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We find that a holographic walking technicolor model has a limit (‘‘conformal limit’’) where the

technidilaton (TD) becomes a massless Nambu-Goldstone boson of the scale symmetry with its nonzero

finite decay constant F� � 0, which naturally realizes a light TD, say at 125 GeV, near the limit. In such

a light TD case, we find that F� is uniquely determined by the technipion decay constant F�

independently of the holographic parameters: F�=F� ’ ffiffiffiffiffiffiffiffiffiffiffi
2NTF

p
, with NTF being the number of

technifermions. We show that the holographic TD is consistent with a new boson at 125 GeV recently

discovered at the LHC.
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I. INTRODUCTION

A new boson of the mass around 125 GeV has recently
been discovered at the LHC [1,2]. It has been reported that
in the diphoton channel the signal strength of the new
boson is about two times larger than that predicted by the
standard model (SM) Higgs, while other channels are
consistent with the SM Higgs. This may imply a hint for
a new scalar boson beyond the SM. For the theoretical
possibilities, see, for example, a recent review [3].

It is the technidilaton (TD) that is a candidate for such a
new scalar boson: The TD is a composite scalar boson
predicted in the walking technicolor (WTC) [4,5] which is
characterized by an approximately scale-invariant (confor-
mal) gauge dynamics and a large anomalous dimension
�m ¼ 1.1 The TD arises as a pseudo—Nambu-Goldstone
boson for the spontaneous breaking of the approximate
scale symmetry triggered by technifermion condensa-
tion. Its lightness, say 125 GeV, is therefore protected by
the approximate scale symmetry inherent to the WTC.
Thus the discovery of TD should imply discovery of the
WTC.

In Refs. [7–10] the LHC signatures of the TD were
studied. Particularly in Ref. [10] (as well as Ref. [9]) it
was shown that the 125 GeV TD is consistent with the
currently reported diphoton signal as well as other signals
such asWW� and ZZ�, etc. It was emphasized that, in sharp
contrast to other dilaton models [11] (see, for example, the
recent analysis by Ref. [12]), the TD is favored by the
current data thanks to the presence of extra technifermion
loop corrections to digluon and diphoton couplings.

The TD couplings to the SM particles take essentially
the same form as those of the SM Higgs. The overall
scaling from the SM Higgs is just given by a ratio
vEW=F�, where vEWð’ 246Þ GeV is the electroweak

scale and F� denotes the TD decay constant which is in

general� vEW.
2 The analysis of the previous works [7–10]

was based on the evaluation of F� through the assumption

of the partially-conserved dilatation current (PCDC) which
gives only a combination F2

�M
2
� in terms of the scale

anomaly, where M� is the TD mass. The scale anomaly

in turn was evaluated by the ladder approximation, which
was further related, through Pagels-Stokar formula for the
technipion decay constant F�, to the electroweak scale
vEW ¼ F�

ffiffiffiffiffiffiffi
ND

p
, where ND is a number of weak doublet

technifermions (ND ¼ 4 and F� ’ 123 GeV for the one-
family model). Then we estimated up to the 30% uncer-
tainties of the ladder approximations [10]:

vEW

F�

’ ð0:1–0:3Þ �
�
ND

4

��
M�

125 GeV

�
; (1)

which was then shown to be consistent with the value of
the best fit to the current LHC data in the case of the
one-family model (ND ¼ 4):

vEW

F�

��������best-fit
¼

�
0:22 for NTC ¼ 4

0:17 for NTC ¼ 5
: (2)

However, there is a potential problem in the ladder
approximation about the mass of the TD as suggested
earlier [13]: A straightforward calculation [14] based on
the ladder Schwinger-Dyson equation and the ladder
(homogeneous) Bethe-Salpeter equation in the walking
regime indicates a relatively light scalar bound state
(identified with TD) as M� � 4F� ( ’ 500 GeV for the

one-family model), which is much smaller than the
technivector/axial-vector mesons on TeV range but still
larger than the LHC boson at 125 GeV. This result [14]
is consistent with another calculation [15] based on the
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1The WTC was also studied subsequently without notion of

anomalous dimension and scale invariance/TD. [6].

2As was emphasized in Refs. [7–10], the TD couplings to
diphoton and digluon are not simply scaled from the SM Higgs,
which include technifermion loop contributions depending on
modeling of the WTC.
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ladder Schwinger-Dyson equation and the ladder (inhomo-
geneous) Bethe-Salpeter equation, and also consistent with
other indirect computation [16] based on the ladder gauged
Nambu-Jona-Lasinio model. In fact the PCDC relation
evaluated in the ladder approximation near the conformal
window does not allow a very light TD unless the TD
gets decoupled with divergent decay constant [17,18]:
The PCDC relation reads

F2
�M

2
� ¼ �4h���i ¼ �ð�Þ

�
hG2

��i ’ 3	m4
F; (3)

where hG2
��i is the technigluon condensate with �ð�Þ

being a beta function of the TC gauge coupling � and
the last equation is the ladder estimate near the conformal

window with 	 ’ NTCNTF

2�2 ¼ Oð1Þ [18,19] (for earlier refer-
ences, see Ref. [20]). This simply implies ðF�=mFÞ2 �
ðM�=mFÞ2 ! constant � 0 near the conformal window

mF=� ! 0, with � being the analogue of the �QCD, the

intrinsic scale of the walking technicolor where the infra-
red conformality terminates beyond that scale. Then the
limitM�=mF ! 0, where the TD gets light compared with

the weak scale mFð¼ Oð4�F�ÞÞ, can only be realized
when F�=mF ! 1, i.e., a decoupled limit.

A possible way out would be to include fully nonper-
turbative gluonic dynamics. Actually, the ladder approxi-
mation totally ignores nonladder dynamics most notably
the full gluonic dynamics. Also a direct estimate of F� free

from the ladder approximation and without invoking the
PCDC (without referring toM�) is necessary to give more

implications of the TD at the LHC. One such a possibility
besides lattice simulations would be a holographic compu-
tation based on the gauge-gravity duality [21].

In this paper, we make a full analysis of a holographic
model dual to the WTC previously proposed in Ref. [17]
by including the bulk field dual to the techniglueball so as
to incorporate the fully nonperturbative gluonic dynamics.
We show that thanks to the nonperturbative gluonic dy-
namics in contrast to the ladder approximation, we do have
an exactly massless TD limit (‘‘conformal limit’’):

M�

F�

! 0 with
F�

F�

¼ finite: (4)

The resultant F� is fairly independent of the TD massM�,

in contrast to the PCDC estimation in the ladder approxi-
mation. Remarkably enough, in the light TD case, we find a
novel relation between F� and the technipion decay con-

stant F�, independently of the holographic parameters:

F�

F�

’ ffiffiffiffiffiffiffiffiffiffiffi
2NTF

p
; (5)

with NTF being the number of technifermions. In such a
light TD limit the masses of techni-
 ðM
Þ and -a1 ðMa1Þ
mesons also go to zero, M
;a1=F� ! 0, which implies a

scaling property similar to the vector realization [22] and

the vector manifestation [23] based on the hidden local
symmetry [24].
We discuss the 125 GeV holographic TD at the LHC

taking the one-family model as a definite benchmark. The
TD couplings to the SM particles set by the ratio vEW=F�

are estimated, say, for NTC ¼ 4 and NTF ¼ 16, 20, to be
vEW=F� ’ 0:2 (up to 1=NTC corrections), which turns out

to be on the best-fit value in Eq. (2) favored by the current
data on a new boson at 125 GeV recently observed at the
LHC [1,2] (see Table I).
This paper is organized as follows: In Sec. II we start

with a brief review of the holographic WTC model pro-
posed in Ref. [17] to explain the holographic computation
of the chiral and gluon condensates (Sec. II A), current
correlators and masses of the related lightest resonances,
M
, Ma1 , M� and techniglueball MG in the WTC

(Secs. II C and IID). In Sec. III we next turn to computa-
tion of the TD decay constant F�, which can actually be

done by combining the Ward-Takahashi identities for the
dilatation and scalar currents (Sec. II E). We then discuss
the light TD case and show that the massless Nambu-
Goldstone boson limit (‘‘conformal limit’’) can be realized
in the present model. In such a light TD case, we find a
novel relation between F� and F�, which is independent of

the holographic-model parameters, to be just a constant
(Sec. II F). In Sec. III we discuss the 125 GeV holographic
TD at the LHC and show that the TD is consistent with
a new boson at 125 GeV currently reported from the LHC
experiments. Section IV is devoted to summary of this
paper.

II. MODEL

The holographic model proposed in Ref. [17] is based
on deformation of a bottom-up approach for successful
holographic-dual of QCD [25,26] with �m ’ 0, which is
extended to WTC [27–29] with �m ’ 1. The model
describes a five-dimensional gauge theory having
SUðNTFÞL � SUðNTFÞR gauge symmetry, defined on the
five-dimensional anti-de Sitter space (AdS5) with L, the
curvature radiusof AdS5, described by the metric ds2 ¼
gMNdx

MdxN ¼ ðL=zÞ2ð	��dx
�dx��dz2Þ with 	��¼

diag½1;�1;�1;�1�. The fifth direction z is compactified
on an interval extended from the ultraviolet (UV) brane
located at z ¼ � to the infrared (IR) brane at z ¼ zm, i.e.,
� � z � zm. In addition to the bulk left- (LM) and right-
(RM) gauge fields, we introduce a bulk scalar field �S

which transforms as bifundamental representation under
the SUðNTFÞL � SUðNTFÞR gauge symmetry so as to
deduce the information concerning the technifermion
bilinear operator �FF. The mass-parameter m�S

is then

related to �m as m2
�S

¼ �ð3� �mÞð1þ �mÞ=L2, where

�m ’ 1. An extra bulk scalar field�G dual to technigluon
condensate h�G2

��i is incorporated, where � is related

to the TC gauge couping gTC by � ¼ g2TC=ð4�Þ.
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Because h�G2
��i is singlet under the chiral SUðNTFÞL �

SUðNTFÞR symmetry, the dual-bulk scalar �G has to be a
real field. We take dimð�G2

��Þ ¼ 4 and the corresponding

bulk-mass parameter m2
�G

¼ 0.

The action in Ref. [17] is thus given as

S5 ¼ Sbulk þ SUV þ SIR; (6)

where Sbulk denotes the five-dimensional bulk action,

Sbulk ¼
Z

d4x
Z zm

�
dz

ffiffiffiffiffiffiffi�g
p 1

g25
ecGg

2
5
�G

�
1

2
@M�G@

M�G

þ Tr½DM�
y
SD

M�S �m2
�S
�y

S�S�

� 1

4
Tr½LMNL

MN þ RMNR
MN�

�
; (7)

and SUV;IR the boundary actions,

SUV ¼
Z

d4x
Z zm

�
dz�ðz� �Þ ffiffiffiffiffiffiffi�~g

p
LUV;

SIR ¼
Z

d4x
Z zm

�
dz�ðz� zmÞ

ffiffiffiffiffiffiffi�~g
p

LIR;

(8)

with the boundary-induced metric ~g�� ¼ ðL=zÞ2	��. In

Eq. (7), the covariant derivative acting on �S is defined
as DM�S ¼ @M�S þ iLM�S � i�SRM; LMðRMÞ ¼
La
MðRa

MÞTa with the generators of SUðNTFÞ normalized
by Tr½TaTb� ¼ �ab; LðRÞMN ¼ @MLðRÞN � @NLðRÞM �
i½LðRÞM; LðRÞN�; g ¼ det½gMN� ¼ �ðL=zÞ10; the gauge
coupling g5 and a parameter cG are fixed by the desired
UV asymptotic forms of the vector/axial-vector current
correlator to be [17]

L

g25
¼ NTC

12�2
; cG ¼ � NTC

192�3
: (9)

The UV boundary action SUV in Eq. (8) plays a role of the
UV regulator to absorb the UV-divergent � terms arising
from the five-dimensional bulk dynamics, which wewill not
specify. The IR boundary action SIR is introduced so as to
realize minimization of the bulk potential by nonzero chiral
condensate [17] with the IR Lagrangian:

LIR ¼ �2ðm2
b Tr½j�Sj2� þ �Tr½j�Sj2�2Þ; with

 ¼ e
cGg2

5
2 �G :

(10)

A. Condensates

The bulk scalar fields �S and �G (or ) are parame-
trized as follows:

�Sðx; zÞ ¼ 1ffiffiffi
2

p
�
vðzÞ þ �ðx; zÞffiffiffiffiffiffiffiffi

NTF

p
�
ei�ðx;zÞ=vðzÞ;

ðx; zÞ ¼ vðzÞe�ðx;zÞ=vðzÞ;
(11)

with the vacuum expectation values (VEVs), vðzÞ ¼ ffiffiffi
2

p h�Si
and vðzÞ ¼ hi, respectively. Since the technipions tend

to be on the order of several hundred GeV [30] and hence
do not directly affect the TD phenomenology at the LHC,
in the present study we will disregard technipions �ðx; zÞ.
The boundary condition for vðzÞ is chosen [29]:

vð�Þ ¼
�
�

L

�
2
log

z2m
�2

cSM; vðzmÞ ¼ �

L
; (12)

where M stands for the current mass of technifermions
and the IR value � is related to the technifermion con-
densate h �FFi1=L renormalized at the scale � ¼ 1=L [29].

The intrinsic log factor in the UV boundary condition
Eq. (12) has been supplied in order to smoothly connect
the chiral condensate at �m ¼ 1 to that for �m & 1 [29].
The parameter cS has been introduced which can
arise from the ambiguity of the definition for the current

mass M and is to be fixed to be cS ¼
ffiffiffi
3

p
=2 for �m ’ 1,

by matching the UV asymptotic form of the scalar
current correlator to the form predicted from the
operator product expansion, as will be clarified later
[see Eq. (30)].
The boundary condition for v is taken as

lim
�!0

vðzÞjz¼� ¼ e
cG
2

g2
5
LM

0 ¼ e� 1
32�LM

0
;

vðzÞjz¼zm ¼ 1þG;
(13)

where M0 becomes the external source for the technigluon
condensation-operator ð�G2

��Þ andG is associated with the

technigluon condensate h�G2
��i (G ’ 0:25 in the case of

the real-life QCD) [17].
Solving the equations of motion for these VEVs and

putting their solutions back into the action S5 in Eq. (6),
one can calculate the chiral and gluon condensates (h �FFi
and h�G2

��i) based on the holographic recipe (for details,

see Ref. [17])3:

�lim
�!0

�S5
�M

��������M¼0
¼ h �FFi1=L;

¼ � cSNTFNTC

6�2

�ð1þGÞ
z3m

�
L

zm

��1
;

�lim
�!0

�S5
�M0

��������M0¼0
¼ h�G2

��i ¼ 32NTC

3�

G

z4m
: (14)

B. Current correlators

We calculate current correlators in the scalar sector as
well as the vector and axial-vector sectors by extending the
analysis in Ref. [17]. For that purpose, it is necessary to
specify the boundary conditions for �, �, LM, and RM.

3The nonzero chiral condensate ð�Þ can be ensured thanks to
the presence of the IR boundary potential in Eq. (10), such that �
is related to other IR values in Eq. (10) as �2 ¼ 1=�½ðmbLÞ2 �
NTC=ð6�2Þð1� GÞ=ð1þGÞ� [17].
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We first consider the UV boundary condition for �, which
is assigned similarly to vðzÞ in Eq. (12),

�ðx; �Þ ¼
�
�

L

�
2
log

z2m
�2

cSsðxÞ; (15)

with sðxÞ being a source for the scalar current JS ¼
�FF=

ffiffiffiffiffiffiffiffi
NTF

p
. The IR boundary condition is chosen in such a

way that the terms in quadratic order of � vanish at the IR
boundary including the IR boundary potential Eq. (10) [17],

�
@z þ 2g25

L

z

�
�
�2

L2
� 1

g25L

1�G

1þG

��
�ðx; zÞjz¼zm ¼ 0: (16)

Similarly, one can impose the boundary condition for �. It

turns out that the boundary condition should be

�ðx; �Þ ¼ gðxÞ
L

; @z�ðx; zÞjz¼zm ¼ 0; (17)

where gðxÞ denotes the source for the current correlator for
the technigluon condensation operator, JG ¼ �G2

��.

Next, consider the vector and axial-vector sectors. One
defines the five-dimensional vector and axial-vector gauge

fields VM and AM as VM ¼ ðLM þ RMÞ=
ffiffiffi
2

p
and AM ¼

ðLM � RMÞ=
ffiffiffi
2

p
. The UV boundary values of V� and A�

then play the role of the sources ðv�; a�Þ for the vector

(J�a
V ¼ �F��TaF) and axial-vector (J�a

A ¼ �F���5T
aF)

currents externally coupled to the WTC sector. By working
inVz ¼ Az � 0 gauge, their boundary conditions are chosen
as @zV�ðx; zÞjz¼zm ¼ @zA�ðx; zÞjz¼zm ¼ 0, V�ðx; zÞjz¼� ¼
v�ðxÞ, and A�ðx; zÞjz¼� ¼ a�ðxÞ.

One can thus calculate the scalar, gluon, vector and
axial-vector current correlators �S, �G, �V , and �A,
respectively, as follows:

� �2S5
�sð�qÞ�sðqÞ

��������s¼0
¼ i

Z
d4xeiq�xhJSðxÞJSð0Þi

¼ �Sð�q2Þ;

� �2S5
�gð�qÞ�gðqÞ

��������g¼0
¼ i

Z
d4xeiq�xhJGðxÞJGð0Þi

¼ �Gð�q2Þ;
�2S5

�va
�ðqÞ�vb

�ð�qÞ
��������v¼0

¼ i
Z

d4xeiq�xhJa�V ðxÞJb�V ð0Þi

¼ ��ab

�
	�� � q�q�

q2

�
�Vð�q2Þ;

�2S5
�aa�ðqÞ�ab�ð�qÞ

��������a¼0
¼ i

Z
d4xeiq�xhJa�A ðxÞJb�A ð0Þi

¼ ��ab

�
	�� � q�q�

q2

�
�Að�q2Þ:

(18)

C. �V and �A

The vector and axial-vector current correlators �V and
�A can be expanded in terms of towers of the vector and
axial-vector resonances with the masses MVn;An

and decay

constants FVn;An
as

�V;Aðq2Þ ¼
X
n

F2
Vn;An

M2
Vn;An

M2
Vn;An

� q2
: (19)

We identify the lowest poles for�V;A as the techni-
 and -a1
mesons. Their massesMV1

� M
 andMA1
� Ma1 are calcu-

lated through solving the eigenvalue equations for the vector
and axial-vector profile functions V1ðzÞ and A1ðzÞ [17]:

½M2

 þ!�1ðzÞ@z!ðzÞ@z�V1ðzÞ ¼ 0;�

M2
a1 þ!�1ðzÞ@z!ðzÞ@z � 2

�
L

z

�
2
v2ðzÞ

�
A1ðzÞ ¼ 0;

(20)

with !ðzÞ ¼ ðL=zÞv2
ðzÞ and the boundary condition

V1ð�Þ ¼ 0, @zV1ðzmÞ ¼ 0 and similar one for A1ðzÞ. Using
the solutions of the VEVs in the limit where M ! 0 and
M0 ! 0,

vðzÞ ¼ 1þG

�
z

zm

�
4
;

vðzÞ ¼ �

L

1þG

1þGðz=zmÞ4
logðz=�Þ
logðzm=�Þ ;

(21)

wefindM
 andMa1 as a function of just twoparameters� and

G with the overall scale set by zm:

M
 ¼ z�1
m � ~M
ðGÞ; Ma1 ¼ z�1

m � ~Ma1ð�;GÞ: (22)

In addition, from �V and �A we may construct the S
parameter:

S ¼ �4�ND

d

dQ2
½�VðQ2Þ ��AðQ2Þ�Q2¼0; (23)

where Q � ffiffiffiffiffiffiffiffiffiffi�q2
p

and ND denotes the number of electro-
weak doublets. Once NTC and ND are given, the present
holographic model allows us to calculate S as a function of
just two parameters � and G [17]:

S ¼ NDNTC

3�

Z 1

t�

dt

t
v2
ðtÞ½1� A2ðtÞ� � ND � Ŝð�;G;NTCÞ;

(24)

where t� ¼ �=zmð! 0Þ and AðtÞ satisfies the second equa-
tion in Eq. (20) with the zero momentum q ¼ Ma1 ¼ 0 set.

We also introduce the technipion decay constant
defined as

F2
� ¼ �Vð0Þ ��Að0Þ; (25)

which is related to the electroweak scale vEW as F� ¼
vEW=

ffiffiffiffiffiffiffi
ND

p
. The present model enables us to calculate F�

as a function of �, G, and zm for given NTC [17]:
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F2
� ¼ NTC

12�2

~F2ð�;GÞ
z2m

; (26)

where ~F2 ¼ @tAð0; tÞ=tjt¼t�!0.

D. �S and �G

The scalar current correlator �S is straightforwardly
evaluated through Eq. (18). In calculating�S we encoun-
ter some divergent terms arising by taking � ! 0, which
can be renormalized by the UV boundary action in
Eq. (8). Letting such a ‘‘bare’’ correlator be �Sj1=� and

renormalizing it at � ¼ 1=L as �Sj1=� ¼ ð�=LÞ�Sj1=L,
we arrive at

�Sðq2Þj1=L ¼ �c2S �
NTC

6�2

�
1

qL

�
2
q2½logðqLÞ2 � ��ðqÞ�;

(27)

where

�ðqÞ ¼ A � Y0ðqzmÞ � qzmY1ðqzmÞ
A � J0ðqzmÞ � qzmJ1ðqzmÞ ;

A ¼ 24�2��2

NTC

¼ 3

2
��2;

(28)

with J0;1 and Y0;1 being the Bessel functions. Here we

have used � ¼ �NTC=ð4�Þ2 where we set � ¼ 1 [17]. The
UV asymptotic form of Eq. (27) may be compared with
the operator-product expansion form:

�Sðq2Þj1=L ¼
�
1

qL

�
2
q2
�
�NTC

8�2
q2 logðqLÞ2 þ � � �

�
; (29)

such that we find the matching condition for the model
parameter cS,

4

cS ¼
ffiffiffi
3

p
2

: (30)

The scalar current correlator�S can also be expressed in
terms of tower of the scalar resonances with the masses
MSn and decay constants FSn :

�Sðq2Þ ¼
X
n

F2
Sn
M2

Sn

M2
Sn
� q2

: (31)

Using this and Eq. (27) we extract the scalar masses and the
scalar decay constants renormalized at � ¼ 1=L as

MSn :
3

2
��2 �J0ðMsnzmÞ¼MSnzmJ1ðMSnzmÞ;

F2
Sn
j1=L¼NTC

2�2

1

z2m

�
1

MSnL

�
2 1

J20ðMSnzmÞþJ21ðMSnzmÞ
:

(32)

Similarly, we can calculate the current correlator for the
gluon-condensation operator �G to find the masses and
decay constants associatedwith the resonances arising in�G:

MGn
¼ j1;n

zm
; F2

Gn
¼ 128NTC

3

1

z2m

1

J20ðMGn
zmÞ

; (33)

where j1;n denotes the nth zero of the Bessel function J1. We

identify the lowest resonance in�G as the techniglueball (G),
i.e.,MG1

� MG and FG1
� FG.

E. Technidilaton decay constant

We next compute the TD decay constant F� from the

present holographic model. To this end, following Ref. [32]
we start with the Ward-Takahashi identity for the dilatation
currentD� coupled to technifermion bilinear operator �FF:

lim
q�!0

Z
d4xeiqxh0jT���ðxÞ �FFð0Þj0i ¼ �ð3� �mÞh0j �FFj0i;

(34)

where ð3� �mÞ ’ 2 and ��� ¼ @�D
�. The TD arises as the

lightest scalar which couples to the dilatation current D�

with the coupling strength F� at the on-shell p2 ¼ M2
�:

h0j���ð0Þj�i ¼ F�M
2
�: (35)

The TD pole therefore contributes to the left-hand side of
Eq. (34) such that

F�h�ðq ¼ 0Þj �FFð0Þj0i ¼ �ð3� �mÞh �FFi: (36)

Since the TD couples also to the scalar current JS ¼
�FF=

ffiffiffiffiffiffiffiffi
NTF

p
, we may define the amplitude:

h�ðq ¼ 0ÞjJSð0Þj0i ¼ FSM�: (37)

Comparing this with the spectral representation of �S in
Eq. (31), we may identify the lightest scalar arising in �S

as the TD, i.e., MS1 � M� and FS1 � FS. From Eqs. (36)

and (37), we thus construct the TD decay constant F� as

F� ¼ �2h �FFiffiffiffiffiffiffiffiffi
NTF

p
FSM�

: (38)

Note that this F� is renormalization-scale independent as it

should be:
h �FFi1=L
FSj1=L ¼ h �FFiM�

FSjM�

. Putting Eqs. (14) and (32) into

Eq. (38), we now obtain the holographic formula for F�,

F�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NTFNTC

6�2
½J20ðM�zmÞþJ21ðM�zmÞ�

s
�ð1þGÞ

zm
: (39)

F. Light technidilaton limit

The physical quantities presented above are calculated
as functions of three holographic parameters, �, G, zm.
(The UV regulator � is taken to be zero after the calcu-
lations.) We shall examine how a light TD can be realized

4In the previous analysis [17], without explicit evaluation of
�S in the case of WTC with �m ’ 1, the parameter cS was set
to

ffiffiffi
3

p
simply taken from the QCD case with �m ’ 0 [31].
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by adjusting these holographic parameters and how the
presence of the light TD affects other physical quantities.

The light TD limit corresponds to taking ðM�zmÞ 	 1 in

Eq. (32) such that the eigenvalue equation for the TD mass
M� is analytically solved:

ðM�zmÞ ’
ffiffiffi
3

p
�; (40)

which implies � 	 1 in the light TD limit. In this limit, the
technipion decay constant F� in Eq. (26) can be approxi-
mated as

F� ’
ffiffiffiffiffiffiffiffiffiffiffi
NTC

12�2

s
�ð1þGÞ

zm
; (41)

so that the TD mass normalized to ð4�F�Þ is given as

M�

4�F�

’
ffiffiffiffiffiffiffiffiffi
3

NTC

s ffiffiffi
3

p
=2

1þG
: (42)

This implies

M�

4�F�

! 0 as G ! 1: (43)

When M�=ð4�F�Þ ’ 0:1, for instance, we find

G ’ ð9:9; 8:4; 7:4Þ; for NTC ¼ 3; 4; 5: (44)

Remarkably, in the light TD limit, the TD decay constant
F� in Eq. (39) normalized to F� in Eq. (41) becomes

completely free from the holographic parameters to be
just a constant:

F�

F�

’ ffiffiffiffiffiffiffiffiffiffiffi
2NTF

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J20ðxÞ þ J21ðxÞ

q ��������x¼ðM�zmÞ	1
’ ffiffiffiffiffiffiffiffiffiffiffi

2NTF

p
:

(45)

Thus the present holographic model can achieve the limit
realizing the TD as a massless Nambu-Goldstone boson
(‘‘conformal limit’’):

M�

4�F�

! 0 and
F�

F�

! finite; as G ! 1: (46)

In the conformal limit Eq. (46) the technigluon conden-
sate normalized to the fixed ð4�F�Þ4, h�G2

��i=ð4�F�Þ4,
goes to infinity [see Eq. (14)]

h�G2
��i

ð4�F�Þ4
�G ! 1: (47)

If the PCDC holds, then the beta function �ð�Þ of the TC
gauge coupling � in the present holographic model would
read

�ð�Þ ¼ �

hG2
��i

F2
�M

2
� � 1

Gð1þGÞ2 ! 0 as G ! 1:

(48)

It is interesting to compare these result with those of the
ladder calculation near the criticality �� ’ �c [18]:

hG2
��i

m4
F

� hG2
��i

ð4�F�Þ4
�ð��=�c�1Þ�3=2!1;

�ð�Þ�ð��=�c�1Þþ3=2!0;

h���i
m4

F

¼�ð�Þ
�

�hG2
��i

m4
F

! constant�0 as��!�c;

(49)

where �� and �c, respectively, denote the Caswell-Bank-
Zaks infrared fixed point of the two-loop beta function for
the WTC [33] and the critical coupling of the chiral sym-
metry breaking in the ladder approximation. As clearly
seen from Eq. (49), the divergence of hG2

��i precisely

cancels with the vanishing �ð�Þ, so that

F2
�

m2
F

�M
2
�

m2
F

� h���i
m4

F

! constant � 0 as �� ! �c: (50)

This results in the no massless limit unless F�=mF ! 1,

i.e., a decoupled TD.5

Given the technipion decay constant F� in Eq. (41), we
may express the chiral condensate in Eq. (14), with the
renormalization scale 1=L set to F� as

h �FFi1=L¼F�
¼ �cSNTF

ffiffiffiffiffiffiffiffiffi
NTC

3�2

s
F2
�

zm
; (51)

with cS ¼ ffiffiffi
3

p
=2 in Eq. (30). On the other hand, we may

parametrize h �FFiF�
as6

h �FFiF�
¼ � ��NTF4�F

3
�; (52)

where the overall coefficient �� is to be determined once a
straightforward nonperturbative calculation is done. From
Eqs. (52) and (51), we find

F� ¼
ffiffiffiffiffiffiffiffiffi
NTC

p
8�2 ��

1

zm
: (53)

Comparing this with Eq. (41) we thus see that the
holographic parameters � and G are now correlated
involving ��:

�ð1þGÞ ¼
ffiffiffi
3

p
4� ��

: (54)

For a reference value of �� in Eq. (52), a recent nonpertur-
bative analysis based on the ladder approximation

5Incidentally, a parametrically light TD was argued in the
framework of the ladder approximation [5,34,35]: It was claimed
that F2

�M
2
�=m

4
F � �ð�Þ � hG2

��i=m4
F ! 0 as �ð�Þ goes to zero

near the criticality, based on an assumption that hG2
��i=m4

F !
constant<1, which actually contradicts the explicit computa-
tion in Eq. (49).

6Note that the renormalization scale � ¼ F� depends on NTC,
so that h �FFiF�

scales like �N3=2
TC in a way different from

h �FFimF
� NTC.
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corresponds to �� ’ 0:16 [18]. Including this reference value,
we shall take �� ¼ ð0:016; 0:16; 1:6Þ such that � and G are
constrained as

�ð1þGÞ ’ ð9; 0:9; 0:09Þ: (55)

We now look into the masses of techni-
 and -a1 mesons
normalized to ð4�F�Þ, M
=ð4�F�Þ and Ma1=ð4�F�Þ, in
the conformal limit Eq. (46). Using Eqs. (22) and (41) with
Eq. (55), we see that these ratios can be calculated as a
function of the parameter G only:

M


4�F�

’ 2� �� ~M
ðGÞffiffiffiffiffiffiffiffiffi
NTC

p ;

Ma1

4�F�

’ 2� �� ~Ma1ð�;GÞffiffiffiffiffiffiffiffiffi
NTC

p
���������¼

ffiffi
3

p
4� ��ð1þGÞ

:

(56)

In the conformal limit Eq. (46), we thus find that
M
=ð4�F�Þ ’ Ma1=ð4�F�Þ and goes to zero:

M


4�F�

’ Ma1

4�F�

! 0 as G ! 1: (57)

In Fig. 1 we plot the G dependence of
ffiffiffiffiffiffiffiffiffi
NTC

p
M
=ð4�F�Þ

(left panel). The figure shows that the ratio M
=ð4�F�Þ
slowly gets smaller as G increases and finally reaches zero

in the conformal limit G ! 1. This critical phenomenon
looks similar to the vector realization/vector manifestation
[22–24]. Also has been plotted the ratio M�=M
 as a

function of G (right panel). Again, the ratios M�=M
;a1

slowly become smaller asG increases and finally go to zero:
M�

M
;a1

! 0 as G ! 1; (58)

which implies that in such a limit the TD is indeed the
lightest particle.
Finally, we examine the effect on the the S parameter in

Eq. (24) in the conformal limit. The S is calculated as a
function of the holographic parameters � and G with the
constraint in Eq. (55). We thus plot the G dependence of

Ŝ=NTC ¼ S=ðNDNTCÞ in Fig. 2, which implies the large G
behavior:

S ! 1 as G ! 1: (59)

This scaling can be understood by noting that Ŝ ’ ða=4�Þ �
ð4�F�=M
Þ2 ¼ 4�=g2HLS [29], where gHLS denotes the

gauge coupling of the techni-
 meson regarded as a gauge
boson of the hidden local symmetry [24] and að’ 2Þ is a
parameter of the hidden local symmetrymodel. Then Ŝ ! 1
limit corresponds to ð4�F�=M
Þ2 ! 0 or gHLS ! 0 limit

(vector realization/vector manifestation) [22–24].

III. HOLOGRAPHIC TECHNIDILATON
AT 125 GEV

In this section we discuss the 125 GeV holographic TD
by matching the present model to the one-family WTC
model with ND ¼ 4, F� ¼ 123 GeV as a typical example
of the WTC. We write

NTF ¼ 2ND þ NEW-singlet 
 2ND ¼ 8; (60)

where NEW-singlet denotes the number of ‘‘dummy’’ techni-

fermions which are singlet under the electroweak charges
and only contribute to realizing the walking behavior.
Actually, most of the variants of the WTC have a tendency
similar to the one studied here, except for a class of WTC
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FIG. 1. Left: The G dependence of
ffiffiffiffiffiffiffiffiffi
NTC

p
M
=ð4�F�Þ with �� ¼ 0:016 (solid), 0.16 (dashed), and 1.6 (dotted) fixed. Right: The plot

of M�=M
 as a function of G with the same values for �� taken.
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FIG. 2. The G dependence of Ŝ=NTC with �� ¼ 0:016 (solid),
0.16 (dashed), and 1.6 (dotted) fixed.
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models without colored/charged weak-doublets, e.g., the
‘‘one-doublet model’’ (ND ¼ 1, F� ¼ vEW ¼ 246 GeV)
which was shown [7–9] to be invisible at LHC due simply
to the smallness of the coupling (� 1=F� 	 1=vEW) with-

out compensating enhancement by the colored/charged
technifermions.

As seen from Eq. (42), in the one-family model a light
TD with the mass around 125 GeV is realized when
M�=ð4�F�Þ ’ 0:1, which corresponds to the parameter

G ’ 10:

M� ’ 125 GeV at G ’ 10: (61)

The value of this G is compared to the real-life QCD value
’ 0:25 [17]. As noted in Eq. (45), in such a light TD case,
the TD decay constant F� is fixed by the technipion decay

constant F� independently of the holographic parameters
as well as the number of NTC. For F� ¼ 123 GeV, we thus
estimate F� and a ratio vEW=F� to find

F� ’ ð514; 630; 730; 813Þ GeV;
vEW

F�

¼
ND

2 F�

F�

’ ð0:49; 0:39; 0:33; 0:30Þ

’
ffiffiffiffiffiffiffiffiffi
2

NNF

s
ðND ¼ 4Þ;

(62)

for NEW-singlet ¼ 0, 4, 8, 12, i.e., NTF ¼ 8, 12, 16, 20 in

accord with Eq. (45). It is remarkable that the above result
is fairly insensitive to a particular value ofM� ’ 125 GeV,

in sharp contrast to the estimate explicitly based on the
PCDC [10] which is very sensitive to M�. Note also that

our result Eq. (62) is free from any additional assumption
such as the ladder criticality condition NTF ’ 4NTC used in
Ref. [10] which was based on the ladder approximation.

Once the TD decay constant F� is estimated, we are now

ready to discuss the LHC phenomenology of the 125 GeV
holographic TD in the same way as in Refs. [9,10]: The TD
couplings to the SM gauge bosons are obtained just by
scaling from the SM Higgs as vEW ! F�. The coupling to

the SM-f fermion, on the other hand, is set by the massmf

divided by F� along with a factor (3� �m), so that the

scaling goes like mf=vEW ! ð3� �mÞmf=F� [5,9,10].

The anomalous dimension �m for the third-generation
fermions are taken to be ’ 2 so as to realize the realistic
fermion masses by strong extended TC (ETC) dynamics
[36], while we put �m ’ 1 for the other lighter fermions in
order to avoid excessive flavor changing neutral currents
[see also Eq. (70)]. (Throughout the holographic compu-
tations described so far, we have set �m ¼ 1 since the
holographic model is thought of as dual to WTC, not
involving the SM fermion sector concerning a type of
ETC.) We thus have

g�WW=ZZ

ghSMWW=ZZ

¼ vEW

F�

’
ffiffiffiffiffiffiffiffi
2

NTF

s
;

’ g�ff

ghSMff
ðfor f ¼ t; b; �Þ:

(63)

Thus the processes involving these couplings are sup-
pressed compared with the SM Higgs by the characteristic
factor ðvEW=F�Þ2 ’ 2=NTF 	 1 for the typical WTC with

NTF � 1.
On the contrary, the couplings to digluon and diphoton

are largely enhanced compared with the SM Higgs, which
somehow compensates the smallness of other couplings in
Eq. (63) in most of the channels currently studied at LHC
as shown before [10] (see also the discussions in the next
paragraph).7 This is the most characteristic feature of the
TD in the generic WTC (having colored/charged techni-
fermions) in contrast to other dilaton/radion models as well
as the one-doublet model: In the case at hand, the one-
family model, these couplings are in fact enhanced by the
colored/charged technifermion loop contributions along
with a factor NTC [7,9,10]:

L��;gg
eff ¼ �

F�

�
�FðgsÞ
2gs

G2
�� þ �FðeÞ

2e
F2
��

�
;

�FðgsÞ ¼ g3s
ð4�Þ2

4

3
NTC; �FðeÞ ¼ e3

ð4�Þ2
16

9
NTC:

(64)

We thus find the scaling from the SM Higgs for the
couplings to gg and ��, which can approximately be
expressed at around 125 GeV (detailed formulas are given
in the Appendix of Ref. [9]) [10]:

g�gg

ghSMgg
’ vEW

F�

� ðð3� �mÞ þ 2NTCÞ;
g���

ghSM��
’ vEW

F�

�
�
63� 16ð3� �mÞ

47
� 32

47
NTC

�
;

(65)

where in estimating the SM contributions we have incor-
porated only the dominant ones, the top [the terms having
3� �mð¼ 1Þ] and the W boson (the term of 63=47 for ��
rate) loop contributions, which largely cancel each other in
the diphoton channel. It is thus clear that the technifermion
contributions overwhelm those of the SM particles for the
�� channel (for NTC > 2) as well as the gg channel.
These couplings actually play the key role to account for

the presently reported excess of diphoton event rate, while
the significance for other channels stays at the level similar
to the SM Higgs prediction: Although the TD production
through the vector boson fusion process is suppressed by

7Note that this kind of enhancement of the �� and gg
couplings is generic also for other models having extra heavy
fermions such as the typical fourth generation model which,
however, having the same couplings as that of the SM Higgs, are
severely constrained, in sharp contrast to our case with the
suppressed couplings in Eq. (63).
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an amount of ðvEW=F�Þ2, the diphoton rate along with dijet
becomes consistent with the current LHC data because of
the large contamination with the gluon fusion events which
are highly enhanced to be about 80% or more in the case of
TD compared to the SM Higgs case with�30%, due to the
larger gluon fusion cross section. As for other exclusive
channels with jets, the current accuracy has not reached a
level which can more precisely distinguish the production
processes than the diphoton channel. As the currently most
relevant event categories, we shall therefore take the ��0j
and ��2j events in addition to the b �b channel to be
exclusive and other channels such as WW�, ZZ�, and ��
to be inclusive, as done in Ref. [10].

We can thus estimate the 125 GeV TD signals at the
LHC and perform the goodness-of-fit to the currently
available data set [1,2], in a way similar to that done in
Ref. [10]. The best-fit value of vEW=F� found in Ref. [10]

is vEW=F�jbest-fit for NTC ¼ 4, 5 as in Eq. (2), which is

slightly off by about 20%–30% from the present holo-
graphic prediction Eq. (62):

vEW

F�

��������holo
’

ffiffiffiffiffiffiffiffi
2

NTF

s
’ 0:3–0:5: (66)

However, such �30% corrections would come from the
next-to-leading order terms in 1=NTC expansion as was dis-
cussed in Ref. [37]. Inclusion of the 1=NTCð�20%–30%Þ
corrections for NTC ¼ 3, 4, 5 would then give a shift:

vEW

F�

��������holo
! vEW

F�

��������þ1=NTC

holo
�0:2–0:4: (67)

The holographically predicted vEW=F� in Eq. (67) is

also consistent with the ladder estimate [10], vEW=F� ’
0:1–0:3 in Eq. (1).8 Note that the two calculations are quite
different qualitatively in a sense that the ladder calculation
has no massless TD limit, while the present holographic
model including the nonperturbative gluonic dynamics
does. Nevertheless, such a numerical coincidence may
suggest that both models are reflecting some reality
through similar dynamical effects for the particular mass
region of the 125 GeV TD.

Using the predicted vEW=F� including the possible

1=NTCð¼ 0:3; 0:25; 0:20Þ corrections for NTC ¼ 3, 4, 5, in
Table I we list the results of the 2 fit based on the currently
available LHC data set [1,2]. The table shows that the
current data favors the holographic TD in the one-family
model with NTC ¼ 4 and NEW-singlet, 12 (i.e., NTF ¼ 16,

20), slightly better than the SM Higgs with 2=d:o:f’1:0.
The upcoming more data will conclude whether the TD is
more favorable than the SM Higgs, or not.
Although it is not relevant to the above analysis of the

current LHC data, we may further impose a phenomeno-
logical constraint on the S parameter, say,

S ¼ 0:1: (68)

Then all the holographic parameters � and zm in addition to
G ’ 10 are completely fixed to be

� ’ 0:014; z�1
m ’ 5:2 TeV; (69)

forNTC ¼ 4, where we have �� ’ 1:0 [i.e., �ð1þGÞ ’ 0:14
in Eq. (55)]. It should be noted that although S is divergent
in the conformal limit where TD becomes exactly mass-
less, see Eq. (58), S grows extremely slowly as G increases
as can be seen from Fig. 2, and hence such a small S ¼ 0:1
is easily realized for a relatively light TD mass like
’ 125 GeV.9 The estimated numbers of the holographic
parameters for matching to the one-family models with
NTC ¼ 3, 4, 5 are summarized in Table II.
Implications of this parameter-set can be seen in a

typical mass of the SM fermion (the second-generation
lepton and quarks): The SM fermion masses are generated
through an ETC induced four-fermion interaction to
be mf ��h �FFi�ETC

=�2
ETC ��ð�ETC=F�Þh �FFiF�

=�2
ETC,

where�ETC is the ETC scale taken to be* ð103–104Þ TeV

TABLE I. The results of the 2 fit based on the currently available LHC data set [1,2]. The
data adopted here are the same as those used in the analysis in Ref. [10]. The SM Higgs gives
2=d:o:f ’ 1:0.

NTC ½vEW=F��þ1=NTC

holo with NEW-singlet ¼ ð0; 4; 8; 12Þ 2=d:o:f with d:o:f ¼ 14

3 (0.34, 0.27, 0.23, 0.21) (3.5, 2.1, 2.0, 2.2)

4 (0.37, 0.29, 0.25, 0.23) (9.4, 2.1, 1.0, 0.8)

5 (0.39, 0.31, 0.26, 0.24) (55, 16, 6.1, 3.7)

8Also, the predicted numbers in Eq. (67) roughly coincide with
the value estimated from other holographic models [38].

9One might think that such a light TD with the decay constant
F� larger than vEW by about 80% is incompatible with the
precision electroweak test like S and T parameters [39].
However, such an argument is restricted to the low energy
effective theory, because ultraviolet contributions coming from
heavier mesons like techni-
 would compensate the TD contri-
bution to be consistent with the ST bounds, as was pointed out in
Ref. [40] (see also a comment in a paper [41] which appeared
after submission of our paper). Actually, our calculation includes
a full nonperturbative TC dynamics not just TD and hence is a
concrete example to realize such a compensation.
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to avoid excessive flavor-changing neutral currents among
the second-generation SM fermions. Using Eq. (52) with
�� ’ 1:0 and F� ¼ 123 GeV, one can obtain

mq;l � �� � NTF

4�F2
�

�ETC

� 100 MeV� 1 GeV; (70)

for NTF ¼ 8–20 and �ETC ¼ 103–105 TeV.
Taking the parameter-set listed in Table II, we com-

pletely estimate other physical quantities presented in the
previous section. In Table III we list the numbers for other
physical quantities estimated by taking S ¼ 0:1, F� ¼
123 GeV and M� ¼ 125 GeV. Table III shows that the

TD is indeed the lightest particle, lighter than other TC
hadrons such as techni-
, -a1 and -glueball which are on
the order of TeV scale, as was discussed in Ref. [17]. The
dynamical mass of technifermionmF has been estimated in
the following way: The scale mF may be defined through

the chiral condensate renormalized at � ¼ mF: h �FFimF
¼

��c � NTFNTC

4�2 m3
F, with the overall coefficient �c similar to ��

in Eq. (52). One can scale this up to� ¼ F� by the scaling
law of the chiral condensate with the anomalous dimension
�m ¼ 1, h �FFimF

¼ ðmF=F�Þh �FFiF�
. Using Eq. (52), one

thus gets mF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ��=�c

p ð4�F�=
ffiffiffiffiffiffiffiffiffi
NTC

p Þ to estimate mF �
1 TeV with a reference value �c ¼ 2:0 used.10 The situ-
ation with such a mF � 1 TeV suits well with working on
the effective TD nonlinear Lagrangian formulated in
Ref. [9]. Note also that the masses of techni-
 and -a1

are slightly different from the simple-minded size M
;a1 �
2mF, which is due to the presence of the technigluon
contribution parametrized by the holographic parameter
G. The moderately large M
;a1 such as listed in Table III

yield a relatively small S parameter even in the light TD
case, in contrast to the case extremely close to the confor-
mal limit where S� ð4�F�Þ2=M2


 ! 1 [see Eq. (59)].

If we chose S ¼ 0:01 instead of S ¼ 0:1, we would get
M
 ’ Ma1 ’ 9:8 TeV,MG ’ 54 TeV, FG ’ 393 TeV, and

mF ’ 1:8 TeV for NTC ¼ 3. The large sensitivity for
M
;a1;G and FG comes from the high dependence of zm
on �, which gets a large shift from S ¼ 0:1 to S ¼ 0:01 by
a factor of about 2:5: z�1

m ’ 5:2 TeV ! z�1
m ’ 14 TeV

according to a shift by a factor of about 1=3 for �: � ’
0:014 ! � ’ 0:005. On the other hand, the parameter G is
fairly stable against S to keep G ’ 10 because it is almost
completely determined by the lightness of the TD [see

Eq. (42)]. Then mF gets larger by a factor of about
ffiffiffi
3

p
simply because mF / ffiffiffiffi

��
p / 1=

ffiffiffi
�

p
. Note again that the

prediction to F� in Eq. (62) is intact whatever smaller

value of S we could choose, though the predicted numbers
for other quantities as above will be somewhat sensitive to
the change.

IV. SUMMARY

In summary, we reanalyzed a holographic WTC model
proposed in Ref. [17] which incorporates the fully non-
perturbative gluonic dynamics, in contrast to the ladder
approximation. Thanks to the full inclusion of the gluonic
dynamics, we found a limit (‘‘conformal limit’’), where the
TD becomes a massless Nambu-Goldstone boson for the
scale symmetry spontaneously broken with nonzero and
finite TD decay constant F�, which is never realized in the

ladder approximation.
In such a light TD case, furthermore, we found a novel

relation between theTDdecay constantF� andF� [Eq. (45)]

TABLE II. The holographic parameters estimated by fixing M� ¼ 125 GeV, F� ¼ 123 GeV, and S ¼ 0:1 for the one-family WTC
with NTC ¼ 3, 4, 5.

NTC M� [GeV] (input) F� [GeV] (input) S (input) G � z�1
m [TeV] �� ¼

ffiffi
3

p
4��ð1þGÞ

3 125 123 0.1 10 0.014 5.2 0.89

4 125 123 0.1 8.7 0.015 4.8 0.96

5 125 123 0.1 7.7 0.016 4.5 0.96

TABLE III. Other predictions obtained by making a phenomenological input for the S parameter S ¼ 0:1, in addition to setting
F� ¼ 123 GeV, the TD mass M� ¼ 125 GeV. In estimating mF we have put �c ¼ 2 for a reference value (see footnote10).

NTC M� [GeV] (input) F� [GeV] (input) S (input) M
 [TeV] Ma1 [TeV] MG [TeV] FG [TeV] mF [TeV]

3 125 123 0.1 3.5 3.5 19 135 1.0

4 125 123 0.1 3.6 3.6 18 156 0.97

5 125 123 0.1 3.6 3.6 17 174 0.87

10Numerically, �c coincides with (3� �m) for �m ’ 0, 1, 2
when a simple-minded ansatz for the mass function of techni-
fermion �ð�p2Þ, �ðp2Þ � mFðp2=m2

FÞð�m�2Þ=2 for p2 >m2
F and

�ðp2Þ ¼ mF for p2 <mF in evaluating the chiral condensate
[17]. In the case of QCD with �m ’ 0, this ansatz implies the
dynamical quark mass mq ’ 453 MeV for the value of h �qqi ’
�ð277 MeVÞ3 which is in accord with the conventional con-
stituent quark mass mq ’ 350 MeV.
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independently of holographic parameters, which unambigu-
ously determines the TD couplings to the SMparticles set by
vEW=F�. Note that our result is free from any additional

assumption such as the ladder criticality condition NTF ’
4NTC used in Ref. [10] which was based on the ladder
approximation.

We then discussed the 125 GeV holographic TD at the
LHC taking the one-family model as a definite benchmark.
The TD couplings to the SM particles set by the ratio
vEW=F� were estimated, say, for NTC ¼ 4 and NTF ¼ 8þ
NEW-singlet ¼ 16, 20, to be vEW=F� ’ 0:2 (up to 1=NTC

corrections), which turned out to be on the best-fit value in
Eq. (2) favored by the current data on a new boson at
125 GeV recently observed at the LHC [1,2] (see
Table I). It was shown that the holographically predicted
vEW=F� in Eq. (67) is also consistent with the ladder

estimate vEW=F� ’ 0:1–0:3 in Eq. (1). Although the two

calculations are quite different qualitatively in a sense that
the ladder calculation has no massless TD limit, such a
numerical coincidence may suggest that both models are
reflecting some reality through similar dynamical effects
for the particular mass region of the 125 GeV TD.

We further fixed all the three holographic parameters by
an extra input for the S parameter S ¼ 0:1. Then the
present holographic model predicted the masses of the
techni -
, -a1 and techniglueball M
 ’ Ma1 ’ 3:6 TeV,

MG ’ 18 TeV and the techniglueball decay constant FG ’
156 TeV, and the dynamical mass of technifermion mF ’
1:0 TeV ð’ 4�F�Þ, for NTC ¼ 4 (see Table II).

Finally, we shall make some comments on the ‘‘confor-
mal limit:’’ In the previous work [17], actually, it was
addressed that there is no massless-dilaton limit for
the TD, in contrast to the present result in Eq. (46). The
previous conclusion was deduced from assuming the
PCDC in the ladder approximation, by which the TD decay
constant was calculated through the PCDC relation as in
Eq. (3) to be F2

� ¼ 3	m4
F=M

2
� as a function of the TD

mass M�. In the present work, on the other hand, the F�

was computed directly through its definition tied with the
spontaneously broken dilatation current and the scalar
current correlator related to F� by the Ward-Takahashi

identities [see Eq. (38)]. The result in Eq. (46) is therefore
a more generic and purely holographic prediction without
invoking any approximations like the ladder approxima-
tion as in the previous study. In the present study, however,
the PCDC relation has not explicitly been checked simply
because there is no source for the trace of energy-
momentum tensor ��� in the present model, which is a
problem to be studied in the future.
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