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Using an SUð3Þ flavor symmetry breaking expansion in the quark mass, we determine the QCD

component of the nucleon, Sigma and Xi mass splittings of the baryon octet due to up-down (and strange)

quark mass differences in terms of the kaon mass splitting. Provided the average quark mass is kept

constant, the expansion coefficients in our procedure can be determined from computationally cheaper

simulations with mass-degenerate sea quarks and partially quenched valence quarks. Both the linear and

quadratic terms in the SUð3Þ flavor symmetry breaking expansion are considered; it is found that the

quadratic terms only change the result by a few percent, indicating that the expansion is highly

convergent.
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I. INTRODUCTION

The masses of the baryon octet are now very accurately
known, with results given in the Particle Data Group [1] as

Mexp
n ¼ 0:939565346ð23Þ GeV;

Mexp
p ¼ 0:938272013ð23Þ GeV;

M
exp
�� ¼ 1:197449ð30Þ GeV;

Mexp

�þ ¼ 1:18937ð7Þ GeV;
M

exp
�� ¼ 1:32171ð7Þ GeV;

M
exp

�0 ¼ 1:31486ð20Þ GeV;

(1)

around the outer ring of the octet and

Mexp

�0 ¼ 1:192642ð24Þ GeV;
M

exp
� ¼ 1:115683ð6Þ GeV;

(2)

at the center. Isospin breaking effects (i.e., u� d quark
mass differences and electromagnetic effects) are respon-
sible for the nucleon, n� p, Sigma, �� � �þ, and Xi,
�� ��0, mass splittings

ðMn �MpÞexp ¼ 1:293333ð33Þ MeV;

ðM�� �M�þÞexp ¼ 8:079ð76Þ MeV;

ðM�� �M�0Þexp ¼ 6:85ð21Þ MeV:

(3)

These are very small differences (particularly for the n� p
mass splitting), ranging from about 0.15% to 0.7% of the

baryon mass. (We shall not be considering the �0 ��
mass splitting here as these particles have the same quan-
tum numbers and mix if isospin is violated.) In this article
we shall be only looking at the hadronic or QCD contri-
bution to these mass splittings, i.e., we are not going to
consider electromagnetic effects. Both effects are small
perturbations and can simply be added together. In the
case of the n� p splitting we can argue that the hadronic
effect is larger because the electromagnetic effect would
tend to make the proton heavier than the neutron (as u
quarks repel more than d quarks) which is not the case in
the real world. There have been several previous lattice
determinations of the QCD contribution to these mass
splittings, e.g., Refs. [2–4], and also several lattice com-
putations of the electromagnetic contribution, e.g.,
Refs. [3,5–10]. Nonlattice determinations include [11].
In Fig. 1 we sketch the lowest octet for the spin 1

2 baryons

plotted in the I3 � Y plane. The particles on the outer ring,
namely, the nðdduÞ, pðuudÞ, �þðddsÞ, ��ðuusÞ and
��ðssdÞ, �0ðssuÞ all consist of combinations of aab
quarks (where we shall use the notation of denoting a
quark, q, by a; b; . . . , which can be the up u, down d or
strange s quark). In this notation a are the flavor doubly
represented quarks, while b is the flavor singly represented
quark. At the center of the octet we have two states,�ðudsÞ
and �0ðudsÞ, with the same quark content�u, d and s, but
different wave functions.
In Refs. [12,13] we described a method for extrapolating

from the SUð3Þ flavor symmetric point (where we have
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three mass-degenerate quarks) to the physical point, keep-
ing the average of the quark masses constant. The form of
the SUð3Þ flavor symmetry breaking expansion was devel-
oped both for nondegenerate u, d quark masses and for
degenerate u, d quark masses. In Ref. [13] numerical
simulations were performed for 2þ 1 flavors, i.e., with
two degenerate light quark masses. Thus, effectively the
mass ‘‘average’’ of the n, p baryon, and the �þ, �� and
��, �0 baryons were considered. However, as the coef-
ficients of the quark mass flavor symmetry are just func-
tions of the average quark mass, the expansion coefficients
do not change from using nondegenerate to 2 or 3 mass-
degenerate quarks provided that the average quark mass is
kept constant [13]. This gives us the opportunity to inves-
tigate isospin splittings, i.e., when the u quark mass is
different to the d quark mass, using only results from
2þ 1 or 3 flavor simulations.

As the baryon mass differences (e.g., n� p) depend on
the u� dmass difference and are thus small, we find that it
is sufficient to consider the SUð3Þ flavor symmetry break-
ing expansion in the quark mass including both linear
terms [leading order (LO)] and quadratic terms [next to
leading order (NLO)]. These LO and NLO terms were
given in Ref. [13].

We saw little curvature in hadron masses in the quark
mass range considered in Ref. [13] (see also Sec. VI),
namely, from the three degenerate flavor pion mass at
�411 MeV to the physical pion mass �140 MeV, so we
conclude that a much larger quark mass range is needed to
reliably determine curvature. We achieve this larger range
by extending the numerical results to partially quenched
(PQ) quark masses (where the valence quark masses do not
have to be the same as the sea or dynamical quark masses)
with a spread of quark masses from about one third of the
strange quark mass up to the charmed quark mass. We also
consider part of the next to next to leading order (NNLO)
(cubic terms) in the SUð3Þ flavor symmetry expansion.
(The NNLO terms were also indicated in Ref. [13]; we
have now completed this computation [14].) Thus we can
consider a large quark mass range to be able to determine

the NLO or quadratic terms more accurately, using the
NNLO terms as a ‘‘control.’’
Chiral perturbation theory looks at the breaking of the

chiral SUð3Þ group by the quark masses—its expansion
parameter is the quark mass itself, or equivalently, the
masses of the pseudoscalar mesons. We are following an
older strand, going back to Gell-Mann and Okubo [15,16]
of looking at the breaking of the nonchiral SUð3Þ symme-
try, by quark mass differences. In chiral perturbation theory
the expansion is about the point where all three quarks are
massless; here we expand about a point where the three
quarks have equal (nonzero) masses each about a third of
the physical strange quark mass.
As well as the baryon SUð3Þ octet flavor expansion, we

will also need the values of the quark mass corresponding
to the physical point. We can achieve this by considering
the equivalent SUð3Þ flavor expansion, but now for the
pseudoscalar meson octet. The same procedure as for the
baryon octet is required: first the SUð3Þ flavor expansion
coefficients must be determined and then the experimental
values of the masses of the K0, Kþ and �þ mesons can be
used to determine the required physical quark mass point.
These can then be used, together with the SUð3Þ baryon
octet flavor expansion, to determine the mass splittings for
the baryon octet.
We shall find that the LO term is dominant (both for

the baryon and pseudoscalar octets) and so the NLO
(and NNLO corrections) may be taken as an indication
that our SUð3Þ flavor symmetry breaking expansion
appears to be a highly convergent series. (This point is
further discussed in Appendix A.)

II. OCTET BARYONS

Before discussing partial quenching, we first consider
the case where the valence quark masses are the same as
the sea quark masses, the so-called unitary line. The SUð3Þ
flavor symmetry breaking expansion [13], for all of the
outer ring octet baryons consisting of a pair of identical
flavor quarks and a third, different quark can be compactly
written up to NLO as

M2ðaabÞ¼M2
0þA1ð2�maþ�mbÞþA2ð�mb��maÞ

þB0

1

6
ð�m2

uþ�m2
dþ�m2

sÞþB1ð2�m2
aþ�m2

bÞ
þB2ð�m2

b��m2
aÞþB3ð�mb��maÞ2; (4)

with quarks q ¼ a; b; . . . , from ðu; d; sÞ, where

�mq ¼ mq � �m; �m ¼ 1

3
ðmu þmd þmsÞ: (5)

We shall consider the SUð3Þ flavor symmetry breaking
expansion ofM2ðaabÞ [17], rather thanMðaabÞ. Of course
from the viewpoint of the SUð3Þ flavor symmetry breaking
expansion any function fðMÞ could be considered. For
fitting over a small quark mass range, a linear function is

+

0−

0

+1−1

Ξ

Σ
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Ξ
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FIG. 1 (color online). The lowest octet for the spin 1
2 baryons

plotted in the I3 � Y plane.
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sufficient; for the large quark mass range considered in
Sec. III B a better fit to the numerical data was found using
M2ðaabÞ rather than MðaabÞ.

Note that M2
0; A1; A2; B0; . . . ; B3 all depend on the

average quark mass �m, which will be held constant in
the following simulations. Keeping �m constant reduces
the number of coefficients that must be determined
(and indeed makes the computation tractable).

FromFig. 1we see that as there are six different masses on
the baryonouter ring but just two linear parameters inLO; the
fits are highly constrained. At the next order, NLO, in Eq. (4)
we are allowed four coefficients for the quadratic terms.

We have in addition the trivial constraint

�mu þ �md þ �ms ¼ 0; (6)

so we can eliminate one of these quantities if we wish to.
Thus, to determine the octet baryon masses, we first

have to determine the expansion coefficients and second
we need to know the physical quark masses. In the follow-
ing we shall denote the physical point by a star �. We thus
have two distinct computations. As we shall see, the deter-
mination of the coefficients is helped by PQ simulations,
while �m�

q can be found by considering equivalent expan-

sions for the pseudoscalar meson octet.
A further problem is that the scale must be determined.

As discussed in Ref. [13], flavor blind (or gluonic) quan-
tities are suitable. We denote these generically by X. One
useful type of flavor blind quantity can be considered as the
‘‘center of mass’’ of the multiplet. Thus for the baryon
octet, one possibility is1

X2
N ¼ 1

6
ðM2

p þM2
n þM2

�þ þM2
�� þM2

�0 þM2
��Þ: (7)

At the physical point, from Eq. (1), this gives

Xexp
N ¼ 1:1610 GeV: (8)

In general for the SUð3Þ flavor breaking symmetry expan-
sion we have from Eq. (4),

X2
N ¼ M2

0 þ
�
1

6
B0 þ B1 þ B3

�
ð�m2

u þ �m2
d þ �m2

sÞ
¼ M2

0 þOð�m2
qÞ: (9)

Upon adding the masses the A2 and B2 terms vanish; while
the A1 term vanishes upon using the constraint equation,
Eq. (6), and thus this leads to the vanishing of the linear
term in the quark mass. (This is indeed true for all flavor
blind quantities.)

Scale independent quantities can now be constructed by
considering the ratio M2ðaabÞ=X2

N . Expanding to NLO
order in the quark mass, Eq. (4) retains the same pattern
and becomes

~M2ðaabÞ ¼ 1þ ~A1ð2�ma þ �mbÞ þ ~A2ð�mb � �maÞ
� ð ~B1 þ ~B3Þð�m2

u þ �m2
d þ �m2

sÞ
þ ~B1ð2�m2

a þ �m2
bÞ þ ~B2ð�m2

b � �m2
aÞ

þ ~B3ð�mb � �maÞ2; (10)

where again a tilde on a hadron mass means that it has been
divided by XN , so ~M ¼ M=XN while a~on the expansion
coefficients means that they have been divided by M2

0,

for example ~A1 � A1=M
2
0. From Eq. (9) we see that we

have effectively replaced the 1
6
~B0 term by �ð ~B1 þ ~B3Þ.

(However, this will not be important in the case discussed
here; as for mass differences, these terms cancel again.)
Alternatively we can rewrite Eq. (10) as

~MðaabÞ ¼ 1þ ~A0
1ð2�ma þ �mbÞ þ ~A0

2ð�mb � �maÞ
� 1

2
ð ~B1 þ ~B3Þð�m2

u þ �m2
d þ �m2

sÞ
þ ~B0

1ð2�m2
a þ �m2

bÞ þ ~B0
2ð�m2

b � �m2
aÞ

þ ~B0
3ð�mb � �maÞ2; (11)

[essentially the equivalent SUð3Þ flavor symmetry breaking
expansion for M rather than M2] with

~A0
1 ¼

1

2
~A1; ~A0

2 ¼
1

2
~A2;

~B0
1 ¼

1

2

�
~B1 � 3

4
~A2
1

�
; ~B0

2 ¼
1

2

�
~B2 � 3

4
~A1

~A2

�
;

~B0
3 ¼

1

2

�
~B3 þ 1

4
ð2 ~A1 � ~A2Þð ~A1 þ ~A2Þ

�
:

(12)

Although Eq. (11) looks complicated, we shall only be
interested in mass differences, which simplify the expres-
sions. Writing the flavor expansions as a Taylor series in
�md � �mu we find to NLO

~Mn � ~Mp ¼ ~MðdduÞ � ~MðuudÞ
¼ ð�md � �muÞ½ ~A0

1 � 2 ~A0
2 þ ð ~B0

1 � 2 ~B0
2Þ

� ð�md þ �muÞ�; (13)

together with

~M�� � ~M�þ ¼ ~MðddsÞ � ~MðuusÞ ¼ ð�md � �muÞ
� ½2 ~A0

1 � ~A0
2 þ ð2 ~B0

1 � ~B0
2 þ 3 ~B0

3Þ
� ð�md þ �muÞ�; (14)

and

~M�� � ~M�0 ¼ ~MðssdÞ � ~MðssuÞ ¼ ð�md � �muÞ
� ½ ~A0

1 þ ~A0
2 þ ð ~B0

1 þ ~B0
2 þ 3 ~B0

3Þ
� ð�md þ �muÞ�; (15)

where the constraint in Eq. (6) has been used to eliminate
�ms. These equations represent the different types of iso-
spin differences possible for the baryon octet and are valid

1Another independent possibility would be X2
� ¼ 1

2 �ðM2
� þM2

�0 Þ.
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over a range of quark masses. We shall consider them from
the flavor symmetric point down to the physical point,
determined by �m�

d � �m�
u and �m�

d þ �m�
u ¼ ��m�

s ,

�m�
q being the physical point (which has to be determined).

We have a check of these formulas, since the Coleman-
Glashow relation [18] should hold at this order,

ð ~Mn� ~MpÞ�ð ~M��� ~M�þÞþð ~M��� ~M�0Þ¼Oð�m3
qÞ;
(16)

which is indeed satisfied by Eqs. (13)–(15).
We can find relations between isospin violation caused by

md �mu and to the SUð3Þ violation caused by ms �mu,
ms �md if we make any S3 transformation that changes the
strange quark into a light quark and vice versa (for example
u ! s ! d or d $ s); see Fig. 2. [S3 is the symmetry group
of the equilateral triangle and a subgroup of SUð3Þ.]
Applying the transformation d $ s on both sides of
Eqs. (13)–(15) we find to NLO

~M�0 � ~M�þ ¼ ð�ms��muÞ½ ~A0
1�2 ~A0

2þð ~B0
1�2 ~B0

2Þ
�ð�msþ�muÞ�;

~M�� � ~Mp¼ð�ms��muÞ½2 ~A0
1� ~A0

2þð2 ~B0
1� ~B0

2þ3 ~B0
3Þ

�ð�msþ�muÞ�;
~M�� � ~Mn¼ð�ms��muÞ½ ~A0

1þ ~A0
2þð ~B0

1þ ~B0
2þ3 ~B0

3Þ
�ð�msþ�muÞ�: (17)

III. DETERMINING THE EXPANSION
COEFFICIENTS

We now first find the ~A1, ~A2 and ~B1; . . . ; ~B3 coefficients.

A. Partially quenched octet baryons

Let us nowgeneralize the previous results to the casewhen
the valence quarks do not have to have the same mass as the
sea quarks (i.e., we leave the unitary line). We have also
generalized Eq. (65) of Ref. [13] from NLO to NNLO [14].
We find

M2ðaabÞ ¼ M2
0 þ A1ð2��a þ ��bÞ þ A2ð��b � ��aÞ þ 1

6
B0ð�m2

u þ �m2
d þ �m2

sÞ þ B1ð2��2
a þ ��2

bÞ
þ B2ð��2

b � ��2
aÞ þ B3ð��b � ��aÞ2 þ C0�mu�md�ms þ ½C1ð2��a þ ��bÞ þ C2ð��b � ��aÞ�

� ð�m2
u þ �m2

d þ �m2
sÞ þ C3ð��a þ ��bÞ3 þ C4ð��a þ ��bÞ2ð��a � ��bÞ þ C5ð��a þ ��bÞ

� ð��a � ��bÞ2 þ C6ð��a � ��bÞ3; (18)

where a; b; . . . , now denote three valence quarks of
arbitrary mass, and we have defined

��q ¼ �q � �m q 2 fa; b; . . . ; g; (19)

where �q is the valence quark mass. In distinction to the
sea quarks, there is no restriction of the form of Eq. (6) on
the values of valence quark masses. The numerical values
of the M2

0; A1; A2; B0; B1; . . . ; B3 and C0; . . . ; C6 coeffi-
cients are the same for PQ as for the unitary case.

While we see that this is a relatively straightforward
generalization of Eq. (4), we note that the term propor-
tional to B0 remains unchanged. In addition the C0 term
also depends entirely on sea terms, while the C1 and C2

terms are a mixture of sea and valence terms. Thus if we
wish to determine these coefficients we must vary the sea
quark masses; to determine the other coefficients it is
sufficient to vary the valence quark masses alone, while
keeping the sea quark masses constant. So this gives the

possibility of extending the (computationally expensive) sea
quark mass simulations with (computationally cheaper) va-
lence quark mass simulations to determine most of the
coefficients. If we work on a single sea background, then
the C0 term can be absorbed into theM2

0 term, while the C1

and C2 terms can be absorbed into the A1 and A2 terms. If
we vary the sea quark masses this allows a determination of
these coefficients. However due to the constraint �m ¼ const,
or equivalently Eq. (6), �mq cannot vary much and we know

from Ref. [13] that in this range the LO dominates, so these
coefficients are difficult to determine and contribute just
noise. So practically we shall ignore these terms in fits.
(Alternatively, the constraint �m ¼ const could be relaxed,
but then we have additional expansion coefficients, which
we wish to avoid.) Thus in this article we regard the NNLO
terms as ‘‘control’’ on the LO and NLO terms.
As discussed in Sec. II, we can consider scale indepen-

dent quantities. Thus in analogy to Eq. (11) we have

FIG. 2 (color online). Permutation group transformations link
the isospin violation caused by md �mu to the SUð3Þ violation
caused by ms �mu, ms �md. The neutron-proton mass differ-
ence, Mn �Mp, dashed line, is mapped to M�0 �M�þ ; the �

splitting, M�� �M�þ , maps to M�� �Mp dot-dashed line; and

M�� �M�0 is related to M�� �Mn, full line.
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~M2ðaabÞ¼1þ ~A1ð2��aþ��bÞþ ~A2ð��b���aÞ�ð ~B1þ ~B3Þð�m2
uþ�m2

dþ�m2
sÞþ ~B1ð2��2

aþ��2
bÞ

þ ~B2ð��2
b���2

aÞþ ~B3ð��b���aÞ2þð ~C3�3 ~C5Þ�mu�md�msþ½ ~C1ð2��aþ��bÞþ ~C2ð��b���aÞ�
�ð�m2

uþ�m2
dþ�m2

sÞþ ~C3ð��aþ��bÞ3þ ~C4ð��aþ��bÞ2ð��a���bÞþ ~C5ð��aþ��bÞð��a���bÞ2
þ ~C6ð��a���bÞ3 (20)

[where XN always depends just on the sea quarks and is
given by the NNLO extension of Eq. (9)].

Furthermore, these equations remain valid if two of the
sea quarks are degenerate in mass, i.e.,mu ¼ md � ml, the
crucial point being that �m must remain constant (as all
the coefficients are functions of �m). This means that from
dynamical 2þ 1 flavor simulations we can determine the
u� d mass splittings. The only change to Eq. (20) when
mu ¼ md is that some terms become slightly simpler,

�m2
u þ �m2

d þ �m2
s ! 6�m2

l ;

�mu�md�ms ! �2�m3
l ;

(21)

where we have used the constraint equation, (6), which
now becomes

�ms ¼ �2�ml: (22)

This gives

~M2ðaabÞ ¼ 1þ ~A1ð2��a þ ��bÞ þ ~A2ð��b � ��aÞ � 6ð ~B1 þ ~B3Þ�m2
l þ ~B1ð2��2

a þ ��2
bÞ þ ~B2ð��2

b � ��2
aÞ

þ ~B3ð��b � ��aÞ2 � 2ð ~C3 � 3 ~C5Þ�m3
l þ 6½ ~C1ð2��a þ ��bÞ þ ~C2ð��b � ��aÞ��m2

l þ ~C3ð��a þ ��bÞ3
þ ~C4ð��a þ ��bÞ2ð��a � ��bÞ þ ~C5ð��a þ ��bÞð��a � ��bÞ2 þ ~C6ð��a � ��bÞ3; (23)

with

X2
N ¼ 1

3
ðM2ðlllÞ þM2ðllsÞ þM2ðsslÞÞ: (24)

[For a quark mass-degenerate 3 flavor simulation Eq. (23)
simplifies further as �ml ¼ 0 ¼ �ms.] In other words,
using Eq. (23) gives us all the information we need
to find the quark mass contribution relevant for the
1þ 1þ 1 case.

B. Numerical results

Simulations have been performed using Nf ¼ 2þ 1

OðaÞ improved clover fermions [19] at � ¼ 5:50 and
on 323 � 64 lattice sizes, as described in more detail in
Ref. [13]. Errors given here are statistical [using�Oð1500Þ
configurations]; possible systematic errors are discussed in
Appendix A and incorporated into the final results in
Sec. VII.

A particular starting value for the degenerate sea quark
mass, m0, is chosen on the SUð3Þ flavor symmetric line,
and the subsequent sea quark mass pointsml,ms have then
been arranged in the various simulations to have constant
�m ( ¼ m0). This ensures that the expansion coefficients
do not change. It was found in Ref. [13] that a linear fit
provides a good description of the numerical data over the
relatively short distance from the symmetric point down to
the physical pion mass. This helped us in choosing the
initial point on the SUð3Þ flavor symmetric line to give a
path that hits (or is very close to) the physical point.

In a little more detail, the bare quark masses in lattice
units are defined as

mq ¼ 1

2

�
1

�q

� 1

�0;c

�
with q 2 fl; s; 0g; (25)

[together with Eq. (5) for �mq] with the index q ¼ 0

denoting the common mass-degenerate quarks along the
SUð3Þ flavor symmetric line, and where vanishing of the
quark mass along this line determines �0;c. Keeping

�m ¼ constant � m0 gives

�s ¼ 1
3
�0
� 2

�l

: (26)

So once we decide on a �l this then determines �s. Note
that �0;c drops out of Eq. (26), so we do not need its explicit

value. The initial SUð3Þ flavor symmetric �0 value chosen
here, namely, �0 ¼ 0:12090, [13] is very close to a point on
the path that leads to the physical point. The constancy of
flavor singlet quantities over the range from the SUð3Þ
flavor symmetric line down to the physical point [13], leads
directly from X� to an estimate for the pion mass of
�411 MeV [i.e., Eq. (47)] and similarly from XN a value
of the lattice spacing of a� 0:079 fm.
While, as discussed earlier, simulations between the

SUð3Þ flavor symmetric point and the physical point are in
principle enough to determine the linear and quadratic
expansion coefficients, in practice the range is not suffi-
ciently large to reliably determine the quadratic terms. In
order to determine the quadratic coefficients more precisely,
additional PQ simulations have been performed on the set of
gauge configurations that have all three sea quark masses
equal, i.e., at the SUð3Þ flavor symmetric point �0 ¼
0:12090. For these particular simulations �ml ¼ 0 ¼ �ms
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automatically. �q is defined identically to mq, Eq. (25), by

replacing mq ! �q with q 2 fa; b; . . . ; g together with

Eq. (19) for ��q so that

��q ¼ �q � �m; �q ¼ 1

2

�
1

�q

� 1

�0;c

�
: (27)

We have chosen a wide range of PQ masses starting from
a slightly heavier mass than m0 (to avoid any possibility of
so-called ‘‘exceptional configurations’’) and reaching up to
masses �mcharm. The values are given in Appendix B in
Table IV. A direct fit is made to these PQmasses, the unitary
masses of Ref. [13], which all have the same fixed �m, and
additionally three PQ masses, which we callMNs

� MðsssÞ
again with the same fixed �m. (This is analogous to the
pseudoscalar �s considered later.) These values are also
given in Appendix B in Table V. Using the fit function of

Eq. (20) and ignoring the ~C1 and ~C2 terms as discussed
in Sec. III A gives the results in Table I, together with

the NNLO coefficient values of ~C3 ¼ �4:60ð115Þ, ~C4 ¼
�17:5ð26Þ, ~C5 ¼ �1:88ð310Þ and ~C6 ¼ �3:65ð184Þ. We
note that in comparison to the NLO coefficients, the NNLO
coefficients are poorly determined. The bootstrap
(MINUIT) fit used gave �2=dof � 0:4.

We now compare these results to a plot for illustration.
The simplest to consider is setting ��a ¼ ��b, i.e., degen-
erate valence quark masses. For simplicity, but slightly
inaccurately, we shall in the following simply say b ¼ a.
(Of course we still need two different quark flavors.) With
�ml ¼ 0, Eq. (23) then becomes

~M2ðaaaÞ � 1

3��a

¼ ~A1 þ ~B1��a þ 8

3
~C3��

2
a: (28)

In Fig. 3 we plot ð ~M2ðaaaÞ � 1Þ=ð3��aÞ against ��a for
the PQ data (together with the cubic fit coefficients from

Table I) which, due to the denominator, is a sensitive plot.
There is good agreement. (We postpone the comparison to
the unitary data ‘‘fan’’ plots until Sec. VI.)

IV. OCTET PSEUDOSCALAR MESONS

Determining the octet pseudoscalar mass splittings
(or more accurately the splittings of the quadratic masses)
will give �m�

u, �m
�
d and �m�

s (the quark masses at the

physical point). This closely follows the baryon octet pro-
cedure; we must again consider the analogous flavor sym-
metry expansion for the pseudoscalar meson octet together
with the known experimental masses of the pions and kaons.
In Fig. 4 we sketch the lowest pseudoscalar octet in the

I3 � Y plane. We have K0ðd�sÞ, Kþðu�sÞ, �þðu �dÞ together
with �K0ðs �dÞ, K�ðs �uÞ and ��ðd �uÞ in the (outer) ring of the
octet. From charge conjugation or C invariance we further
have M �K0 ¼ MK0 , MK� ¼ MKþ , and M�� ¼ M�þ (which
is in distinction to the baryon octet which does not have
this constraint).

A. PQ pseudoscalar meson flavor expansions

The corresponding formulas for the octet pseudoscalar
mesons are simpler than for the octet baryon, due to the
constraints imposed by C invariance. The following SUð3Þ
flavor breaking expansion formula is always valid for
quarks q ¼ a; b; . . . , in ðu; d; s; . . . ; Þ

M2ða �bÞ¼M2
0�þ�ð�maþ�mbÞþ�0

1

6
ð�m2

uþ�m2
dþ�m2

sÞ
þ�1ð�m2

aþ�m2
bÞþ�2ð�ma��mbÞ2; (29)

in quark masses up to the NLO as discussed in Ref. [13].
[Note that Mða �bÞ ¼ Mðb �aÞ.]

0.0 0.1 0.2 0.3 0.4 0.5
δµa

10

11

12

13

14

(M
(a

aa
)2 /X

N

2 −
1)

/3
δµ

a

FIG. 3 (color online). ð ~M2ðaaaÞ � 1Þ=ð3��aÞ against ��a,
together with Eq. (28) using the ~A1, ~B1 fit values from Table I
and ~C3 (given in the text).

TABLE I. Results for the baryon octet expansion coefficients.

~A1
~A2

~B1
~B2

~B3

10.15(12) 1.828(157) 13.51(126) �10:29ð139Þ �14:90ð144Þ

π +

+0

−

π 0

+1−1

(ud)

I3

(du)−π

K (ds) K (us)

K (su) K (sd)0

η8

Y

FIG. 4 (color online). The lowest octet for the spin 0 pseudo-
scalar mesons plotted in the I3 � Y plane.
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Again combinations of masses can be chosen, so that
due to Eq. (6) the linear term in Eq. (29) vanishes, which
is equivalent to averaging the outer ring of particles and
finding the center of mass of the octet. In particular if
we set

X2
� ¼ 1

6
ðM2

Kþ þM2
K0 þM2

�þ þM2
�� þM2

�K0 þM2
K�Þ

¼ 1

3
ðM2

Kþ þM2
K0 þM2

�þÞ; (30)

this gives

X2
� ¼ M2

0� þ
�
1

6
�0 þ 2

3
�1 þ �2

�
ð�m2

u þ �m2
d þ �m2

sÞ
¼ M2

0� þOð�m2
qÞ: (31)

In the partially quenched case, the above SUð3Þ flavor
expansion can be generalized to

M2ða �bÞ¼M2
0�þ�ð��aþ��bÞþ�0

1

6
ð�m2

uþ�m2
dþ�m2

sÞþ�1ð��2
aþ��2

bÞþ�2ð��a���bÞ2

þ	0�mu�md�msþ	1ð��aþ��bÞð�m2
uþ�m2

dþ�m2
sÞþ	2ð��aþ��bÞ3

þ	3ð��aþ��bÞð��a���bÞ2; (32)

where the NLOwas also discussed in Ref. [13] and again we
have extended the formula to the NNLO case [14]. This is
again a general formula valid for possibly differing masses
of the sea, mq, and valence quarks, �q. The same notation
has been used as in Secs. II and III. [In particular remember
that ��q is unconstrained in distinction to the sea quarks,
Eq. (6). The unitary line is recovered when �q ! mq.]
Again as with the PQ octet baryon case, Eq. (18), we see
that at the NNLO there is a term, the 	1 term, which mixes

the sea and valence quarks; as discussed in Sec. IIIA this
again makes the numerical determination of these coeffi-
cients difficult (we cannot vary the sea quark masses over a
large enough range). So in the same spirit as Sec. IIIA we
ignore this term and regard the NNLO terms as control
terms.
If we wish to consider ‘‘physical ratios’’ then the masses

can again be conveniently normalized using X2
�. Expanding

to NNLO, we find

~M2ða �bÞ ¼ 1þ ~�ð��a þ ��bÞ �
�
2

3
~�1 þ ~�2

�
ð�m2

u þ �m2
d þ �m2

sÞ þ ~�1ð��2
a þ ��2

bÞ þ ~�2ð��a � ��bÞ2

þ 2ð~	2 � 3~	3Þ�mu�md�ms þ ~	1ð��a þ ��bÞð�m2
u þ �m2

d þ �m2
sÞ þ ~	2ð��a þ ��bÞ3

þ ~	3ð��a þ ��bÞð��a � ��bÞ2; (33)

where again a~on a hadron mass squared means that it has
been divided by X2

� (which only depends on the sea quarks)
while on an expansion coefficient it means that the coeffi-
cient has been divided by M2

0� for example ~� ¼ �=M2
0�.

Again for a 2þ 1 flavor simulation (the case that will be
considered here) Eq. (33) slightly simplifies to become

~M2ða �bÞ¼1þ ~�ð��aþ��bÞ�2ð2 ~�1þ3 ~�2Þ�m2
l

þ ~�1ð��2
aþ��2

bÞþ ~�2ð��a���bÞ2
�4ð~	2�3~	3Þ�m3

l þ6~	1ð��aþ��bÞ�m2
l

þ ~	2ð��aþ��bÞ3þ ~	3ð��aþ��bÞ
�ð��a���bÞ2; (34)

with the same coefficients, provided of course that �m
remains constant and where

X2
� ¼ 1

3
ð2M2ðl �sÞ þM2ðl�lÞÞ: (35)

B. Determination of the coefficients

As in Sec. III we need to consider PQ masses at the
SUð3Þ flavor symmetric point for the sea quark masses
(see Table VI) jointly with the 323 � 64 lattice size unitary
results from Table 20 of Ref. [13] all with the same �m
constant value. From Eq. (34) we need to determine the

constants ~�, ~�1, ~�2 and ~	2, ~	3.
A 5-parameter fit to the PQ and unitary data then yields

the results of Table II together with the NNLO coefficient
values of ~	2 ¼ �16:4ð12Þ and ~	3 ¼ �20:3ð39Þ. The boot-
strap (MINUIT) fit used gave �2=dof � 1:7.
As in Sec. III B, it is useful to compare these fit results in a

plot. In parallel to Eq. (28) let us again consider the simple

TABLE II. Results for the pseudoscalar octet expansion
coefficients.

~� ~�1
~�2

41.17(8) 76.50(148) �45:81ð189Þ
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case of degenerate quark mass, i.e., where quark and anti-
quark have the same mass, but different flavors, so they
cannot annihilate. We set b ¼ a and �ml ¼ 0 in Eq. (34)
and so consider

~M2ða �aÞ � 1

2��a

¼ ~�þ ~�1��a þ 4~	2��
2
a: (36)

In Fig. 5 we plot ð ~M2ða �aÞ � 1Þ=ð2��aÞ against ��a using
the PQ data. This is compared with the cubic fit from
Eq. (36) and Table II. There is good agreement.

C. Pseudoscalar meson isospin splittings

Having determined ~�, ~�1, ~�2 we can now find �mu,
�md, �ms given the masses around the outer ring of the
pseudoscalar octet. We postpone a discussion of the
numerical values until the next section and here just derive
the relevant formulas. As they are trivially valid over a
range of quark masses (and not just at the physical point)
we give these more general expressions here.

From Eqs. (13)–(15) we see that we need �md � �mu �
�m� and �md þ �mu � �mþ. So as in Sec. II we consider
the mass difference

~M2
K0� ~M2

Kþ ¼ð�md��muÞ½~�þð ~�1þ3 ~�2Þð�mdþ�muÞ�
¼�m�½~�þð ~�1þ3 ~�2Þ�mþ�: (37)

Alternatively we can consider

~M2
Kþ� ~M2

�þ ¼ð�ms��mdÞ½~�þð ~�1þ3 ~�2Þð�msþ�mdÞ�
¼�1

2
ð�m�þ3�mþÞ

�
~�þ1

2
ð ~�1þ3 ~�2Þ

�ð�m���mþÞ
�
; (38)

and

~M2
K0 � ~M2

�þ ¼ð�ms��muÞ½~�þð ~�1þ3 ~�2Þð�msþ�muÞ�
¼1

2
ð�m��3�mþÞ

�
~��1

2
ð ~�1þ3 ~�2Þ

�ð�m�þ�mþÞ
�
; (39)

where we have used the constraint, Eq. (6), to eliminate
�ms in the second line of Eqs. (38) and (39) to rewrite the
equations in terms of �m�, �mþ.
Of course only two of the equations (37)–(39) are inde-

pendent. Choosing Eqs. (37) and (38), these quadratic
equations can be solved iteratively to give �m�. We start
the iteration from the linear term alone or LO in the quark
mass. From Eq. (37) we see that is sufficient to determine
�mþ to LO (and �m� to NLO). Thus we find

�md � �mu ¼
~M2
K0 � ~M2

Kþ

~�

�
1þ 2ð ~�1 þ 3 ~�2Þ

3~�2

�
�
1

2
ð ~M2

K0 þ ~M2
KþÞ � ~M2

�þ

��
;

�md þ �mu ¼ � 2

3~�

�
1

2
ð ~M2

K0 þ ~M2
KþÞ � ~M2

�þ

�

� ½1þ 
NLO�: (40)

As 2ð ~�1 þ 3 ~�2Þ=3~�2 ��0:02 then as, in particular, at the
physical point 1

2 ð ~M�2
K0 þ ~M�2

KþÞ � ~M�2
�þ is �1, we expect

that the NLO term for �m� is small,2 i.e., �3% and tends
to reduce the value of �m� slightly. (See the next section
for the numerical values.)

V. PHYSICAL VALUES OF THE QUARK MASSES

To proceed further we now need to substitute Eq. (40)
into Eqs. (13)–(15) to give the pure QCD contribution to
baryon octet mass splittings in terms of the pseudoscalar
octet masses.
Before considering this however (see Sec. VIIA), we

shall first discuss electromagnetic effects and determine
the physical values of the quark masses �m�

u and �m
�
d given

the experimental values of the pseudoscalar masses. This
will enable us to investigate the convergence of the SUð3Þ
flavor breaking expansion. The experimental masses are [1]

0.0 0.1 0.2 0.3 0.4 0.5
δµa

30

40

50

60

70
(M

(a
a−
)2 /X

π2 −
1)

/2
δµ

a

FIG. 5 (color online). ð ~M2ða �aÞ � 1Þ=ð2��aÞ against ��a. The
full line is Eq. (36), using the ~�, ~�1 fit values from Table II and
~	2 (given in the text).

2This is also true for �mþ. The NLO term is


NLO ¼ �
~�1 þ 3 ~�2

3~�2

�
1

2
ð ~M2

K0 þ ~M2
KþÞ � ~M2

�þ þ 2ð ~M2
K0 � ~M2

KþÞ

� 3ð ~M2
K0 � ~M2

KþÞ2
1
2 ð ~M2

K0 þ ~M2
KþÞ � ~M2

�þ

�
:

Again together with ð ~�1 þ 3 ~�2Þ=3~�2 ��0:01 and 1
2 ð ~M�2

K0 þ
~M�2
KþÞ � ~M�2

�þ � 1, this means that the correction NLO term for
�mþ is also small.
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M
exp

�þ ¼ 0:13957018ð35Þ GeV;
M

exp

K0 ¼ 0:497672ð31Þ GeV;
M

exp

Kþ ¼ 0:493677ð16Þ GeV;
(41)

(with as already mentioned M �K0 ¼ MK0 , MK� ¼ MKþ and
M�� ¼ M�þ) on the outer octet ring, and at the center

Mexp

�0 ¼ 0:1349766ð6Þ GeV: (42)

We now need to consider electromagnetic effects (which
may now be comparable to the u� d quark mass difference
which is also small). Electromagnetic effects tend to
increase the mass of charged particles (due to the photon
cloud). As a help to estimate these unknown effects, we use
Dashen’s theorem, [20], which states that if electromagnetic
effects are the only source of breaking of isospin symmetry
(i.e., mu ¼ md), the leading electromagnetic energy contri-
bution to the neutral pseudoscalar particles, i.e., the �0, K0,
vanishes, while that due to the charged particles, i.e., the�þ,
Kþ, is equal. As the mass difference in�0 and�þ due to the
u� d quark mass difference is negligible, Oð0:1 MeVÞ,
e.g., Ref. [17], we can thus write (e.g., Refs. [21,22])

Mexp2

�þ ¼ M�2
�þ þ�	; Mexp2

�0 ¼ M�2
�0 � M�2

�þ ;

M
exp2

Kþ ¼ M�2
Kþ þ�	; M

exp2

K0 ¼ M�2
K0 :

(43)

(The� denotes values at the physical point for the pure QCD
case.) Dashen’s theorem has corrections of Oð�QEDmqÞ
from higher order terms. Sometimes possible violations of
the theorem are parametrized by [4,23]

M�2
K0�M�2

Kþ ¼ðM2
K0�M2

KþÞexpþð1þ
	ÞðM2
�þ�M2

�0Þexp;
(44)

where 
	 ¼ 0 corresponds to Dashen’s theorem. For ex-

ample a positive value for 
	 would thus tend to increase

slightly the value ofM�2
K0 �M�2

Kþ . From the first equation in

Eq. (40) this would only affect the leading term in our
expansion, so our main result in Sec. VII B will be given
in terms of the kaon mass splitting, M�2

K0 �M�2
Kþ and where

we shall consider 
	 as an additional error.

Inverting the relations in Eq. (43) gives [1]

M�2
�þ ¼Mexp2

�0 ; M�2
Kþ ¼Mexp2

Kþ �ðMexp2

�þ �Mexp2

�0 Þ;
M�2

K0 ¼M
exp2

K0 ;
(45)

or

M�
�þ ¼0:13498GeV; M�

Kþ ¼0:49240GeV;

M�
K0 ¼0:49767GeV;

(46)

which we shall use as the pure QCD values due to differ-
ences in the quark masses with the electromagnetic effects
subtracted away (assuming Dashen’s theorem). This gives
from Eq. (30),3

X�
� ¼ 0:4116 GeV; (47)

(of course this is very close to the experimental value of
Xexp
� ¼ 0:4126 GeV).
In Table III using the masses given in Eq. (46) we give our

results, first giving the LO results for the quark masses, then
the next line, NLOa, gives the results from Eq. (40), which
we will be using here. As a check, the third line compares
this NLO result to the NLO result using the Newton-
Raphson method to iterate Eqs. (37) and (38). We find the
Newton-Raphson procedure converges very quickly (after
one or two iterations) and find good agreement between the
two results (well within the error bars of NLOa in Table III)
and so we can be confident that Eq. (40) is a good approxi-
mation for the inversion of Eqs. (37) and (38).
We also note that the differences between the LO and

NLO are small of the order of a few percent, indicating that
the SUð3Þ flavor expansion about the flavor symmetric
point appears to be highly convergent. (We shall discuss
this a little further in Sec. VI.)

VI. COMPARISON WITH FAN PLOTS

We now compare the fit results with the mass values
from previous fan plots [13], which describe the evolution
of the pseudoscalar and baryon octet masses along a path
from the SUð3Þ symmetric point down to the physical
point. In Ref. [13] the isospin degenerate limit, i.e., mu ¼
md � ml, was considered. So for this comparison we take
the physical quark mass, in lattice units, as

�m�
l �

1

2
ð�m�

u þ �m�
dÞ ¼ �0:01102ð3Þ: (48)

TABLE III. Results for the bare quark mass in lattice units at the physical point using Eq. (46)
as input. The first line is the LO result. The next line, NLOa, uses the result of Eq. (40), while as
a check the last line, NLOb, iterates Eqs. (37) and (38).

�m�
d � �m�

u �m�
d þ �m�

u �m�
u �m�

d �m�
s

LO 0.0007485(14) �0:02168ð4Þ �0:01121ð2Þ �0:01047ð2Þ 0.02168(4)

NLOa 0.0007245(27) �0:02204ð6Þ �0:01138ð3Þ �0:01066ð3Þ 0.02204(6)

NLOb 0.0007249 �0:02204 �0:01138 �0:01066 0.02204

3In Ref. [13] we used the average kaon and pion masses as we
were strictly in the 2þ 1 flavor case. Here we need to take into
account the differences between charged and neutral mesons.
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In Fig. 6 we show numerical results between the SUð3Þ
flavor symmetric point and the ‘‘physical point’’ for the
numerical pseudoscalar octet on the unitary line (keeping
�m ¼ const) from Ref. [13]. These masses are compared to
the quadratic fit using Eq. (34) (i.e., together with just the
results of Table II) for the 2þ 1 flavor case, i.e.,mu ¼ md ¼
ml. The NNLO terms in the SUð3Þ flavor symmetric expan-
sion can be safely ignored in the small �ml range. Compare
the scale of the x axis of Fig. 3with that of Fig. 6.We consider
M�ðl�lÞ, MKðl�sÞ and the fictitious PQ particle �s, with mass
Mðs�sÞ. The comparison is satisfactory. We also show results
fromRef. [13] on smaller 243 � 48 sized lattices. This shows
that finite size effects for these ratios are rather small. Of
course, the value of �m�

l just serves to define pseudoscalar

meson mass ratios at the physical point in a Nf ¼ 2þ 1

flavor world. For completeness we give these numbers here:
~M�2
� ¼ 0:1077ð26Þ, ~M�2

K ¼ 1:446ð1Þ and ~M�2
�s

¼ 2:884ð4Þ.
In Fig. 7 we show the comparable baryon octet results.

As well as considering the nucleon mass, MNðlllÞ, we also
show M�ðllsÞ, M�ðllsÞ and also a fictitious PQ particle—
MNs

ðsssÞ. Again the comparison of the NLO (quadratic)

fit, using the expansion coefficient values given in Table I,
to the numerical data is satisfactory. For completeness we
give here the values at the 2þ 1 QCD physical point
(opaque circles) of ~M�2

N ¼ 0:6704ð46Þ, ~M�2
� ¼ 1:051ð6Þ,

~M�2
� ¼ 1:278ð8Þ and ~M�2

Ns
¼ 1:692ð9Þ. For a comparison

to these values, the stars in Fig. 7 represent the average
of the squared masses of the appropriate particle, as
defined in the figure caption.

VII. RESULTS AND DISCUSSION

We are now in a position to numerically determine the
baryon octet mass splittings due to pure QCD u� d quark
mass differences (see Sec. VII A, our main result), and then
in Sec. VII B estimate physical values for the splittings.

A. Baryon octet mass splittings

After rewriting quark masses in terms of the pseudosca-
lar octet masses, Sec. IVC, and finding that the expansion
is highly convergent in the relevant quark mass range, e.g.,
Table III, we now insert the expansion of Eq. (40) into
Eqs. (13)–(15) which gives the reasonably compact results

~MN� ~MN0 ¼ ~AN�N0

�
1þ ~BN�N0

�
1

2
ð ~M2

K0þ ~M2
KþÞ� ~M2

�þ

��

�ð ~M2
K0� ~M2

KþÞ; (49)
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FIG. 6 (color online). The pseudoscalar meson octet fan plot,
M2

�O
=X2

� (�O ¼ �, K, �s) versus �ml. The numerical mass

values are taken from Ref. [13] where filled up triangles, left
triangles, down triangles are �ðllÞ, KðlsÞ, �sðssÞ results, respec-
tively, using 323 � 64 sized lattices. The common symmetric
point is the filled circle. The opaque up triangles, left triangles,
down triangles are from 243 � 48 sized lattices (and not used in
the fits here). The quadratic fits are taken from Eq. (34), together
with Table II. The vertical line from Eq. (48) is the pure Nf ¼
2þ 1 QCD physical point, while the opaque circles are the pure
QCD hadron mass ratios for 2þ 1 quark flavors.
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FIG. 7 (color online). The baryon octet fan plot, M2
NO
=X2

N

(NO ¼ N, �, �, Ns) versus �ml. The numerical mass values
are taken from Ref. [13] where filled up triangles, left triangles,
right triangles, down triangles are NðlllÞ,�ðllsÞ,�ðsslÞ, NsðsssÞ
results, respectively, using 323 � 64 sized lattices. The
common symmetric point is the filled circle. The opaque
up triangles, left triangles, right triangles, down triangles are
from 243 � 48 sized lattices (and not used in the fits here).
The quadratic fits are from Eq. (23), together with Table I.
The vertical line from Eq. (48) is the Nf ¼ 2þ 1 pure

QCD physical point, with the opaque circles being the
determined pure QCD hadron mass ratios for 2þ 1 quark
flavors. For comparison, the stars represent the average of the
squared masses of the appropriate particle on the outer

ring of the baryon octet, Fig. 1, i.e.,M�2
N ðlllÞ ¼ ðMexp2

n ðdduÞ þ
Mexp2

p ðuudÞÞ=2, M�2
� ðllsÞ ¼ ðMexp2

�� ðddsÞ þ Mexp2

�þ ðuusÞÞ=2,
M�2

�
ðsslÞ ¼ ðMexp2

�� ðssdÞ þM
exp2

�0 ðssuÞÞ=2.
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for the pairs ðN;N0Þ ¼ ðn; pÞ, ð��;�þÞ and ð��;�0Þ,
where

~An�p ¼
~A0
1 � 2 ~A0

2

~�
;

~Bn�p ¼ 2

3~�

� ~�1 þ 3 ~�2

~�
� ~B0

1 � 2 ~B0
2

~A0
1 � 2 ~A0

2

�
;

(50)

together with

~A����þ ¼ 2 ~A0
1 � ~A0

2

~�
;

~B����þ ¼ 2

3~�

� ~�1 þ 3 ~�2

~�
� 2 ~B0

1 � ~B0
2 þ 3 ~B0

3

2 ~A0
1 � ~A0

2

�
;

(51)

and

~A����0 ¼
~A0
1 þ ~A0

2

~�
;

~B����0 ¼ 2

3~�

� ~�1 þ 3 ~�2

~�
� ~B0

1 þ ~B0
2 þ 3 ~B0

3

~A0
1 þ ~A0

2

�
:

(52)

As discussed before, as we have unknown electromag-
netic effects, then we shall first present our results in a
general form with (known) coefficients between the baryon
and pseudoscalar meson splittings, within a pure QCD
context. We now insert the numerically determined
values from Tables I and II into Eq. (49), together with
Eqs. (50)–(52), to give

~Mn� ~Mp¼0:0789ð41Þð8Þð8Þð32Þð ~M2
K0� ~M2

KþÞ
�
�
1þ0:0817ð92Þ

�
1

2
ð ~M2

K0þ ~M2
KþÞ� ~M2

�þ

��
;

(53)

together with

~M��� ~M�þ¼0:2243ð35Þð22Þð2Þð90Þð ~M2
K0� ~M2

KþÞ
�
�
1þ0:0077ð30Þ

�
1

2
ð ~M2

K0þ ~M2
KþÞ� ~M2

�þ

��
;

(54)

and

~M��� ~M�0¼0:1455ð24Þð13Þð6Þð58Þð ~M2
K0� ~M2

KþÞ
�
�
1�0:0324ð50Þ

�
1

2
ð ~M2

K0þ ~M2
KþÞ� ~M2

�þ

��
;

(55)

as our main numerical result. This is a pure QCD result: the
isospin breaking is just due to the different masses of the u,

d and s quarks. [To recapitulate, � means at the physical
point and for the baryon octet ~Mn ¼ Mn=XN , etc. and for
the pseudoscalar octet ~MK0 ¼ MK0=X�, etc. where X2 is
the ‘‘average’’ hadron ðmassÞ2 of the ‘‘outer’’ ring of the
octet, given numerically in Eqs. (8) and (47).] Even with
the long lever arm of PQ some of the NLO terms, i.e., for
�� � �þ are only marginally determined.
The first error is statistical; the other errors are system-

atic as discussed in Appendix A. The second error bar is
due to possible finite size effects, the third error estimates a
possible error due to convergence of the SUð3Þ flavor
breaking expansion, while the last error is due to the choice
of path to the physical point.
The above results are valid for a range of quark masses;

we shall now specialize to the physical point, as discussed
in Sec. V.

B. Physical values of the mass splittings

We first note that the NLO term is always small of the
order of a few percent, and only slowly decreases for an
increasing number of strange quarks in the baryon. Using for
the NLO term the mass values given in Eq. (46) for the pure
QCD case we have 1

2 ð ~M�2
K0 þ ~M�2

KþÞ � ~M�2
�þ ¼ 1:339 (using

the experimental rather than pure QCD masses would intro-
duce negligible additional errors into the NLO term). In
addition, using X�2

N and X�2
� from Eqs. (8) and (47), this

gives

M�
n �M�

p ¼ 0:599ð32Þð34ÞðM�2
K0 �M�2

KþÞ;
M�

�� �M�
�þ ¼ 1:553ð25Þð63ÞðM�2

K0 �M�2
KþÞ;

M�
�� �M�

�0 ¼ 0:954ð18Þð41ÞðM�2
K0 �M�2

KþÞ;
(56)

where all masses in these equations are now in GeV, as our
final result in terms of the pseudoscalar kaon masses. The
first error is statistical, while the second is the total system-
atic error.
Using again the kaon values from Eq. (46) and regarding

possible violations of Dashen’s theorem, Eq. (44), as a
further systematic error, our isospin breaking effects due
to pure QCD alone (in MeV) are

M�
n �M�

p ¼ 3:13ð15Þð16Þð76j
	jÞ MeV;

M�
�� �M�

�þ ¼ 8:10ð14Þð33Þð193j
	jÞ MeV;

M�
�� �M�

�0 ¼ 4:98ð10Þð21Þð120j
	jÞ MeV:

(57)

In general, comparing Eq. (57) with Eq. (3) would indicate
that electromagnetic effects for n� p are negative, for
�� � �þ are small and for �� ��0 are positive.
The uncertainty due to 
	 is the dominant error once

we convert to MeV (i.e., unknown EM effects are the
largest source of error). As an example, taking 
	 ¼ 0:7,

[4,23] gives M�
n �M�

p ¼ 3:13ð15Þð16Þð53Þ MeV, M�
�� �

M�
�þ ¼ 8:10ð14Þð33Þð135Þ MeV and M�

�� � M�
�0 ¼

4:98ð10Þð21Þð84Þ MeV.
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In Ref. [11], a determination of the n� p isospin
breaking effects due to electromagnetic effects was given,
with a result of �1:30ð47Þ MeV. Adding this to the result
of Eq. (57) gives

ðMn �MpÞ�þQED ¼ 1:83ð52Þð76j
	jÞ MeV: (58)

This is to be compared with the experimental result
given in Eq. (3) of 1.29 MeV. Thus we find consistency
(within errors even with j
	j 	 0). Thus this result also

indicates that violations of Dashen’s theorem seem to be
small.

In Fig. 8 we compare this n� p mass differ-
ence including QED, ðMn �MpÞ�þQED, Eq. (58) with


	 ¼ 0:7, together the results of Refs. [2–4]. The filled

circles use the QED determination of Ref. [11], while the
filled square includes the full determination from that
reference. Despite the fact that QED effects are treated
slightly differently in each work, good agreement
amongst the various determinations and with the experi-
mental result is found.

C. Conclusions

In this article we have introduced a method to deter-
mine the isospin breaking effects due to QCD for octet
baryons. Using an SUð3Þ flavor symmetry breaking ex-
pansion in the quark masses, the pseudoscalar meson

octet expansion coefficients can be determined, which
leads to an estimate at the physical quark mass point.
This can then be used together with the equivalent
SUð3Þ flavor symmetry breaking expansion for the
baryon octet to determine the baryon mass splittings.
The expansion coefficients depend only on the average
quark mass �m. Thus we can use degenerate sea quark
masses (either with mass-degenerate u and d quarks or
with mass-degenerate u, d and s quarks, i.e., at the
flavor symmetric point) provided that �m remains
unchanged. These are computationally cheaper simula-
tions than those with mass nondegenerate u, d and s
quarks.
A further advantage of our procedure is that the mass

expansion formulas are easily generalized to the case
of differing valence quark masses to sea quark masses
(i.e., partially quenched valence quarks). This allows an
extension of the quark mass range to heavier quark
masses, so that both LO and NLO coefficients (i.e.,
linear terms and quadratic terms in quark masses) can
be determined. Our final results are given in Eq. (57).
As the NLO turns out to be only a small correction to
the LO this gives us confidence that the SUð3Þ flavor
symmetry expansion appears to be a highly convergent
series.
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APPENDIX A: SYSTEMATIC ERRORS

We now consider in this Appendix possible sources of
systematic errors: finite lattice volume, convergence of the
SUð3Þ flavor breaking expansion, the path to the physical
point and finite lattice spacing.

1. Finite lattice volume

Comparing the available 243 � 48 with the 323 � 64
lattice data in Fig. 7 indicates that for these mass ratios

−1 0 1 2 3 4
MeV

QCDSF−UKQCD

RM123

Blum et al

NPLQCD

FIG. 8 (color online). Comparison of the n� p mass differ-
ence of the present result (QCDSF-UKQCD or lowest plotted
number) with NPLQCD, Blum et al., and RM123 [2–4], respec-
tively (top to bottom plotted numbers). The filled circles use the
QED determination of Ref. [11], while the filled square gives the
full QCD and QED determination from Blum et al. The vertical
dashed line is the experimental result given in Eq. (3).
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finite size effects are small. (Finite volume effects were
also discussed in Ref. [13] in Sec. 8.3.1.) We now use these
unitary results to estimate possible finite size effects.
For the lightest 243 � 48 point, namely, ð�l; �sÞ ¼
ð0:121040; 0:120620Þ, M�L� 3:4 (where L is the spatial
lattice size, here 24a), and the mass ratio ~M has finite size
error �1%, from comparing the 243 � 48 lattice result
with the 323 � 64 lattice result (either using the results
of Ref. [13] directly or equivalently taking the square root
of the results in Fig. 7). On the lightest 323 � 64 lattice
point, namely, (0.121145, 0.120413) we have M�L� 3:1,
so we expect the finite size errors in the mass ratio ~MN will
be approximately the same, i.e., also �1%. We use this in
Sec. VII to estimate systematic errors arising from finite
volume effects.

2. SUð3Þ flavor breaking expansion

We first note that in Fig. 7 in the range j�mlj & 0:01
(and j�msj & 0:02), there is little curvature. This is in
agreement with the SUð3Þ flavor breaking expansion,
Eq. (10), where each order is multiplied by a further

�mq. From Table I for the ~Ai and ~Bi coefficients (and

for the NNLO order the ~Ci coefficients) we see there that
they remain approximately all of the same order, so we
expect that every increase in the order leads to a decrease
by about an order of magnitude in the series. This is
confirmed in the present case as we have compared the
NNLO determination of MN , M� and M� with the NLO
results (removing the heavier quark mass points until the
�2=dof is approximately the same). The change in MN

was less than half a percent and forM�,M� less, which is
equivalent to using �10% of the NLO term to estimate
systematic errors.

A further example to illustrate this convergence is
given by Eq. (42) of Ref. [13]. Here we can form
sums and differences of the decuplet masses which are
of order �m0

l , �m
1
l , �m

2
l and �m3

l . We see that each time

we add a factor of �ml the quantity decreases by an
order of magnitude (in fact usually by a factor of �20),
and the Oð�m3

l Þ quantity is about 2000 times smaller

than the leading order quantity. So we believe that
convergence is very good for hyperons. Such an expan-
sion is very good compared to most approaches
available to QCD.

3. Path to physical point

As also discussed in Ref. [13], the chosen trajectory
in the ms �ml plane (keeping �m constant), appears to not
quite go through the physical point. Using X� [see Eq. (35)]
and XN then from Table 15 of Ref. [13], we see that
ðaX�=aXNÞ � ðXN=X�Þ� deviates from 1 by �4%. We
use this as an estimate in Sec. VII of systematic errors due
to this effect.

4. Finite lattice spacing

Nonperturbative OðaÞ improved clover fermions are
employed in order to minimize finite lattice spacing
effects in the mass ratios determined here. Any effects
are difficult to estimate if only one � (or a value) is
available, so as a check we have performed some
additional simulations at � ¼ 5:80 (with an estimated
a� 0:06 fm). The results are along the SUð3Þ flavor
symmetric line (as three light quarks might show effects
sooner than two light and one heavier quark). Again we
have located (as described in Ref. [13]) the starting
point on this line, m0 for a path in the ms �ml plane
leading to the physical point and then considered com-
parable mass ratios for the nucleon, X2

Nð �mÞ=X2
Nðm0Þ

[against X2
�ð �mÞ=X2

�ðm0Þ], where we denote here a general
point on the SUð3Þ symmetric line by �m. In Fig. 9 we
show these results. Both � values lie on a common line
and show no systematic lattice spacing dependence and
so lie close to the continuum limit (certainly within the
precision achievable here).

APPENDIX B: TABLES

We now give in Tables IV, V, and VI the baryon and
pseudoscalar PQ mass results used in the analysis.
Additional 323 � 64 results along the line �m ¼ const
also used here are given in Tables 22 and 20 of Ref. [13]
for the baryon and pseudoscalar meson particles,
respectively.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Xπ
2
(⎯m)/Xπ

2
(m0)

0.5

1.0

1.5

2.0

X
N

2 (⎯
m

)/
X

N

2 (m
0)

β=5.50
β=5.80

FIG. 9 (color online). X2
Nð �mÞ=X2

Nðm0Þ against X2
�ð �mÞ=X2

�ðm0Þ
along the symmetric line. Square symbols are the � ¼ 5:50
results and are given in Refs. [13,24], while diamonds are
the � ¼ 5:80 results [14]. (All results are on 323 � 64 sized
lattices.) The point where m0 ¼ �m (�0 ¼ 0:12090 for
� ¼ 5:50 and �0 ¼ 0:12281 for � ¼ 5:80) is denoted by a
circle.

ISOSPIN BREAKING IN OCTET BARYON MASS SPLITTINGS PHYSICAL REVIEW D 86, 114511 (2012)

114511-13



TABLE VI. Results for the PQ pseudoscalar masses, Mða �bÞ in
lattice units at � ¼ 5:50 from a 323 � 64 lattice with sea quark
masses at the symmetric point, i.e., �l ¼ �s ¼ 0:12090 and
valence quarks �a, �b.

�a �b Mða �bÞ
0.110000 0.110000 1.2485(3)

0.110000 0.115000 1.0583(3)

0.110000 0.120000 0.8351(4)

0.110000 0.120900 0.7909(10)

0.110000 0.120512 0.8100(6)

0.114000 0.114000 0.9436(3)

0.114000 0.116000 0.8583(3)

0.114000 0.118000 0.7664(3)

0.114000 0.120000 0.6669(4)

0.114000 0.120900 0.6200(7)

0.115000 0.115000 0.8593(3)

0.115000 0.120000 0.6202(4)

0.115000 0.120900 0.5720(6)

0.115000 0.120512 0.5929(5)

0.116000 0.116000 0.7706(3)

0.116000 0.118000 0.6754(3)

0.116000 0.120000 0.5710(4)

0.116000 0.120900 0.5213(6)

0.118000 0.118000 0.5752(3)

0.118000 0.120000 0.4628(4)

0.118000 0.120900 0.4077(5)

0.120000 0.120000 0.3342(4)

0.120000 0.120900 0.2646(5)

0.120000 0.120512 0.2958(4)

0.120512 0.120900 0.2174(5)

0.120512 0.120512 0.2534(4)

0.120900 0.120900 0.1747(5)

TABLE IV. Results for the PQ baryon masses, MðaabÞ in
lattice units at � ¼ 5:50 from a 323 � 64 lattice with sea quark
masses at the symmetric point, i.e., �l ¼ �s ¼ 0:12090 and
valence quarks �a, �b.

�a �b MðaabÞ
0.110000 0.110000 1.969(3)

0.110000 0.115000 1.780(3)

0.110000 0.120000 1.555(3)

0.110000 0.120512 1.530(3)

0.110000 0.120900 1.511(3)

0.114000 0.114000 1.520(3)

0.114000 0.116000 1.436(3)

0.114000 0.118000 1.345(3)

0.114000 0.120000 1.245(3)

0.114000 0.120900 1.199(3)

0.115000 0.110000 1.592(3)

0.115000 0.115000 1.397(3)

0.115000 0.120000 1.161(2)

0.115000 0.120512 1.133(2)

0.115000 0.120900 1.113(3)

0.116000 0.114000 1.354(3)

0.116000 0.116000 1.268(3)

0.116000 0.118000 1.175(3)

0.116000 0.120000 1.072(3)

0.116000 0.120900 1.023(2)

0.118000 0.114000 1.173(3)

0.118000 0.116000 1.085(3)

0.118000 0.118000 0.9887(25)

0.118000 0.120000 0.8800(23)

0.118000 0.120900 0.8267(23)

0.120000 0.110000 1.134(3)

0.120000 0.114000 0.9726(26)

0.120000 0.115000 0.9279(24)

0.120000 0.116000 0.8812(24)

0.120000 0.118000 0.7789(23)

0.120000 0.120000 0.6588(23)

0.120000 0.120512 0.6232(24)

0.120000 0.120900 0.5945(26)

0.120512 0.110000 1.081(3)

0.120512 0.115000 0.8722(25)

0.120512 0.120000 0.5945(25)

0.120512 0.120512 0.5564(27)

0.120512 0.120900 0.5247(30)

0.120900 0.110000 1.041(4)

0.120900 0.114000 0.8755(36)

0.120900 0.115000 0.8295(32)

0.120900 0.116000 0.7811(34)

0.120900 0.118000 0.6739(33)

0.120900 0.120000 0.5435(32)

0.120900 0.120512 0.5031(35)

0.120900 0.120900 0.4673(27)

TABLE V. Additional results to Table 22 of Ref. [13] for the
PQ baryon masses, MNs

� MðsssÞ in lattice units from a 323 �
64 lattice along the line �m ¼ const.

�l �s MðsssÞ
0.121040 0.120620 0.5265(16)

0.121095 0.120512 0.5446(16)

0.121145 0.120413 0.5682(13)
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Collaboration), Phys. Rev. D 86, 034507 (2012); N. Ukita
(PACS-CS Collaboration), Proc. Sci., LATTICE2011
(2011) 144 [arXiv:1111.6380].

[11] A. Walker-Loud, C. E. Carlson and G.A. Miller, Phys.
Rev. Lett. 108, 232301 (2012).

[12] W. Bietenholz, V. Bornyakov, N. Cundy, M. Göckeler, R.
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