a P, protection to the ¢ and by interactions. In such a case

the Ck contribution becomes

Yb)i
C ~
R M%)

(with P(), (45)
which implies
2

CF R () ~ o fran(x)  (WithPe)  (46)
D

and an estimated bound:
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Mp = 1.0(0.54) TeV (with P,.). A7)

We will now calculate the bounds on M, from CSHR in
the specific TS5 and TS10 models. As already discussed,
the TS5 belongs to the class of models with P, protection.
The TS10, instead, falls in the class of models without P,
protection, because in the TS10, by is not a P eigenstate.
We thus expect that the bound in the TS10 will receive an
enhancement factor ¢, /s; compared to that in the TS5.

In the TS5 model, we have a contribution to the O
operator in Eq. (35), both from the doublet D = (T, B) in
the X = 2/3 representation and from the doublet D' =
(T, B') in the X = —1/3. We find

2
crss = 20 (1 + Mp ) (48)
ma\' R,

This implies
CSHIRTSS (1) ) = — :
w

"2 fRH(xt)<1 + My

M2 ) 49)

Notice that the C}5° contribution is negative. This implies a
positive contribution CSHIR=TSS (o, is negative). The
condition in Eq. (32) is asymmetric and is stronger in
the case of a positive CS" R, Applying this condition to

the infrared contribution in Eq. (49), we get, for r = @ =1,
the following bound on the D = (T, B) doublet mass
MTDSs = 1.4 TeV. (50)

This bound becomes M5 = 1.3(1.6) TeV, changing r to
r = 0.8(1.2). In the TS10 model, there is only one doublet,
= (T, B), that gives a contribution to Cr. We obtain

Vbt C1

TS10 —
P =

D
which implies
CSHTIRTTSI0( ) = MZ fRH(xz) . (52)
D

From the condition in Eq. (32) we get ﬁnally the bound

M IS0 = (0.54)? TeV. (53)
1

Notice that, differently from the case of the TS5 contribution,
CSHTIR=TSI0(,, ) is negative. As such, it is constrained
less strongly by the condition in Eq. (32). As expected, we
have found a ¢;/s; enhancement of this bound, compared
to Eq. (50).

We now proceed to evaluate the bounds from the C}
contribution, and then those from the UV contributions. As
we already pointed out, these are contributions that involve
flavor-violating operators and require assumptions on the
flavor structure of the NP sector. In what follows, we will
consider the case of flavor anarchy of the composite
Yukawa matrices. This scenario, we remember, assumes

PHYSICAL REVIEW D 86, 115011 (2012)

that there is no large hierarchy between elements within
each matrix Y, and that the quark mass hierarchy is com-
pletely explained by the elementary/composite mixing
angles. We also set, for simplicity, Y. «p = Ya.

C. Non-MFYV constraints
1. Generational mixing

After the EWSB, the mass eigenstate basis is obtained,
as in the SM, using unitary transformations: (D, D)
and (U, Ug) for down- and up-type quarks, respectively.
We will assume that the left rotation matrix has entries
of the same order as those of the Cabibbo-Kobayashi-
Maskawa matrix:

(Dp)ij ~ (Vekm)ij- (54)

The assumption of anarchical Y, fixes the form of the
rotation matrix Dy to be

(Dp)j ~ (ﬂ)L for i < j. (55)
m;/) (Dp);;

Considering the estimates of Eqgs. (54) and (55), we can

evaluate the generational mixing factors in the composite

Higgs model contributions to C; (UV) and C}.

For the ultraviolet contribution to C?%, we consider the
presence of a mass insertion that can generate the operator
b, o*'F uvSg- This mass insertion brings to a factor
my(Dg)as ~ (D’ZSM v , where we have first used the esti-

mate in Eq. (55) and then that in Eq. (54). The ultraviolet
contribution to C5 involves the operator bgo*”F urSr> and
we obtain from the mass insertion a generational mixing
factor m, (D} ),z ~ m,V,,, where the last similitude follows
from the assumption in Eq (54).

Evaluating, similarly, the generational mixing factor for

the vertex WtRsR in C’CH_lR one ﬁnds (Dg)ys ~ m ~

my, V ’
(54) The flavor Vlolatlon in CSH~R comes entlrely from
the SM vertex Wt sy, and it is accounted for by a factor
V,s. Therefore, we find that the composite Higgs model
contribution to the Wilson coefficient C/ is enhanced by
a factor

mg

myv2 8 (56)

compared to the contribution to C; both in the ultraviolet
and in the infrared case.

2. Infrared contribution to C,

Taking into account the generational mixing factor in
Eq. (56), the composite Higgs model contribution to the
Wilson coefficient C% (in Fig. 4) is given by

(ZRIJZ mg
2 b‘éi

CFHR(y ) = fRH(xt) (57)
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w

FIG. 4 (color online). One-loop infrared contribution to CY.

Considering the estimates for C in Egs. (40) and (45), the
condition on CFHR(y ), Eq. (33), thus gives the esti-
mated bounds

Mp = 0.80 TeV (58)
in models with P symmetry, and
0.80
Mp = —TeV (59)
‘qu

in models without P~ symmetry.
Considering the specific TS5 and TS10 models, C;-H~R
gives the bounds

MP5 = 1.1 TeV (60)
in the TS5, and
M1 = £1(0.80) TeV (61)
S1

in the TS10.

We can discuss how the bound on heavy masses can
change in the case of a fully composite top: in the TS5
model, the bound on the doublet heavy fermion [Eq. (50)]
does not depend on the top degree of compositeness (this
remains almost true considering the full numerical calcu-
lation), and we obtain quite strong MFV bounds for both
composite #; and composite 7z. In the TS10 model,
because of the P, protection, we obtain strong bounds in
the case of a fully composite 7z [Eq. (53)]. Reference [18]
finds that corrections to S and 7" parameters give only weak
constraints on a composite ¢z (both in TS5 and in TS10).
The IR contribution to b — sy, on the contrary, puts a
quite strong constraint, especially in the TS10 model, on
this limit case.

One can finally discuss the validity of our results, which
have been obtained ‘““‘analytically” [i.e., by considering an

expansion in x = 7’%% and retaining only the O(x) terms].

We find that the results from the numerical calculation of
the bounds, obtained by diagonalizing numerically the
fermionic mass matrices, do not differ more than O(1)
from those we have shown, which are obtained at order x
in the assumption x < 1. This can also be found by con-
sidering that the exchange of relatively light custodians,
that can give a contribution VEj;CUW > 1 to the effective

Wirbyp vertex, has to be followed by the exchange of

PHYSICAL REVIEW D 86, 115011 (2012)

heavier composite fermions, that reduce the overall con-
tribution. By definition, indeed, the custodians do not
directly couple to SM fermions; therefore, their contribu-
tion to Wizby is always accompanied by the exchange of
heavier composite particles.

3. Ultraviolet contribution

In this case, the P parity does not influence the bounds,
and we get contributions of the same size in the different
models. The leading contribution comes from diagrams
with heavy fermions and would-be Goldstone bosons in
the loop® (Fig. 5):

CH-UV (~CH-UV
& Ne < SpiYuikY ki YeijSr;- (62)

The contribution of Eq. (62) is not aligned with the mass
matrix mg;; ~ sp;Y4;jSg;; therefore, after the EWSB it
remains nondiagonal in the flavor space.

Before going on to the specific TS5 and TS10 models,
we can obtain estimated bounds from the UV contributions
in generic composite Higgs models, by means of NDA.
We obtain

(Y*U)2
MpMp

CH-UV _
C7

épéps (63)

where D denotes a heavy fermion which is a SU(2),
singlet, and

m; (Y,v)?

———&pép (64)

C/CH-UV _
7 V2 MpM;
myVis MIpMp

where we have taken into account the generational mixing
factor in Eq. (56). By comparing these results with those
from the IR contributions in Eqs. (42) and (47), we see that
the UV contribution gives a bound approximately Y../y,
(% £, » in the case of models without P protection) times

stronger than the one from the IR contribution to C;. Such
UV bounds, however, are not as robust as the IR one, since
they require, as we already pointed out, assumptions on the
flavor structure of the BSM sector. In particular, we have
estimated them in the scenario of flavor anarchy in the
strong sector. Notice that in this anarchic scenario, much
stronger bounds on the resonance masses, of the order of
20 TeV [13], come from €.

In Ref. [22], the ultraviolet contribution to b — sy in a
two-site model without a P;p protection to the t and bp
interactions is evaluated. In the following, we will describe
in detail the contribution in the TS5 model, and we will
report the results for TS10. We can calculate the C§H~UY
and C'TH~UV ultraviolet contributions by considering the
model-independent analysis of Ref. [22] and the genera-
tional mixing factor in Eq. (56). We get the following

The contribution from heavy gluon and heavy fermion ex-
change is suppressed. Indeed, this contribution is approximately
diagonal in the flavor space.
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FIG. 5. One-loop CHM ultraviolet contribution to C%.

effective Hamiltonian for » — sy with loops of heavy
fermions and neutral would-be Goldstone bosons:

. ie (2e-p) _
g{flgutral Higgs W M—gvkneutral[vtsb(l - YS)S
+ - 1+ 75)s:|, (65)
mpy Vig

B _
2

@ _ Yiv [ 1 MB/+chMB]
a SHR — |

= — +
! 2 My M — M

) a(3—1/3) _ Yiv

& $2CpR )
2\2
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where

4

i i 1

neurar = (I 2 + |ag>|2>mb(_)
i=1 36

M?,

2
MGy

SR 1\ M2
+ Z(a(ll)ma(zl))m*(,-)<—) > (66)
i=1 6/ m
the index i runs over the four down-type heavy fermions
of the model, d® = B, B, B_y;35, B, and the a(li), a(;)
coefficients are defined by the interactions

L£2da’(1 + ys) + a’(1 — y5)IbH + He.  (67)

After the EWSB, we find the following coefficients
at O(x):

a _ a(37|/3) _ LS})R
1 1 N
(68)

(B'
a, 2 4 o)

The heavy fermion B gives a contribution of O(s3) to
Kpeutral» @and we neglect it.

Considering Eq. (66) and the coefficients in Eq. (68),
and again neglecting O(x?) terms, we obtain

7 S%R)
- R (69)
18 M2,

1 Cp
kneutral = _mhM%VYE g (MB’ZI‘}E
From this expression of k..., We obtain the following
TS5 ultraviolet contributions to the Wilson coefficient of
the effective Hamiltonian in Eq. (27):

CSHWY () = b QK%( R T Sl%R)
16 G \MpMz 18 Mlzg,
C/7CH—UV(m*) _ i Q Y,%( CobrR l SiR) ms '
16 G "\MpMyz 18 M2,/ m, V2
(70)
Assuming s, is small, the above formulas become
1 V2 Y2
16 Gp MpMj
(71

CHH=W(m,) = L2 v m

Finally, the condition on CH~Y in Eq. (30) gives the
bound

JMygM; = (0.40)Y, TeV, (72)

[Mlz;,Mg — S%RM% - chsM%, + ZCbRMB/M%:I
MypMyzM3, — M3) '

where, for simplicity, we have set s, = 0. The condition
in Eq. (29) on CS"~YV gives a stronger bound,

JMgM; = (0.52)Y, TeV, (73)

if CS1~YV(m,) is a negative contribution.

There is also a contribution to » — sy from diagrams
with heavy fermions and charged Higgs in the loop.
Following a similar procedure to the one used before (see
Appendix C), we find, neglecting O(x?) terms,

5 1
kChaIged = mbM%VY% E MpM;g

+ 0(s3) + O(s2,).  (74)

If we can neglect O(s?) and O(s7y) terms, Kepargea giVes a
weaker bound than the one from k... The full expres-
sion of Kgpareed can be found in Appendix D; here we have
just reported, for simplicity, the result for small s, and s,
angles.

In Fig. 6, we show the bound on the doublet mass M as
a function of s; from the condition on C5H~YV for differ-
ent values of the ratio k = %—; between doublet and singlet

masses, fixing Y. = 3 (upper plot), and for different values
of Y,, fixing kK =1 (lower plot). We set Mz = M3 and
My = My. These values are obtained by taking into
account the strongest values between the neutral Higgs
contribution and the charged Higgs one. We set s,z = 5.
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4. Ultraviolet contribution in the TS10
For the TS10 model, applying the same procedure as for the case of TS5, we get

TM M35t = 18MpMy[1 = 57+ M3(TMys} — 18Mpqf1 = 57)

+ O(spr)

— 2 2
kneutral - mbMWY*

2 2
288MiM M2,
1 1 1
= - M2Y£—< + )+02+0 , 75
myMy Yy Moy | MMy (s7) (SpR) (75)
5 1 5 1 5 s2
Kehareed = MZYz(— + = ——R)+02+02. 76
charged = Mp My 48 MpMy; 48 MyMy = 96 M% (51) (sbR) (76)

If the left-handed bottom quark has a small degree of
compositeness, we can neglect O(s?) (while s, is natu-
rally very small in the TS10 model, in order to account for
the ratio m;/m, << 1). The charged contribution, in this
case, gives a stronger bound than the one from k.,

JMpM; = (0.58)Y,TeV, (77)

from the condition in Eq. (30) on CH~UV. A stronger
bound,

JMM5 = (0.75)Y,TeV, (78)

comes from the condition in Eq. (30) on C$H7UY, if this
last contribution has a negative sign.
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FIG. 6 (color online). Bounds from C’7CH_UV in the TS5 model.
Upper plot: Bounds for different values of k = %—; and Y, = 3.

Lower plot: Bounds for different values of Y, and k = 1. We set

My = My and My = My. Also shown is the exclusion region
\/3’”1 <
Y.vs; T

for sy, obtained from the condition s =

In Fig. 7, we show the bound on the doublet mass M7 as
function of s; from the condition on C’*H~YY for different

values of the ratio k = Z—; between the doublet and T

singlet masses, fixing Y, = 3 (upper plot), and for different
Y. values, setting k = %—; = 1 (lower plot). The custodian
singlet masses have the following relations with M;: M3 =
cpMi, Mz = My = cgMy. All these bounds are obtained
by taking into account the strongest values between the
neutral Higgs contribution and the charged Higgs one.
We can see that in the TS10 model, the UV bounds are
particularly strong in the case of fully composite #z. This is
an effect caused by the exchange of the custodians 77, B’

and of the B, that are light in the limit of a composite 7.

Y.=3
M7 (GeV)
4000
3000
o \
1000
0.2 0.4 0.6
k=1
My(GeV)
4000
3000 F
2000
1000 f
. . , L Loy
0.2 0.4 0.6 0.8 1.0

FIG. 7 (color online). Bounds from C/H"UY in the TS10
model. Upper plot: Bounds for different values of k = %—: Mz~
cgMy, My = M7 = cgMy), fixing Y., = 3. Lower plot: Bounds
for different values of Y,, fixing k = 1. We also show the

exclusion region for s, obtained from the condition s = YZ_Z’;] =1
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TABLE I
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Estimated bounds from b — s7 in a generic composite Higgs model and in the specific TS5 and TS10 models at small

elementary/composite mixing angles s; and s,g. £/, denotes the degree of compositeness of a SM/heavy fermion. In the specific TS5

and TS10 models, &, = sy, ép = ¢;. D

= (T, B), and D denotes a SU(2),, singlet heavy fermion. We highlight (in bold) the MFV

bounds from C$H. For the estimated bounds from CS and for the bounds from C$2~UY, we indicate the values that can be obtained in
the case of a positive (the first number) or a negative (the second number in parenthesis) contribution.

C§H R (1) ~Gal g
ESTIMATED
Mp = 1.0(0.54) TeV

MFV Bounds
~ (YVU)Z (Q)z
M%) qu

ESTIMATED
M) = 1.0(0.54)/ &4y, TeV

— 2
CEI () ~ Gl

ESTIMATED
M = 0.80 TeV

)rv) (2 ép )2 e

My N my V2
ESTIMATED
Mp = 0.80/§qL TeV

CngUV(m*)
ESTIMATED
JMpM; = 1.5(0.79)Y, TeV
C/7CH7UV (mx)

ESTIMATED

JMpM, = (1.1)Y, TeV

T =

MM, = (0.40)Y, TeV

w/Pc

TS5
Mp = 1.4 TeV

w/oP¢
TS10

Mp = 0.54/s; TeV

w/Pc

TS5
Mp = 1.1 TeV

W/OPC
TS10

My = 0. 80/91 TeV

_ (rov)?
MDMD §D§D

TS5 TS10
0.52(0.28)Y.. TeV JMpM; = 0.75(0.40)Y, TeV

(Y,v)*
MDMD foD m,,v2
TS5 TS10

JMpM; = (0.58)Y, TeV

In particular, when #; is fully composite (sp = 1),
Myg(=cgM;) and My = Mz (= cgMj) vanish. This
causes the divergence of the bounds for s — 1. Such
divergences can be seen in the curves in Fig. 7, when
they approach the (grey) exclusion regions for s;.
(Indeed, the minimum value of s allowed by the condition

Sp = Yz'l'f; = 1 is obviously obtained in the case sp = 1.)

Table I summarizes our results. It shows the bounds on
heavy fermion masses that can be obtained from the pro-
cess b — sy. We report the estimated bounds in generic
composite Higgs models (with or without P protection),
which we have found by means of NDA, and the bounds in
the specific two-site models TS5 and TS10. §,,/, denotes
the degree of compositeness of a SM/heavy fermion. In the
specific TS5 and TS10 models, &, = sy, and &p = cy.

= (T, B), and D denotes a SU(2), singlet heavy fer-
mion. For the estimated bounds from CS! and for the
bounds from CSHUV, we indicate the values that can be
obtained in the case of a positive (the first number) or a
negative (the second number in parentheses) contribution.

D. Constraint from €'/eg

The bound on the mass of the heavy fermions that comes
from the direct CP-violating observable of the K — 27
system, Re(€'/€), can be even stronger in the assumption

of anarchic Y, than those obtained from b — sy, as already
found in Ref. [10]. As we pointed out, however, it is a
bound that strongly depends on the assumptions made on
the flavor structure of the new physics sector.

As for the UV contribution to b — s7, the custodial
symmetry does not influence the bound, and we obtain
contributions of the same size in the different models. In
what follows, we describe the bound in the TS5 and in the
TS10. The contribution of New Physics can be parame-
trized at low energy by chromomagnetic operators:

Og = 507 TG, (1 —

O'¢ = 50 TG

Zu(l + 75)‘1

As for the UV contribution to b — sy, the leading contri-
bution to €’/ ey comes from diagrams with heavy fermions
and Higgs in the loop, that generate the Og; and Oy
operators. (One-loop diagrams are the same as for the
UV contribution to b — sy, Fig. 5, with the replacements
y—g,b—sand s — d.)

The related coefficients C; and C';, in analogy with C,
and C'; of the UV contribution to b — svy, differ by a
generational mixing factor that, in the assumption of anar-
chic Y., we estimate to be ~—"4-. We consider only the

generation mixing (1 — 3) X (2 — 3), via the third genera-
tion. In analogy with Eq. (65), we define
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_ ig; 2e-p)
8w M’

eff-chromo
A neutral Higgs

kriutrall:vusg(l - 75)d

+ s(1 + ys)d], (80)
Mg Vs
where
4 2
i 1\ M;,
neutral z (l)|2 + |a(21)|2)m5< 12)
i= *(l)
4 2
. 1\ M5,
Z (l) (1) m*(l)( 2) 2 (81)

= &)

the index i runs over the four down-type heavy fermions of

the model d”, and the a(li) (’) coefficients are defined by
the following interactions:

L2 d%a{’ (1 + y5) + a(1 — y5)IbH + He.  (82)

After the EWSB, neglecting O(x?) terms, we find in the
TS5 model

Y2
MB/M'

3
K6 = gmst + 0(s%), (83)

neutral
where s, defines the degree of compositeness of the right-
handed strange quark and naturally has a small value. In
the limit in which s, = 0, we obtain the same result also
in the TS10 model.
We can thus calculate the Cg; and C'; contributions:

Ce = — ﬁ %VW Co= V,f‘ Co. (84)
Defining
5. — Re(€'/€)cy — Re(E//E)SM’ (85)
Re(€'/€)exp
we obtain
|8.] = (58 TeV)?BslCq — C'gl < 1, (86)

where Re(€e’/€)gy has been estimated as in Ref. [10], and
B¢ denotes the hadronic bag parameter, (27,_o|y; O;|K°).
We take B; = 1,7 and we take into account separately the
contribution from Cg; and C';. In the limit s,z = 0, we
obtain from Eq. (86)

Mgz = (1.3)Y,TeV, (87)

which is in agreement with the result in Ref. [10]. The
contribution from the charged Higgs interactions gives
weaker bounds than those from the neutral Higgs
contribution.

"That corresponds to the estimate of the hadronic matrix
element (277,—_o|y;O¢;|K°) in the chiral quark model and to the
first order in the chiral expansion.
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IV. CONCLUSIONS

Composite Higgs models are among the compelling
scenarios for physics beyond the Standard Model that
can give an explanation of the origin of the EWSB, and
that are going to be tested at the LHC.

In this project, we have built simple two-site models, the
TSS and the TS10, which can represent the low-energy
regime of minimal composite Higgs models with a custo-
dial symmetry and a Py parity.

Working in these effective descriptions, we have recon-
sidered the bounds on the CHM spectrum implied by flavor
observables. We have found in particular that the IR
contribution to » — s induced by the flavor conserving
effective vertex Wrpby implies a robust minimal flavor-
violating bound on the mass (m,) of the new heavy fermi-
ons. [To be more specific, on the heavy doublets, partners
of q; = (t;, b;).] The relevance of shifts to Wegby has
been already pointed out in the literature (see, for example,
Refs. [31,32]), even though its importance in setting a
bound on heavy fermion masses was unestimated in pre-
vious studies. We have also shown how this bound can be
stronger in the case of the absence of a symmetry (P.)
protection to the effective Wipby vertex. In particular, we
have found an estimated bound

= 1.0 TeV

in models with P, protection to the Wtzby vertex (where
both 7, and by are P eigenstates), and a bound

= 1.0/&,, TeV,
where §,; denotes the degree of compositeness of (t1, by)
in models without P protection. &, is naturally a small
number; the bound could thus be very strong in these types

of models. In the specific two-site models, the bounds we
have found are

mISS = 1.4 TeV
in the TS5, and
0.54

qL

mIsl0 = TeV

in the TS10.

Table I summarizes the results obtained for the bounds
from b — s7. In addition to these bounds, we have calcu-
lated the constraints from the UV composite Higgs model
contribution to b — svy. Figures 6 and 7 show the bounds in
the TS5 and the TS10 models as functions of the ¢; degree
of compositeness. Our results have shown that these
bounds can be stronger than those from the IR contribution,
but they are model dependent; in particular, they strongly
depend on the assumptions made about the flavor structure
of the composite sector. We have obtained an estimated
limit

= (0.52)Y. TeV
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in a specific NP flavor scenario (Y, anarchic in the flavor
space).
Even stronger bounds,

m, = (1.3)Y, TeV,

can be obtained from €'/eg, but again, they are model
dependent and in principle could be loosened by acting on
the NP flavor structure (as done, for example, in Ref. [11]).
The lower IR bounds on m, we have found from b — sv,
on the contrary, are robust MFV bounds that cannot be
evaded by assuming particular conditions on the structure
of the strong sector.

PHYSICAL REVIEW D 86, 115011 (2012)
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APPENDIX A: TWO-SITE MODELS

1. TS5
Fermions rotate from the elementary/composite basis

to the “physical” light(SM)/heavy basis as [neglecting
O(A3,) terms]

tang; | = A _ s1 =sing c1 =cos¢@ Sy = A cosg §3= AMo. sing
= =— 5= L, €= Ly $2= Ly S3= Ll
MQ* Cq MQ’x A%1+M2Q*_Mé'*
1=ty — 55 — s, T by =cib{ —s;B{™ — s, Bf™
TL:SII?-FCszom-i-S:;,Tfom s BLzslbil‘i‘C]Biom‘i‘Sg,Bgzom ,
T} = (syc) — 51853)150 = (515, + ¢y 53) TEO™ + Tleom B = (syc; — 5153)bS = (¢ 53+ 515,) BS™ + Bieom
(A1)
— A AL] TR = T;éom + S4T§0m BR = B;:eom + S4B$§0m (AZ)
S4 L2 A2 + M2 _ M2 ’ T, = Tlcom _ ¢ com ’ B., = B/com _ ¢ pcom
L1 0 '+ R R 44 R R R S4DR
o ARI — _ _ AR2 = o =
tanpp = Mo SR = SINQPp, CR = COSQ@p, tang,p = M Spr = SINPpR, Cpr = COSQpp,
T B
g = Crly — SRTfeom bgr = cprb§ — SbRéfeom (A3)
Tr = spiy + cgTE™ B = s,rb§ + cprBE™
Physical heavy fermion masses are related to the bare ones according to
( — 2 2 _ Mg
M; = ,[Mf* + Ay, = #
- 2 2 _ Mg
Mg = M5, + Az, = ﬁ
] — — 2 2 My A4
My = Mp= MQ*"‘ALl_ " (A9

Mrs;3 = Mry3 = M.

¥MTI :MB/ =

€y

My, + Al =M. = M3 = Mp_yy3

In the elementary/composite basis, the Yukawa Lagrangian reads

LYK =y THO HIT + Y., Tr{ Q' H}B + H.c.

= Yo ATHIT + Tyy3poT + Ts;3p™T — BT+ YuplB_ 3l B + B'poB + T'p* B — B_4 3~ B} + Hec.

(A5)

After field rotation to the mass eigenstate basis, before EWSB, LYK reads as in Eq. (A10).

After the EWSB, the top and bottom masses arise as
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v
m, = 7Y*US]SR, (A6)

V2

v
my, = \/—EY*DszsbR- (A7)

We also have electroweak mixings among fermions. The fermionic mass matrices for up and down states read as follows, in
the basis (7,7, T5/3. T T;) (trTrT2/3rTrT%) for the up sector, and in the basis (b, B, B} B_/3;B) (bgBrBRB_|/3rBr)
for the down-type fermions:

m, _Y*vagSﬂR 0 0 0
0 My Y*Uj% Y*UVUE —S4Y*U7v§
M,, = —Y*U%SR Y*U%CR My 3 0 0 , (A8)
- *vazclsR Y*vaiclcR 0 My 0
Y*U\/%(slsz + ¢183)8g —Y*U\/%(SISQ + ¢183)CR 0 0 My
my —Y*DV"ESZCbR 0 0 0
0 M; Yok Yok Yok,
Magwn = | —Yen 5501 Yip 5 cor My 0 0 i (A9)
_Y*D%sbR Y*D%CbR 0 MB—1/3
—Yup 5535or - Yap 553C0R 0 0 Mp

LYUK = Y*UCICR(TLd)gTR — B¢ Tg)+ Y*UCR(TZ/SLd’OTR + T5/3L¢+TR) —Y.y(sysp + 0153)CR(T2¢8TR ~ B¢ Tp)
- Y*US1CR(5L¢(J§TR — by d"Tr) = Yuysg(Topsp ot + Tspap b tg) + Yay(sysy + C1S3)SR(T'L¢(J§IR — B¢ tg)
~ Yoy 1Sg(Ty b tg = B~ tg) + Yaysisg(ipddtr — b~ tg) + Yoy (Trd{ Ty — Brop~T)
+ Y*U(T2/3R¢OTL + T5/3R¢+TL) - Y*US4(T$e¢gTL — B Tp) + Yipcpr(B-1 /31 ¢(1;§R - [374/3L¢_ER)
+Y.pcpr(BlpoBr + T} ™ Bg) — Y*DSbR(B—1/3L¢gbR —B_y;300 bg) = Yepspr(Bl dobr + T} " bg)
= Yipsr0pp(brpoBr + 1" Br) + Yupsys,r(bpdobr + 1L br) = Yapsssyr(BLdobg + T ¢ by)
+Yipsscor(BLpoBr + Tr ™ Br) + Yup(BrpoBL + T By) + Y*U(B—1/3R¢SEL —B_4;50¢ By)
+ Y.psa(BrpoB, + Trp™B;) + H.c. (A10)

2. TS10

Fermions rotate from the elementary/composite basis to the “physical” light(SM)/heavy basis as

tang;| = Ay = L= Cltzl — s by = C1bi] — s BP" (A11)
= =—, ,
Mo. &1 T, = st + e TEm B, = 5,b§\ + ¢, By™
_ Ari - o _ _ Ap _ _
tanpgp = ) Sp = SIngp, CR = COSQp, tang,p = , Spr = SINQpR, Cpr = COSQ@pp,
Mg, My,

ik = crf = seTR" br = cprby — sprBY™ (A12)
7~wR = SRZ‘?QI + ch%om ER = sth%l + ché%om

Physical heavy fermion masses are related to the bare ones as
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(

CR
MQ*

ChR

Mz = Mé*"'rA%l =

Mg = M2Q*+A%2=

7 MTS/?’ == MT/5/3 == MT/ = Mg/ == MQ* (A13)

My,
MT:MB: Mé,ﬁ"‘A%l:—Q

€1

LMT2/3 = MT5/3 = MQ*

In the elementary/composite basis, the Yukawa Lagrangian
reads

LYK = 41y, TH{H OO} + Y. TH{QH O).

After field rotation to the mass eigenstate basis, before
EWSB, LYUK reads as in Eq. (A19).
After EWSB, the top and bottom masses arise as

(A14)

m, = %Y*slsR, (A15)
v
my = _Y*SlsbR' (A16)

V2
The fermionic mass matrices for up and down states read as
fOHOWS, in the basis (lTL TL T2/3L TL Ti) (IR TR T2/3R TR T;Q)
|

D 1
LYUK = Y*C1CR\7§(TL¢§TR — B¢ Tg) = Yicg—=

1 1
+ Y.siSp—= —=

PHYSICAL REVIEW D 86, 115011 (2012)

for the up sector, and in the basis (5L§Ll_§/LBL)
(brBrByByg) for the down-type fermions:

( }’Z% —S81Cg 0 0 _Sl\
M; _
0 Y2 1 1 0
v My,
e I R s |
—C1Sg C1CR 0 % Cq
My
\ 0 0 -1 1 Y*’% )
(A17)
%% —sicpr —s1 0
y 0 ;”; 0 1
MTISI0 — Y, — V2 )
w21 0 0o Mz
2
—_ Mgy
C1Spr C1ChR 1 Y. %
(A18)
1

T Te+T 7)) — Yusic LoiTe — b, T
\/5( 230 P0T r s Tr) I R\/E(Ld)o R — b Tg)

1

\/i(fuﬁgfze — by 1) + Yosg ﬁ(T2/3L¢OtR + Ts300 " tg) — Yicysg \/E(Tu/)StR — B¢ tr)

o 1 o i _ ~ L
+ Y*\/—E(TMSTL — BroT,) — Y*\/—E(Tz/mﬁboTL + Ts;3rp " Ty) + Y*(T5/3L¢(J)rT5/3R — T390 Ts/3r)

+ Y*(T5/3R¢£T5/3L — Tapsr® Tspar) — Yasicpr(bppoBr + T b " Bg) + Yisyspr(by dpobr + Tr.p™ br)
— Yic1spr(Brobr + Trodbr) + Y cpr(BrdoBr + T Br) + Y (BropoB, + Trdp™ By)

1
2

(T, p{Th + BLop™Ty) — Y.

+ Y.(Brop{BL + V.Ty3x¢p " BL)Y.

1

V2

1
+ Y*C] —

+ Y*(T5/3R¢OT/5/3L - TR¢7TQ/3L)- + Y*C1(1§L¢$l§

+ Y*T2/3L¢+B;3 + Y*T5/3L¢0Tg/3R + H.c.

APPENDIX B: BOUND DERIVATION

The SM prediction and the experimental measurement
[26] of the b — sy branching ratio are, respectively,

BR, = (315 = 23)107°, (B1)

BR,, = (355 = 24 + 9)107°. (B2)

The b — sy decay rate is

ﬁ(T2/3L¢nge —Ts;300%Th) = Yas

1

(Trpd T}, + Brop~T1) — V. \/z(fz/m(ﬁofl ~ Ts/3rp ™ T))

1

V2

(TLbdTh + b o T

= Trd T ) = Yasy (b b By — 1.7 T% )

(A19)
Lior o 1C7(1p) 1P + 1C5 (p)?
~ |CM(kp) + CFP(mp)l> + 1CT P (mp)I?. (B3)
If we consider only the C; contribution, we obtain
SM # NP
Lot -1+ ZRe(C7 (Mb) C7 (Mb)) n O(AC%). (B4)

Fom ICSM ()12

For u, =5 GeV, uy = My, ag = 0.118, the SM con-
tribution to C; at the scale w,, reads [25]

115011-17



NATASCIA VIGNAROLI

CSM () = 0.695CM(pyy) + 0.086CM ()
— 0.158CSM ()
= —0.300. (B5)

The scaling factor of the NP contribution to C; from the
scale py to the scale u, is

& () = (25 3P ) = 06950 (). B6)

By considering all the previous equations, we obtain at
95% C.L.

~0.0775 < C¥P(u,,) < 0.0226.

The scaling factor of the NP contribution to C; from the
scale m, = 1 TeV to the scale uy is

e = (ZZe) () =070, @

ag(m,) as(umy)

and we obtain at 95% C.L.
—0.0978 < CI;IP(m*) < 0.0284.

If we consider only the C; contribution, we obtain

Ftot |C/NP(,U~b)|2
~ ] 4 T B8
Tow I ()P (B8)
We have
Chlpp) = CNP(wy) = (aS(m*)>2'<aS (m’))”C’NP( )
T ! b S(m;) as(Mb) "
=~ 0.55C'NP (m.,). (B9)

; MEM3 + M2, M3 — M3, + cpM3M3, ¢

2
a;’ = vYis;SspR

4MTMT(M2 MZ)( M3, + M3)c,
G- vYis, (CRMT + cjcxMy Cls%e) Q7 —
2 4 1
A M3 — M My

PHYSICAL REVIEW D 86, 115011 (2012)

By considering Egs. (B1), (B2), and (B7)—(B9), we obtain
at 95% C.L.

[CNP(w,,)] < 0.294, |CNP(m,)| < 0.372.

APPENDIX C: CHARGED HIGGS ULTRAVIOLET
CONTRIBUTION TO b — sy IN THE TS5

. ie (2e-p) _
j{cflfarged Higgs 877_2 M2 kchargedl:vtsb(] - YS)S
+ b(1 + 75)s:|, (C1)
mp Vi
where
; 2\ M?
(D)2 ()2 w
charged Z(la |> + |a’2 | )mb<_—> 3
9 m.
i (i 5\ M;,
+ Z(aﬁ) a(z))m*u)(—g)T’ (€2)
i=1 m

(i)
the index i runs over the four up-type heavy fermions of the
model u'”, m..;, denotes the physical mass of the u”’ heavy
fermion, and the o!”, o
following interactions:

coefficients derive from the

L2091 + ys) + al’(1 — y5)]bH* + He.  (C3)

After the EWSB, we diagonalize the up-type quarks
mass matrix of Eq. (A8) and the down-type one of
Eq. (A9) perturbatively in x = ( \/YErZ ), neglecting O(x?).

We find the following coefficients:

Y*S]SZSbRM%/
2v2¢, (M2, — M})’

= Y.sic
a(2T) _ 1CR 1 _

R a
2.2 !

SprY
242

y _ Y3usy STeRMpMzMyMy, + sjcicgMgMiMy, + ¢ (M7,

— M3)(M3.cop + M7(sispMg — cppMy))

a; )

MMy (M2, — MZ)(M2,

(C4)
— M%)

The heavy fermion T,,; gives a contribution of 0(x?) to Kcharged> and we can neglect it. Considering Eq. (C2) and the
coefficients in Eq. (C4), and again neglecting O(x?) terms, we obtain

k mbM2 Y

—15MTMT,M2,/1 — 53 + Ms(15M2, M3sTsh + MR(1IM2,s3(—1 + 5}) + M2(4s3p + 155353)))

charged —

and

5

2 y2
kcharged mhM Yi—<

if we can neglect O(s?).

144MBM2 M2 M

1
48 MBIMB

+ 0(s3) + O(s2,), (C5)

115011-18



AF =1 CONSTRAINTS ON COMPOSITE HIGGS ...
APPENDIX D: ULTRAVIOLET CONTRIBUTION

Summing up, we find the following in the TS5 model:

):

1/ ¢ 7 52
— 2 y2 bR _ bR
kneutral = myMy, Y 8(MB’MI§ ﬁ M%,
5 1
kcharged = mbM%VYzE MB/MI;» + O(S%) + O(SiR)

and in the TS10 model:

TMeM2 53 — 18M M3l — 52 + MA(TMps3 — 18M a1 — 52)

—m,M3,Y? -

PHYSICAL REVIEW D 86, 115011 (2012)

1

Z + O(s3,
8 iy T O

+ O(spr)

Kneura = My Y 288M2M M2,
= —m,M> Y2i< ! + ! >+O(s2)+0(s )
PEWTE 16 \MgMy — MMy ! bR
5 1 5 1 5 52
ehareed = MQY,Z(— += ——R>+02+02.
charged = MOMW NG MMy | 48 MMy 96 M (s7) + O(spe)
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