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At zero temperature the lowest part of the spectrum of the QCD Dirac operator is known to consist of

delocalized modes that are described by random matrix statistics. In the present paper we show that the

nature of these eigenmodes changes drastically when the system is driven through the finite temperature

crossover. The lowest Dirac modes that are delocalized at low temperature become localized on the scale

of the inverse temperature. At the same time the spectral statistics changes from random matrix to Poisson

statistics. We demonstrate this with lattice QCD simulations using 2þ 1 flavors of light dynamical quarks

with physical masses. Drawing an analogy with Anderson transitions we also examine the mobility edge

separating localized and delocalized modes in the spectrum. We show that it scales in the continuum limit

and increases sharply with the temperature.
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I. INTRODUCTION

The spectrum of the QCD quark Dirac operator is a quan-
tity not directly accessible by experiments but it contains
essential physical information concerning the behavior of
strongly interacting systems. The most well-known example
of that is the Banks-Casher relation implying that a non-
vanishing Dirac spectral density at zero indicates the sponta-
neous breaking of chiral symmetry [1]. Another prominent
example is that in the intermediate volume, so called ‘‘epsilon
regime,’’ the lowest part of theDirac spectrum is described by
random matrix theory (RMT), which makes it possible to
extract the low-energy constants of chiral perturbation theory
from the eigenvalues of the Dirac operator (see e.g., Ref. [2]
and references therein).More recently theDirac spectrumhas
also beenused to determine themass anomalous dimension of
QCD-like theories with many fermions [3–6].

Since at low temperature the low-lyingDirac spectrumhas
been so extensively studied it is surprising how little is known
about it in the high-temperature regime. The only solid piece
of information above the finite temperature crossover is that
since chiral symmetry is restored there the spectral density of
theDirac operator should vanish at zero. In principle, random
matrix theory also has predictions for the spectral statistics at
such a ‘‘soft edge.’’ However, unlike at zero temperature, at
high temperature a priori there is no reason to believe that the
QCD Dirac spectrum is described by this edge RMT statis-
tics. Indeed, attempts to verify this numerically did not
produce fully convincing results [7,8].

It turns out that random matrix statistics is only one of
two possible extremes concerning the eigenvalue statistics.

It corresponds to the case of completely delocalized eigen-
vectors occurring only if typical (gauge field) fluctuations can
easily mix eigenmodes nearby in the spectrum. The other
extreme possibility is localized eigenmodes that cannot be
mixed by typical fluctuations. In that case the spectrum con-
sists of independent eigenvalues obeying Poisson statistics.
Many examples of both types of behavior in large linear
systems are known both in themathematics and in the physics
literature. In fact the Bohigas-Giannoni-Schmit conjecture
asserts that quantum systems whose classical counterparts
are chaotic exhibit random matrix-type spectra whereas
integrable systems after quantization have Poisson-type
spectra [9]. An example where the same physical system,
depending on the circumstances, can exhibit both types
of behaviors is Anderson localization [10]. In that case the
transition of single electron states from delocalized ones
described by RMT statistics to localized states with
Poisson statistics is driven by impurities in the crystal lattice.
Already a long time ago the idea was put forward that

such a transition might also occur in QCD at finite tem-
perature [11]. Later on numerical studies concluded that it
is not the case and the Dirac spectrum is described by RMT
even above the finite temperature deconfining and chiral
transition [12]. This conclusion, however, was based on the
study of full Dirac spectra. It is known that in the case of
the Anderson transition for weak disorder only the states
along the band edge become localized and states deep
inside the band can still remain delocalized. Therefore a
statistical analysis of full spectra might not reveal a local-
ization transition occurring only along the band edge.
With this additional insight the idea of a localization-

delocalization transition in QCD at Tc was revived some-
time later [13]. Both instanton liquid calculations [14] and
latticeQCD simulationswere [15] done to provide evidence
that such a transition occurs at Tc. However, these
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calculations were performed around the critical tempera-
ture and therefore it was not possible to see clear Poisson
statistics in the spectrum. For that lattice simulations were
needed well above Tc where localized modes are fully
developed. Indeed, further support for localization in
QCD was obtained by a detailed demonstration that the
lowest two eigenvalues of the overlap Dirac operator in
quenched SUð2Þ gauge theory obey Poisson statistics [16].
Finally in the same system a clear transition was observed
in the spectrum of the staggered Dirac operator from
localized Poisson modes to delocalized RMT modes [17].
The picture emerging from these studies is that above the
finite temperature transition the lowest part of the Dirac
spectrum consists of localized modes obeying Poisson
statistics. Higher up in the spectrum there is a crossover
to delocalized modes described by random matrix statis-
tics. In the meantime, independently, other groups also
observed the tendency of low modes to become localized
above Tc [18], although the connection to an Anderson-
type transition was not made by them. A useful account of
the spatial structure of low Dirac modes and their local-
ization properties can also be found in Ref. [19].

So far all the direct evidence for the transition came from
quenched SUð2Þ simulations. In the present paper we study
the questionwhether full QCDwith physical light dynamical
quarks also exhibits delocalized Dirac modes above Tc. The
question is nontrivial since light dynamical quarks suppress
the lowest quark modes through the quark determinant in
the action. Nevertheless we find that localization also occurs
in full QCDwith quarks of physical masses.We demonstrate
this by presenting the results of lattice QCD simulations
with Nf ¼ 2þ 1 flavors of dynamical staggered quarks.

We also study how the location of the transition within the
spectrum depends on the physical temperature.

The paper is organized as follows. At first in Sec. II we
summarize the technical details of our QCD lattice simula-
tions. In Sec. III we describe the analogy between the QCD
delocalization-localization transition and the Anderson
transition. Here we analyze in detail the unfolded level
spacing distribution that can be used to distinguish between
localized and delocalized modes. We show that in larger
spatial volumes the transition becomes sharper and most
likely in the thermodynamic limit it becomes a genuine
phase transition. Also in this section we show how to
compute the mobility edge separating localized and delo-
calized states in the spectrum and analyze localization in
terms of the participation ratio of eigenmodes. In Sec. IVwe
study how the transition scales in the continuum limit. In
particular, we show that the localization length of localized
states is always smaller than the inverse temperature. We
also demonstrate that the properly renormalized mobility
edge scales in the continuum limit and investigate its
temperature dependence in the temperature range 1:7Tc <
T < 5Tc. Finally, in Sec. V we summarize our results and
indicate further questions.

II. SIMULATION DETAILS

At first we summarize the details of our lattice simula-
tions. We use the Symanzik improved gauge and and the
two level stout smeared staggered fermion action of
Ref. [20] with Nf ¼ 2þ 1 flavors. We take the simulation

parameters from the work of the Budapest-Wuppertal
Collaboration who determined the lattice spacing from
the kaon decay constant fK and set the bare quark masses
by requiring the pion and kaon masses to be equal to their
physical value [21]. The bare parameters we used and the
corresponding lattice spacings are summarized in Table I.
To explore the dependence of the localized-delocalized

mode transition on the temperature and the lattice spacing
we performed the simulations at three different lattice spac-
ings a ¼ 0:06, 0.082 and 0.125 fm and three different
temporal lattice extensions Nt ¼ 4, 6, 8. The physical tem-
perature of the system is set by its temporal extension as

T ¼ 1

Nta
: (1)

In this way the lattice parameters we used correspond to
the physical temperature range of 1:7Tc < T < 5Tc.
To understand the nature of the transition it is crucial to

consider the spatial volume dependence of spectral and
wave function statistics. For this reason we also repeated
some simulations on different spatial volumes. The spatial
linear size of the boxes we used were all in the range
2 fm � L � 6 fm. The details of the parameters of our
ensembles are summarized in Table II.
Since low Dirac modes can potentially be slow modes of

the system we also checked for autocorrelations. In a long
run performed on the finest lattice we found that the
autocorrelation time for the smallest Dirac modes is defi-
nitely smaller than ten trajectories. To be on the safe side
on the finest lattice the configurations that we used for
spectrum calculations were always separated by 30 trajec-
tories. Even on the coarsest lattice, configurations were
separated by ten trajectories.

III. ANDERSON TRANSITION
IN THE DIRAC SPECTRUM

Previously it was seen that in the high temperature
deconfining phase of SUð2Þ Yang-Mills theory there is a
transition in the staggered Dirac spectrum from localized

TABLE I. The bare parameters we used in the lattice simula-
tions: the inverse gauge coupling (�), the light quark mass
(mud), the strange quark mass (ms) and the corresponding lattice
spacing (a).

� mud ms a (fm)

3.75 0.001786 0.05030 0.125

3.938 0.001172 0.03300 0.082

4.08477 0.000836 0.02354 0.062
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low modes to delocalized modes higher up in the spectrum
[17]. The question we ask here is whether such a transition
also occurs in real QCD with light dynamical quarks. This
is a nontrivial question since light quarks suppress low
Dirac modes through the fermion determinant in the func-
tional integral and in the quenched case it is exactly the
lowest Dirac modes that are localized.

The hallmark of a transition from localized to delocal-
ized modes in terms of spectral statistics is a change from
Poisson statistics to random matrix statistics in the spec-
trum. Intuitively speaking, localized modes are such
because they cannot mix with other modes; typical gauge
field fluctuations do not mix them. Localized modes close
in the spectrum are peaked at spatially distant locations and
they are sensitive only to gauge field fluctuations there. As
a result the corresponding eigenvalues are statistically
independent and the level spacings obey Poisson statistics.
Delocalized modes, in contrast, are mixed by typical gauge
field fluctuations. Gauge field fluctuations change several
delocalized modes together which introduces delicate cor-
relations in the spectrum and as a result the eigenvalue
statistics is described by RMT.

The simplest way to detect a transition in the spectrum
from Poisson to RMT statistics is to consider the so-called
unfolded level spacing distribution. Unfolding is essen-
tially a local rescaling of the eigenvalues to have unit
spectral density throughout the spectrum. We did the
unfolding by ordering all eigenvalues in the given en-
semble and replacing them with their rank order normal-
ized by the total number of configurations. On a few
ensembles we also checked unfolding by using local spline
approximations to the spectral density but there was no
discrepancy between the two methods of unfolding.

Since the unfolded level spacing distribution (ULSD) is
known analytically for both the Poisson and the RMT

statistics it can be easily used to distinguish between the
two cases. For Poisson statistics the ULSD is a simple
exponential,

PPoissonðsÞ ¼ expð�sÞ:
In the RMT case the unfolded level spacing distribution
depends on the universality class which in the case of
staggered fermions in the fundamental representation of
the SUð3Þ gauge group is the chiral Unitary Ensemble
(chUE) [2]. The corresponding ULSD is very precisely
approximated by the chiral unitary Wigner surmise,

PchUEðsÞ ¼ 32

�2
s2 � exp

�
� 4

�
s2
�
: (2)

To demonstrate the transition in the spectrum in Fig. 1
we plot the ULSD in different regions of the spectrum of
ensemble C3: 0:15 � �a � 0:19 (a), 0:29 � �a � 0:32
(b), 0:34 � �a � 0:35 (c) and 0:375 � �a � 0:385 (d).
We also indicate in the same figure the distributions
corresponding to the Poisson (localized) and the RMT
(delocalized) case. The transition from localized modes
at the edge of the spectrum to delocalized modes in the
bulk can be clearly seen. This shows that light dynamical
fermions do not change the picture observed in the
quenched case earlier and the transition also occurs in
QCD with quarks of physical masses.
To give a qualitative picture of how the spectral density

goes, in Fig. 2 we plot the integrated spectral density on
ensemble C3. For comparison we also included in the same
figure data for the ensemble C2 with the same parameters,
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FIG. 1 (color online). The unfolded level spacing distribution
in different regions of the spectrum of ensemble C3. The figures
correspond to the spectral regions 0:15 � �a � 0:19 (a), 0:29 �
�a � 0:32 (b), 0:34 � �a � 0:35 (c) and 0:375 � �a � 0:385
(d). The dashed line indicates the exponential distribution cor-
responding to the localized (Poisson) case and the dotted line
indicates the chiral unitary Wigner surmise expected in the
delocalized (RMT) case.

TABLE II. The parameters of the simulations: the tempera-
ture, the lattice spacing, the spatial and temporal box size, the
inverse gauge coupling, the number of configurations and the
number of Dirac eigenvalues computed on each configuration.

T (MeV) a (fm) Ns Nt Nconf Nevs

A1 263 0.125 24 6 430 512

A2 36 420 256

B 300 0.082 32 8 434 256

C1 394 0.125 16 4 1622 512

C2 24 1600 512

C3 32 900 512

C4 48 604 128

D1 401 0.082 24 6 440 512

D2 36 440 256

E 397 0.062 32 8 593 256

F 530 6 420 512

G 601 0.082 24 4 396 512

H 794 0.062 32 4 417 512
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but smaller spatial volume. The data show good scaling
with the three-volume that we also observed on other
ensembles. Comparing this figure with the spectral win-
dows depicted in Fig. 1 one can observe that in the Poisson
regime the integrated spectral density is much smaller than
unity. In the transition region it becomes comparable to
unity and finally in the Wigner-Dyson (RMT) regime it
becomes much bigger than that.

A. Analogy with the Anderson transition

The transition in the spectrum from localized to delocal-
ized modes is reminiscent of the Anderson metal-insulator
transition occurring in conducting crystalline solids when
impurities are introduced [10]. In that case in the presence
of impurities single electron Bloch states along the band
edge turn into localized states. In three dimensions if the
impurity concentration is not too high, states at the band
center can still remain delocalized. The boundary between
localized and delocalized states is known as the mobility
edge. Increasing the density of impurities pushes the mo-
bility edge further towards the center of the band until all the
states in the band become localized. When the mobility
edge passes the Fermi energy and the Fermi energy gets
into the delocalized part of the spectrum the system has a
vanishing zero-temperature conductivity. The states that
can be excited are all nonconducting localized states.

It has been conjectured that the finite temperature QCD
transition might be similar to the Anderson transition [13].
Further indications to support this picture were obtained
from instanton liquid [14] and latticeQCD simulations [15].

We now sketch the analogy between the spectrum of the
one electron Hamiltonian in disordered media and that of
the QCD Dirac operator. Due to the symmetries of the
QCDDirac operator its spectrum is symmetric with respect
to the real axis. In the continuum and also in the case of the
staggered lattice Dirac operator, the one we use here, the

spectrum is purely imaginary. That is if the quark mass is
zero, otherwise the quark mass provides a trivial real part to
all the eigenvalues. In the chiral limit (zero quark mass) the
spectral density at zero is proportional to the chiral conden-
sate, the order parameter of spontaneous chiral symmetry
breaking [1]. At high enough temperature chiral symmetry
is restored and the spectral density at zero vanishes. In that
case the spectrum has a so-called ‘‘soft edge’’ and there
might even be a gap around zero in the spectrum [7,8]. This
‘‘edge’’ of the spectrum at the low end is analogous to the
band edge in condensed matter systems.
In the condensed matter literature numerical studies of

the Anderson transition usually concentrate on the band
center and locate the critical disorder when states at the
center become localized. As we will see, in the case of
QCD the location of the mobility edge is controlled by the
temperature and there is no analog of the band center since
the spectral density continues to be nonzero all the way up
to the cutoff scale. Therefore, unlike in most of the con-
densed matter literature, here we do not attempt to deter-
mine the critical disorder where all delocalized states
disappear but rather study how the mobility edge changes
with the temperature. This approach is not completely
unknown in the condensed matter literature either [22].

B. Second moment of the unfolded level
spacing distribution

As can be seen in Fig. 1 the unfolded level spacing
distribution changes in the spectrum from the exponential
to the Wigner surmise in a continuous fashion. There does
not appear to be a sharp mobility edge �c separating local-
ized and delocalized states. Even in the case of Anderson
transitions, however, a sharp transition is expected only in
the thermodynamic limit when the spatial size of the system
Ns goes to infinity. This is completely analogous to second
order phase transitions where a truly divergent correlation
length and a sharp phase transition can only be observed in
infinite systems. In principle any physical quantity that
changes in a well-defined way from the localized to the
delocalized regime can be used to define a transition point
in the spectrum. If there is a sharp transition in the thermo-
dynamic limit then nonanalytic behavior should appear in
all these quantities at a given point �c in the spectrum. In
what follows we will look for a quantity that can be used to
define the transition point.
Since the first moment of the unfolded level spacing

distribution is unity by construction, the simplest quantity
to consider is its second moment or variance. In the local-
ized case the level spacings are exponentially distributed
and the variance is

�2
s ¼ hs2i � hsi2 ¼ 1; (3)

while in the delocalized regime the second moment of the
distribution of Eq. (2) can be analytically determined to be
�2

s ¼ 3�
8 � 1. In Fig. 3 we plot how the variance changes in
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FIG. 2 (color online). The integrated spectral density in units
of number of eigenvalues per cubic Fermi. We compare data
from ensembles C2 and C3 which are almost identical except
that the spatial linear sizes are 3 fm and 4 fm, respectively.
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the spectrum throughout the transition region. We com-
puted the variance of the unfolded level spacing distribu-
tion in small spectral windows. We checked that the
variances were independent of the chosen width of the
spectral windows; regardless of the window size the points
lay on the same smooth curve. For each ensemble we chose
a window size to obtain reasonable spectral resolution with
acceptable statistical errors. The three data sets correspond
to ensembles C1–C3 with three different spatial volumes
but otherwise identical parameters. It is apparent that with
increasing volume the transition becomes sharper. To
define a finite volume pseudocritical point in the spectrum
we locate the inflection point of the curve �2ð�Þ. To this
end we use the three-parameter fitting ansatz

�2ð�Þ ¼ Af1� tanhðBð�� CÞÞg þ 3�

8
� 1: (4)

This form ensures the correct limit for large � and yields
good fits starting already from �a ¼ 0:2, 0.25 i.e., already
from below the transition point. Using this ansatz the
inflection point can be easily seen to be at �ca ¼ C and
the slope of the curve there is AB. These two parameters
are largely independent of the starting point of the fit as
long as it starts at smaller values of � than where the
inflection point occurs. The location of the inflection point
turns out to be also independent of the volume yielding
pseudocritical points C ¼ �ca ¼ 0:321ð4Þ, 0.322(1), 0.324
(2) for the spatial sizes Ns ¼ 16, 24, 32. The slope at the
inflection point is AB ¼ 7:6ð5Þ, 10.96(36), 13.8(5) for the
three different spatial sizes and it scales roughly propor-
tionally to the linear spatial size of the box. This indicates
that there might be a genuine sharp transition in the ther-
modynamic limit. The sharpening of the transition with the
volume can be better seen in Fig. 4 where we plot again the
variance of the unfolded level spacing distribution but

zoom in on the transition region and also show the fitted
curves with the above described parameters.

C. Eigenvector statistics

Besides the spectrum the spatial profile of the corre-
sponding eigenvectors also contains important information
concerning their localization properties. A quantity that is
widely used in this context is the inverse participation ratio
(IPR) defined as [23]

Pc ¼ X
x

jc ðxÞj4; (5)

where c is an eigenvector normalized asX
x

jc ðxÞj2 ¼ 1: (6)

The qualitative physical meaning of the IPR can be easily
seen by noting that an eigenmode that spreads uniformly in a
four-volume v and is zero everywhere else has IPR¼1=v.
The IPR�1 thus measures the volume occupied by an eigen-
mode. Alternatively one can use the participation ratio,
PR ¼ IPR�1 � V�1, where V is the total volume of the
system. This measures the fraction of the total volume
occupied by the eigenmode.
The behavior of the IPR and the PR in the thermody-

namic limit can be used to distinguish between localized
and delocalized modes. By definition a part of the spectrum
consists of localized modes if their average IPR remains
finite as the volume goes to infinity. This also implies that
their average PR vanishes in the thermodynamic limit. In
contrast delocalized modes have vanishing IPR which
usually implies nonvanishing PR.
In Fig. 5 we plot how the average participation ratio of

eigenmodes changes throughout the spectrumon ensembles
C1–C4. The four data sets correspond to different spatial
sizes but otherwise identical parameters. It is clearly seen
that the average PR for the low eigenmodes decreases as the
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FIG. 3 (color online). Variance of the unfolded level spacing
distribution across the transition in the spectrum for ensembles
C1, C2 and C3 that differ only in their spatial volume. The
dashed horizontal lines at 1 and 0.178 indicate the expected
limits in the localized (Poisson) and delocalized (RMT) regime.
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FIG. 4 (color online). The same as Fig. 1 but zooming in on the
transition region. The dotted, dashed and the continuous curve
indicate the fits of the form Eq. (4) to the Ns ¼ 16, 24 and
32data, respectively.
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volume is increased; the average PR here tends to zero in the
thermodynamic limit. This suggests that these eigenmodes
are localized. They fill a vanishing fraction of the total box
volume in the thermodynamic limit. Higher up in the
spectrum the average PR becomes a volume independent
constant of order unity, which means that these eigen-
modes are delocalized. They fill a nonzero fraction of the
total box volume in the thermodynamic limit.

IV. CONTINUUM LIMIT AND
RENORMALIZATION

We saw that on all the ensembles that we considered
there is a critical point (‘‘mobility edge’’) �c in the Dirac
spectrum that separates localized and delocalized eigen-
modes. If the lowest part of the spectrum becomes local-
ized that can have a dramatic effect on long distance
correlators of quark operators and the masses associated
with them. This happens because in the spectral decom-
position of the quark propagator ðDþmÞ�1 each eigen-
mode is weighted by the inverse of the corresponding
eigenvalue. Therefore the lowest eigenmodes receive the
largest weight. On the other hand, eigenmodes localized to
a distance scale l have negligible contribution to correla-
tors at distance scales much larger than l.

To assess the physical implications of localization in
QCD we are thus lead to study two questions:

(1) What is the distance scale l on which the lowest
eigenmodes are localized?

(2) How far up in the spectrum (�c) are the modes
localized?

Both of these questions have to be considered in the con-
tinuum limit as the lattice spacing a ! 0.

A. Localization length

To get a rough estimate of the localization scale we can
consider the IPR defined by Eq. (5). Since the IPR scales

like the inverse four-volume of the region where the given
mode is spread out a good measure of the localization scale
is provided by the quantity

l ¼ a � hIPR�1
4i; (7)

where the average is understood over all the eigenmodes in a
given region of the spectrum. In principle l varies through
the spectrum but it does not change too much within the
region of localized modes. To illustrate that, in Fig. 6 we
show in two representative cases how l changes through the
spectrum. As can be seen in the figure for the lowest part of
the spectrum the localization length is almost constant and is
independent of the spatial volume. In this region there might
be a small dip in l. The dip is generally more pronounced at
lower temperatures and/or on finer lattices but on our ensem-
bles the total variation of l in the localized regime never
exceeds 20%. At some point in the spectrum l starts to
increase sharply and becomes strongly volume dependent.
This is the beginning of the transition to delocalized states.
In what follows we define the localization length of

localized modes with the following simple procedure.
The localized eigenmodes all have l’s between the bottom
of the dip and the l of the very lowest eigenmodes. This
interval for ensembles D1 and D2 is indicated by the two
dashed horizontal lines in Fig. 6. The central value we
quote for l is always the center of this band and the
uncertainty is half the width of the band. Compared to
that, statistical errors are always negligible.
Having a well-defined measure of the localization length

for localized modes we can now look at how it depends on
the lattice spacing. Since, as we will see, l also depends on
the temperature, we choose to compare ensembles C, D
and E which are almost exactly at the same physical
temperature of about 400 MeV. Since l does not depend
on the spatial volume we omit the numbers from the
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FIG. 5 (color online). Average PR of the eigenvectors for
lattices with the same temperature and lattice spacing but with
four different aspect ratios Nt ¼ 4.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
λa

0

5

10

15

20

l/
a

Ns=24

Ns=36

FIG. 6 (color online). The localization length [Eq. (7)] of
eigenmodes along the spectrum for ensembles D1 and D2 differ-
ing only in their spatial volumes. Both l and the location in the
spectrum � are given in lattice units. Statistical errors are not
shown as they are smaller than the size of the symbols.
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ensemble labels here. In Fig. 7 we plot the localization
length as a function of the lattice spacing for these three
ensembles.

To guide the eye we also included a linear fit to the data.
Even if the quality of our data does not allow a proper
continuum extrapolation it can be safely concluded that the
localization length measured in physical units does not
increase in the continuum limit and it is not larger than a
few tenths of a Fermi at this temperature.

It is also instructive to see how the localization length
compares to the most important length scale in the prob-
lem, the inverse temperature or in other words the temporal
size of the box. In Fig. 8 we plot the localization length in
units of the inverse temperature for all the ensembles.
Different symbols represent data sets corresponding to
different values of the lattice spacing. There is a slight
trend of the finer lattices producing more localized low

modes as can be seen also in Fig. 7. The important point is
that the lowest modes always appear to be localized on or
below the scale of the inverse temperature in the whole
range of temperatures studied here.

B. Renormalization and temperature dependence of �c

We have seen that the lowest eigenmodes spread out
only to a distance scale below the inverse temperature.
Therefore these modes cannot contribute to quark propa-
gation on length scales larger than that. As far as hadronic
correlators are considered, above that distance scale the
system behaves as if it had a gap of order �c. The influence
of this effective gap on the physics depends on how �c, the
critical point in the spectrum, scales in the continuum limit.
In Sec. III B we showed how to determine the critical

point using the second moment of the unfolded level
spacing distribution. This procedure yields the critical
point �ca in dimensionless lattice units for each tempera-
ture and lattice spacing. In what follows we give a proposal
for defining the continuum limit of this quantity. Since the
critical point is effectively a gap for quark modes capable
of propagating to long distances it plays a role similar to
the quark mass that also introduces a gap. For this reason
we expect �c to be renormalized in exactly the same way
as the quark mass and the ratio of �ca to the bare light
quark mass muda should have a proper continuum limit.
Moreover this quantity measures the relative size of the
effective gap for delocalized modes and the gap for all
modes provided by the quark mass.
Another, perhaps more formal, argument showing that

�c=mud has a well-defined continuum limit is as follows.
On the one hand, the pseudoscalar meson correlator
hPðxÞPð0Þi is proportional to the matrix elements of
the square of the Dirac propagator, ½ðDy þmÞðDþmÞ��1.
On the other hand, for asymptotically large temporal
separations t

1

Vs

X
~x

hPðt; ~xÞPð0Þi ¼ CPP e
�m�t; (8)

where Vs is the spatial volume and CPP is related to the pion
decay constant f� as [24]

CPPm
2
ud ¼

f2�
Vs

m3
�: (9)

The right-hand side of this equation is awell-definedphysical
quantity and thus so is the left-hand side. Since CPP is
proportional to the inverse quark propagator squared, it is
also proportional to the inverse of the Dirac eigenvalues
squared. Thus

m2
ud�

�2
c / CPPm

2
ud (10)

also has a well-defined continuum limit. For a more general
discussion of similar issues with Wilson fermions see also
Refs. [25,26].
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FIG. 7. The localization length of the localized modes as a
function of the lattice spacing. The three points correspond to the
same physical temperature of about 400 MeV (ensembles C, D
and E).
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FIG. 8 (color online). The localization length in units of the
inverse temperature as a function of the physical temperature.
The different symbols represent data obtained at different values
of the lattice spacing.
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Data sets C, D and E where we have data at the same
temperature for all three lattice spacings indicate that the

lattice spacing dependence in the quantity �c

mud
is compa-

rable to its uncertainty at a given lattice spacing. Therefore
in Fig. 9 we plot the temperature dependence of this
quantity for all lattice spacings in the same figure. The
different types of symbols corresponding to data obtained
from lattices of different coarseness all lie on a smooth
curve confirming that scaling violations in this quantity are
small. A three-parameter fit to the data of the form

�c

mud

¼ a � T � Tc

Tc

þ b �
�
T � Tc

Tc

�
2

(11)

yields a ¼ 133ð14Þ, Tc ¼ 171ð9Þ MeV, b ¼ 4ð1Þ with an
acceptable chi squared of �2 ¼ 1:3. Although putting b to
zero the two-parameter linear fit results in a two times larger
chi squared [with Tc ¼ 191ð6Þ MeV], in thewhole range of
the data the two curves are barely distinguishable by the
naked eye. This means that to a very good approximation
the mobility edge depends linearly on the temperature. For
clarity, in the figure we show only the three-parameter fit. It

is also obvious from the fit function that �c

mud
vanishes at

Tc ¼ 171 MeV which we identify with the pseudocritical
temperature below which localized states are not expected
at all. This value is consistent with the known location of
the finite temperature crossover in QCD [27,28]. This
provides a further consistency check of our results.

Another physically interesting quantity is the number
density of localized modes. This quantity is also practically
important if one aims at detecting localization from spec-
tral statistics. In order to be able to observe Poisson statis-
tics in the level spacing distribution the volume of the
system has to be large enough to accommodate several
localized eigenmodes per configuration. To see what that

means practically in Fig. 10 we plotted the average density
of eigenmodes below �c as a function of the temperature.
Again we collect data obtained at different values of the
lattice spacing in the same figure. Apparently the number
density of localized modes decreases sharply as the tran-
sition temperature is approached from above. In practical
terms that means that in order to have for instance about 20
localized modes per configuration the aspect ratio of the
boxes has to be kept between 4–6 in the temperature range
considered here.
Finally we would like to point out a potential technical

difficulty in studying the level spacing distribution. It is
caused by the pairing of staggered Dirac eigenvalues
affecting the lowest part of the spectrum when the spatial
volume is small. It comes about because in the continuum
limit staggered fermions describe four fermion flavors
and the spectrum is expected to become fourfold degener-
ate. Therefore approaching the continuum limit this
degeneracy starts to be formed and peculiar correlations
will appear among members of the would-be continuum
quartets.
It turns out that already at the lattice spacings we used

here the stout smearing of gauge fields coupled to the
fermions brings the spectrum close enough to the contin-
uum behavior that such extra correlations for the lowest
eigenvalues can be detected. This is first manifested in
pairwise attraction between consecutive eigenvalues which
distorts the Poisson statistics [29,30]. To illustrate this, in
Fig. 11 we plot the average of the lowest eight eigenvalues
for three ensembles with the same physical volume and
temperature differing only in the lattice spacing. The for-
mation of doublets on the finer grids is obvious in the figure
but the quartet structure does not appear even on the finest
grid. It is also obvious from the figure that as we go up in
the spectrum and the spectral density increases rapidly
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FIG. 9 (color online). The temperature dependence of the re-
normalized critical point �c

mud
. The continuous line is a second

order polynomial fit to all the data. The different symbols corre-
spond to data obtained using lattices of different coarseness.
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FIG. 10 (color online). The number of localized (below �c)
eigenmodes per cubic Fermi as a function of the temperature.
Different symbols refer to simulations at different values of the
lattice spacing.
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(cf. Fig. 2) the distance between doublets decreases much
more rapidly than the splitting within the doublets. As a
result, above the first few doublets even the doublet struc-
ture is completely washed out by the increasing spectral
density. Since the spectral density is proportional to the
volume, this happens even faster in larger volumes. As a
result, if the lowest spectral window in which spectral
statistics are computed is wide enough and the volume is
large enough, doublet formation does not distort the
Poisson statistics significantly.

As a matter of principle, we have to admit that since the
quartet structure expected in the continuum has not yet
formed in our simulations, spectral and eigenvector statis-
tics might be different in the continuum. It is even not clear
to us how exactly this quartet structure should appear and
scale especially in the thermodynamic limit where the level
spacing should go to zero. On the other hand, we do not
expect this to qualitatively change the localization and
statistical properties of the eigenvectors. In previous stud-
ies of the SUð2Þ quenched theory we used both staggered
and overlap fermions and found qualitatively similar
localized eigenmodes and similar spectral statistics
[16,17]. Moreover, on the same gauge backgrounds the
location of staggered and overlap eigenmodes were
strongly correlated [31]. Thus we expect that staggered
and overlap fermions see the same universal physical
features and it is likely that localization persists in the
continuum limit. However, to establish that absolutely
certainly one would need to repeat our present study with
dynamical overlap fermions.

Finally, we also would like to add a remark about the
possible effects of topological charge on the spectral sta-
tistics. In principle, even staggered fermions are expected
to have small near-zero modes in the presence of a nonzero
topological charge. However, our experience in the
quenched SUð2Þ case shows that at the temperatures we

study here, fluctuations of the total topological charge are
rather small [16]. Moreover, the number of topological
near-zero modes scales only with the square root of the
volume whereas the number of nontopological modes goes
with the volume. Therefore in our large volumes we do not
expect topological near-zero modes to have a significant
distorting effect on spectral statistics.

V. CONCLUSIONS

In the present paper we argued that in QCD above the
finite temperature crossover the lowest eigenmodes of the
quark Dirac operator are localized. The spatial localization
length is set by the inverse temperature (see Fig. 8) with
eigenmodes becoming more ‘‘squeezed’’ at higher tem-
perature. At the same time when the temperature increases
the mobility edge, separating localized and delocalized
modes, is also pushed higher up in the spectrum.
This high temperature behavior of the low Dirac modes

has to be contrasted with the situation at low temperature
below the crossover. In that case chiral symmetry is spon-
taneously broken and a finite density of eigenmodes
extends down all the way to zero. As a result, the statistics
of the lowest Dirac modes is described by random matrix
theory. QCD is thus a remarkably rich theory. The low
end of the Dirac spectrum can exhibit both possible
extremes of spectral statistics: maximally mixed modes
with RMT statistics below the transition and completely
independent eigenmodes with Poisson spectral statistics at
high temperature.
The localization of the lowest Dirac modes can dramati-

cally suppress hadronic correlators at high temperatures. In
the eigenmode expansion of the quark propagator the low-
est part of the spectrum receives the largest relative weight.
If, as we saw, these modes are localized they cannot
propagate quarks to long distances resulting in a suppres-
sion of long-distance correlators. As can be seen in Fig. 9
the mobility edge below which all states are localized
moves steeply up with increasing temperature. Already at
2Tc it is two orders of magnitude larger than the bare light
quark mass. This mechanism might help to explain the
steep rise of screening masses above Tc seen in lattice
simulations [32].
An interesting question is how exactly the spectral and

wave function statistics change through the mobility edge
and whether there is any universality in how these quanti-
ties interpolate between the localized and delocalized
regime. In particular we would like to check whether the
scale invariance of the inverse participation ratio distribu-
tion observed in Anderson transitions [33] also occurs in
the QCD transition. We hope to return to this question in a
future publication. As far as the Poisson to RMT transition
in the spectral statistics is concerned there does not seem to
be a universal understanding of how it happens in general
but there are several proposals that might provide further
insight [31,34–36].
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FIG. 11 (color online). The average of the lowest eight eigen-
values for ensembles C1 (Nt ¼ 4), D1 (Nt ¼ 6) and E (Nt ¼ 8).
The error bars are comparable to the size of the symbols and for
clarity they have been omitted.
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It would also be interesting to know what physical
mechanism drives the transition. Is it possible to identify
some physical objects in the gauge field background that
are responsible for the appearance of localized modes? In a
previous paper some evidence was found that there is a
correlation between localized modes and local fluctuations
of the Polyakov loop [31]. On the other hand it was also
argued there that uncorrelated instantons cannot play a
significant role in this mechanism as their density is too
low for that. It is, however, still possible that instanton
molecules or ‘‘bions’’ have to do with localization [37]. A
better understanding of the physical mechanism behind

localization in QCD could possibly shed some more light
on the finite temperature chiral and deconfining transition.
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