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We analyze the bounds on the spectrum of composite Higgs models that come from flavor observables,

by means of simple two-site effective Lagrangians, which incorporate a custodial symmetry and a left-

right parity, and which could also be adopted in further phenomenological studies on composite Higgs

models. We derive, in particular, an important constraint on the masses of the ðtL; bLÞ partners, which does
not depend on the flavor structure of the sector beyond the Standard Model. This bound is obtained from

the ‘‘infrared’’ contribution to b ! s� induced by the flavor-conserving effective vertex WtRbR. We find

that the presence of a custodial symmetry can play a role in protecting this effective coupling and, as a

consequence, in attenuating the constraint, which, however, remains of the order of 1 TeV. In addition to

this bound, we calculate the constraints from the ‘‘ultraviolet’’ contribution to b ! s�, induced by loops

of heavy fermions, and to �0=�K.
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I. INTRODUCTION

A possible solution to the hierarchy problem is based on
an analogy with the pion mass stabilization in QCD: the
Higgs, similarly to the pion, might be a composite state,
generated by a new strong dynamics; as such, its mass is
not sensitive to radiative corrections above the composite-
ness scale, assumed to be of the order of the TeV scale.
A further protection, that allows the Higgs to be naturally
lighter than the other resonances, exists if the composite
Higgs is also the pseudo-Goldstone boson of a spontane-
ously broken global symmetry [1]. A pseudo-Goldstone
boson Higgs is expected to be light and, as such, in
agreement with the indication from the LEP electroweak
precision data. In this project wewill reconsider the bounds
on the spectrum of composite Higgs models (CHMs) that
come from flavor observables, with a special focus on b !
s�. Instead of considering a full theory, we will work in an
effective description valid at low energy. In particular, we
will refer to a ‘‘two-site’’ (TS) description [2,3], where two
sectors that comprise the Higgs—the weakly coupled
sector of the elementary fields and the composite sector—
are linearly coupled to each other through mass-mixing
terms [4]. After diagonalization, the elementary/composite
basis rotates to the mass eigenstate one, made up of
Standard Model (SM) and heavy states that are admixtures
of elementary and composite modes. Heavier particles
have larger degrees of compositeness: heavy SM particles,
like the top, are more composite, while the light ones are
almost elementary. In order for composite Higgs models to
be compatible with LEP precision data, the presence of a
custodial symmetry in the composite sector is strongly
suggested to avoid large corrections to the � parameter.
The absence of large flavor-changing neutral currents is
achieved instead by a sort of Glashow-Iliopoulos-Maiani
mechanism that naturally emerges when the connection

between the elementary and the strong sector proceeds
via linear couplings [5]. In the absence of a symmetry
protection, the LEP data also point toward a small degree
of compositeness of the left-handed bottom quark (small
corrections to Z �bLbL) and, by gauge invariance, of the left-
handed top quark as well. This implies that, in order to
obtain a heavy enough top quark, it is necessary to have
an almost fully composite right-handed top quark. It has
been shown, however, that the corrections to Z �bLbL can be
suppressed if the custodial symmetry of the strong sector
includes a left-right parity [6]. This can allow for a smaller
right-handed top compositeness. In order to study the
phenomenology at energies lower than the compositeness
scale, we derive two different models which incorporate
a custodial symmetry and a left-right parity. We label these
models TS5 and TS10. They describe the low-energy regime
of the minimal composite Higgs models (MCHMs) defined
in Refs. [7,8], in the limit in which only the leading
terms in an expansion in powers of the Higgs field are
retained.1 In MCHMs, the Higgs arises as the pseudo-
Goldstone boson associated to the SOð5Þ ! Oð4Þ
breaking in the composite sector; where Oð4Þ includes
SOð4Þ � SUð2ÞL � SUð2ÞR, as well as a parity PLR which
exchanges SUð2ÞL with SUð2ÞR. Composite fermions
can be embedded in a 5 ¼ ð2; 2Þ þ ð1; 1Þ representation
of SOð5Þ in the TS5 model and in a 10 ¼ ð2; 2Þ þ ð1; 3Þ þ
ð3; 1Þ in the TS10. TS5 and TS10 extend the two-site
description of Refs. [2,3] to consider five and ten SOð5Þ
representations for composite fermions. In particular,
the TS5 model extends the two-site model of Ref. [3]
to include the composite fermions needed to give mass
to the bottom quark.

1See Ref. [9] for two- and three-site effective theories where
the full Higgs nonlinearities are included.
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We find two important bounds on the masses of the
heavy fermions which do not depend on the flavor structure
of the sector beyond the SM (BSM). The first comes from
the measurement of the ZbL �bL coupling, that we already
mentioned and that can be suppressed assuming a PLR

symmetry. The second is obtained from the infrared (IR)
contribution to b ! s� induced by the flavor-conserving
effective vertex WtRbR. In composite Higgs models there
are two classes of effects that lead to a shift of the b ! s�
decaying rate compared to the SM prediction: Loops of
heavy fermion resonances from the strong sector give an
ultraviolet (UV) local contribution; they generate, at the
compositeness scale, the flavor-violating dipole operators
O7 and O0

7, which define the effective Hamiltonian for the
b ! s� decay. The virtual exchange of heavy resonances
also generates the effective V þ A interaction of the W
boson and the SM quarks, WtRbR, which in turn leads to a
shift to b ! s� via a loop of SM particles. This latter IR
contribution is enhanced by a chiral factor mt=mb and,
since in this case the flavor violation comes entirely from
the SM V � A current, �tL�

�sL, it gives a minimal flavor-
violating (MFV) lower bound on the heavy fermion
masses. We also discuss the role of a parity PC, which is
a subgroup of the custodial SUð2ÞV , to protect the effective
coupling WbRtR.

In general, stronger bounds can be obtained from the
UV CHM contribution to b ! s� and from �0=�K [10];
however, these latter bounds are model dependent and in
principle could be loosened by acting on the New Physics
(NP) flavor structure (see, for example, Ref. [11]). The
bound from the IR contribution to b ! s�, on the other
hand, is robust, since it is a MFV effect.

The paper is organized as follows: In Sec. II we intro-
duce our two-site models; in Sec. III we discuss the bound
from b ! s�. We first calculate the MFV bounds from the
infrared contribution in a generic CHM, by naive dimen-
sional analysis (NDA), and in the specific TS5 and TS10
models; we then proceed to calculate the non-MFV con-
straints from b ! s� and from �0=�K. We draw our con-
clusions in Sec. IV.

II. EFFECTIVE THEORIES FOR
COMPOSITE HIGGS MODELS

The idea behind composite Higgs models is that the
electroweak symmetry breaking may be triggered by a
new strong dynamics, in analogy with the chiral symmetry
breaking in QCD. In these theories a new strong sector
couples to a weakly coupled sector, which coincides with
that of the Standard Model without the Higgs. The Higgs,
as the pion in QCD, is a composite state coming from the
latter strong dynamics. Its composite nature allows for a
solution to the hierarchy problem. Indeed, its mass is not
sensitive to radiative corrections above the compositeness
scale, assumed to be of the order of the TeV scale. The
electroweak-symmetry-breaking (EWSB) is transmitted to

SM fermions by means of linear couplings [4] (generated
by some UV physics at the UV scale �UV) between ele-
mentary fermions c and composite fermions:

�L ¼ � �cOþ H:c: (1)

This way to communicate the EWSB can give a natural
explanation of the hierarchies in the quark masses (through
RG evolution of the elementary/composite couplings �i)
and avoid the tension which occurs when trying to generate
large enough quark masses and, at the same time, suppress
FCNC processes.2 As a consequence of linear couplings, a
scenario of Partial Compositeness of the SM particles
emerges. At energies below the compositeness scale, a
composite operator O can excite from the vacuum a tower
of composite fermions of increasing mass. Linear cou-
plings [Eq. (1)] thus turn into mass-mixing terms between
elementary fermions and towers of composite fermions �n:

h0jOj�ni ¼ �n; Lmix ¼
X
n

�nð �c�n þ H:c:Þ; (2)

L ¼ Lel þLcom þLmix: (3)

Because of the mass-mixing terms, the physical eigen-
states, made up of SM and (new) heavy states, are an
admixture of elementary and composite modes.
The low-energy phenomenology of such theories can be

exhaustively studied, and calculation can be made easier,
by considering a truncation of each tower of composite
fermions to the first resonance, while other heavy states are
neglected [2]. For example, the effective Lagrangian
describing one elementary chiral field c L and its compos-
ite partner � is

�L ¼ �c Li6@c L þ ��ði6@�m�Þ�� �L
�c L�R þ H:c: (4)

We can rotate the fermions from the elementary/composite
basis to the mass eigenstate one, the light(SM)/heavy basis,
according to

tan’L¼�L

m�

(jlighti¼ cos’Ljc Li�sin’Lj�Li
jheavyi¼ sin’Ljc Liþcos’Lj�Li

: (5)

Our eigenstate fields are thus a heavy fermion of massm ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2� þ�2

L

q
and a light fermion, to be identified with the

SM field, that will acquire a mass after the EWSB. These
fields, as we see, are superpositions of elementary and
composite states. The angle ’L parametrizes the degree
of compositeness of the physical fields. In particular, the

SM fermion has a sin’L � �Lffiffiffiffiffiffiffiffiffiffiffiffi
m2�þ�2

L

p degree of composite-

ness (and a cos’L � m�ffiffiffiffiffiffiffiffiffiffiffiffi
m2�þ�2

L

p degree of elementarity); the

mass-mixing parameter �L can be naturally much smaller

2Tension that, instead, affects Technicolor and Extended
Technicolor models.
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than the massm� of the composite fermion3; therefore, SM
fermions are in general mostly elementary with a small
degree of compositeness, while heavy fermions are mostly
composite with a small degree of elementarity. We have a
similar rotation, with angle ’R, in the case of right-handed
fermions. SM fermions acquire a mass after the EWSB;
since the origin of this breaking resides, by assumption, in
the composite sector (the Higgs is a fully composite state),
the SM fermion mass arises from the composite part of
left-handed and right-handed SM fields:

mc ¼ Y�
vffiffiffi
2

p sin’L sin’R; (6)

where Y� is a Yukawa coupling among composites, from
which the SM Yukawa y ¼ Y� sin’L sin’R originates.
In the following we will assume that the strong sector is
flavor anarchic, so that there is no large hierarchy between
elements within each matrix Y�, and the hierarchy in the
masses and mixings of the SM quarks comes entirely
from the hierarchy in the elementary/composite mixing
angles (such an ‘‘anarchic scenario’’ has been extensively
studied in the framework of 5D warped models; see
Refs. [5,12–15]). From Eq. (6) we can see that heavier
SM particles have larger degrees of compositeness: heavy
SM particles, like the top, have to be quite composite,
while the light ones are almost elementary.

Experimental data give hints on the type of the new
strong dynamics responsible for the EWSB. The LEP
precision data suggest the presence of a custodial symme-
try in the composite sector to avoid large corrections to the
� parameter. In order to protect � (or equivalently the
Peskin-Takeuchi T parameter) the composite sector must
respect, minimally, a global symmetry:

SUð2ÞL � SUð2ÞR �Uð1ÞX;
where SUð2ÞL � SUð2ÞR is broken to the diagonal SUð2ÞV
after the EWSB; the unbroken SUð2ÞV invariance acts as a
custodial symmetry so that � ¼ 1 at tree level.

The SM electroweak group SUð2ÞL �Uð1ÞY can be
embedded into SUð2ÞL � SUð2ÞR �Uð1ÞX, so that hyper-
charge is realized as Y ¼ T3

R þ X. The composite Higgs
transforms as a bidoublet (2, 2) under SUð2ÞL � SUð2ÞR,
H � ðH;HcÞ, where H is the composite Higgs doublet
and Hc ¼ i�2H� is its conjugate. The H vacuum expec-
tation value breaks the SUð2ÞL � SUð2ÞR �Uð1ÞX group
down to SUð2ÞV �Uð1ÞX and leads to the EWSB.
Therefore, we have the following relation among charges:

Q ¼ T3
L þ T3

R þ X ¼ T3
L þ Y: (7)

This scheme can also result from models where the
Higgs arises as the pseudo-Goldstone boson associated to

a SOð5Þ ! SOð4Þ � SUð2ÞL � SUð2ÞR breaking in the
composite sector; or to a SOð5Þ ! Oð4Þ breaking, where
Oð4Þ includes SOð4Þ � SUð2ÞL � SUð2ÞR as well as a
parity PLR which exchanges SUð2ÞL with SUð2ÞR. This
enhanced custodial symmetry can suppress the corrections
to the coupling Z �bLbL, which are strongly constrained by
LEP data [6].

A. PLR and PC symmetries

In MCHMs [7], the Higgs arises as the pseudo-
Goldstone boson associated to the SOð5Þ ! Oð4Þ breaking
in the composite sector, where the enhanced custodial
symmetry Oð4Þ includes SOð4Þ � SUð2ÞL � SUð2ÞR as
well as a parity PLR, which exchanges SUð2ÞL with
SUð2ÞR. As shown in Ref. [6], this PLR parity, as well as
the PC symmetry, a subgroup of the custodial Oð4Þ, can
protect the coupling Z �bLbL against large corrections from
the composite sector. Each composite operator has a defi-
nite left and right isospin quantum number, TL;R, and a

third component, T3
L;R. We can also univocally assign to

each SM field definite quantum numbers, TL;R, T
3
L;R, cor-

responding to those of the composite operator to which it
couples. PLR and PC are symmetries of the composite
sector, PLR exchanges SUð2ÞL with SUð2ÞR, and PC is
the subgroup of SUð2ÞV that transforms jTL; TR;T

3
L; T

3
Ri !jTL; TR;�T3

L;�T3
Ri. [SOð3Þ vectors transform with PC ¼

diagð1;�1;�1Þ]. For PLR (PC) to also be a symmetry of
the interacting terms between SM fields and composite
operators, �L ¼ � �cOþ H:c:, the SM fields c have to
be eigenstates of PLR (PC). This implies

TL ¼ TR ðT3
L ¼ T3

RÞ ðPLR invarianceÞ; (8)

T3
L ¼ T3

R ¼ 0 ðPC invarianceÞ: (9)

If the above formulas hold, we can see that the coupling
Zc �c ,

gc ¼ g

cos�W
ðQ3

L �Qsin2�WÞ; (10)

is protected against large corrections. Indeed, the electric
charge Q is conserved, and the charge of the SUð2ÞL third
component, Q3

L, is conserved by custodial invariance plus
PLR symmetry and by PC symmetry. By custodial Uð1ÞV
invariance, 	Q3

V ¼ 	Q3
R þ 	Q3

L ¼ 0; if there is also a PLR

invariance, 	Q3
R ¼ 	Q3

L, and therefore 	Q3
L ¼ 0. The

same conservation, 	Q3
L ¼ 0, is obtained by PC invari-

ance: the SMW3
L has an odd parity under PC,W

3
L ! �W3

L;
if c is a PC eigenstate it must have T3

L ¼ T3
R ¼ 0; then the

current �c��c is even under PC, and it cannot couple to
W3

L, which is odd.
We will show (Sec. ) that the PC symmetry can also

protect in a similar way the effective couplingWtRbR and,
as a consequence, it can be responsible for an attenuation
of the bound on heavy fermion masses, coming from the
process b ! s�.

3As a result of RG evolution above the compositeness scale.
The smallness of� parameters also allows for a sort of Glashow-
Iliopoulos-Maiani mechanism that suppresses large flavor-
changing neutral currents [5].
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In what follows, we present the two-site models, TS5
and TS10, which incorporate a custodial symmetry and a
PLR parity.4

B. TS5

In the TS5 model, we consider composite fermions
filling the following SOð4Þ �Uð1ÞX � SUð2ÞL �
SUð2ÞR �Uð1ÞX representations:

Q¼ T T5=3

B T2=3

" #
¼ð2;2Þ2=3; ~T¼ð1;1Þ2=3;

Q0�1=3¼
B�1=3 T0

B�4=3 B0

" #
¼ð2;2Þ�1=3; ~B¼ð1;1Þ�1=3;

(11)

and the composite Higgs in

H ¼ 
y
0 
þ

�
� 
0

" #
¼ ð2; 2Þ0: (12)

The SOð4Þ multiplets of composite fermions can be
embedded into the fundamentals 52=3ð�1=3Þ of SOð5Þ �
Uð1ÞX, that decompose as 52=3ð�1=3Þ ¼ ð2; 2Þ2=3ð�1=3Þ �
ð1; 1Þ2=3ð�1=3Þ under SUð2ÞL � SUð2ÞR �Uð1ÞX. [See

Ref. [17] for a study of the same representations in a
two-site description of SOð5Þ]. We are thus introducing
two classes of composite fermions: those filling a 52=3
representation, with X charge X ¼ 2=3, and those in a
5�1=3, with X ¼ �1=3. We want to consider, indeed, the

possibility that the SM quark doublet ðtL; bLÞ couples to
two different BSM operators, Q2=3 and Q0�1=3: the first

responsible for generating the top mass, the second for
generating the bottom mass. ðtL; bLÞ is linearly coupled
to ðT; BÞ through a mass-mixing term we call �L1, and to
ðT0; B0Þ through a mass-mixing term �L2. tR and bR couple
respectively to ~T through a mass-mixing term �R1, and to
~B through a mass-mixing term �R2. The fermionic
Lagrangian reads, in the elementary/composite basis:

L ¼ �qiLi6@qiL þ �uiRi6@uiR þ �diRi6@diR þ Trf �Qði6@�MQ�ÞQg
þ �~Tði6@�M ~T�Þ ~T þ Y�UTrf �QH g ~T
þ Trf �Q0ði6@�MQ0�ÞQ0g þ �~Bði6@�M ~B�Þ ~B
þ Y�DTrf �Q0H g ~B��L1 �q

3
LðT; BÞ � �R1 �tR ~T

� �L2 �q
3
LðT0; B0Þ � �R2

�bR ~Bþ H:c:; (13)

where the superscript i runs over the three SM families
(i ¼ 1, 2, 3), with q3L � ðtL; bLÞ, u3 � tR, d

3 � bR. By
construction, the elementary fields couple to the composite
ones only through the mass-mixing terms, shown in the last
row of Eq. (13). This implies that the SM Yukawa

couplings arise only through the coupling of the Higgs to
the composite fermions and their mixings to the elemen-
tary fermions. We further assume that the strong sector is
flavor anarchic, so that the hierarchy in the masses and
mixings of the SM quarks comes from the hierarchy in the
mixing parameters�i

L;R. In this case the mixing parameters

of the light elementary quarks can be safely neglected, and
one can focus on just the third generation of composite
fermions.5

As a consequence of the elementary/composite mass
mixings, the top and the bottom masses arise, after the
EWSB, from the Yukawa terms in the Lagrangian

[Eq. (13)], Y�UTrf �QH g ~T and Y�DTrf �Q0H g ~B. The top
mass will be proportional to �L1�R1, and the bottom
mass to �L2�R2. The small ratio between the bottom
and the top quark masses can be thus obtained both
for �L2 � �L1 (�R2 � �R1) and for �R2 � �R1

(�L2 � �L1).
For tR, bR and their excited states, the rotation from

the elementary/composite basis to the mass eigenstate one,
the SM/heavy basis, is given by

tan’R ¼ �R1

M ~T�
; sR � sin’R; cR � cos’R;

tan’bR¼ �R2

M ~B�
; sbR� sin’bR; cbR � cos’bR;8<

: tR ¼ cRt
el
R � sR ~T

com
R

~TR ¼ sRt
el
R þcR ~T

com
R

;

8<
:bR ¼ cbRb

el
R � sbR ~B

com
R

~BR ¼ sbRb
el
R þcbR ~B

com
R

:

(14)

Here sRðsbRÞ defines the degree of compositeness,
�tRð�bRÞ, of tRðbRÞ; cRðcbRÞ defines that of ~Tð ~BÞ, � ~D. We
will diagonalize analytically the mixing among q3L and the
corresponding excited states by requiring the simplifying
assumption �L2 � �L1, that can naturally follow, for ex-
ample, from the RG flow in the full theory [8]. The first two
generations of elementary quarks do not need a field rota-
tion from the elementary/composite basis to the mass
eigenstate basis, since they do not mix with the composite
fermions and can thus be directly identified with the cor-
responding SM states.
We can see that in this model tR and bR are both PC and

PLR eigenstates, since they couple to SUð2ÞL � SUð2ÞR
singlets [TLð ~T; ~BÞ ¼ TRð ~T; ~BÞ, T3

Lð ~T; ~BÞ ¼ T3
Rð ~T; ~BÞ ¼ 0].

Instead, tL is a PLR eigenstate only in the limit (�L1 ¼ 0)
in which it decouples from T [T3

LðTÞ � T3
RðTÞ]. Similarly,

bL is a PLR eigenstate only for �L2 ¼ 0, in which case it
decouples from B0 [T3

LðB0Þ � T3
RðB0Þ].

4The TS5 model has been already briefly described in
Ref. [16], where it was adopted to study the phenomenology
of heavy colored vectors at the LHC.

5In fact, once produced, heavy fermions of the first two
generations will also decay mostly to tops and bottoms, since
flavor-changing transitions are not suppressed in the strong
sector, while the couplings to the light SM quarks are extremely
small; see the discussion in Ref. [2].
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So far we have made field rotations to the mass eigen-
state basis before the EWSB. After the EWSB, the SM top
and bottom quarks acquire a mass, and the heavy masses

get corrections of order ð Y�vffiffi
2

p
m�
Þ2. In the following, we

assume x � ð Y�vffiffi
2

p
m�
Þ � 1 and compute all quantities at lead-

ing order in x.

1. �L2 � �L1

In this case, since �L2 � �L1, bL is, approximately, a
PLR eigenstate, so approximately we have a custodial
symmetry protection to ZbL �bL.

The small ratio between the bottom and the top quark
masses is obtained for �L2 � �L1 (�R2 � �R1); we have

mt ¼ vffiffiffi
2

p Y�Us1sR; (15)

mb ¼ vffiffiffi
2

p Y�Ds2sbR; (16)

where s1 ¼ sin’L1 ¼ �L1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Q�þ�2
L1

p defines the ðtL; bLÞ degree
of compositeness �qL, and s2 is a rotation angle propor-

tional to �L2; s2 ¼ �L2

MQ0�
cos’L1.

The physical masses of the heavy fermions read8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

M ~T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

~T� þ �2
R1

q
M ~B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

~B� þ �2
R2

q
MT ¼ MB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Q� þ �2
L1

q
MT5=3 ¼ MT2=3 ¼ MQ� ¼ MTc1

MT0 ¼ MB0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Q0� þ �2
L2

q
’ MQ0�

MB�1=3 ¼ MB�4=3 ¼ MQ0�

; (17)

where c1 � cos’L1 is the degree of compositeness, �D, of
the SUð2ÞL doublet D ¼ ðT; BÞ. Details can be found in
Appendix A, Section A 1.

In order for the strong sector to respect the custodial
invariance, as we have shown, composite fermions have to
fill multiplets of SUð2ÞL � SUð2ÞR �Uð1ÞX. As a conse-
quence, the heavy partner of the SM doublet q3L ¼ ðtL; bLÞ,
D ¼ ðT; BÞ ( ¼ 21=6 under the SM electroweak group), is

embedded in a larger multiplet, the bidoublet Q2=3 ¼
ð2; 2Þ2=3, that includes another doublet of heavy fermions,

ðT5=3; T2=3Þ(¼ 27=6). The heavy fermions T5=3 and T2=3 in

this latter doublet are called custodians. They share the
same multiplet as the heavy partners of q3L, but they do not
mix directly with the SM fermions. This implies that their
masses tend to zero in the limit in which tL becomes fully
composite. (See, for example, the discussion in Ref. [18]).
This can be seen from Eq. (17): MT5=3ð2=3Þ is zero for

c1 ¼ 0, i.e., for a fully composite tL (s1 ¼ 1).

C. TS10

In TS10, we consider composite fermions embedded
into a 102=3 representation of SOð5Þ �Uð1ÞX, that decom-

poses as 102=3 ¼ ð2; 2Þ2=3 � ð1; 3Þ2=3 � ð3; 1Þ2=3 under

SUð2ÞL � SUð2ÞR �Uð1ÞX. Therefore, we refer to this
field content in the composite sector:

Q2=3 ¼
T T5=3

B T2=3

" #
¼ ð2; 2Þ2=3;

~Q2=3 ¼
~T5=3

~T

~B

0
BB@

1
CCA ¼ ð1; 3Þ2=3;

~Q0
2=3 ¼

~T0
5=3

~T0

~B0

0
BB@

1
CCA ¼ ð3; 1Þ2=3;

H ¼ 
y
0 
þ

�
� 
0

" #
¼ ð2; 2Þ0; (18)

and to the following fermionic Lagrangian in the elementary/
composite basis:

L ¼ �q3Li6@q3L þ �tRi6@tR þ �bRi6@bR þ Trf �Qði6@�MQ�ÞQg
þ Trf �~Qði6@�M ~Q�Þ ~Qg þ Trf �~Q0ði6@�M ~Q�Þ ~Q0g
þ Y�TrfH �Q ~Q0g þ Y�Trf �QH ~Qg ��L1 �q

3
LðT; BÞ

��R1 �tR ~T ��R2
�bR ~Bþ H:c: (19)

We have the following expressions for the top and bottom
masses:

mt ¼ v

2
Y�s1sR; mb ¼ vffiffiffi

2
p Y�s1sbR; (20)

and for the heavy fermion physical masses:8>>>>>>>>>>>><
>>>>>>>>>>>>:

M ~T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

~Q� þ �2
R1

q
M ~B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

~Q� þ �2
R2

q
¼ M ~TcR=cbR ’ M ~TcR

M ~T5=3 ¼ M ~T05=3 ¼ M ~T0 ¼ M ~B0 ¼ M ~TcR

MT ¼ MB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Q� þ �2
L1

q
MT2=3 ¼ MT5=3 ¼ MTc1

: (21)

More details can be found in Appendix A, Section A 2.
Besides the custodians T5=3 and T2=3, which are light in

the case of a composite q3L, ~T5=3 and the fermions in the
~Q0

2=3 triplet become light for a tR with a large degree of

compositeness. ( ~B also becomes light in this case.) In this
model, both tR and bR are not PLR eigenstates, and only tR
is a PC eigenstate, as a consequence of the couplings to ~Q
[TLð ~T; ~BÞ � TRð ~T; ~BÞ]; in particular, bR is not a PC eigen-
state, since T3

Rð ~BÞ � 0. bL is exactly a PLR eigenstate.
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D. ZbL �bL in the TS models

Shifts in the Z coupling to bL, gLb have been extensively
studied in the literature. See, for example, the studies in the
context of Randall-Sundrum models [19] and in two-site
descriptions [20]. The shifts arise after the EWSB because
of electroweak mixings among bL and heavy fermions.
There is also a contribution from the mixing among neutral
gauge bosons; however, this mixing is of the order ð v

M�
Þ2�1,

where M� stands for the heavy neutral boson mass, and we
will neglect it in what follows.

In two-site models without PLR symmetry, there is no
custodial symmetry protection to ZbL �bL, and so the shift
on gLb is large. Naive dimensional analysis [21] gives the
following (see, for example, Refs. [22,23]):

	gLb
gLb

� m2
t

M2
Q�s2R

� Y2�v2s21
M2

Q�
: (22)

This formula has been obtained by approximating q2 ¼
M2

Z ’ 0. At q2 ¼ M2
Z, the shift receivesOðM2

Z

M2
Q�
Þ corrections:

	gLb
gLb

�M2
Zs

2
1

M2
Q�

�
�
v2Y2�s21
M2

Q�

�
g2

Y2�
: (23)

When compared to Eq. (22), there is a suppression ð gY�
Þ2

(see, for example, Ref. [24]), so we will neglect it in the
following.

LEP and SLD experiments fix an upper bound of 0.25%
for the (positive) shift in the gLb from its SM value.
Therefore, from Eq. (22), we derive the following bound
for the heavy fermion mass in models without custodial
symmetry protection to ZbL �bL:

MQ� * ð3:2Þ 1
sR

TeV: (24)

In order to respect this limit without requiring too-large
heavy fermion masses that would contrast with naturalness
arguments, it is necessary to have a quite composite right-
handed top (i.e., a not-small sR). On the contrary, in models
with custodial symmetry protection to ZbL �bL, there is
no such restriction for the tR degree of compositeness,
and bounds are weaker than the one in Eq. (24). Indeed,
in the TS5 model with �L2 � �L1, where we have
approximately a custodial symmetry protection to ZbL �bL
(the breaking is proportional to �L2 and is thus small), we
obtain

	gLb
gLb

¼
�
Y�vffiffiffi
2

p
�
2
�
s2cbRffiffiffi
2

p
M ~B

�
2½T3

Lð ~BÞ � T3
LðbLÞ�

¼ 1

2

m2
b

M2
Q�

c4bR
s2bR

’ 1

2

m2
t

M2
Q�

s22
s2R

: (25)

As expected, the shift is proportional to s22 (i.e., it is
proportional to �2

L2, the size of the custodial symmetry
breaking), and it is small (notice that is also smaller than

the effect at nonzero momentum). In the TS10 model, we
obtain, again, a small shift:

	gLb
gLb

¼
�
Y�vffiffiffi
2

p
�
2 s21
M2

Q�
½c4bRðT3

Lð ~BÞ � T3
LðbLÞÞ

þ ðT3
LðB0Þ � T3

LðbLÞÞ�

¼ � m2
b

M2
Q�

2� s2bR
2

’ � m2
b

M2
Q�

: (26)

Despite bL being an exact PLR eigenstate in the TS10
model, there is still a small modification that comes from
the coupling of bR that explicitly breaks PLR. Notice that
	gLb ¼ 0, if we have sbR ¼ 0.

III. BOUNDS FROM FLAVOR OBSERVABLES

A. Constraint from the process b ! s�

We define, following Ref. [25], the effective
Hamiltonian for b ! s�:

H eff ¼ �GFffiffiffi
2

p V�
tsVtb½C7ð�bÞO7 þ C0

7ð�bÞO0
7�; (27)

where O7 ¼ e
8�2 mb

�b��
F�
ð1� �5Þs and O0
7 ¼

e
8�2 mb

�b��
F�
ð1þ �5Þs.
In the SM, the W boson has a purely V � A interaction

to the fermions, and so the contribution to the b ! s�
process has to proceed through mass insertions in the
external legs (see Fig. 1). The Wilson coefficient C0

7 is
thus negligible, because of a suppression by a factor
ms=mb in respect to the Wilson coefficient C7 that, eval-
uated at the weak scale �w, is [25]

CSM
7 ð�wÞ ¼ 1

2

�ð8x3t þ 5x2t � 7xtÞ
12ð1� xtÞ3

� x2t ð2� 3xtÞ
2ð1� xtÞ4

lnðxtÞ
�
;

(28)

with xt ¼ m2
t

M2
W

.

In composite Higgs models, there are two classes of
effects that lead to a shift of the b ! s� decaying rate
compared to the Standard Model prediction. The first
comes from loops of heavy fermion resonances from the
strong sector that generate the flavor-violating dipole op-
erators O7,O0

7 at the compositeness scale. We will refer to

FIG. 1 (color online). One-loop infrared contribution to C7 in
the SM.
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this as the UV contribution. The second contribution
comes from the tree-level exchange of heavy resonances,
which generates an effective V þ A interaction of the W
boson and the SM quarks, which in turn leads to a shift to
b ! s� via a loop of SM particles. This latter IR contri-
bution is enhanced by a chiral factor mt=mb. Since in this
case the flavor violation can come entirely from the SM
V � A current, it gives a quite model-independent lower
bound on the heavy fermion masses.

By taking into account the experimental average value
for the b ! s� branching ratio [26] and the theoretical
calculation [27], we get, if the new physics contributions to
C7, C

CH
7 and to C0

7, C
0CH
7 are considered separately, the

following bounds (see Appendix B):

� 0:098 & CCH
7 ðm�Þ & 0:028; (29)

jC0CH
7 ðm�Þj & 0:37; (30)

where m� denotes the mass of the heavy fermions in the
loop (taking m� ¼ 1 TeV).

The infrared contribution to b ! s� from the composite
Higgs model is at the weak scale �w instead of m� (taking
�W ¼ MW); therefore, we have to account for a scaling
factor

CCH
7 ð�wÞ ¼

�
�sðm�Þ
�sðmtÞ

�
16=21

�
�sðmtÞ
�sð�wÞ

�
16=23

CCH
7 ðm�Þ 	 0:79CCH

7 ðm�Þ:
(31)

We get

� 0:077 & CCH
7 ð�wÞ & 0:023; (32)

jC0CH
7 ð�wÞj & 0:29: (33)

While the infrared contribution to C7 involves a flavor-
conserving operator and brings us to a MFV bound, the
infrared contribution to C0

7 as well as the ultraviolet con-
tributions to C7 and to C0

7 involve flavor-violating opera-
tors. As a consequence, they will require some assumptions
on the flavor structure of the NP sector.

We will now evaluate the bounds on heavy masses that
come from the infrared contribution to C7. We will first
present estimates of such bounds in generic composite
Higgs models, which can be obtained by NDA. Then we
will calculate the bounds in the specific two-site models
TS5 and TS10, introduced in Secs. II B and II C.

B. MFV bound from the infrared contribution to C7

The infrared contribution to the process b ! s� is a one-
loop contribution from the W boson accompanied by top
quarks, where a mass insertion in the intermediate top
quark states is allowed by the presence of a (V þ A)
interaction of the W boson with the top and the bottom
quarks (Fig. 2). This interaction originates from a term

L 
 CROR; (34)

where OR is the dimension-6 operator

O R � HcyiD�H�tR�
�bR þ H:c: (35)

At low energy, after the EWSB, the interaction in Eq. (34)
gives

L 
 CRv2

2

g2ffiffiffi
2

p �bR�
�tRW

�
� : (36)

This interaction gives a contribution to the Wilson coeffi-
cient C7 in Eq. (27). We find

CCH�IR
7 ð�wÞ ¼ CRv2

2

mt

mb

fRHðxtÞ; (37)

where xt ¼ m2
t

M2
W

, and fRHðxtÞ is the loop function [28]:

fRHðxtÞ ¼�1

2

�
1

ð1� xtÞ3
2

3

�
�x3t

2
� 3

2
xtþ 2þ 3xt logðxtÞ

�

þ 1

ð1� xtÞ3
�
�x3t

2
þ 6x2t

� 15

2
xtþ 2� 3x2t logðxtÞ

��
: (38)

fRH ¼ �0:777 for mt ¼ 174 GeV and MW ¼ 80:4 GeV.
We point out that the bound on the CHM contributions to

b ! s�, CCH
7 in Eq. (32), can be directly translated into a

bound on the effective vertex WtRbR, vR � CRv2

2 . By con-

sidering the bound in Eq. (32) and the relation in Eq. (37),
we obtain

� 0:0004< vR < 0:0013: (39)

This bound from b ! s� can be compared with that
from the measurement of the Wtb anomalous couplings
at colliders. Reference [29] reports an expected bound of
�0:012< vR < 0:024, that can be imposed by 14 TeV
LHC measurements with 30 fb�1. This latter can be
obtained from studies on cross sections and top-decay
observables (angular distributions and asymmetries) in
the single top production at the LHC. Present searches
for anomalousW couplings at the 7 TeV LHC [30] fix still
mild bounds on vR, �0:34< vR < 0:39, with 0:70 fb�1.

FIG. 2 (color online). One-loop infrared contribution to C7.
The red blob denotes the effective coupling WtRbR, generated
from the composite sector.
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We can see that the bound obtained from b ! s� is much
stronger than that from the vR measurement at the collider.

The CHM contribution to the effective coupling WtRbR
is given by the exchange of heavy fermions that mix
electroweakly with tR and bR (Fig. 3). At the order x2,
only the SUð2ÞL heavy doublets which are partners of
ðtL; bLÞ contribute to CR. This latter can be easily estimated
by NDA [21]:

C R � Y2��bR�tR�
2
D

M2
D

� ybyt
M2

D

�2
D

�2
qL

: (40)

Equation (40) implies

CCH�IR
7 ð�wÞ � m2

t

M2
D

fRHðxtÞ �
2
D

�2
qL

: (41)

Applying the condition in Eq. (32) to this infrared contri-
bution, we get the estimated bound

MD *
1:0ð0:54Þ

�qL

TeV; (42)

where the first number and the second number in paren-
thesis refer, respectively, to the cases of a positive and of
a negative CCH�IR

7 contribution. Notice that in the case of a
positive CCH�IR

7 contribution we obtain a stronger bound
on MD, since the constraint in Eq. (32) is asymmetric.

We find that a subgroup of the custodial symmetry
SUð2ÞV , the PC parity, can give a suppression to the
WtRbR coupling and, as a consequence, to the CHM infra-
red contribution to b ! s�. The estimates we have just
reported refer to generic composite Higgs models where
there is not such PC protection.

1. Protection by PC parity

The PC protection against the generation of the WtRbR
vertex acts similarly to the PLR and PC protection against
large corrections to the ZbLbL coupling, which we have
discussed in Sec. II A. PC is a symmetry of the sector
BSM, that is respected also by the interactions of tR and
bR if these latter are PC eigenstates. Since PC acts as
diagð1;�1;�1Þ on SOð3Þ vectors, the W is not a PC

eigenstate (the composite partners of W1 and W2 do not
have the same PC eigenvalue). In the case in which tR and
bR are both PC eigenstates, both the tR and the bR inter-
actions must respect the PC parity. Then theWtRbR vertex,

which is PC violating, since the W is not a PC eigenstate,
can arise only by paying for an additional factor that gives
a suppression. By contrast, in models where tR and bR are
not both PC eigenstates—and, as such, their interactions do
not have to respect the PC parity—theWtRbR vertex can be
generated without suppressions.
The TS5 falls into the class of models withPC protection,

since in the TS5 both tR and bR are PC eigenstates.
Considering the TS5model, we can evaluate the suppression
factor to WtRbR due to the PC protection. We can find it in
an easy way by promoting �L1 and �L2 to spurions, which
enforce a SUð2ÞL � SUð2ÞR invariance:

��L1 �q
3
LðT; BÞ ! � �q3LQ2=3�̂L1;

��L2 �q
3
LðT0; B0Þ ! � �q3LQ

0�1=3�̂L2;

where �̂L1¼ð�L1;0Þ�ð1;2Þ1=6 and �̂L2 ¼ ð0;�L2Þ �
ð1; 2Þ1=6. We can thus write the OR operator [Eq. (35)] in

the [SUð2ÞL � SUð2ÞR]—invariant way:

O R ¼ 1

f2
�q3R�̂L1V��̂

y
L2q

3
R�

� þ H:c:; (43)

where f has the dimension of a mass q3R ¼ ðtR; bRÞ �
ð1; 2Þ1=6, and V� � HcyiD�H. Since PC is a subgroup of

the custodial SUð2ÞV , the [SUð2Þ � SUð2Þ]—invariant
operator in Eq. (43) is also PC invariant. We can notice

that thePC invariance has brought an additional factor �L1�L2

f2

compared to Eq. (35).
Without PC protection, the D ¼ ðT; BÞ contribution to

the WtRbR effective vertex in the TS5 model reads

sRsbRc
2
1

�
Y�vffiffiffi
2

p
MD

�
2 ¼ mbmt

M2
D

c21
s21

;

the request for PC invariance brings the additional factor
�L1�L2

f2
. For f2 ¼ MQ�MQ0�, we obtain�

Y�vffiffiffi
2

p
MD

�
2
sRsbR

c1�L1

MQ�
c1�L2

MQ0�

¼
�

Y�vffiffiffi
2

p
MD

�
2
sRsbRs1s2 ¼ mbmt

M2
D

; (44)

that is a suppression by a factor s21=c
2
1 � �2

qL=�
2
D.

We can thus return to the estimated bounds onMD from
CCH�IR
7 in Eq. (42), and consider the case in which there is

a PC protection to the tR and bR interactions. In such a case
the CR contribution becomes

C R � ybyt
M2

D

ðwithPCÞ; (45)

which implies

CCH�IR
7 ð�wÞ � m2

t

M2
D

fRHðxtÞ ðwithPCÞ (46)

and an estimated bound:

FIG. 3. The CHM contribution to the effective coupling
WtRbR [at order ð Y�vffiffi

2
p

m�
Þ2].
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MD * 1:0ð0:54ÞTeV ðwithPCÞ: (47)

Wewill now calculate the bounds onMD fromCCH�IR
7 in

the specific TS5 and TS10 models. As already discussed,
the TS5 belongs to the class of models with PC protection.
The TS10, instead, falls in the class of models without PC

protection, because in the TS10, bR is not a PC eigenstate.
We thus expect that the bound in the TS10 will receive an
enhancement factor c1=s1 compared to that in the TS5.

In the TS5 model, we have a contribution to the OR

operator in Eq. (35), both from the doublet D ¼ ðT; BÞ in
the X ¼ 2=3 representation and from the doublet D0 �
ðT0; B0Þ in the X ¼ �1=3. We find

C TS5
R ¼ � ybyt

M2
D

�
1þ M2

D

M2
D0

�
: (48)

This implies

CCH�IR�TS5
7 ð�wÞ ¼ � m2

t

M2
D

fRHðxtÞ
�
1þ M2

D

M2
D0

�
: (49)

Notice that the CTS5R contribution is negative. This implies a
positive contribution CCH�IR�TS5

7 (fRH is negative). The
condition in Eq. (32) is asymmetric and is stronger in
the case of a positive CCH�IR

7 . Applying this condition to

the infrared contribution inEq. (49),we get, for r ¼ MD

MD0 ¼ 1,

the following bound on the D ¼ ðT; BÞ doublet mass:

MTS5
D * 1:4 TeV: (50)

This bound becomes MTS5
D * 1:3ð1:6Þ TeV, changing r to

r ¼ 0:8ð1:2Þ. In the TS10 model, there is only one doublet,
D ¼ ðT; BÞ, that gives a contribution to CR. We obtain

C TS10
R ¼ ybyt

M2
D

c21
s21

; (51)

which implies

CCH�IR�TS10
7 ð�wÞ ¼ m2

t

M2
D

fRHðxtÞ c
2
1

s21
: (52)

From the condition in Eq. (32) we get finally the bound

MTS10
D * ð0:54Þ c1

s1
TeV: (53)

Notice that, differently from the case of the TS5 contribution,
CCH�IR�TS10
7 ð�wÞ is negative. As such, it is constrained

less strongly by the condition in Eq. (32). As expected, we
have found a c1=s1 enhancement of this bound, compared
to Eq. (50).

We now proceed to evaluate the bounds from the C0
7

contribution, and then those from the UV contributions. As
we already pointed out, these are contributions that involve
flavor-violating operators and require assumptions on the
flavor structure of the NP sector. In what follows, we will
consider the case of flavor anarchy of the composite
Yukawa matrices. This scenario, we remember, assumes

that there is no large hierarchy between elements within
each matrix Y� and that the quark mass hierarchy is com-
pletely explained by the elementary/composite mixing
angles. We also set, for simplicity, Y�U ¼ Y�D ¼ Y�.

C. Non-MFV constraints

1. Generational mixing

After the EWSB, the mass eigenstate basis is obtained,
as in the SM, using unitary transformations: ðDL;DRÞ
and ðUL;URÞ for down- and up-type quarks, respectively.
We will assume that the left rotation matrix has entries
of the same order as those of the Cabibbo-Kobayashi-
Maskawa matrix:

ðDLÞij � ðVCKMÞij: (54)

The assumption of anarchical Y� fixes the form of the
rotation matrix DR to be

ðDRÞij �
�
mi

mj

�
1

ðDLÞij for i < j: (55)

Considering the estimates of Eqs. (54) and (55), we can
evaluate the generational mixing factors in the composite
Higgs model contributions to C7 (UV) and C0

7.
For the ultraviolet contribution to C0

7, we consider the
presence of a mass insertion that can generate the operator
�bL�

�
F�
sR. This mass insertion brings to a factor

mbðDRÞ23 � ms

ðDLÞ23 �
ms

Vts
, where we have first used the esti-

mate in Eq. (55) and then that in Eq. (54). The ultraviolet
contribution to C7 involves the operator �bR�

�
F�
sL, and

we obtain from the mass insertion a generational mixing
factormbðDLÞ23 �mbVts, where the last similitude follows
from the assumption in Eq (54).
Evaluating, similarly, the generational mixing factor for

the vertexWtRsR in C0CH�IR
7 , one finds ðDRÞ23 � ms

mbðDLÞ23 �
ms

mbVts
, making use, again, of the estimates of Eqs. (55) and

(54). The flavor violation in CCH�IR
7 comes entirely from

the SM vertex WtLsL, and it is accounted for by a factor
Vts. Therefore, we find that the composite Higgs model
contribution to the Wilson coefficient C0

7 is enhanced by
a factor

ms

mbV
2
ts
� 8 (56)

compared to the contribution to C7 both in the ultraviolet
and in the infrared case.

2. Infrared contribution to C0
7

Taking into account the generational mixing factor in
Eq. (56), the composite Higgs model contribution to the
Wilson coefficient C0

7 (in Fig. 4) is given by

C0CH�IR
7 ð�wÞ ¼ CRv2

2

ms

mbV
2
ts

mt

mb

fRHðxtÞ: (57)
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Considering the estimates for CR in Eqs. (40) and (45), the
condition on C0CH�IR

7 ð�wÞ, Eq. (33), thus gives the esti-
mated bounds

MD * 0:80 TeV (58)

in models with PC symmetry, and

MD *
0:80

�qL

TeV (59)

in models without PC symmetry.
Considering the specific TS5 and TS10 models, C0CH�IR

7

gives the bounds

MTS5
D * 1:1 TeV (60)

in the TS5, and

MTS10
D *

c1
s1

ð0:80Þ TeV (61)

in the TS10.
We can discuss how the bound on heavy masses can

change in the case of a fully composite top: in the TS5
model, the bound on the doublet heavy fermion [Eq. (50)]
does not depend on the top degree of compositeness (this
remains almost true considering the full numerical calcu-
lation), and we obtain quite strong MFV bounds for both
composite tL and composite tR. In the TS10 model,
because of the PC protection, we obtain strong bounds in
the case of a fully composite tR [Eq. (53)]. Reference [18]
finds that corrections to S and T parameters give only weak
constraints on a composite tR (both in TS5 and in TS10).
The IR contribution to b ! s�, on the contrary, puts a
quite strong constraint, especially in the TS10 model, on
this limit case.

One can finally discuss the validity of our results, which
have been obtained ‘‘analytically’’ [i.e., by considering an

expansion in x � Y�vffiffi
2

p
m�

and retaining only the OðxÞ terms].

We find that the results from the numerical calculation of
the bounds, obtained by diagonalizing numerically the
fermionic mass matrices, do not differ more than Oð1Þ
from those we have shown, which are obtained at order x
in the assumption x � 1. This can also be found by con-
sidering that the exchange of relatively light custodians,

that can give a contribution Y�vffiffi
2

p
mCUST�

> 1 to the effective

WtRbR vertex, has to be followed by the exchange of

heavier composite fermions, that reduce the overall con-
tribution. By definition, indeed, the custodians do not
directly couple to SM fermions; therefore, their contribu-
tion to WtRbR is always accompanied by the exchange of
heavier composite particles.

3. Ultraviolet contribution

In this case, the PC parity does not influence the bounds,
and we get contributions of the same size in the different
models. The leading contribution comes from diagrams
with heavy fermions and would-be Goldstone bosons in
the loop6 (Fig. 5):

CCH�UV
7 ; C0CH�UV

7 / sLiY�ikY�klY�ljsRj: (62)

The contribution of Eq. (62) is not aligned with the mass
matrix mdij � sLiY�ijsRj; therefore, after the EWSB it

remains nondiagonal in the flavor space.
Before going on to the specific TS5 and TS10 models,

we can obtain estimated bounds from the UV contributions
in generic composite Higgs models, by means of NDA.
We obtain

CCH�UV
7 � ðY�vÞ2

MDM ~D

�D� ~D; (63)

where ~D denotes a heavy fermion which is a SUð2ÞL
singlet, and

C0CH�UV
7 � ms

mbV
2
ts

ðY�vÞ2
MDM ~D

�D� ~D; (64)

where we have taken into account the generational mixing
factor in Eq. (56). By comparing these results with those
from the IR contributions in Eqs. (42) and (47), we see that
the UV contribution gives a bound approximately Y�=yt
( Y�
yt
�qL , in the case of models without PC protection) times

stronger than the one from the IR contribution to C7. Such
UV bounds, however, are not as robust as the IR one, since
they require, as we already pointed out, assumptions on the
flavor structure of the BSM sector. In particular, we have
estimated them in the scenario of flavor anarchy in the
strong sector. Notice that in this anarchic scenario, much
stronger bounds on the resonance masses, of the order of
20 TeV [13], come from �k.
In Ref. [22], the ultraviolet contribution to b ! s� in a

two-site model without a PLR protection to the tR and bR
interactions is evaluated. In the following, we will describe
in detail the contribution in the TS5 model, and we will
report the results for TS10. We can calculate the CCH�UV

7

and C0CH�UV
7 ultraviolet contributions by considering the

model-independent analysis of Ref. [22] and the genera-
tional mixing factor in Eq. (56). We get the following

FIG. 4 (color online). One-loop infrared contribution to C0
7.

6The contribution from heavy gluon and heavy fermion ex-
change is suppressed. Indeed, this contribution is approximately
diagonal in the flavor space.
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effective Hamiltonian for b ! s� with loops of heavy
fermions and neutral would-be Goldstone bosons:

H eff
neutral Higgs ¼

ie

8�2

ð2� � pÞ
M2

w

kneutral

�
Vts

�bð1� �5Þs

þ ms

mbVts

�bð1þ �5Þs
�
; (65)

where

kneutral 	
X4
i¼1

ðj�ðiÞ
1 j2 þ j�ðiÞ

2 j2Þmb

�
1

36

�
M2

w

m2
�ðiÞ

þX4
i¼1

ð�ðiÞ�
1 �ðiÞ

2 Þm�ðiÞ
�
1

6

�
M2

w

m2
�ðiÞ

; (66)

the index i runs over the four down-type heavy fermions

of the model, dðiÞ ¼ ~B, B0, B�1=3, B, and the �ðiÞ
1 , �ðiÞ

2

coefficients are defined by the interactions

L 
 �dðiÞ½�ðiÞ
1 ð1þ �5Þ þ �ðiÞ

2 ð1� �5Þ�bHþ H:c: (67)

After the EWSB, we find the following coefficients
at OðxÞ:

�ð ~BÞ
1 ¼ Y2�v

2
sbR

�
1

MB0
þMB0 þ cbRM ~B

M2
B0 �M2

~B

�
; �ð ~BÞ

2 ¼ � Y�
2

ffiffiffi
2

p s2cbR; �ðB0Þ
1 ¼ �

ðB�1=3Þ
1 ¼ � Y�

2
ffiffiffi
2

p sbR;

�ðB0Þ
2 ¼ �

ðB�1=3Þ
2 ¼ �Y2�v

4
s2

�M2
B0M ~B � s2bRM

3
~B
� cbR5M

3
B0 þ 2cbRMB0M2

~B

MB0M ~BðM2
B0 �M2

~B
Þ

�
:

(68)

The heavy fermion B gives a contribution of Oðs22Þ to
kneutral, and we neglect it.

Considering Eq. (66) and the coefficients in Eq. (68),
and again neglecting Oðx2Þ terms, we obtain

kneutral 	 �mbM
2
WY

2�
1

8

�
cbR

MB0M ~B

� 7

18

s2bR
M2

B0

�
: (69)

From this expression of kneutral, we obtain the following
TS5 ultraviolet contributions to the Wilson coefficient of
the effective Hamiltonian in Eq. (27):

CCH�UV
7 ðm�Þ ¼ 1

16

ffiffiffi
2

p
GF

Y2�
�

cbR
MB0M ~B

� 7

18

s2bR
M2

B0

�
;

C0CH�UV
7 ðm�Þ ¼ 1

16

ffiffiffi
2

p
GF

Y2�
�

cbR
MB0M ~B

� 7

18

s2bR
M2

B0

�
ms

mbV
2
ts

:

(70)

Assuming sbR is small, the above formulas become

CCH�UV
7 ðm�Þ ¼ 1

16

ffiffiffi
2

p
GF

Y2�
MB0M ~B

;

C0CH�UV
7 ðm�Þ ¼ 1

16

ffiffiffi
2

p
GF

Y2�
MB0M ~B

ms

mbV
2
ts

:

(71)

Finally, the condition on C0CH�UV
7 in Eq. (30) gives the

bound ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MB0M ~B

p
* ð0:40ÞY� TeV; (72)

where, for simplicity, we have set sbR ¼ 0. The condition
in Eq. (29) on CCH�UV

7 gives a stronger bound,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MB0M ~B

p
* ð0:52ÞY� TeV; (73)

if CCH�UV
7 ðm�Þ is a negative contribution.

There is also a contribution to b ! s� from diagrams
with heavy fermions and charged Higgs in the loop.
Following a similar procedure to the one used before (see
Appendix C), we find, neglecting Oðx2Þ terms,

kcharged 	 mbM
2
WY

2�
5

48

1

MB0M ~B

þOðs21Þ þOðs2bRÞ: (74)

If we can neglect Oðs21Þ and Oðs2bRÞ terms, kcharged gives a

weaker bound than the one from kneutral. The full expres-
sion of kcharged can be found in Appendix D; here we have

just reported, for simplicity, the result for small s1 and sbR
angles.
In Fig. 6, we show the bound on the doublet massMT as

a function of s1 from the condition on C0CH�UV
7 for differ-

ent values of the ratio k ¼ MT

M ~T
between doublet and singlet

masses, fixing Y� ¼ 3 (upper plot), and for different values
of Y�, fixing k ¼ 1 (lower plot). We set M ~B ¼ M ~T and
MT0 ¼ MT . These values are obtained by taking into
account the strongest values between the neutral Higgs
contribution and the charged Higgs one. We set sbR ¼ s1.

FIG. 5. One-loop CHM ultraviolet contribution to C0
7.
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4. Ultraviolet contribution in the TS10

For the TS10 model, applying the same procedure as for the case of TS5, we get

kneutral ¼ mbM
2
WY

2�
7MTM

2
T0s21 � 18M ~BM

2
~B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s21

q
þM2

~B

�
7MBs

2
1 � 18M ~B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s21

q 	
288M2

~B
MBM

2
~B0

þOðsbRÞ

¼ �mbM
2
WY

2�
1

16

�
1

MBM ~B

þ 1

MBM ~B0

�
þOðs21Þ þOðsbRÞ; (75)

kcharged ¼ mbM
2
WY

2�
�
5

48

1

MBM ~B

þ 5

48

1

MBM ~B0
þ 5

96

s2R
M2

B

�
þOðs21Þ þOðs2bRÞ: (76)

If the left-handed bottom quark has a small degree of
compositeness, we can neglect Oðs21Þ (while sbR is natu-
rally very small in the TS10 model, in order to account for
the ratio mb=mt � 1). The charged contribution, in this
case, gives a stronger bound than the one from kneutral:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MBM ~B

p
* ð0:58ÞY�TeV; (77)

from the condition in Eq. (30) on C0CH�UV
7 . A stronger

bound, ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MBM ~B

p
* ð0:75ÞY�TeV; (78)

comes from the condition in Eq. (30) on CCH�UV
7 , if this

last contribution has a negative sign.

In Fig. 7, we show the bound on the doublet massMT as
function of s1 from the condition on C0CH�UV

7 for different

values of the ratio k ¼ MT

M ~T
between the doublet and ~T

singlet masses, fixing Y� ¼ 3 (upper plot), and for different

Y� values, setting k ¼ MT

M ~T
¼ 1 (lower plot). The custodian

singlet masses have the following relations withM ~T :M ~B ’
cRM ~T ,M ~B0 ¼ M ~T0 ¼ cRM ~T . All these bounds are obtained
by taking into account the strongest values between the
neutral Higgs contribution and the charged Higgs one.
We can see that in the TS10 model, the UV bounds are

particularly strong in the case of fully composite tR. This is
an effect caused by the exchange of the custodians ~T0, ~B0
and of the ~B, that are light in the limit of a composite tR.
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FIG. 6 (color online). Bounds from C0CH�UV
7 in the TS5 model.

Upper plot: Bounds for different values of k ¼ MT

M ~T
and Y� ¼ 3.

Lower plot: Bounds for different values of Y� and k ¼ 1. We set
M ~B ¼ M ~T and MT0 ¼ MT . Also shown is the exclusion region

for s1, obtained from the condition sR ¼
ffiffi
2

p
mt

Y�vs1
� 1.
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FIG. 7 (color online). Bounds from C0CH�UV
7 in the TS10

model. Upper plot: Bounds for different values of k ¼ MT

M ~T
(M ~B ’

cRM ~T , M ~B0 ¼ M ~T0 ¼ cRM ~T), fixing Y� ¼ 3. Lower plot: Bounds
for different values of Y�, fixing k ¼ 1. We also show the
exclusion region for s1, obtained from the condition sR¼ 2mt

Y�vs1
�1.
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In particular, when tR is fully composite (sR ¼ 1),
M ~Bð’ cRM ~TÞ and M ~B0 ¼ M ~T0 ð¼ cRM ~TÞ vanish. This
causes the divergence of the bounds for sR ! 1. Such
divergences can be seen in the curves in Fig. 7, when
they approach the (grey) exclusion regions for s1.
(Indeed, the minimum value of s1 allowed by the condition

sR ¼ 2mt

Y�vs1
� 1 is obviously obtained in the case sR ¼ 1.)

Table I summarizes our results. It shows the bounds on
heavy fermion masses that can be obtained from the pro-
cess b ! s�. We report the estimated bounds in generic
composite Higgs models (with or without PC protection),
which we have found by means of NDA, and the bounds in
the specific two-site models TS5 and TS10. �c =� denotes

the degree of compositeness of a SM/heavy fermion. In the
specific TS5 and TS10 models, �qL � s1, and �D � c1.

D ¼ ðT; BÞ, and ~D denotes a SUð2ÞL singlet heavy fer-
mion. For the estimated bounds from CCH

7 and for the

bounds from CCH�UV
7 , we indicate the values that can be

obtained in the case of a positive (the first number) or a
negative (the second number in parentheses) contribution.

D. Constraint from �0=�K
The bound on the mass of the heavy fermions that comes

from the direct CP-violating observable of the K0 ! 2�
system, Reð�0=�Þ, can be even stronger in the assumption

of anarchic Y� than those obtained from b ! s�, as already
found in Ref. [10]. As we pointed out, however, it is a
bound that strongly depends on the assumptions made on
the flavor structure of the new physics sector.
As for the UV contribution to b ! s�, the custodial

symmetry does not influence the bound, and we obtain
contributions of the same size in the different models. In
what follows, we describe the bound in the TS5 and in the
TS10. The contribution of New Physics can be parame-
trized at low energy by chromomagnetic operators:

OG ¼ �s��
TaGa
�
ð1� �5Þd;

O0
G ¼ �s��
TaGa

�
ð1þ �5Þd:
(79)

As for the UV contribution to b ! s�, the leading contri-
bution to �0=�K comes from diagrams with heavy fermions
and Higgs in the loop, that generate the OG and O0

G

operators. (One-loop diagrams are the same as for the
UV contribution to b ! s�, Fig. 5, with the replacements
� ! g, b ! s and s ! d.)
The related coefficients CG and C0G, in analogy with C7

and C07 of the UV contribution to b ! s�, differ by a
generational mixing factor that, in the assumption of anar-
chic Y�, we estimate to be � md

msV
2
us
. We consider only the

generation mixing ð1� 3Þ � ð2� 3Þ, via the third genera-
tion. In analogy with Eq. (65), we define

TABLE I. Estimated bounds from b ! s� in a generic composite Higgs model and in the specific TS5 and TS10 models at small
elementary/composite mixing angles s1 and sbR. �c =� denotes the degree of compositeness of a SM/heavy fermion. In the specific TS5

and TS10 models, �qL � s1, �D � c1. D ¼ ðT; BÞ, and ~D denotes a SUð2ÞL singlet heavy fermion. We highlight (in bold) the MFV

bounds from CCH
7 . For the estimated bounds from CCH

7 and for the bounds from CCH�UV
7 , we indicate the values that can be obtained in

the case of a positive (the first number) or a negative (the second number in parenthesis) contribution.

CCH�IR
7 ð�wÞ � ðytvÞ2

M2
D

�2
D w=PC

ESTIMATED TS5

MD * 1:0ð0:54Þ TeV MD * 1:4 TeV
MFV Bounds

� ðytvÞ2
M2

D

ð�D

�qL
Þ2 w=oPC

ESTIMATED TS10

MD * 1:0ð0:54Þ=�qL TeV MD * 0:54=s1 TeV

C0CH�IR
7 ð�wÞ � ðytvÞ2

M2
D

�2
D

ms

mbV
2
ts

w=PC

ESTIMATED TS5

MD * 0:80 TeV MD * 1:1 TeV

� ðytvÞ2
M2

D

ð�D

�qL
Þ2 ms

mbV
2
ts

w=oPC

ESTIMATED TS10

MD * 0:80=�qL TeV MD * 0:80=s1 TeV

CCH�UV
7 ðm�Þ � ðY�vÞ2

MDM ~D
�D� ~D

ESTIMATED TS5 TS10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDM ~D

p
* 1:5ð0:79ÞY� TeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDM ~D

p
* 0:52ð0:28ÞY� TeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDM ~B

p
* 0:75ð0:40ÞY� TeV

C0CH�UV
7 ðm�Þ � ðY�vÞ2

MDM ~D
�D� ~D

ms

mbV
2
ts

ESTIMATED TS5 TS10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDM ~D

p
* ð1:1ÞY� TeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDM ~D

p
* ð0:40ÞY� TeV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MDM ~B

p
* ð0:58ÞY� TeV
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Aeff-chromo
neutral Higgs ¼

igs
8�2

ð2� � pÞ
M2

w

kGneutral

�
Vus �sð1� �5Þd

þ md

msVus

�sð1þ �5Þd
�
; (80)

where

kGneutral 	
X4
i¼1

ðj�ðiÞ
1 j2 þ j�ðiÞ

2 j2Þms

�
� 1

12

�
M2

w

m2
�ðiÞ

þX4
i¼1

ð�ðiÞ�
1 �ðiÞ

2 Þm�ðiÞ
�
� 1

2

�
M2

w

m2
�ðiÞ

; (81)

the index i runs over the four down-type heavy fermions of

the model dðiÞ, and the �ðiÞ
1 , �ðiÞ

2 coefficients are defined by

the following interactions:

L 
 �dðiÞ½�ðiÞ
1 ð1þ �5Þ þ �ðiÞ

2 ð1� �5Þ�bHþ H:c: (82)

After the EWSB, neglecting Oðx2Þ terms, we find in the
TS5 model

kGneutral ¼
3

8
msM

2
w

Y2�
MB0M ~B

þOðs2sRÞ; (83)

where ssR defines the degree of compositeness of the right-
handed strange quark and naturally has a small value. In
the limit in which ssR ¼ 0, we obtain the same result also
in the TS10 model.

We can thus calculate the CG and C0G contributions:

CG ¼ � 1

16�2

kGneutral
M2

wms

Vus; C0G ¼ md

msV
2
us

CG: (84)

Defining

	�0 ¼ Reð�0=�ÞCH � Reð�0=�ÞSM
Reð�0=�Þexp ; (85)

we obtain

j	�0 j 	 ð58 TeVÞ2BGjCG � C0Gj< 1; (86)

where Reð�0=�ÞSM has been estimated as in Ref. [10], and
BG denotes the hadronic bag parameter, h2�I¼0jysOGjK0i.
We take BG ¼ 1,7 and we take into account separately the
contribution from CG and C0G. In the limit ssR ¼ 0, we
obtain from Eq. (86)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MB0M ~B

p
* ð1:3ÞY�TeV; (87)

which is in agreement with the result in Ref. [10]. The
contribution from the charged Higgs interactions gives
weaker bounds than those from the neutral Higgs
contribution.

IV. CONCLUSIONS

Composite Higgs models are among the compelling
scenarios for physics beyond the Standard Model that
can give an explanation of the origin of the EWSB, and
that are going to be tested at the LHC.
In this project, we have built simple two-site models, the

TS5 and the TS10, which can represent the low-energy
regime of minimal composite Higgs models with a custo-
dial symmetry and a PLR parity.
Working in these effective descriptions, we have recon-

sidered the bounds on the CHM spectrum implied by flavor
observables. We have found in particular that the IR
contribution to b ! s� induced by the flavor conserving
effective vertex WtRbR implies a robust minimal flavor-
violating bound on the mass (m�) of the new heavy fermi-
ons. [To be more specific, on the heavy doublets, partners
of qL ¼ ðtL; bLÞ.] The relevance of shifts to WtRbR has
been already pointed out in the literature (see, for example,
Refs. [31,32]), even though its importance in setting a
bound on heavy fermion masses was unestimated in pre-
vious studies. We have also shown how this bound can be
stronger in the case of the absence of a symmetry (PC)
protection to the effective WtRbR vertex. In particular, we
have found an estimated bound

m� * 1:0 TeV

in models with PC protection to the WtRbR vertex (where
both tR and bR are PC eigenstates), and a bound

m� * 1:0=�qL TeV;

where �qL denotes the degree of compositeness of ðtL; bLÞ
in models without PC protection. �qL is naturally a small

number; the bound could thus be very strong in these types
of models. In the specific two-site models, the bounds we
have found are

mTS5� * 1:4 TeV

in the TS5, and

mTS10� *
0:54

�qL

TeV

in the TS10.
Table I summarizes the results obtained for the bounds

from b ! s�. In addition to these bounds, we have calcu-
lated the constraints from the UV composite Higgs model
contribution to b ! s�. Figures 6 and 7 show the bounds in
the TS5 and the TS10 models as functions of the tL degree
of compositeness. Our results have shown that these
bounds can be stronger than those from the IR contribution,
but they are model dependent; in particular, they strongly
depend on the assumptions made about the flavor structure
of the composite sector. We have obtained an estimated
limit

m� * ð0:52ÞY� TeV

7That corresponds to the estimate of the hadronic matrix
element h2�I¼0jysOGjK0i in the chiral quark model and to the
first order in the chiral expansion.
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in a specific NP flavor scenario (Y� anarchic in the flavor
space).

Even stronger bounds,

m� * ð1:3ÞY� TeV;

can be obtained from �0=�K, but again, they are model
dependent and in principle could be loosened by acting on
the NP flavor structure (as done, for example, in Ref. [11]).
The lower IR bounds on m� we have found from b ! s�,
on the contrary, are robust MFV bounds that cannot be
evaded by assuming particular conditions on the structure
of the strong sector.
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APPENDIX A: TWO-SITE MODELS

1. TS5

Fermions rotate from the elementary/composite basis
to the ‘‘physical’’ light(SM)/heavy basis as [neglecting
Oð�2

L2Þ terms]

tan’L1¼ �L1

MQ�
� s1
c1
; s1� sin’L1; c1� cos’L1; s2¼ �L2

MQ0�
cos’L1; s3¼

�L2MQ0�
�2

L1þM2
Q��M2

Q0�
sin’L1;

8>>><
>>>:
tL¼c1t

el
L �s1T

com
L �s2T

0com
L

TL¼ s1t
el
L þc1T

com
L þs3T

0com
L

T0
L¼ðs2c1�s1s3ÞtelL �ðs1s2þc1s3ÞTcom

L þT0com
L

;

8>>><
>>>:
bL¼c1b

el
L �s1B

com
L �s2B

0com
L

BL¼ s1b
el
L þc1B

com
L þs3B

0com
L

B0
L¼ðs2c1�s1s3ÞbelL �ðc1s3þs1s2ÞBcom

L þB0com
L

;

(A1)

s4 ¼ �L2

�L1

�2
L1 þM2

Q� �M2
Q0�

;

8<
:TR ¼ Tcom

R þ s4T
0com
R

T0
R ¼ T0com

R � s4T
com
R

;

8<
:BR ¼ Bcom

R þ s4B
0com
R

B0
R ¼ B0com

R � s4B
com
R

; (A2)

tan’R ¼ �R1

M ~T�
; sR � sin’R; cR � cos’R; tan’bR ¼ �R2

M ~B�
; sbR � sin’bR; cbR � cos’bR;8<

: tR ¼ cRt
el
R � sR ~T

com
R

~TR ¼ sRt
el
R þ cR ~T

com
R

;

8<
: bR ¼ cbRb

el
R � sbR ~B

com
R

~BR ¼ sbRb
el
R þ cbR ~B

com
R

: (A3)

Physical heavy fermion masses are related to the bare ones according to

8>>>>>>>>>>>><
>>>>>>>>>>>>:

M ~T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

~T� þ�2
R1

q
¼ M~T�

cR

M ~B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

~B� þ �2
R2

q
¼ M ~B�

cbR

MT ¼ MB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Q� þ �2
L1

q
¼ MQ�

c1

MT5=3 ¼ MT2=3 ¼ MQ�

MT0 ¼ MB0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Q0� þ �2
L2

q
’ MQ0� ¼ MB�1=3 ¼ MB�4=3

: (A4)

In the elementary/composite basis, the Yukawa Lagrangian reads

LYUK ¼ Y�UTrf �QH g ~T þ Y�DTrf �Q0H g ~Bþ H:c:

¼ Y�Uf �T
y
0
~T þ �T2=3
0

~T þ �T5=3

þ ~T � �B
� ~Tg þ Y�Df �B�1=3


y
0
~Bþ �B0
0

~Bþ �T0
þ ~B� �B�4=3

� ~Bg þ H:c:

(A5)

After field rotation to the mass eigenstate basis, before EWSB, LYUK reads as in Eq. (A10).
After the EWSB, the top and bottom masses arise as
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mt ¼ vffiffiffi
2

p Y�Us1sR; (A6)

mb ¼ vffiffiffi
2

p Y�Ds2sbR: (A7)

We also have electroweak mixings among fermions. The fermionic mass matrices for up and down states read as follows, in
the basis ð�tL �~TL

�T2=3L
�TL

�T0
LÞ ðtR ~TRT2=3RTRT

0
RÞ for the up sector, and in the basis ð �bL �~BL

�B0
L
�B�1=3L

�BLÞ ðbR ~BRB
0
RB�1=3RBRÞ

for the down-type fermions:

Mup ¼

mt �Y�U vffiffi
2

p s1cR 0 0 0

0 M ~T Y�U vffiffi
2

p Y�U vffiffi
2

p �s4Y�U vffiffi
2

p

�Y�U vffiffi
2

p sR Y�U vffiffi
2

p cR MT2=3 0 0

�Y�U vffiffi
2

p c1sR Y�U vffiffi
2

p c1cR 0 MT 0

Y�U vffiffi
2

p ðs1s2 þ c1s3ÞsR �Y�U vffiffi
2

p ðs1s2 þ c1s3ÞcR 0 0 MT0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (A8)

Mdown ¼

mb �Y�D vffiffi
2

p s2cbR 0 0 0

0 M ~B Y�D vffiffi
2

p Y�D vffiffi
2

p Y�D vffiffi
2

p s4

�Y�D vffiffi
2

p sbR Y�D vffiffi
2

p cbR MB0 0 0

�Y�D vffiffi
2

p sbR Y�D vffiffi
2

p cbR 0 MB�1=3 0

�Y�D vffiffi
2

p s3sbR Y�D vffiffi
2

p s3cbR 0 0 MB

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; (A9)

LYUK ¼Y�Uc1cRð �TL

y
0
~TR� �BL


� ~TRÞþY�UcRð �T2=3L
0
~TRþ �T5=3L


þ ~TRÞ�Y�Uðs1s2þc1s3ÞcRð �T0
L


y
0
~TR� �B0

L

� ~TRÞ

�Y�Us1cRð�tL
y
0
~TR� �bL


� ~TRÞ�Y�UsRð �T2=3L
0tRþ �T5=3L

þtRÞþY�Uðs1s2þc1s3ÞsRð �T0

L

y
0 tR� �B0

L

�tRÞ

�Y�Uc1sRð �TL

y
0 tR� �BL


�tRÞþY�Us1sRð�tL
y
0 tR� �bL


�tRÞþY�Uð �TR

y
0
~TL� �BR


� ~TLÞ
þY�Uð �T2=3R
0

~TLþ �T5=3R

þ ~TLÞ�Y�Us4ð �T0

R

y
0
~TL� �B0

R

� ~TLÞþY�DcbRð �B�1=3L


y
0
~BR� �B�4=3L


� ~BRÞ
þY�DcbRð �B0

L
0
~BRþ �T0

L

þ ~BRÞ�Y�DsbRð �B�1=3L


y
0bR� �B�4=3L


�bRÞ�Y�DsbRð �B0
L
0bRþ �T0

L

þbRÞ

�Y�Ds2cbRð �bL
0
~BRþ �tL


þ ~BRÞþY�Ds2sbRð �bL
0bRþ �tL

þbRÞ�Y�Ds3sbRð �BL
0bRþ �TL


þbRÞ
þY�Ds3cbRð �BL
0

~BRþ �TL

þ ~BRÞþY�Dð �B0

R
0
~BLþ �T0

R

þ ~BLÞþY�Uð �B�1=3R


y
0
~BL� �B�4=3R


� ~BLÞ
þY�Ds4ð �BR
0

~BLþ �TR

þ ~BLÞþH:c: (A10)

2. TS10

Fermions rotate from the elementary/composite basis to the ‘‘physical’’ light(SM)/heavy basis as

tan’L1 ¼ �L1

MQ�
� s1

c1
;

(
tL ¼ c1t

el
L � s1T

com
L

TL ¼ s1t
el
L þ c1T

com
L

;

(
bL ¼ c1b

el
L � s1B

com
L

BL ¼ s1b
el
L þ c1B

com
L

; (A11)

tan’R ¼ �R1

M ~Q�
; sR � sin’R; cR � cos’R; tan’bR ¼ �R2

M ~Q�
; sbR � sin’bR; cbR � cos’bR;

(
tR ¼ cRt

el
R � sR ~T

com
R

~TR ¼ sRt
el
R þ cR ~T

com
R

;

(
bR ¼ cbRb

el
R � sbR ~B

com
R

~BR ¼ sbRb
el
R þ cbR ~B

com
R

: (A12)

Physical heavy fermion masses are related to the bare ones as
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8>>>>>>>>>>>><
>>>>>>>>>>>>:

M ~T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

~Q� þ �2
R1

q
¼ M ~Q�

cR

M ~B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

~Q� þ �2
R2

q
¼ M ~Q�

cbR

M ~T5=3 ¼ M ~T05=3 ¼ M ~T0 ¼ M ~B0 ¼ M ~Q�

MT ¼ MB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Q� þ �2
L1

q
¼ MQ�

c1

MT2=3 ¼ MT5=3 ¼ MQ�

: (A13)

In the elementary/composite basis, the Yukawa Lagrangian
reads

L YUK ¼ þY�TrfH �Q ~Q0g þ Y�Trf �QH ~Qg: (A14)

After field rotation to the mass eigenstate basis, before
EWSB, LYUK reads as in Eq. (A19).

After EWSB, the top and bottom masses arise as

mt ¼ v

2
Y�s1sR; (A15)

mb ¼ vffiffiffi
2

p Y�s1sbR: (A16)

The fermionic mass matrices for up and down states read as

follows, in the basis ð�tL �~TL
�T2=3L

�TL
�~T
0
LÞ ðtR ~TRT2=3RTR

~T0
RÞ

for the up sector, and in the basis ð �bL �~BL
�~B
0
L
�BLÞ

ðbR ~BR
~B0
RBRÞ for the down-type fermions:

MTS10
up ¼ Y�

v

2

mt

Y�v2
�s1cR 0 0 �s1

0
M ~T

Y�v2
�1 1 0

sR �cR
MT2=3

Y�v2
0 �1

�c1sR c1cR 0 MT

Y�v2
c1

0 0 �1 1
M ~T0
Y�v2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
;

(A17)

MTS10
down ¼ Y�

vffiffiffi
2

p

mb

Y� vffiffi
2

p �s1cbR �s1 0

0
M ~B

Y� vffiffi
2

p 0 1

0 0
M ~B0
Y� vffiffi

2
p 1

�c1sbR c1cbR c1
MB

Y� vffiffi
2

p

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

(A18)

LYUK ¼ Y�c1cR
1ffiffiffi
2

p ð �TL

y
0
~TR � �BL


� ~TRÞ � Y�cR
1ffiffiffi
2

p ð �T2=3L
0
~TR þ �T5=3L


þ ~TRÞ � Y�s1cR
1ffiffiffi
2

p ð�tL
y
0
~TR � �bL


� ~TRÞ

þ Y�s1sR
1ffiffiffi
2

p ð�tL
y
0 tR � �bL


�tRÞ þ Y�sR
1ffiffiffi
2

p ð �T2=3L
0tR þ �T5=3L

þtRÞ � Y�c1sR

1ffiffiffi
2

p ð �TL

y
0 tR � �BL


�tRÞ

þ Y�
1ffiffiffi
2

p ð �TR

y
0
~TL � �BR


� ~TLÞ � Y�
1ffiffiffi
2

p ð �T2=3R
0
~TL þ �T5=3R


þ ~TLÞ þ Y�ð �T5=3L

y
0
~T5=3R � �T2=3L


� ~T5=3RÞ

þ Y�ð �T5=3R

y
0
~T5=3L � �T2=3R


� ~T5=3LÞ � Y�s1cbRð �bL
0
~BR þ �tL


þ ~BRÞ þ Y�s1sbRð �bL
0bR þ �tL

þbRÞ

� Y�c1sbRð �BL
0bR þ �TL

þbRÞ þ Y�c1cbRð �BL
0

~BR þ �TL

þ ~BRÞ þ Y�ð �BR
0

~BL þ �TR

þ ~BLÞ

þ Y�ð �BR

y
0
~B0
L þ Y� �T2=3R


þ ~B0
LÞY�

1ffiffiffi
2

p ð �TR

y
0
~T0
L þ �BR


� ~T0
LÞ � Y�

1ffiffiffi
2

p ð �T2=3R
0
~T0
L � �T5=3R


þ ~T0
LÞ

þ Y�c1
1ffiffiffi
2

p ð �TL

y
0
~T0
R þ �BL


� ~T0
RÞ � Y�

1ffiffiffi
2

p ð �T2=3L

y
0
~T0
R � �T5=3L


þ ~T0
RÞ � Y�s1

1ffiffiffi
2

p ð�tL
y
0
~T0
R þ �bL


� ~T0
RÞ

þ Y�ð �T5=3R
0
~T0
5=3L � �TR


� ~T0
5=3LÞ:þ Y�c1ð �BL


y
0
~B0
R � �TL


� ~T0
5=3RÞ � Y�s1ð �bL
y

0
~B0
R � �tL


� ~T0
5=3RÞ

þ Y� �T2=3L

þ ~B0

R þ Y� �T5=3L
0
~T0
5=3R þ H:c: (A19)

APPENDIX B: BOUND DERIVATION

The SM prediction and the experimental measurement
[26] of the b ! s� branching ratio are, respectively,

BR th ¼ ð315
 23Þ10�6; (B1)

BR ex ¼ ð355
 24
 9Þ10�6: (B2)

The b ! s� decay rate is

�tot / jC7ð�bÞj2 þ jC07ð�bÞj2
	 jCSM7 ð�bÞ þ CNP

7 ð�bÞj2 þ jC0NP7 ð�bÞj2: (B3)

If we consider only the C7 contribution, we obtain

�tot

�SM

¼ 1þ 2
ReðCSM7 ð�bÞ�CNP7 ð�bÞÞ

jCSM7 ð�bÞj2
þOð�C27Þ: (B4)

For �b ¼ 5 GeV, �W ¼ MW , �S ¼ 0:118, the SM con-
tribution to C7 at the scale �b reads [25]
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CSM
7 ð�bÞ ¼ 0:695CSM

7 ð�WÞ þ 0:086CSM
8 ð�WÞ

� 0:158CSM
2 ð�WÞ

¼ �0:300: (B5)

The scaling factor of the NP contribution to C7 from the
scale �W to the scale �b is

CNP7 ð�bÞ ¼
�
�Sð�WÞ
�Sð�bÞ

�16
23
CNP7 ð�wÞ ¼ 0:695CNP7 ð�wÞ: (B6)

By considering all the previous equations, we obtain at
95% C.L.

� 0:0775< CNP7 ð�wÞ< 0:0226:

The scaling factor of the NP contribution to C7 from the
scale m� ¼ 1 TeV to the scale �W is

CNP7 ð�WÞ ¼
�
�Sðm�Þ
�SðmtÞ

�16
21

�
�SðmtÞ
�Sð�WÞ

�16
23 ’ 0:79CNP7 ðm�Þ; (B7)

and we obtain at 95% C.L.

� 0:0978< CNP7 ðm�Þ< 0:0284:

If we consider only the C07 contribution, we obtain

�tot

�SM

’ 1þ jC0NP7 ð�bÞj2
jCSM7 ð�bÞj2

: (B8)

We have

C0
7ð�bÞ ’ C0NP

7 ð�bÞ ¼
�
�Sðm�Þ
�SðmtÞ

�16
21

�
�SðmtÞ
�Sð�bÞ

�16
23
C0NP7 ðm�Þ

’ 0:55C0NP7 ðm�Þ: (B9)

By considering Eqs. (B1), (B2), and (B7)–(B9), we obtain
at 95% C.L.

jC0NP7 ð�wÞj< 0:294; jC0NP7 ðm�Þj< 0:372:

APPENDIX C: CHARGED HIGGS ULTRAVIOLET
CONTRIBUTION TO b ! s� IN THE TS5

H eff
charged Higgs ¼

ie

8�2

ð2� � pÞ
M2

w

kcharged

�
Vts

�bð1� �5Þs

þ ms

mbVts

�bð1þ �5Þs
�
; (C1)

where

kcharged 	
X4
i¼1

ðj�ðiÞ
1 j2 þ j�ðiÞ

2 j2Þmb

�
� 2

9

�
M2

w

m2
�ðiÞ

þX4
i¼1

ð�ðiÞ�
1 �ðiÞ

2 Þm�ðiÞ
�
� 5

6

�
M2

w

m2
�ðiÞ

; (C2)

the index i runs over the four up-type heavy fermions of the

model uðiÞ,m�ðiÞ denotes the physical mass of the uðiÞ heavy
fermion, and the �ðiÞ

1 , �ðiÞ
2 coefficients derive from the

following interactions:

L 
 �uðiÞ½�ðiÞ
1 ð1þ �5Þ þ �ðiÞ

2 ð1� �5Þ�bHþ þ H:c: (C3)

After the EWSB, we diagonalize the up-type quarks
mass matrix of Eq. (A8) and the down-type one of

Eq. (A9) perturbatively in x � ð Y�vffiffi
2

p
m�
Þ, neglecting Oðx2Þ.

We find the following coefficients:

�ð ~TÞ
1 ¼ vY2�s1s2sbR

M2
TM

3
~T
þM2

T0M3
~T
�M5

~T
þ cRM

3
TM

2
T0c1

4MTM ~TðM2
T �M2

~T
Þð�M2

T0 þM2
~T
Þc1

; �ð ~TÞ
2 ¼ Y�s1cR

2
ffiffiffi
2

p ; �ðTÞ
1 ¼ Y�s1s2sbRM2

T0

2
ffiffiffi
2

p
c1ðM2

T0 �M2
TÞ
;

�ðTÞ
2 ¼ vY2�s1

4

�
cRM ~T þ c1c

2
RMT

M2
T �M2

~T

þ c1s
2
R

MT

�
; �ðT0Þ

1 ¼ � sbRY�
2

ffiffiffi
2

p ;

�ðT0Þ
2 ¼ Y2�vs2

4

s21cRM ~BM ~TMTM
2
T0 þ s21c1c

2
RM ~BM

2
TM

2
T0 þ c1ðM2

T0 �M2
~T
ÞðM3

T0cbR þM2
Tðs21s2RM ~B � cbRMT0 ÞÞ

c1M ~BMT0 ðM2
T0 �M2

TÞðM2
T0 �M2

~T
Þ : (C4)

The heavy fermion T2=3 gives a contribution of Oðx2Þ to kcharged, and we can neglect it. Considering Eq. (C2) and the

coefficients in Eq. (C4), and again neglecting Oðx2Þ terms, we obtain

kcharged ¼ �mbM
2
WY

2�
�15M2

TMT0M2
~T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2bR

q
þM ~Bð15M2

T0M2
~T
s21s

2
R þM2

Tð11M2
T0s21ð�1þ s2RÞ þM2

~T
ð4s2bR þ 15s21s

2
RÞÞÞ

144M ~BM
2
TM

2
T0M2

~T

and

kcharged 	 mbM
2
WY

2�
5

48

1

MB0M ~B

þOðs21Þ þOðs2bRÞ; (C5)

if we can neglect Oðs21Þ.

NATASCIA VIGNAROLI PHYSICAL REVIEW D 86, 115011 (2012)

115011-18



APPENDIX D: ULTRAVIOLET CONTRIBUTION

Summing up, we find the following in the TS5 model:

kneutral ¼ �mbM
2
WY

2�
1

8

�
cbR

MB0M ~B

� 7

18

s2bR
M2

B0

�
¼ �mbM

2
WY

2�
1

8

1

MB0M ~B

þOðs2bRÞ

kcharged ¼ mbM
2
WY

2�
5

48

1

MB0M ~B

þOðs21Þ þOðs2bRÞ

and in the TS10 model:

kneutral ¼ mbM
2
WY

2�
7MTM

2
T0s21 � 18M ~BM

2
~B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s21

q
þM2

~B
ð7MBs

2
1 � 18M ~B0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s21

q
Þ

288M2
~B
MBM

2
~B0

þOðsbRÞ

¼ �mbM
2
WY

2�
1

16

�
1

MBM ~B

þ 1

MBM ~B0

�
þOðs21Þ þOðsbRÞ;

kcharged ¼ mbM
2
WY

2�
�
5

48

1

MBM ~B

þ 5

48

1

MBM ~B0
þ 5

96

s2R
M2

B

�
þOðs21Þ þOðs2bRÞ:
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