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Yang-Mills theory and QCD are well defined for any Lie group as gauge group. The choice G2 is of

great interest, as it is the smallest group with trivial center and being at the same time accessible to

simulations. This theory has been found to have many properties in common with SU(3) Yang-Mills

theory and QCD, permitting us to study the role of the center. Herein, these investigations are extended to

topological properties of G2 Yang-Mills theory. After giving the instanton construction for G2, topological

lumps with instanton topological charge are identified in cooled lattice configurations. The corresponding

topological susceptibility is determined in the vacuum and at low and high temperatures, showing a

significant response to the phase structure of the theory.
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I. INTRODUCTION

Yang-Mills theory and QCD are well defined theories for
an arbitrary (semi-)simple Lie group as gauge group. One
remarkable choice for the group is the exceptional Lie
group G2 instead of the physical group SU(3). Since its
center is trivial the Wilson confinement criterion is not
fulfilled, even in the pure Yang-Mills case [1]. The reason
is that any static fundamental charge can be screened by
three adjoint charges, i.e., gluons [1]. Nonetheless, the
theory has only gauge-invariant bound states as observable
states [1]. In fact, the gluons show a behavior quite similar
to SUðNÞ gauge theories [2–4].

It is not only in this respect that the G2 case resembles
SUðNÞYang-Mills theory. Just like for SU(3) gauge theories
it shows a first-order phase transition at finite temperature
[5–7], which is accompanied by a quenched chiral transition
[8]. There are other features thatmake the theorymore like a
theory with dynamical matter content. Especially the
screening of static fundamental charges leads to string
breaking, though at intermediate distance a linearly rising
static quark potential is present [6,9,10], and the theory can
be described using an effective Polyakov loop dynamics
[11]. The latter fact may be related to an SU(3) subgroup
structure [1], to which the theory can be broken down using
the Higgs mechanism [1,12].

Besides these very interesting conceptual properties of
the theory, it offers advantages that might also be of
practical importance. Since all representations of G2 are
real, it is possible to simulate it using standard importance
sampling techniques in the presence of dynamical, funda-
mental quarks [13] also at finite baryonic density without
the notorious sign problem. It is therefore an interesting
test case for model calculations. Since its spectrum con-
tains fermionic baryons (besides bosonic baryons) [1], it

also offers qualitative insight into a theory with fermionic
bound state degrees of freedom at finite density.
Given the similarities between the G2 gauge theory and

ordinary QCD and the practical usefulness of the G2 case,
it is an interesting question, whether topological aspects
play a similar role as in usual QCD. It has already been
argued that the role of vortices is modified [6] compared to
their role in QCD [14]. The question of monopoles [15]
and dyons [16] has been addressed in principle, showing a
similar structure as in ordinary QCD. Given the coinci-
dence of the chiral and the Polyakov loop transition in the
pure Yang-Mills case [8], we are interested in this paper
whether topological charge carriers exist, which could play
a similar role in this connection as in ordinary QCD [17].
To begin, we will construct the explicit one-instanton

solution in the continuum in Sec. II. In Sec. III we will
describe our lattice simulations and cooling procedure used
to identify topological lumps. We will discuss the resulting
structures in Sec. IV. Finally, we will determine the topo-
logical charge susceptibility in the vacuum and at finite
temperature in Sec. V. A few concluding remarks will be
given in Sec. VI.

II. G2 INSTANTON SOLUTION IN
THE CONTINUUM

Like the SUðNÞ gauge group, G2 supports instanton
solutions. This can be most easily seen using the
McFarlane decomposition [18] of a G2 element g

g ¼ Z

U 0 0

0 1 0

0 0 U�

0
BB@

1
CCA ¼ eig

a�a ;

where Z is an element of S6 and U is an element of SU(3).
Thus, the generators �a can also be chosen such that six
of them generate elements from the coset and the other
eight generate the elements from the SU(3) algebra, taking
the form
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�1...8 ¼
u1...8 0 0

0 0 0

0 0 �u1...8

0
BB@

1
CCA;

where the ui are the generators of the algebra SU(3). Given

the SU(2) instanton solution ASUð2Þ
� [19]

ASUð2Þ
� ¼ 2

r2 þ �2
t��r�; t�� ¼ 1

4i
ðt� �t� � t� �t�Þ;

t� ¼ ði~t; 1Þ; �t� ¼ ð�~i; 1Þ;
with the Pauli matrices ti, the correspondingG2 gauge field
can be obtained, with the direct SU(3) embedding of the
SU(2) solution, as

AG2
� ¼

ASUð3Þ
� 0 0

0 0 0

0 0 �ASUð3Þ�
�

0
BB@

1
CCA;

ASUð3Þ
� ¼ ASUð2Þ

� 0

0 0

 !
; and redistributions:

This gauge field solves the the self-duality equations

F�� ¼ 1

2
�����F��

immediately, due to the subgroup structure of G2, whereas
the S6 part acts as a spectator. The anti-instanton solution
can be constructed along the same lines. The most remark-
able difference compared to the SU(3) or SU(2) case is the
topological charge of the G2 instanton

Q ¼ 1

64�2

Z
d4x�����F

a
��F

a
�� ¼ 2;

which is twice as large as the one of the (embedded) SU(2)
instanton. Consequently, also the corresponding action is
twice as large. This result is already sufficient to motivate
the following numerical studies. The existence of exact
solutions with single instanton topological charge will not
be addressed here, though the numerical results below are
suggestive in favor of their existence.

III. LATTICE SETUP AND COOLING

The G2 gauge field configurations for pure Yang-Mills
theory used here have been generated using a combined
overrelaxation and heat-bath algorithm with respect to the
one-plaquette Wilson action

A ¼ 	
X

x;�>�

�
1� 1

7
trU��

�
; (1)

TABLE I. List of configurations employed. Nt and Ns are the temporal and spatial extension of the lattice. ‘‘Therm.,’’ ‘‘sweeps,’’ and
‘‘conf.’’ denote the number of thermalization and decorrelation sweeps, and the number of configurations, respectively. The scale has
been set using the string-tension values given in Ref. [9], using the same strategy as in Ref. [8] and setting the intermediate distance
string tension equal to ð440 MeVÞ2. Note that for the Wilson action the critical value of 	 for a time extension of Nt ¼ 6 is 9.765
(Tc ¼ 255 MeV), significantly above the bulk transition, which occurs at 	 ¼ 9:45 [5,7]. In all cases, many independent runs have
been performed to reduce residual correlations.

	 Nt Ns Conf. Therm. Sweeps a [fm] L ¼ aNs [fm] T ¼ 1
aNt

[MeV] T
Tc

9.515 8 8 214 380 80 0.210 1.68

9.515 12 12 215 420 120 0.210 2.52

9.515 16 16 129 460 160 0.210 3.36

9.6 8 8 211 80 380 0.170 1.36

9.6 12 12 210 420 120 0.170 2.04

9.6 16 16 124 460 160 0.170 2.72

9.73 8 8 226 380 80 0.134 1.07

9.73 12 12 149 420 120 0.134 1.61

9.73 16 16 132 460 160 0.134 2.14

9.6 6 12 217 420 120 0.170 2.04 193 0.757

9.73 6 12 220 420 120 0.134 1.61 245 0.961

9.765 6 12 155 420 120 0.129 1.55 255 1.00

9.85 6 12 118 420 120 0.119 1.43 276 1.08

10 6 12 117 420 120 0.0954 1.14 344 1.35

9.6 6 16 138 460 160 0.170 2.72 193 0.757

9.73 6 16 150 460 160 0.134 2.14 245 0.961

9.765 6 16 141 460 160 0.129 2.06 255 1.00

9.85 6 16 121 460 160 0.119 1.90 276 1.08

10 6 16 212 460 160 0.0954 1.52 344 1.35
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with the plaquette U��, as described in Ref. [3]. The list of

lattice setups employed to study both zero and finite tem-
perature are given in Table I. To make sure that autocorre-
lations, very prominent in SUðNÞ gluodynamics [20], are
duly taken into account only few measurements have been
performed in many individual runs, with a large number of
dropped configurations in between.

To identify topological structures, we needed to reduce
the ultraviolet fluctuations. Conventional APE smearing
[21] turned out to be rather inefficient for G2, requiring
too many sweeps to reduce the fluctuations substantially.
We therefore employed the following cooling algorithm:

In a checker-board fashion, every lattice site is visited.
The links in all directions at that lattice site are then
modified such as to locally minimize the action, which is
done by a heat-bath update where only proposals reducing
or keeping the action are accepted. This heat-bath update is
performed for a single SU(2) subgroup of a G2 element. In
order to update all subgroups, after each such sweep a
random gauge transformation of all links is performed,
which mixes the different subgroups. This cycle is done
fifteen times before a single cooling sweep of the lattice is
considered as completed.

On these smeared configurations the measurements have
then been performed. The observables have been the local
action density and the local topological charge density q.
The latter has been measured using the simplest lattice
realization of the continuum operator

qðxÞ ¼ 1

256�2
tr�����F��ðxÞF��ðxÞ; (2)

by calculating first the field strength tensor F�� at site x

from the link variables, and then calculating the product (2).
The full topological charge Q is then obtained by
summation

Q ¼ X
x

qðxÞ:

We have furthermore determined the topological charge
susceptibility


Q ¼ 1

NtN
3
s

ðhQ2i � hQi2Þ;

which has units of ðenergyÞ4.

IV. COOLING HISTORIES, TOPOLOGICAL
LUMPS, AND TOPOLOGICAL CHARGE

Cooling histories for typical configurations are shown in
Fig. 1. The first observation is that the cooling process is
still rather inefficient, and requires many sweeps to signifi-
cantly change a configuration. The next observation is the
appearance of essentially integer-valued plateaus, which
are very stable in the course of the cooling process, while
the changes between the plateaus are rather rapidly going
on. This is the typical structure expected for the presence
of topologically stable lumps. Furthermore, also the full
Wilson action, including the constant term 6	V in (1),
exhibits the same plateau structure in a one-to-one corre-
spondence. Thus, again as in SUðNÞ theories, the topologi-
cal charge dominates the action after a sufficient number
of cooling sweeps (above roughly 1200). In other words,
globally (anti)self-dual configurations are obtained by
cooling.
Indeed, the presence of such (localized) lumps can be

identified directly in the configurations. Furthermore, the
presence of topological lumps reflects itself also in the
action density. This is depicted for a hypersurface in a
typical example configuration in Fig. 2. The one-to-one
correspondence between the lumps of action and topologi-
cal charge is very well visible, which supports the inter-
pretation of topologically stable structures.
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FIG. 1 (color online). Left panel: Cooling histories of the topological charge Q for a 124 lattice at 	 ¼ 9:515. Right panel: The
absolute value ofQ for the same cooling histories (black lines) compared to the cooling curves of the action divided by the naive action
S0 ¼ 14�2	 of a Q ¼ 1 object (gray lines).
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FIG. 2 (color online). Hyper surfaces with action density (top four rows) and topological charge density (bottom four rows) of a
configuration obtained after 1500 cooling sweeps from a 164 lattice Monte Carlo configuration generated at 	 ¼ 9:515.
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To understand the structure of the lumps better, we have
analyzed them for some configurations by a cluster finding
algorithm (described and used, e.g., in Ref. [22]). The
number of clusters found depends strongly on the lower
bound of the local topological charge density applied in
order to distinguish between the (outside) vacuum and a
cluster. Nonetheless, with the running lower bound
adjusted suitably, all the clusters found by this procedure
contained almost all of both the topological charge and the
action. Surprisingly, in most cases the number of clusters
was around half of the topological charge of the configu-
ration. Therefore, multiple-charged clusters dominate the
structure of configurations with jQj> 1. Furthermore, the
sizes of the clusters within one configuration varied by
typically one order of magnitude. These findings indicate
a very interesting substructure of the topological excita-
tions. It may be worthwhile to pursue this investigation
further in the future.

A typical distribution of the topological charge per
configuration after 1500 cooling sweeps is shown in
Fig. 3. It is clearly visible that the topological charge values
are concentrated around integer values. The few intermedi-
ate values are likely from configurations which are in the
process of stepping down from one plateau to a lower one.
Whether the observed distribution is Gaussian or follows a
different multiplicity distribution cannot be reliably deter-
mined with the available amount of data. Nonetheless, the
presence of (anti)self-dual topological lumps with integer
topological charge is therefore well-established, as well as
their correlation with action lumps.

It is possible to define a residual configuration, in which
each link Ur

� is given by

Ur
� ¼ Ucooled-1

� U�;

where U� is the original link and Ucooled
� the cooled link.

These ‘‘residual configurations’’ have an action which is
almost independent of the cooling, and possess no

discernible topological structures. They thus appear to be
dominated by the ultraviolet fluctuations.

V. TOPOLOGICAL CHARGE AND
SUSCEPTIBILITYAT ZERO AND

FINITE TEMPERATURE

After establishing the properties of the individual lumps,
the next step is to determine their statistical properties
forming full lattice configurations. Their properties will
be discussed first at zero temperature, to identify any kind
of volume and discretization artifacts, and to give an
estimate of the topological susceptibility in the continuum
and infinite volume limit.
In Fig. 4, the average and absolute values of the topo-

logical charge and the topological susceptibility are shown.
As could already be inferred from Fig. 3, the average value
of the topological charge is zero, though with rather large
errors. The average absolute value of the topological
charge increases quickly with volume. This indicates that
with larger and larger volume more and more topological
lumps fit into the given lattice volume. At the same time
this number is rather insensitive to the lattice spacing.
Thus, even with a rather coarse lattice the topological
structure of the cooled vacuum seems to be well resolvable.
Finally, the topological susceptibility turns out to be nei-
ther very sensitive to volume nor to the discretization. It
also changes only weakly as a function of the number of
cooling sweeps, and therefore appears to be a good observ-
able. Its fourth root has a value of about 150 MeV, with a
one sigma error band of the order of 25 MeV for all
investigated cases. It is thus about six sigma away from
zero, giving a rather good evidence for a nonzero topologi-
cal susceptibility, apart from possible systematic errors.
Thus, G2 is in this respect rather similar, both qualitatively
and quantitatively, to SUðNÞ Yang-Mills theory.
Another feature of SUðNÞYang-Mills theories is that the

topological properties change at the phase transition. This
is often invoked to explain both the restoration of chiral
symmetry as well as deconfinement [14,17]. Although G2

Yang-Mills theory has no deconfinement comparable to
QCD, it shows a sudden rise of the Polyakov loop at
some temperature, and chiral symmetry is restored at the
same transition temperature in a similar way as in usual
QCD [8]. If the restoration of chiral symmetry is indeed
related to the topological degrees of freedom, the phase
transition should therefore reflect itself in the topological
properties.
The investigation of this interconnection is somewhat

complicated by the presence of a bulk transition on coarse
lattices, requiring to use rather fine lattices with at least
Nt ¼ 6 [7]. This implies significant changes in the physical
volumes, as going to larger volumes incurs too large com-
putational costs.
This has to be taken into account. To address it in an at

least heuristic way, the volume dependence of the average
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FIG. 3. Histogram of the topological charges per configuration
after 1500 sweeps on a 124 lattice at 	 ¼ 9:515.

TOPOLOGICAL ASPECTS OF G2 YANG-MILLS THEORY PHYSICAL REVIEW D 86, 114508 (2012)

114508-5



value of the absolute value of the topological charge and of
the topological susceptibility after a fixed number of cool-
ing sweeps is shown in Fig. 5. The obtained qualitative
results do not depend on the number of cooling sweeps:
The topological charge density jQj=V depends strongly on
both volume and discretization. It appears that the larger
the volume the less the absolute topological charge. At the
same time, the better the discretization, the higher the
absolute topological charge. Given that with larger lattice
volumes more and more topological lumps of both signs
should fit into the system, it appears likely that the total
charge diminishes quickly with volume. Discretization
effects seem to offset this to some extent. However, for a
full understanding the detailed cluster structure must be

understood more systematically, which requires signifi-
cantly more resources. Notice in this context that cooling
has a tendency to lower the action by eliminating different-
sign topological lumps, which may affect this outcome.
This should not as strongly affect the topological fluctua-
tions, in agreement with Fig. 5.
This makes it rather complicated to disentangle the

temperature and volume effects for the topological charge
density, even if the topological charge turns out to be a
decreasing function of temperature.
From these observation it appears reasonable to use only

the topological susceptibility to study the change of topo-
logical properties with temperature. It is shown in Fig. 6,
compared to the Polyakov loop and the chiral condensate.
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FIG. 4 (color online). The average of the topological charge, of the absolute value of the topological charge, and topological
susceptibility as a function of the cooling sweeps for various volumes and discretizations. Only the measurements performed for every
20th cooling sweep are shown.
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The topological susceptibility reacts to the phase transition
by starting to drop from its zero-temperature value to a
finite, high-temperature value. However, the drop is not as
sharp as for the Polyakov loop and the chiral condensate,
and the high-temperature value is reached somewhat above
the critical temperature, at T=Tc � 1:1.

Thus, the phase transition leaves an imprint on the
topological properties of the theory. Interestingly, topo-
logical degrees of freedom are still present in the high-
temperature phase, but a manual survey showed that only
very few topological lumps remain. That the topological
susceptibility is not reacting to temperature below the
phase transition and does not vanish in the high-
temperature phase close to the transition temperature, is
similar to the case of SUðNÞ gauge theory for not too large
N [23–25]. In contrast to pure gluodynamics, in QCD the
residual topological susceptibility in the high-temperature
phase could be suppressed with an increasing number of

quark flavors [26]. However, more recent investigations
find a sharper drop for the Yang-Mills case, while the
QCD transition is smoother [27]. If this would be con-
firmed then G2 Yang-Mills theory would behave more
similar to the QCD case.
However, one should be wary that systematic effects,

especially from both the definition of the topological
charge operator and the cooling procedure, can substan-
tially alter the result. E.g., for the 6� 163 lattice at the
highest temperature the fourth root of the topological

susceptibility, 

1
4, changes from 0.099(6) over 0.093(7) to

0.085(6) GeV when increasing the number of cooling
sweeps from 500 over 1500 to 2500.

VI. SUMMARY

We have presented the first numerical lattice investiga-
tion of topological properties of G2 Yang-Mills theory. We
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FIG. 5 (color online). Volume and discretization dependence of the average absolute value of the topological charge density jQj=V
and of the fourth root of the topological susceptibility after 1500 cooling sweeps.
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found that topological lumps exist, which can be identified
individually by cooling, and which provide an integer
topological charge for a given configuration. From this,
we could determine the topological susceptibility and its
dependence on temperature. This susceptibility changes at
the phase transition from one finite to another finite value.
In total, the results show a remarkable qualitative, and to
some extent even quantitative, similarity to SUðNÞ Yang-
Mills theories at small N. This underlines once more that,
in spite of the group-theoretical differences, especially the
trivial center, G2 Yang-Mills theory is quite similar to

SUðNÞ Yang-Mills theory. This emphasizes that the center
structure is for many quantities of little concern.
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[6] J. Greensite, K. Langfeld, Š. Olejnı́k, H. Reinhardt, and T.

Tok, Phys. Rev. D 75, 034501 (2007).
[7] G. Cossu, M. D’Elia, A. Di Giacomo, B. Lucini, and C.

Pica, J. High Energy Phys. 10 (2007) 100.
[8] J. Danzer, C. Gattringer, and A. Maas, J. High Energy

Phys. 01 (2009) 024.
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