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We propose an attractor mechanism which generates the more minimal supersymmetric standard model

from a broad class of supersymmetry breaking boundary conditions. The hierarchies in the fermion

masses and mixings are produced by the same dynamics and a natural weak scale results from gaugino

mediation. These features arise from augmenting the standard model with a new SUð3Þ gauge group under
which only the third generation quarks are charged. The theory flows to a strongly interacting fixed point

which induces a negative anomalous dimension for the third generation quarks and a positive anomalous

dimension for the Higgs. As a result, a split-family natural spectrum and the flavor hierarchies are

dynamically generated.
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I. INTRODUCTION AND SUMMARY

The stability of the electroweak scale and the hierarch-
ical structure of the fermion masses and mixing angles are
two of the central mysteries of the standard model (SM). It
is possible that these puzzles are explained by the same
underlying mechanism. One approach is to supersymme-
trize the SM and augment it with a new strongly interacting
gauge theory. Supersymmetry tames the quadratically
divergent contributions to the Higgs mass while the strong
dynamics can yield a parametric suppression of the first
and second generation Yukawa couplings. Various realiza-
tions of this possibility have been proposed so far, includ-
ing single sector models [1], models of superconformal
flavor [2,3], warped extra-dimensional realizations [4], and
theories based on deconstruction [5].1

For some of these constructions, the dynamics which
gives rise to the flavor textures also produces an inverted
squark hierarchy, where the lightest SM fermions have the
heaviest sfermion partners. This provides a microscopic
realization of the more minimal supersymmetric SM of
Ref. [7], which was motivated by considerations of natural-
ness and flavor constraints. The phenomenology of these
models has been studied thoroughly in e.g., Ref. [8].
Furthermore, the recent LHC bounds on first and second
generation squark masses [9] together with attempts to
minimize fine-tuning have reinvigorated interest in the
phenomenology and collider signatures of such natural
supersymmetry spectra [10,11].

In this work, we will present a new model to explain the
flavor hierarchies which simultaneously yields the natural
supersymmetry spectrum and radiative electroweak sym-
metry breaking (REWSB). This will be accomplished by
adding a new strongly coupled conformal sector to the
minimal supersymmetric standard model (MSSM). We

will show that starting from rather generic supersymmetry
breaking boundary conditions (with some assumptions
on certain approximate global symmetries), the infrared
theory after escaping from the conformal regime is the
more minimal supersymmetric SM.
TheMSSM fields are weakly coupled both in the UVand

in the IR. The conformal dynamics will generate order one
negative anomalous dimensions for the third generation
fields once the theory becomes strongly coupled.2 Negative
anomalous dimensions are only possible if the third
generation is charged under this new gauge group—the
unitarity bound on dimensions only applies to gauge
invariant operators. The third generation Yukawa cou-
plings are marginal operators in the conformal field theory
(CFT). These marginal Yukawa couplings will induce a
large positive anomalous dimension for the Higgs field.
Hence, the remaining Yukawas become irrelevant defor-
mations. It will be shown that this structure can lead to
viable flavor hierarchies. Additionally, the strong dynamics
will suppress soft masses for the third generation squarks
and Higgs fields. Below the exit scale, these will be regen-
erated by gaugino mediation [12]. The model acts as an
attractor for the more minimal supersymmetry spectrum
and REWSB.
The goal of this work is to analyze the simplest

realization of this mechanism and its main dynamical
consequences. The gauge group is SUð3ÞCFT � SUð3ÞX �
SUð2ÞW �Uð1ÞY where SUð3ÞCFT will flow to a strongly
coupled fixed point, SUð3ÞX is weakly coupled, and
SUð2ÞW �Uð1ÞY are as in the MSSM. The third generation
quark superfields transform under SUð3ÞCFT. The first and
second generations transform under SUð3ÞX. The SUð3Þ
groups are connected by bifundamental link fields. With

1For some other models which connect the supersymmetry
breaking spectrum and flavor, see Ref. [6].

2This differs from previously studied constructions, which
relied on large positive anomalous dimensions for the first two
SM generations. This can result from compositeness or local-
ization in the IR region of a Randall-Sundrum throat.
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this matter content, SUð3ÞCFT is in the conformal window
[13]. The link fields eventually acquire a nonzero expec-
tation value causing an exit from the conformal regime;
this also breaks SUð3ÞCFT � SUð3ÞX ! SUð3ÞC, giving
rise the visible color interactions.3 This structure is sum-
marized in Fig. 1.

The rest of this paper is organized as follows. Sec. II
describes the basic mechanism and its implications for the
spectrum of soft masses and the flavor hierarchies. In
Sec. III, we discuss the low energy phenomenology,
including some general remarks about the spectrum and
the Higgs sector. We also provide some concrete example
spectra. Our conclusions and future directions are pre-
sented in Sec. IV.

II. THE MODEL

We begin by describing the model of Fig. 1. For
simplicity, we will ignore the leptons, which do not affect
our discussion other than to ensure anomaly cancellation.
The matter content and charge assignments are given in
Table I. The third generation quarks are charged under
SUð3ÞCFT, while the first two generations are charged under
SUð3ÞX. The bifundamental link fields are denoted by �

and ��. The field A is an adjoint plus a singlet of SUð3ÞX.
The superpotential will be chosen so that the F term for A

forces h�i ¼ h ��i � 0. This will cause an escape from the
conformal regime while also giving masses to the bifunda-
mentals. The superpotential contains the following relevant
terms:

W � Q3Hu �u3 þQ3Hd
�d3 þ�A ��þW

Uð1Þ: (1)

Contractions over gauge indices are implicit.W
Uð1Þ will be

instrumental in breaking some of the Abelian symmetries

which can spoil the desired low energy spectrum. We will
discuss this term in detail below.
With this matter content, SUð3ÞCFT has five flavors and

flows to a strongly interacting superconformal fixed point
in the IR. The crossover scale below which this theory
becomes strong is denoted by �CFT. The remaining gauge
groups are IR free and act as spectators to this strong
dynamics. A crucial property of the model is that the third
generation Yukawa couplings appear as relevant interac-
tions in the CFT. The Higgs fields will then also be part of
the CFT—they will receive a positive anomalous dimen-
sion. These couplings, as well as the rest of the interactions
in Eq. (1), will naturally flow to order one values below
�CFT. In contrast, the remaining Yukawas will arise as
irrelevant deformations, resulting in a flavor hierarchy
between the third and first two generations.
If we do not add extra fields, this matter content spoils

gauge coupling unification. However, there are no issues
with Landau poles up to the grand unified theory scale, and
one could imagine UV completing the model using full
SUð5Þ representations. We will come back to this point
briefly in Sec. IV, while here we continue to focus on this
minimal realization.
The energy scales in our model are as follows, see Fig. 2.

At the messenger scale M, soft supersymmetry breaking
operators are generated. The supersymmetry breaking
mechanism and mediation can be arbitrary, up to certain
assumptions on global symmetries which we describe

FIG. 1. The model presented here is given by an SUð3ÞX �
SUð3ÞCFT quiver gauge theory. The node SUð3ÞCFT flows to an
interacting fixed point and provides the necessary dynamics for
generating flavor and an attractor mechanism for natural super-
symmetry. SUð3ÞX is IR free. The bifundamental link fields �
and �� break the group to the diagonal visible SUð3ÞC, providing
an exit from the conformal regime.

FIG. 2. The relevant scales for our model.

TABLE I. The particle content and charge assignments for
the MSSM quark and CFT sectors. The subscripts denote gen-
eration assignments, and the leptons are charged as in the
MSSM. The visible color gauge group is a diagonal subgroup
of SUð3ÞCFT � SUð3ÞX.

SUð3ÞCFT SUð3ÞX SUð2ÞW Uð1ÞY
Q3 h 1 h 1=6
�d3 �h 1 1 1=3
�u3 �h 1 1 �2=3
Hu 1 1 h 1=2
Hd 1 1 h �1=2
� h �h 1 0
�� �h h 1 0

A 1 1þ adj 1 0

Q2;1 1 h h 1=6
�d2;1 1 �h 1 1=3
�u2;1 1 �h 1 �2=3

3The super top color model of Ref. [14] utilizes a similar group
structure and matter content. However, unlike models of top
color (see Ref. [15] for a review), the mechanism studied in this
work does not utilize top condensation to break electroweak
symmetry.
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below. The scaleM could be above or below �CFT, but the
physical soft masses should be smaller than �CFT so
that the superconformal dynamics dominate. At a scale
v <�CFT, we exit the CFT regime. This is done super-
symmetrically by adding

W � �v2TrA; (2)

to Eq. (1). This new scale can be generated dynamically
as explained in Ref. [16]. The link fields acquire an

expectation value h� ��i ¼ v2, which breaks SUð3ÞCFT �
SUð3ÞX ! SUð3ÞC. The visible gauge coupling becomes

1

g2C
¼ 1

g2X
þ 1

g2CFT
; (3)

which is dominated by g2X ’ g2C. We assume that the exit

from the conformal regime happens quickly, such that at
energy scales E< v, a perturbative description is valid. As
we show below, the weak scale mW < v is radiatively
generated. We note that, in contrast with composite mod-
els, here, the MSSM fields are weakly coupled both in the
UV (above �CFT) and in the IR (below the exit scale).

A. An attractor for natural supersymmetry

In this section, we will analyze the conformal regime
and how it affects the soft masses. For more details, see
Ref. [17] and the references therein. We will first neglect
the effects from the weakly interacting gauge groups and
the first two generations. This corresponds to setting
gSM ! 0 and ignoring mixings from Yukawa couplings.
We will then show that such effects amount to small finite
corrections.

Our main dynamical assumption is that the fixed point is
stable, which means that small perturbations of the cou-
plings away from their fixed point value are irrelevant.
Equivalently, the matrix @�i=@yj must be positive definite,

where yi are the couplings of the theory and �i are the
corresponding beta functions. With this assumption, all the
physical couplings flow to their fixed point values, and
their higher � components flow to zero. This can be seen
by promoting the couplings to background superfields. One
implication is that all soft supersymmetry breaking terms
associated with relevant couplings are highly suppressed
by the conformal dynamics.4

To understand the consequences for our model, consider
a relevant superpotential interaction

W � �
Y
i

�ni
i ; (4)

for superfields �i and positive integers ni. The physical
coupling is

�phys ¼ �
Y
i

ðZni
�i
Þ�1=2; (5)

where the Z�i
are the wave function renormalizations for

the superfields �i and encode the soft masses as their �4

components. As �phys flows to its fixed point value, its �4

component flows to zero. Equivalently, this implies that the
combination of soft massesX

i

ni ~m
2
i ; (6)

flows to zero at the fixed point, where ~mi is the soft mass
for�i. Since the �

2 component also flows to zero, the same
conclusion holds for the a terms.
Similarly, promoting the gauge coupling to a superfield

implies that the CFT gaugino mass and

X
r

dimðrÞTr ~m
2
r (7)

are also suppressed by the CFT dynamics. Here, the
field �r has index Tr under the gauge group, e.g., TðhÞ ¼
1=2, and dimðrÞ is the dimension of �r for a fixed gauge
index.
As we mentioned above, we assume that the CFT is IR

attractive, which means that the eigenvalues �i of the
matrix @�i=gj are positive and, generically at a strongly

coupled fixed point, order one. The previous soft parame-
ters are then suppressed by a power law ð �

�CFT
Þ�i , where� is

the renormalization group (RG) scale. This effect can
be seen explicitly in weakly coupled examples such as
the Wilson-Fisher fixed point. Below, we will take into
account the small contributions from the perturbative SM
couplings.
On the other hand, due to the nonrenormalization of

conserved currents, combinations of soft masses propor-
tional to conserved Uð1Þ symmetries,

X
i

dimðiÞqi ~m2
i (8)

are not renormalized by the strong dynamics. Here, qi
denotes the Uð1Þ charge. This effect will be an important
constraint on the viability of obtaining the more minimal
supersymmetric SM.
Our goal is to use the conformal dynamics to suppress

the soft masses for the third generation squarks and Higgs
fields, which is essentially the idea of conformal seques-
tering [19]. We must explicitly break some of the non-
anomalous global Uð1Þ symmetries. Otherwise, Eq. (8)
shows that they would lead to unsuppressed tachyonic
soft masses. We accomplish this with the term W

Uð1Þ in
the superpotential of Eq. (1). As a concrete example, let us
investigate a specific choice:

W
Uð1Þ ¼ ðQ3 �u3ÞðQ3

�d3Þ: (9)
4For a model which uses this mechanism to suppress the Higgs

soft mass, see Ref. [18].
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In this theory, the superconformal R charges are uniquely
determined in terms of symmetries and anomaly cancella-
tion. The anomaly-free Abelian symmetries are given in
Table II.

One can verify self-consistently that all terms in the
superpotential in Eq. (1) have R charge 2 at the fixed point.
The remaining first and second generation fields decouple
from the strong dynamics; they are neutral under the non-R
symmetries and are (approximately) free fields.

It is useful to explain in more detail how the flow to this
fixed point proceeds, starting from the UV free theory. In
the UV, the cubic terms in the superpotential are classically
marginal, but the quartic symmetry breaking term is clas-
sically irrelevant. In terms of the canonical UV fields,
W

Uð1Þ ¼ 1
M�

ðQ3 �u3ÞðQ3
�d3Þ, where M� is some large mass

scale. First, consider the limit M� ! 1. The resulting
theory is supersymmetric QCD with extra singlets and
cubic superpotential deformations (SSQCD). Below the
strong coupling scale for this model �SSQCD, the theory

flows to a superconformal fixed point. This CFT can be
studied using a maximization [20]; we find that the super-

conformal R charges of Q3 and ð �u3; �d3Þ are 2=3� ffiffiffiffiffiffiffiffi
2=7

p
.

The cubic interactions are then relevant perturbations of
the free fixed point, driving the theory to the nontrivial
SSQCD fixed point.

Next, we can add the quartic superpotential, taking
M�=�SSQCD large but finite. The theory first flows close

to the SSQCD fixed point which we just described.
According to the previous R charges, in this regime, the
quartic operator ðQ3 �u3ÞðQ3

�d3Þ is relevant. So for any non-
zero value of M�=�SSQCD, it will drive the theory away

from the SSQCD fixed point. The crossover scale �CFT at
which such effects become important is of order �3�4�

CFT �
�4�4�

SSQCD=M�. Below this scale, the fixed point value of the

quartic coupling is order one irrespective of the initial M�,
and we recover the CFT with the R charges given in
Table II. We note that for larger M�, it takes longer to
flow to this fixed point; however, since the fixed point
values are always order one, the Uð1Þ symmetry breaking

term will suppress the unwanted soft masses as long as
~m<�CFT.

5

Having analyzed the RG (RG) evolution toward our
fixed point, let us return to the behavior of the soft parame-
ters. The only combinations of soft masses which are not
suppressed as the fixed point is approached are

~m2
� � ~m2

��

2 ~m2
Q3

� ~m2
�u3
� ~m2

�d3

~m2
Hu

� ~m2
Hd

þ ~m2
�d3
� ~m2

�u3
:

(10)

This implies that for arbitrary UV boundary conditions, the
model does not fully sequester soft masses. However, if the
supersymmetry breaking mechanism preserves approxi-
mate charge conjugation and custodial symmetries, then
the contributions from Eq. (10) are negligible at the mes-
senger scale and are not generated by the strong dynamics.
This is the case in minimal gauge mediation [22], where
at the messenger scale, the first difference in Eq. (10)
vanishes identically, while the linear combinations in the
second and third lines are much smaller than each of their
respective terms. These combinations can also be sup-
pressed by going beyond minimal gauge mediation or in
gravity mediation by imposing discrete symmetries.
As we noted before, this analysis neglects effects from

the weakly interacting sector of the theory. The first two
generations and the SM gauginos continuously feed
supersymmetry breaking contributions to the CFT fields,
giving rise to driving terms in the beta functions for the
CFT superfield couplings. However, these supersymmetry
breaking effects are much smaller than the soft masses of
the first two generation sfermions and gauginos, since the
CFT couples to such fields only through irrelevant inter-
actions. Specifically, they are suppressed by loop factors
and by SM gauge couplings or Yukawa interactions. These
corrections will be taken into account in Sec. III.
Hence, under the assumption that the supersymmetry

breaking mechanism (approximately) respects the above
symmetries, the strong conformal dynamics fully sup-
presses the soft masses of the third generation quarks and
Higgs fields, up to small corrections from the weakly
coupled sector. It would be interesting to modify the model
to accomplish a complete sequestering without having to
assume these symmetries, e.g., by adding new flavors and
turning on different deformations. Some of these possibil-
ities will be discussed briefly in Sec. IV.
Finally, at the scale v, we exit the conformal regime.

This happens in an approximately supersymmetric way
and does not lead to appreciable finite corrections for the
soft parameters. Therefore, the theory at energies below v

TABLE II. The global anomaly-free Uð1Þ symmetries for the
model given by Eq. (1) with the Uð1Þ breaking superpotential in
Eq. (9). The charge assignments for the gauged symmetries are
given in Table I.

Uð1Þ1 Uð1Þ2 Uð1Þ3 Uð1ÞR
Q3 1 0 0 1=2
�u3 �1 �1 0 1=2
�d3 �1 1 0 1=2
Hu 0 1 0 1

Hd 0 �1 0 1

� 0 0 1 1=3
�� 0 0 �1 1=3
A 0 0 0 4=3

5This analysis does not conflict with the results of Ref. [21]
since ðQ3 �u3ÞðQ3

�d3Þ is not a chiral primary operator at the fixed
point with superconformal R charges given in Table II. We thank
Dan Green for discussions on this point.
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is the weakly coupled MSSM with the soft masses for the
third generation fields and Higgses suppressed with respect
to the first two generations and the gauginos. The third
generation squark masses are then regenerated by gaugino
mediation [12], which in turn can drive the up-type Higgs
soft mass squared negative. Starting from generic super-
symmetry breaking mechanisms, the CFT acts an attractor
for realizing the natural supersymmetry spectrum of the
more minimal supersymmetric SM. The resulting phe-
nomenology will be studied in Sec. III.

B. Generating the flavor hierarchies

Starting from the pioneering work of Nelson and
Strassler [2], it has been understood how CFT dynamics
can generate the flavor hierarchies at low energies from
arbitrary order one Yukawas in the UV. We will explain
how this works in the context of our construction. The
model presented here differs from previous models of
compositeness/superconformal flavor since the third gen-
eration superfields have negative anomalous dimensions.

Above the dynamical scale �CFT, the renormalizable
Yukawa couplings are

W � Yu
ijQiHu �uj þ Yd

ijQiHd
�dj þ Yu

33Q3Hu �u3

þ Yd
33Q3Hd

�d3; (11)

where i, j ¼ 1, 2 and all the coefficients are taken to be
order one. Renormalizable mixing terms between the third
generation and the first two are forbidden by gauge invari-
ance. They will be generated by irrelevant operators as we
explain below.

The third generation Yukawas are relevant in the CFT
regime. Below�CFT, they flow to order one fixed values. In
contrast, the first two generation Yukawas become irrele-
vant because the Higgs fields acquire positive anomalous
dimension. For energies v < E<�CFT, we find

6

Yu
ijðEÞ ¼

�
E

�CFT

��Qi
þ�uj

þ�Hu
2

Yu
ijð�CFTÞ; (12)

and a similar expression for Yd. Defining the ratio between
the exit scale and dynamical scale

� � v

�CFT

; (13)

the suppression in the first two generation Yukawas at the
exit scale becomes

YijðvÞ ¼ �
�H
2 Yijð�CFTÞ � Y33ðvÞ: (14)

We have neglected the perturbative anomalous dimensions
for the first two generations. This dynamically generates a

hierarchy between the first/second and the third generation
Yukawa couplings.
Next, we consider the off-diagonal Yukawa interactions

between the third and first/second generations. The lowest
dimension operators allowed by gauge invariance are of the
form

W � 1

��
��Q3Hu �u1;2 þ 1

��
Q1;2Hu��u3 þ . . . ; (15)

where �� is the scale at which these operators are gener-
ated. These lead to off-diagonal Yukawas after setting

h� ��i ¼ v2 at the exit scale. The RG evolution between
�CFT and v yields

Yu
i3ðvÞ ¼

v

��
�

�Hu
þ�Q3

þ� ��
2 ; Yu

3iðvÞ ¼
v

��
�

�Hu
þ�u3

þ��
2 :

(16)

Note that the theory near the UV free fixed point con-
tains two types of classically irrelevant operators: the Uð1Þ
symmetry breaking term Eq. (9) and the interactions
Eq. (15). However, their IR fate is very different. As we
showed before, the interaction W

Uð1Þ becomes relevant in

the IR, driving the theory to a strongly coupled fixed point
(where it becomes order one), while Eq. (15) is irrelevant
along the whole flow toward the fixed point. Such irrele-
vant perturbations do not modify the RG flow or the
suppression of soft parameters. They become marginal
only after the exit of the conformal regime.
Combining these results, we obtain the following the

Yukawa textures at v:

Yu �
�

�Hu
2 �

�Hu
2 �Q�

�Hu
2

�
�Hu
2 �

�Hu
2 �Q�

�Hu
2

�u�
�Hu
2 �u�

�Hu
2 1

0
BBBB@

1
CCCCA; (17)

with � � 1 defined in Eq. (13) and

�Q � v

��
�

� ��
þ�Q3
2 ; �u � v

��
�

��þ� �u3
2 : (18)

A similar expression holds for Yd. Choosing �� below
the dynamical scale of the CFT and requiring negative
� �� þ �Q3

and � �� þ � �u3 (as is the case in our model) gives

�Q;u * 1.
For the model with the superpotential given in

Eq. (9), the anomalous dimensions which determine the
Yukawa couplings are �Hu

¼ �Hd
¼ 1 and �Q3

þ � �� ¼
� �u3 þ �� ¼ �3=2. The flavor hierarchies between the

third and second generations can be generated when

v

�CFT
� 10�4;

��
�CFT

� 10�1–10�2: (19)

This model does not explain why the first generation
Yukawa is smaller than the second generation one.
However, this additional small Yukawa could arise by an

6The anomalous dimension is defined as � ¼ 1þ �=2. For
chiral primary operators, it is related to the superconformal R
charge by � ¼ 3R� 2.
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accidental degeneracy of Eq. (17), or by approximate
flavor symmetries as in Ref. [23]. We have checked that
by scanning over order one coefficients, we can reproduce
the quark spectrum and the Cabibbo-Kobayashi-Maskawa
matrix to a good approximation.

This ends the general analysis of our mechanism. The
rest of the work is devoted to a study of its phenomeno-
logical consequences.

III. LOW ENERGY PHENOMENOLOGY

Having explained the main features of our mechanism,
we will now analyze the properties of the spectrum and
Higgs sector and the parameter ranges which lead to a
realistic low energy phenomenology.

A. General properties of the spectrum

In this section, we discuss the features of the low energy
spectrum in models which use the dynamics described in
Sec. II. Supersymmetry breaking is communicated to the
MSSM at the messenger scale M, where the operators

c2~f

Z
d4�

XyX
M2

�y
SM�SM; c~g

Z
d2�

X

M
W �W �; . . .

(20)

are generated, where X is a supersymmetry breaking spu-
rion with hXi � �2F, �SM is an MSSM matter superfield,
W � is the field strength for an MSSM gauge group, and
the factors of c are model dependent coefficients. These
terms give sfermion and gaugino masses which are deter-
mined by the F term of X. Supersymmetry breaking is
external to the dynamics described in Sec. II, and we do not
constrain the soft UV boundary values, up to the assump-
tions on approximate symmetries required to suppress the
differences given in Eq. (10).

Typically, in concrete models of supersymmetry break-
ing, the sfermion masses at the messenger scale are com-
parable for the three generations. On the other hand,
sfermion and gaugino masses need not arise at the same
order in F=M. This happens in many known cases. For
instance, an approximateR symmetry or gaugino screening
(which occurs for a wide class of gauge mediated models
[24]) can lead to subleading gaugino masses. We will
assume that gauginos are around the TeV scale. In princi-
ple, the sfermions can be much heavier at the messenger
scale, but we do require that

~mf � c~f

F

M
� �CFT; (21)

so that the conformal dynamics will be relatively
unperturbed.

Generic sfermion masses will lead to flavor changing
neutral currents (FCNCs). In our setup, flavor problems
can be somewhat alleviated by having heavy enough sfer-
mions, while also imposing some degree of degeneracy

between the first two generations.7 In this case, ~mf1;2 *

Oð10 TeVÞ avoids dangerous FCNCs. On the other hand,
there is a limit on how heavy the first two generations can
be so that the third generation sfermion masses do not
become tachyonic [25]. To account for this constraint, we
include the dominant 2-loop contributions from the heavy
states in the analysis of Sec. III C. It would also be inter-
esting to study models where the CFT dynamics alleviates
such tachyonic contributions, allowing a more complete
decoupling of the first two generation sfermions.
Once we enter the conformal regime, the soft masses for

the third generation sfermions and Higgs fields are renor-
malized by the strong dynamics as described in Sec. II,
while the first two generation sfermions and gauginos are
not appreciably modified. When evaluating the running of
the soft parameters in the conformal regime, we must
consider that gauginos and first/second generation fields
are continuously feeding supersymmetry breaking contri-
butions into the third generation and Higgs fields [17]. For
most of the viable parameter space, the dominant contri-
bution comes from the gauginos, leading to finite contri-
butions

~m 2
CFT �

g2X
16	2

jM3j2; (22)

where M3 is the MSSM gluino mass and gX is the gauge
coupling of the weakly interacting SUð3ÞX.
After escaping the conformal regime, we find a soft

spectrum with ~m1;2 �O (few TeV), M3 �Oð1 TeVÞ,
and small masses for the third generation squarks and
Higgs fields. The masses for the light fields are then
predominantly regenerated by gaugino mediation [12] be-
tween v and the electroweak scale. The gauginos drive the
stop mass to positive values. For v * 50 TeV, this makes
the up-type Higgs tachyonic and triggers electroweak
symmetry breaking. The RG evolution will be studied
explicitly below.

B. Comments on the Higgs sector

Next, we discuss the interplay between theMSSMHiggs
sector and our model. First, we consider the supersymmet-
ric Higgs mass� and the bilinear supersymmetry breaking
Higgs mass b�. Our model contains a solution to the �

problem via the irrelevant interaction

W � 1

��

� ��HuHd: (23)

(The tree level � term W � HuHd can be forbidden by
symmetries). The operator in Eq. (23) can be generated by
the same mechanism which produces the off-diagonal
Yukawas in Eq. (15). This is another interesting connection

7This is satisfied automatically if the mediation mechanism is
flavor-blind.
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between flavor textures and the Higgs sector. Assuming
this occurs,�� ���, and no new scale is needed.8 Taking

into account the CFT suppression, the � term at the exit
scale becomes

� ¼
�
v

��
��Hþ��

�
v: (24)

In this approach, b� is zero at v and is generated radia-

tively as we run down to the weak scale. In the leading log
approximation,

b� ’ � 1

16	2
�

�
6g2WM2 þ 6

5
g2YM1

�
log

�
v

mW

�
; (25)

where M1 is the bino mass and M2 is the wino mass. This
solution to � and b� can lead to REWSB.

For our model, �H þ �� ¼ 0. Requiring �� 100 GeV
and using the approximate values in Eq. (19),

v� 100 TeV;

�� � 104–105 TeV; and

�CFT � 106 TeV:

(26)

While this is an attractive solution to the � problem, when
coupling our mechanism to a specific supersymmetry
breaking model, there could be additional dynamics which
explains�=b�. In this case, it is not necessary to introduce

Eq. (23), and the scales, Eq. (26), could be different.
We now discuss the physical Higgs mass. Below the exit

scale, the gluino mass will drive the stop mass positive,
which in turn contributes negatively to ~m2

Hu
. As long as the

bino and wino masses are not too large, this will trigger
electroweak symmetry breaking. Models with unified gau-
ginos provide an example of successful REWSB. The
down-type Higgs soft mass will be generated though a
combination of competing effects from the sbottom and
the heavy first/second generations (which drive it nega-
tive), and the bino and wino (which drive it positive).

Since the mechanism described in this work yields light
stops and negligible a terms, there is tension with a physi-
cal Higgs mass of order 125 GeV, as currently hinted at by
the LHC [26]. Thus, a realistic model must include an
additional source to raise the physical Higgs mass. In the
simplest version of our construction, a next to minimal
supersymmetric standard model (NMSSM) type extension
does not solve this problem because the CFT makes the
interaction W � SHuHd (with S the extra singlet in the
NMSSM) irrelevant. This leads to a negligible increase in
the physical Higgs mass. One option beyond singlet ex-
tensions would be to add nondecoupling D terms [27]
below the exit scale. While we do not attempt to embed
this or other mechanisms into our model, we see no

fundamental obstruction. The validity of our conclusions
require that this additional module does not lead to appre-
ciable shifts for any of the soft masses.

C. An example spectrum

In order to perform a concrete analysis, we will work in
the context of a model with unified gaugino masses. We
will also assume that the mediation of supersymmetry
breaking respects custodial symmetry and a charge con-
jugation symmetry betweenQ and �u, �d, i.e., ~m2

Q3
¼ ~m2

�u3
¼

~m2
�d3
. For example, both of these assumptions are well

approximated by models of minimal gauge mediation.
The following analysis demonstrates in a concrete setup
the viability of the mechanism for splitting the third gen-
eration from the first and second. The techniques presented
here can be applied to a wide class of supersymmetry
breaking scenarios.
Given this framework, the spectrum is determined by

choosing a gluino mass and solving the RG equations with
the boundary condition at the scale v which the third
generation and Higgs soft masses are given by Eq. (22).
While there is an incalculable order one coefficient, we
find that such effects are small in the regime of interest. If
we also assume the solution to the � problem proposed in
Sec. III B, the exit scale is fixed at v�Oð100Þ TeV.
The model is then very predictive: all we need to specify
are the messenger scale, gaugino, and first/second genera-
tion masses.
As an example, we find the viable spectrum presented in

Table III, with first/second generation sfermion masses
chosen to be 5 TeV. We have assumed an additional con-
tribution to the Higgs quartic from a coupling gnew so that

m2
Z¼

g2Z
2
ðhHui2þhHdi2Þ!�2�g2Zþg2new

2
ðhHui2þhHdi2Þ;

(27)

in all tree-level MSSM expressions for electroweak
symmetry breaking and the Higgs sector. In our numer-
ical analysis below, we will take � ’ 150 GeV. As dis-
cussed in Sec. III B, this could in principle arise from a

TABLE III. An example set of consistent parameters with the
solution to the � problem given in Eq. (24). We have assumed
gaugino mass unification and to good approximation ~m2

Qi
¼

~m2
ui ¼ ~m2

di
¼ ~m2

i at low energies. We find that the tree-level

value of the Higgs mass is ’ 105 GeV which is consistent
with 125 GeV when loop corrections are taken into account.

v M3 M2 M1

350 TeV 2.5 TeV 1.0 TeV 530 GeV

~m2
3 ~m2

1;2 ~m2
Hu

~m2
Hdð1:2 TeVÞ2 ð5 TeVÞ2 �ð220 GeVÞ2 ð300 GeVÞ2

� b� MA tan�
220 GeV �0:030 GeV2 135 GeV 4.2

8One can also imagine a different discrete symmetry such that
�3HuHd is the lowest dimension operator which could generate
an effective � term.
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nondecoupling D term—we are agnostic about its source
and find that this leads to a small change for all the
parameters except for the physical value of the CP even
Higgs masses. This yields a Higgs mass of 105 GeVat tree
level which (given the stop masses in Table III) will lead to
a mass consistent with 125 GeVonce loop corrections are
taken into account. This point is also consistent with the
relevant experimental bounds considered in Sec. III D be-
low. This demonstrates the viability of our mechanism.

D. Exploring the parameter space

In this subsection, we will briefly explore the possible
range of predictions for the soft mass spectrum. In order to
do this, we will relax the relationship between the � term
and v given in Eq. (24). Noting that in our concrete model
the coupling W � HuHd is exactly marginal at the fixed
point, one can in principle generate � and b� using an

unrelated mechanism at scales above �CFT. We can thus
take v and tan� as free parameters and explore the
resultant phenomenology. In Fig. 3, we have plotted the
low energy values of ~m2

Q3
’ ~m2

u3 ’ ~m2
d3

[black, solid],

mAðwith tan� ¼ 2Þ [red, dashed], and mAðwithtan�¼10Þ
[orange, dotted-dashed] for two choices of v as a function
of the gluino mass. The mass of the A is the only parameter
with a strong dependence on tan�. As in Sec. III C, we
assume that supersymmetry breaking respects ~m2

Q3
¼

~m2
�u3
¼ ~m2

�d3
to a good approximation.

In order to generate this plot, we use the RG equations
for the MSSM to flow from v to the weak scale including
the leading 2-loop contributions from the first and second
generation sparticles which we fix at 5 TeV. It is this choice
which causes the third generation squarks to become
tachyonic for small gluino masses. This is the excluded
region plotted in opaque grey in Fig. 3. The opaque blue
region is excluded due to a lack of REWSB (these
conditions are unchanged from the MSSM). The light
translucent green region is excluded due to the LEP bound
on the A mass9 [28]. This constraint is cut off by the
kinematic reach of LEP for the process eþe� ! hA.
For mh ¼ 125 GeV (115 GeV), this implies that mA *
90 GeV (mA * 100 GeV). As a conservative estimate,
we impose mA > 100 GeV in Fig. 3. We have not included
the bino, wino, and first/second generation soft masses in
Fig. 3 since they are unaffected by our mechanism up to
small effects due to off-diagonal Yukawa couplings and
2-loop diagrams.

The bounds for the tan� ¼ 10 case are M3 >
0:85ð0:92Þ TeV to avoid having tachyonic squarks,
M3 > 1:2ð1:1Þ TeV for REWSB and M3 > 2:1ð1:9Þ TeV
for the A mass, given v ¼ 103ð106Þ TeV. Note that the

LHC also places strong bounds on mA from searches for
ditau resonances [29]. In fact, the LHC excludes the range
120 GeV & mA & 220 GeV for tan� ¼ 10 in the context
of the MSSM (with � ¼ mZ). We do not show these
constraints in Fig. 3 since the excluded regions are for
the tan� ¼ 2 example.
Recall that achieving a Higgs mass of 125 GeV requires

physics beyond the simple model proposed here. Hence,
we will only make a few comments about the mass of the
Higgs. First, we note that A is light in the region of
parameter space with the lightest squarks and gluino,
which can have a nontrivial impact on the mass and cou-
plings of the h. In the pure MSSM, this manifests as a
dependence on both tan� and the Higgs mixing angle� for
the Higgs couplings (for a review, see Ref. [30]). More
generally, the dependence of the Higgs couplings on mA is
model dependent. It would be interesting to develop a
realistic model for the Higgs sector based on our general
mechanism, where this and related questions could be
addressed in detail.
In generating Fig. 3, we took � ¼ 150 GeV, see

Eq. (27); we find only mild sensitivity to the choice of
�. When mA <�, mh ’ mA cosð2�Þ, independent of �.
For the choice tan� ¼ 10, the one-loop corrections from
the stops are approximately of the right size to generate a
Higgs mass of 125 GeV in the allowed window
100 GeV & mA & 120 GeV. For larger values of mA, the
tree-level contribution to the Higgs boson mass would be
set by�, which could be carefully chosen to reproduce the
desired result. Alternatively, one could attempt to alter the
Higgs quartic with a different mechanism than the one
captured by our parameter �.
Since we have a splitting between the first/second and

third generation squarks, we must worry about FCNC
effects induced by rotating the Yukawa matrices of
Eq. (17) to the physical basis. To leading order in �, the

relevant 1–3 and 2–3 mixing is given by 
i3 � ��H=2�,
where 
ij � ~m2

ij=maxð ~m2
ii; ~m

2
jjÞ. Assuming some degree

of degeneracy between the first and second generations,
negligible a terms, and an absence of CP violating phases
(as in minimal gauge mediation), the strongest flavor
bound is from ð
d

13ÞLL¼RR & 5� 10�3 [31]. There are

also potential constraints from b ! s� and Bs ! �þ��
which are sensitive to model dependent choices, such
as details of the chargino sector. Overall, we find no
impediment to accommodating these constraints in our
model.
Finally, let us briefly discuss the contributions to fine-

tuning which result from our mechanism. The problem of
naturalness is related to the question of curvature in the
symmetry breaking direction—it is a one-dimensional
problem for a Higgs field H as in the standard model
with a potential

V ¼ m2
HjHj2 þ �jHj4: (28)

9This exclusion is highly dependent on tan�. Furthermore, one
could imagine a model where Hd is not a part of the CFT. It
would have a large mass, and the model would generically be in
the decoupling limit.
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When hHi � 0, the physical Higgs mass squared
m2

h ¼ �2m2
H. One simple measure of fine-tuning, advo-

cated in Refs. [11,32], is then

��1 � �2

m2

H

m2
h

¼ �2
~m2
Hu

m2
h

; (29)

where in the last equality, we are interested in the contri-
bution to the Higgs soft mass in our model.
In Fig. 4, we have plotted contours of ��1 from our

dynamics in the M3 versus v plane. The most important
assumption from the point of view of fine-tuning is the
gaugino mass spectrum. We have also plotted the region
which is excluded due to tachyonic third generation
squarks in solid grey, a lack of REWSB in solid blue,
and the LEP bound on the A mass for tan� ¼ 2 in trans-
lucent green. We see that there is an allowed region with
��1 ’ Oð10%Þ where v ’ 102 TeV and M3 * 2:5 TeV.
We note that in a complete model which addresses the
physical Higgs boson mass, there may be additional
sources of fine-tuning.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we have presented a mechanism which
acts as an attractor for the more minimal supersymmetric
standard model and radiative electroweak symmetry break-
ing, while also generating the hierarchical structure of
the quark Yukawa matrix. We have presented the simplest
realization, which is accomplished by adding a new SUð3Þ
gauge group under which the third generation quarks are
charged. The model flows to a strongly interacting fixed
point where these quarks acquire order one negative
anomalous dimensions, while the Higgs gets a positive
anomalous dimension. The mechanism applies to generic
supersymmetry breaking scenarios, as long as appropriate
symmetries ensure that the combinations of masses in
Eq. (10) are small. It also leads to a simple solution of
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FIG. 4 (color online). We plot contours of the fine-tuning pa-
rameter��1 in theM3 versus v plane. We make the same assump-
tions as in Fig. 3 with first/second generation squark masses at
5 TeVand tan� ¼ 2. The grey (lower opaque region) is excluded
due to tachyonic third generation squarks, the blue (upper solid
region) is excluded due to a lack of REWSB, and the green
translucent region is excluded due to the LEP bound on theAmass.
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FIG. 3 (color online). Low energy spectrum for a model with unified gaugino masses, for v ¼ 103 TeV (left) and v ¼ 106 TeV
(right). The curves represent ~mQ3

’ ~mu3 ’ ~md3 [black, solid], mAðwith tan� ¼ 2Þ [red, dashed], and mAðwith tan� ¼ 10Þ [orange,
dotted-dashed]. (Only mA has a strong dependence on tan�). The first/second generation squark masses are at 5 TeV. The grey (left
opaque region) is excluded due to tachyonic third generation squarks. The blue (right opaque region) is excluded by requiring radiative
electroweak symmetry breaking. The green (translucent) region is excluded due to the LEP bound on the Amass. Both of these regions
are plotted for the tan� ¼ 2 case. We fix� ¼ 150 GeV and for simplicity do not attempt the model dependent task of reproducing the
Higgs mass for all points in this plot.
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the � problem. For concreteness, we analyzed the low
energy phenomenology starting from unified gaugino
masses, finding a natural supersymmetry spectrum with
split families.

It would be interesting to build a fully realistic model
based on this mechanism. The main points which need to
be addressed are unification [which has been explicitly
broken here by the extra matter charged under SUð3Þ]
and the generation of a realistic physical Higgs mass.
This motivates extending our approach by having two
copies of the full SM gauge group, instead of just the
SUð3Þ group. One of the nodes will then become strongly
coupled, leading to the properties analyzed here. In this
context, the NMSSM can naturally become part of the
strong dynamics, and unification is in principle possible.

The mechanism itself can also be improved in different
directions. Here, we had to assume that certain approxi-
mate symmetries of the supersymmetry breaking sector
were forbidding the combinations of soft masses given
in Eq. (10). In particular, combinations proportional to
Uð1ÞY can not be screened. This can be avoided if Uð1ÞY
is embedded into a larger gauge group for the duration of
the conformal regime. One possibility would be to weakly
gauge the custodial SUð2Þ. In this case, the only combina-
tions which are not sequestered are ~m2

� � ~m2
��
and ~m2

Q3
�

~m2
�Q3
, where �Q ¼ ð �u; �dÞ—both of these combinations can

be suppressed by imposing a discrete symmetry. This can
lead to a stronger attractor mechanism.

For models which realize this stronger attractor, there is
a novel possibility of decoupling the first/second genera-
tion squarks beyond the bound of Ref. [25]. If ~m1;2 � v, at
scales below ~m1;2 there will be a quadratically divergent

contribution to the stop masses at 2 loops and the Higgs

mass at 1 loop (which is proportional to small Yukawa
couplings). If it is possible to construct a CFTwhich would
be strong enough to suppress these quadratic divergences,
the contribution to the mass from these effects will be
schematically given by y2=ð16	2Þv2 for the Higgs soft
mass squared and g4C=ð16	2Þ2v2 for the stop soft mass

squared. For v ’ 50 TeV, these contributions are small
enough to not destabilize our mechanism. Hence, the flavor
problem could be completely decoupled in these models.
It may also be possible to find a microscopic realization

where the CFTand the sector which breaks supersymmetry
are part of the same dynamics. In this setup, the exit scale v
would be related to the scale of supersymmetry breaking.
This may be done at the level of the superpotential, or
by destabilizing some of the flat directions of the CFT.
Exploring a concrete supersymmetry breaking sector
which minimizes the mass differences in Eq. (10) would
also be an interesting avenue for future work.
If nature cares about naturalness, it is plausible that the

dynamics between the weak scale and Planck scale could
be highly nontrivial. We have demonstrated that coupling
the supersymmetric standard model to a new strongly
coupled conformal sector can give rise to the flavor hier-
archies and the more minimal spectrum.
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