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I adapt a numerical method, previously applied to investigate the Yang-Mills vacuum wave functional,

to the problem of extracting the effective Polyakov line action from SUðNÞ lattice gauge theories, with or

without matter fields. The method can be used to find the variation of the effective Polyakov line action

along any trajectory in field configuration space; this information is sufficient to determine the potential

term in the action and strongly constrains the possible form of the kinetic term. The technique is illustrated

for both pure and gauge Higgs SU(2) lattice gauge theory at finite temperature. A surprise, in the pure

gauge theory, is that the potential of the corresponding Polyakov line action contains a nonanalytic (yet

center-symmetric) term proportional to jPj3, where P is the trace of the Polyakov line at a given point, in

addition to the expected analytic terms proportional to even powers of P.

DOI: 10.1103/PhysRevD.86.114507 PACS numbers: 11.15.Ha, 12.38.Aw

I. INTRODUCTION

Consider a lattice gauge theory with gauge group SUðNÞ
on a periodic lattice of time extent Nt, possibly containing
matter fields and a chemical potential. If we integrate out all
degrees of freedom under the constraint that Polyakov line
holonomies are held fixed, then the resulting distribution
depends only on those Polyakov line holonomies or, more
precisely, on their eigenvalues. The logarithm of this distri-
bution is defined to be the effective Polyakov line action SP.

The earliest three-dimensional effective theories at finite
temperature, corresponding to 3þ 1-dimensional lattice
gauge theories in the ultrastrong coupling limit, were
derived by Polyakov [1] and Susskind [2], and a derivation
of the Polyakov line action in a systematic strong coupling
expansion was carried out by Polonyi and Szlachanyi [3].
For a review of the early work in this area, cf. Svetitsky [4].

If the underlying lattice gauge theory in D ¼ 4 dimen-
sions has a sign problem due to a nonzero chemical poten-
tial, then the effective Polyakov line action SP probably
also has a sign problem. However, there are indications that
the sign problem may be more tractable in SP than in the
underlying theory. Using strong-coupling and hopping pa-
rameter expansions, it is possible to actually carry out the
integrations over gauge and matter fields mentioned above,
to arrive at an action of the form1

SP ¼ �P

X
x

X3
i¼1

½TrUy
x TrUxþ{̂ þ TrUx TrU

y
xþ{̂�

þ �
X
x

½e� TrUx þ e�� TrUy
x �; (1)

where �P, � are calculable constants depending on the
gauge coupling, quark masses, and temperature T ¼ 1=Nt

in the underlying theory. To minimize minus signs later on,
the overall sign of SP is defined such that the Boltzmann
weight is proportional to exp½SP�, rather than exp½�SP�.
The Polyakov line holonomies Ux 2 SUðNÞ in (1) are also
known as ‘‘effective spins.’’ A path integral based on an
effective spin action of the form (1), for a wide range of�P,
�, � can be treated by a number of different methods,
including the ‘‘flux representation’’ [6], reweighting [5],
and stochastic quantization [7]. Even traditional mean field
methods have had some degree of success in determining
the phase diagram [8].
The problem, of course, is that strong lattice coupling

and heavy quark masses lie outside the parameter range of
phenomenological interest, and it is not obvious how to
extract SP for parameters inside the range of interest, even
at � ¼ 0. There have been some efforts in this direction,
notably the inverse Monte Carlo method of Ref. [9], as well
as early studies [10,11] which employed microcanonical
and Migdal-Kadanoff methods, respectively. There is also
a strategy for determining the phase structure of lattice
gauge theory from an effective spin theory, whose form is
suggested by high-order strong-coupling and hopping pa-
rameter expansions [5]. Here, however, I will discuss a
different approach to the problem, recently suggested in
Ref. [8], which will be illustrated for SU(2) pure gauge and
gauge-Higgs theories.

II. THE ‘‘RELATIVE WEIGHTS’’ APPROACH

Let SQCD be the lattice QCD action at temperature T ¼
1=Nt in lattice units, with lattice gauge coupling �, and a
set of quark masses denoted collectivelymq. We set chemi-

cal potential � ¼ 0 for now. It is convenient to impose a
temporal gauge condition in which the timelike link vari-
ables are set to the unit matrix everywhere except on a
single time slice, say at t ¼ 0. In that case, U0ðx; 0Þ is the

*Permanent address: Physics and Astronomy Department, San
Francisco State University, San Francisco, California 94132,
USA.

1This is the action at leading order. For the effective action
determined at higher orders in the combined strong-coupling and
hopping parameter expansions, cf. Ref. [5].
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Polyakov line holonomy passing through the site (x, t¼0).
The effective Polyakov line action is defined in terms of the
partition function

Zð�; T;mqÞ ¼
Z

DU0ðx; 0Þ
Z

DUkD �cDc eSQCD

¼
Z

DU0ðx; 0ÞeSP½U0�; (2)

or equivalently

exp½SP½Ux�� ¼
Z

DU0ðx; 0ÞDUkD �cDc

�
�Y

x

�½Ux �U0ðx; 0Þ�
�
eSQCD : (3)

Because temporal gauge has a residual symmetry under
time-independent gauge transformations, it follows that
SP½Ux� is invariant under Ux ! gðxÞUxg

yðxÞ, which
means that SP only depends on the eigenvalues of the
Polyakov line holonomies.

Now consider a finite set of M SUðNÞ ‘‘effective spin’’
configurations in the three-dimensional cubic lattice V3 of
volume L3,

ffUðiÞ
x ; all x 2 V3g; i ¼ 1; 2; . . . ;Mg: (4)

Each member of the set can be used to specify the timelike
links on the time slice t ¼ 0. Define

Z ¼
Z

DU0ðx; 0ÞDUkD �cDc

�XM
i¼1

�Y
x

�½UðiÞ
x �U0ðx; 0Þ�

�
eSQCD ; (5)

and consider the ratio

exp½SP½UðjÞ��
exp½SP½UðkÞ��

¼
R
DU0ðx;0ÞDUkD �cDc

�Q
x�½UðjÞ

x �U0ðx;0Þ�
�
eSQCD

R
DU0ðx;0ÞDUkD �cDc

�Q
x�½UðkÞ

x �U0ðx;0Þ�
�
eSQCD

¼
1
Z

R
DU0ðx;0ÞDUkD �cDc

�Q
x�½UðjÞ

x �U0ðx;0Þ�
�
eSQCD

1
Z

R
DU0ðx;0ÞDUkD �cDc

�Q
x�½UðkÞ

x �U0ðx;0Þ�
�
eSQCD

;

(6)

where in the second line we have merely divided both the
numerator and denominator by a common factor. However,
by inserting this factor, both the numerator and denomina-
tor acquire a meaning in statistical mechanics, because the
factor Z can be interpreted as the partition function of a
system in which the configuration of timelike link variables

at t ¼ 0 is restricted to belong to the set fUðiÞ; i ¼
1; . . . ;Mg. This means that

Prob½UðjÞ� ¼ 1

Z

Z
DU0ðx; 0ÞDUkD �cDc

�
�Y

x

�½UðjÞ
x �U0ðx; 0Þ�

�
eSQCD (7)

is simply the probability, in this statistical system, for the

jth configuration U0ðx; 0Þ ¼ UðjÞ
x to be found on the t ¼ 0

time slice. This probability can be determined from a
slightly modified Monte Carlo simulation of the original
lattice action. The simulation proceeds by standard algo-
rithms, for all degrees of freedom other than the timelike
links at t ¼ 0, which are held fixed. Periodically, on the t ¼
0 time slice, one member of the given set of timelike link
configurations is selected by the Metropolis algorithm, and
all timelike links on that time slice are updated simulta-
neously. Let Ni be the number of times that the ith con-
figuration is selected by the algorithm, and Ntot ¼ P

iNi.

Then Prob½UðjÞ� is given by

Prob ½UðjÞ� ¼ lim
Ntot!1

Nj

Ntot

; (8)

and this in turn gives us the relative weights

exp½SP½UðjÞ��
exp½SP½UðkÞ�� ¼ lim

Ntot!1
Nj

Nk

; (9)

for all elements of the set. A computation of this kind
allows us to test any specific proposal for SP, which may
be motivated by some theoretical considerations. But it
might also be possible, given data on the relative weights
of a variety of different sets, to guess the action that would
lead to these results. In this article we will consider sets of
spatially constant Polyakov line configurations and small
plane wave perturbations around a constant background.
This is already sufficient to determine the potential term in
SP and to suggest the form of the full action.
The method described above was proposed long ago [12]

in connection with the Yang-Mills vacuum wave functional.
Recently there have been some sophisticated suggestions
for the form of this wave functional in 2þ 1 dimensions,
and the technique was revived in order to test these ideas
in Ref. [13]. The main difference between the method as
applied to vacuum wave functionals, and as applied to
determining SP, is that in the former case the simulation
chooses from a fixed set of spacelike link configurations on
the t ¼ 0 time slice, while in the latter the choice is made
from a set of timelike link configurations.

A. Finite chemical potential

Let S
�
QCD denote the QCD action with a chemical po-

tential, which can be obtained from SQCD by the following

replacement of timelike links at t ¼ 0:

S�QCD ¼ SQCD½U0ðx; 0Þ ! eNt�U0ðx; 0Þ; Uy
0 ðx; 0Þ

! e�Nt�Uy
0 ðx; 0Þ�: (10)
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The corresponding Polyakov line action S
�
P is in principle

obtained from (3), with S
�
QCD as the underlying action. Of

course, the integration indicated in (3) can so far only be
carried out for strong couplings and large quark masses,
but it is not hard to see that each contribution to SP in the
strong-couplingþ hopping parameter expansion at � ¼ 0
maps into a corresponding contribution to S�P by the
replacement

Ux ! eNt�Ux; Uy
x ! e�Nt�Uy

x : (11)

It is reasonable then to suppose that this mapping holds
in general, i.e., if we have by some means obtained

SP½Ux; U
y
x � beyond the range of validity of the

strong-couplingþ hopping parameter expansion, then the
corresponding S

�
P is obtained by making the change of

variables (11). There is, however, a possible source of
ambiguity in this scheme (noted in Ref. [8]), coming
from identities such as

TrUy
x ¼ 1

2
½ðTrUxÞ2 � TrU2

x� (12)

in SU(3). One way around this ambiguity is to enlarge
the range of U0ðx; 0Þ, allowing these variables to take on
values

U0ðx; 0Þ ¼ ei�UðxÞ; (13)

where UðxÞ is an element of SUðNÞ. In other words, we
allow the U0ðx; 0Þ links to take on values in the UðNÞ
group, although it will be sufficient for our purposes to
let � be x independent.2 Suppose we are able to determine
SP for this enlarged domain of Polyakov line variables.
Then S

�
P is obtained by analytic continuation, � ! �iNt�.

The essential point here is that if one can determine SP
by simulations of SQCD at � ¼ 0, then this result can be

used to determine S
�
P at finite chemical potential. If the

sign problem is in fact tractable for S
�
P , as recent results

seem to suggest, then this may be a useful way of attacking
the sign problem in full QCD.

B. Relative weights, and path derivatives of SP

Let C be the configuration space of effective spins fUxg
on an L3 lattice, and let the variable � parametrize some
path fUxð�Þg through C. The method of relative weights is
particularly useful in computing derivatives of the
Polyakov line action �

dSP
d�

�
�¼�0

(14)

along the path. To see this, we begin by taking the loga-
rithm of both sides of Eq. (9) and find

SP½UðjÞ� � SP½UðkÞ� ¼ lim
Ntot!1flogNj � logNkg

¼ lim
Ntot!1

�
log

Nj

Ntot

� log
Nk

Ntot

�
: (15)

(From this point on we will drop the limit.) Now imagine
parametrizing the effective spins by a parameter �; each
value of � gives us a different configuration Uxð�Þ. Let the
configuration UðjÞ correspond to � ¼ �0 þ �� and UðkÞ
correspond to � ¼ �0 ���. Then�

dSP½Uxð�Þ�
d�

�
�¼�0

� 1

2��

�
log

Nj

Ntot

� log
Nk

Ntot

�
: (16)

However, rather than using only two configurations to
compute the derivative, we can obtain a more accurate
numerical estimate if we let � increase in increments of
��, e.g.,

�n ¼ �0 þ
�
n�Mþ 1

2

�
��; n ¼ 1; 2; . . . ;M; (17)

and use all of the M values obtained for Nn in the simula-
tion. For �� small enough, the data for logNn=Ntot vs �n

will fit a straight line and then we obtain the estimate�
dSP½Uxð�Þ�

d�

�
�¼�0

� slope of log
Nn

Ntot

vs:�n: (18)

The procedure will be illustrated explicitly in the next
section.

III. TESTING THE METHOD AT
STRONG COUPLING

The first step is to compute dSP=d� for a case where
we know the answer analytically. As mentioned previously,
SP can be readily computed in the strong-couplingþ
hopping parameter expansion. We will consider here the
case of pure SU(2) Yang-Mills theory at a strong coupling
�. If the lattice is Nt lattice spacings in the time direction,
then computing the diagrammatic contributions to SP at
leading and next-to-leading order in the strong-coupling/
character expansion, we find

SP ¼
�
1þ 4Nt

�
I2ð�Þ
I1ð�Þ

�
4
��

I2ð�Þ
I1ð�Þ

�
NtX

x

X3
i¼1

TrUx TrUxþ{̂

¼ �P

X
x

X3
i¼1

PxPxþ{̂; (19)

where

Px � 1

2
TrUx; �P ¼ 4

�
1þ 4Nt

�
I2ð�Þ
I1ð�Þ

�
4
��

I2ð�Þ
I1ð�Þ

�
Nt

:

(20)

Let us first consider sets of spatially constant configu-
rations with varying amplitudes in the neighborhood of
P ¼ P0, i.e.,

2It is also sufficient to restrict � to 0 � � < 2�=N. The full
range ½0; 2�� is redundant, because of the ZN center of SUðNÞ.
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UðnÞ
x ¼ ðP0 þ anÞ1þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðP0 þ anÞ2

q
�3

an ¼
�
n� 1

2
ðMþ 1Þ

�
�a; n ¼ 1; 2; . . . ;M;

(21)

so in this case a is the � parameter of the previous
section. If we divide SP into a kinetic and potential
part, which in the case of (19) is

SP ¼ KP þ VP

KP ¼ 1

2
�P

X
x

X3
i¼1

ðPxPxþ{̂ � 2P2
x þ PxPx�{̂Þ

VP ¼ 3�P

X
x

P2
x;

(22)

then dSP=da ¼ dVP=dP0 is giving us the derivative of
the potential piece, which can then be reconstructed, up to
an irrelevant constant, by integration. So the procedure for
determining VP (assuming it were not already known
from the strong-coupling expansion) is to compute
dVP=dP0 numerically, fit the results to some appropriate
polynomial in P0, and then integrate the fit.

Our sample simulation is carried out in pure SU(2)
lattice gauge theory at coupling � ¼ 1:2 (well within the
regime of strong couplings) on a 123 � 4 lattice withM ¼
20 sets of spatially constant configurations. Figure 1 shows
the data for logðNn=NtotÞ plotted vs ðP0 þ anÞ� spatial
lattice volume (123), at P0 ¼ 0:5. It is clear that the data
falls quite accurately on a straight line, and the slope gives
an estimate for the derivative

1

L3

�
dSPðUxðaÞÞ

da

�
a¼0

¼ 1

L3

dVPðP0Þ
dP0

; (23)

which can be compared to the value 6�PP0 obtained from
the strong-coupling expansion. The derivative obtained

from numerical simulation vs P0 is plotted in Fig. 2, and
it obviously fits a straight line. Therefore, the potential VP

is quadratic in Px, and we find, at � ¼ 1:2,

VP¼

8>>><
>>>:
0:1721ð8ÞP

x

1
2P

2
x relativeweightsmethod

0:1710
P
x

1
2P

2
x strong-coupling expansion

; (24)

where we have dropped, in the upper line, an irrelevant
constant of integration. The small numerical difference
between the relative weights and strong-coupling results
can probably be attributed to neglected higher-order terms
in the strong-coupling expansion.3

In order to investigate the kinetic term, we consider
plane-wave deformations of spatially constant configura-
tions. The path through configuration space C is again
parametrized by a, with

UðnÞ
x ¼ PðnÞ

x 1þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðPðnÞ

x Þ2
q

�3

PðnÞ
x ¼ P0 þ an cosðk � xÞ; ki ¼ 2�

L
mi;

(25)

where the fmi; i ¼ 1; 2; 3g are integers, not all of which
are zero. For this class of configurations we have, for the
action (19)

SP ¼ �PL
3

�
3P2

0 þ
1

2
a2n

X3
i¼1

cosðkiÞ
�
: (26)

Since the deformation of the action is proportional to a2,
it is natural to consider the derivative of SP with respect
to a2, i.e.,

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

 854  856  858  860  862  864  866  868  870  872  874

lo
g(

N
n/

N
to

t)

(P0 + a) X Volume

β=1.2, 123 X 4 lattice

data
best fit

FIG. 1 (color online). The slope of the straight-line fit to the
data shown gives an estimate for the derivative L�3dSP=da of SP
with respect to the amplitude of spatially constant effective spin
configurations. In this case, the derivative is evaluated at P0 ¼
0:5 for an underlying pure Yang-Mills theory at strong coupling
value of � ¼ 1:2, on a 123 � 4 lattice.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  0.2  0.4  0.6  0.8  1

L-3
 d

S
P
/d

a

P0

β=1.2, 123 X 4 lattice

data
strong coupling

best fit

FIG. 2 (color online). A plot of the values for L�3dSP=da vs
P0. Each data point is extracted from a plot similar to the
previous figure. Also shown are the corresponding strong-
coupling values and a best linear fit to the data points.

3Statistical errors are estimated from best fit slopes obtained
from eight independent runs. Where error bars are not shown
explicitly, in the two-dimensional plots below, they are smaller
than the symbol size.
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1

L3

dSP
dða2Þ ¼

1

2
�P

X
i

cosðkiÞ; (27)

and therefore we can choose to let a2n, rather than an,
increase in equal increments, so that an ¼

ffiffiffi
n

p
�a.

The numerical procedure is similar to the determination
of the potential term: we compute the derivative
L�3dSP=dða2Þ, at fixed P0 and k, from the slope of a
plot of logðNn=NtotÞ vs a2nL

3. Then these values for the
derivative are plotted, at various values of P0, against
squared lattice momentum

k2L � 4
X3
i¼1

sin2
�
1

2
ki

�
: (28)

The result, at P0 ¼ 0:5, is shown in Fig. 3, and we find, for
a trajectory (25) at fixed k,

1

L3

dSP
dða2Þ ¼ �Ak2L þ B; (29)

where

A ¼ 7:3ð2Þ � 10�3; B ¼ 4:30ð3Þ � 10�2: (30)

The simulation has also been carried out at other values of
P0, but the results are almost indistinguishable from Fig. 3
and so are not displayed here. The important point, how-
ever, is that the path derivative (29) is P0 independent.

Integrating with respect to a2, we find that along any
path parametrized by a with fixed P0,

Sp½UxðaÞ� ¼ L3f�Aa2k2L þ Ba2 þ fðP0Þg; (31)

where fðP0Þ is a constant of integration, which can be
determined from the data on the potential:

fðP0Þ ¼ CP2
0; C ¼ 0:0861� 0:0004: (32)

The next step is to express SP along the path in terms ofUx

(or Px ¼ 1
2 TrUx). From the definitions (25) and (28), one

easily finds that (31) can be expressed as

SP ¼ 4A
X
x

X3
i¼1

PxPxþ{̂ þ ½ðB� 6AÞa2 þ ðC� 12AÞP2
0�L3:

(33)

The constants B� 6A and C� 12A are, within statistical
error, consistent with zero, so we will just drop these terms.
Then along the trajectory the action has the form

SP ¼ ð:0292� :0008ÞX
x

X3
i¼1

PxPxþ{̂

ðrelative weights methodÞ; (34)

and of course the natural conjecture is that this is the action
itself, at any point in configuration space. Further checks
would be to calculate numerical derivatives dSP=d� along
other trajectories, to test the consistency of this conjecture.
We don’t really need to do that here, since the action at
strong couplings is already known analytically, and is
given in Eq. (19) to leading and next-to-leading order in
the strong-coupling expansion. At � ¼ 1:2 we have, from
Eq. (19), that

SP ¼ :0285
X
x

X3
i¼1

PxPxþ{̂ ðstrong-coupling expansionÞ;

(35)

which is a close match to what we have arrived at via the
relative weights procedure.
This is, perhaps, a lot of effort to derive a known result.

We have gone through this exercise in order to illustrate the
method and to make sure, in a case where the answer is
known, that the method actually works.

IV. POTENTIAL VP IN PURE-GAUGE THEORY,
WEAKER COUPLINGS

We now reduce the lattice coupling of the underlying
SU(2) pure-gauge theory, setting � ¼ 2:2 with inverse
temperature Nt ¼ 4 in lattice units. At this coupling and
temperature (which is still inside the confinement phase of
the theory), the effective Polyakov line action SP is not
known.
The easiest task is to determine the potential part of the

action. For the purposes of this article, we define the
kinetic part of the action to be the piece which vanishes
for spatially constant configurations, while the potential
part is local. With these definitions

VP ¼ X
x

V ðUxÞ; (36)

and the functionV ðUxÞ is determined by evaluating SP on
configurations Ux ¼ U which are constant in 3-space, i.e.,

 0.01

 0.015
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 0.025

 0.03

 0.035

 0.04

 0.045

 0  0.5  1  1.5  2  2.5  3  3.5  4

L-3
 d

S
P
/d

(a
2 )

kL
2

β=1.2, 123 X 4 lattice

data
theory

fit

FIG. 3 (color online). Derivative of the action with respect to
path parameter a2 vs squared lattice momentum. Data is taken at
strong gauge coupling � ¼ 1:2 for plane-wave deformations.
Squares indicate the relative-weights values, while green dots are
the values obtained from the strong-coupling expansion.
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V ðUÞ ¼ 1

L3
SPðUÞ: (37)

Then by definition the kinetic part of the action is

KP � SP½Ux� � VP½Ux�: (38)

In order to determine VP, we consider as before the path
through configuration space (21) parametrized by the vari-
able a, and once again we can identify dSP=da with
dVPðP0Þ=dP0 as in (23). The derivatives are determined
by the relative weight method described above, the depen-
dence on P0 is fit to a polynomial, and VP is then deter-
mined, up to an irrelevant constant, by integration over P0.

Because the Z2 center symmetry is unbroken at � ¼ 2:2
and Nt ¼ 4, and V ðUxÞ is a class function, it is natural to
assume that V ðUÞ is well represented by a few group
characters 	jðUÞ of zero N-ality (j ¼ integer for SUð2Þ)
and the potential is analytic in Px. Surprisingly, this is not
what is found.

Figure 4(a) shows the data for the derivative

DðP0Þ � 1

L3

dVP

dP0

¼ 1

L3

dSP
da

(39)

at � ¼ 2:2 on a 123 � 4 volume, which, as in the strong-
coupling case, extrapolates linearly to zero at P0 ¼ 0. Also
shown is a best fit of DðPÞ to the polynomial

fðPÞ ¼ c1Pþ c2P
2 þ c3P

3 (40)

with the best fit constants shown in Table I. What is
initially a little troubling about this fit is that upon integra-
tion, and up to an irrelevant integration constant, we must
have

V ðPxÞ ¼ 1

2
c1P

2
x þ 1

3
c2P

3
x þ 1

4
c3P

4
x; (41)

which appears to violate center symmetry, i.e., V ðPxÞ ¼
V ð�PxÞ for SU(2) gauge theory. Because of center sym-
metry, the character expansion of V ðPxÞ contains only
characters 	j with j ¼ integer. It is a property of the

SU(2) group characters that each 	j can be expressed as

a polynomial of order 2j in P, containing only even powers
of P for j ¼ integer and only odd powers for j ¼
half-integer. Then if the character expansion of V ðPxÞ is
truncated at some j ¼ jmax, the P derivative is a polyno-
mial in odd powers of P up to P2jmax�1.

One might expect thatV ðPxÞ can be accurately approxi-
mated by a handful of group characters. However, the
attempt to fit the data with only a few odd powers of P is
unsuccessful, in the sense that each of the three fitting
functions

fðPÞ ¼

8>>><
>>>:
c1Pþ c3P

3

c1Pþ c3P
3 þ c5P

5

c1Pþ c3P
3 þ c5P

5 þ c7P
7

; (42)

corresponding to truncated character expansions with
jmax ¼ 2, 3, 4, respectively, gives an unacceptable fit, as
seen in Fig. 4(b). The reduced 	2 values in the three cases
are 440,100,25, respectively. This is to be compared to the
reduced 	2 ¼ 3:2 for the fitting function (40).
All this seems to imply that V ðPxÞ has a term violating

center symmetry, but of course that cannot be the case. In
order that V ðPxÞ is an even function of Px, it must be that
the derivative is an odd function, DðP0Þ ¼ �Dð�P0Þ,
which in turn means that the coefficient of the quadratic
term in (40) must change sign when P0 ! �P0. This is
easy to check; we simply repeat the calculation with P0<0
in (21), with the result shown in 4(c). Here the squares are
the data for DðP0Þ at P0 > 0, while the circles are data for
ð�1Þ �DðP0Þ at P0 < 0. The fact that the corresponding
data points at �P0 lie on top of each other means that the
derivative is an odd function, and the potential itself is an
even function of Px, as it must be. The conclusion, which
follows from the best fit, is that over the full range
�1 � Px � 1, the potential, up to an irrelevant constant, is
given by

V ðPxÞ ¼ 1

2
c1P

2
x þ 1

3
c2jPxj3 þ 1

4
c3P

4
x: (43)

This function is nonanalytic, because of the absolute value,
but still center symmetric, with the constants given in
Table I. It should be emphasized again that this potential
cannot be approximated very well by a simple sum of j ¼
0, 1, 2, 3, 4 SU(2) group characters. Of course, any class
function (including jPxj3) can be approximated by a suffi-
ciently large number of group characters, just as a step
function can be approximated by a truncated Fourier series.
But keeping only a relatively small number of group
characters introduces ‘‘wiggles’’ in the approximation to
the potential [which are seen in Fig. 4(b)] much like the
truncated Fourier series does for the step function.
So far we have only looked at a pure gauge theory in the

confined phase, but it is also possible to computeV ðPxÞ in
the deconfined phase using the same methods. In compar-
ing the potential in the confining and deconfining phases, it
is useful to display the data in a slightly different way, by
plotting the derivative dVP=dðP2Þ vs P2, i.e.,

1

L3

dVP

dðP2
0Þ

¼ 1

L3

1

2P0

dVP

dP0

: (44)

When the data is plotted in this way, a curious feature does
show up. First, consider the confined phase. The data for
the above derivative in the confined phase, at the same
coupling � ¼ 2:2 and lattice volume as before, is shown
in Fig. 4(d). In this plot, the best fit shown in Fig. 4(a)
transforms to

gðP2Þ ¼ 1

2
ðc1 þ c2

ffiffiffiffiffiffi
P2

p
þ c3P

2Þ; (45)

with the same constants c1–3 shown in Table I, and this
function is also plotted in Fig. 4(d). Note that if the
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potential didn’t have a cubic term, then we would have

to omit the term proportional to
ffiffiffiffiffiffi
P2

p
. But then the data

should fit a straight line in Fig. 4(d), which it quite clearly
does not.
Now we display corresponding data in the deconfined

phase. Figure 5 shows the result for the derivative (44) at
� ¼ 2:4, again on a 123 � 4 lattice, which is well past the
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FIG. 4 (color online). Derivatives of the potential. Subfigure (a) shows the best fit to the data by a polynomial aPþ bP2 þ cP3,
while subfigure (b) shows a best fit by polynomials with two, three, and four odd powers of P, which are forms that might be expected
from unbroken center symmetry. (c) is a test of whether dVP=dP is an odd function of P. Data for the derivative at values of P0 < 0 are
multiplied by -1, for comparison with the data at P0 > 0. (d) same data (and fit) as in subfigure (a), plotted in a different way.

TABLE I. The constants c1–3 derived from a best fit of c1Pþ
c2P

2 þ c3P
3 to the potential data.

Potential fit

c1 c2 c3
4.61(2) �4:51ð10Þ 1.77(8)
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deconfinement transition. Note the peculiar ‘‘dip’’ near
P0 ¼ 0. Because of this dip, the polynomial form (40) to
the derivative, which translates to (45) for dVP=dðP2Þ,
cannot fit the data over the full range. It is consistent
with the data away from the dip, i.e., at P2

0 > 0:1, and the

resulting fit to data in the interval ½0:1�, 1 is also shown in
Fig. 5. The relationship of the dip in the derivative near
P0 ¼ 0 to the deconfinement phenomenon is not obvious
to the author.

Finally, it is important to ask whether the potential
shown in Fig. 4 is dependent on the spatial volume. In
Fig. 6 we show the previous data for the derivative of the
potential, obtained on a 123 � 4 lattice, together with data
for the same observable obtained on an 83 � 4 lattice.
It can be seen that the volume dependence is negligible
in this case.

V. POTENTIAL VP IN SU(2)
GAUGE-HIGGS THEORY

We now add a matter field to the gauge theory, to see
how this will affect the potential. To keep the computation
requirements very modest, we consider a scalar matter
field, in the fundamental representation, with a fixed modu-
lus (i.e., a ‘‘gauge-Higgs’’ theory). For the SU(2) gauge
group, the matter field can be mapped onto SU(2) group
elements, and the action can be expressed as

S ¼ �
X
plaq

1

2
Tr½UUUyUy�

þ 

X
x;�

1

2
Tr½�yðxÞU�ðxÞ�ðxþ �̂Þ�: (46)

There have been many numerical studies of this action,
following the work of Fradkin and Shenker [14], itself
based on a theorem by Osterwalder and Seiler [15], which
showed that the Higgs region and the ‘‘confinementlike’’
regions of the �� 
 phase diagram are continuously con-
nected. Subsequent Monte Carlo studies found that there is
only a single phase at zero temperature (there might have
been a separate Coulomb phase), although there is a line of
first-order transitions between the confinementlike and
Higgs regions, which eventually turns into a line of sharp
crossover around� ¼ 2:775, 
 ¼ 0:705, cf. [16] and refer-
ences therein. At � ¼ 2:2 the crossover occurs at 
 �
0:84, as seen in the plaquette energy data shown in
Fig. 7. There is also a steep rise in the Polyakov line
expectation value as 
 increases past this point.
Figure 8(a) shows the potential derivative L�3dVP=dP0

vs P0, along with a best fit to the data, at � ¼ 2:2 and

 ¼ 0:75, which is somewhat below the crossover, in the
confinementlike regime. We compute this derivative,
again in a 123 � 4 lattice volume, at both positive and
negative values of P0, to test for the presence of a small
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0 < 0:1.
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center-symmetry breaking term in the potential [which is
not obvious in Fig. 8(a)]. The data over the full range is fit
to the form

fðPÞ ¼ c00 þ c01Pþ c02signðPÞP2 þ c03P
3; (47)

which translates, upon integration, into a potential

V ðPxÞ ¼ c00Px þ 1

2
c01P2

x þ 1

3
c02jPxj3 þ 1

4
c03P4

x; (48)

with a center-symmetry breaking term c00Px. The constants

obtained from the fit are shown in Table II.
The slight asymmetry which breaks fðPÞ ¼ �fð�PÞ,

and therefore center symmetry, is more evident when we
expand the plot in the immediate region of P0 ¼ 0, as in
Fig. 8(b). It can be seen that the best fit through the data
points does not go through fðP0Þ ¼ 0 at P0 ¼ 0 but rather
crosses the y axis at a positive value fð0Þ ¼ c00 ¼ 0:025.
The line shown in Fig. 8(b) is taken from a best fit to the
full range of data, not just the near P0 ¼ 0 data. Since the
underlying gauge-Higgs theory breaks center symmetry
explicitly, a term linear in Px is of course expected. The
coefficient c0 ¼ 0:025 of the symmetry breaking term is
quite small, but the expectation value of the Polyakov line
at 
 ¼ 0:75 is also quite small: hPxi ¼ 0:055 at these
couplings and lattice size.

VI. PLANE-WAVE DEFORMATIONS

We now return to the pure gauge theory at � ¼ 2:2. So
far the potential term VP of the effective Polyakov line
action has been determined, but the ultimate interest is
in the full action. It was not very hard to extract this
action from the log½Nn=Ntot� data at strong couplings.
Unfortunately it is not as easy to jump from the path
derivatives to the full action at weaker couplings, simply
because SP is not so simple (and is not known in advance).
Nevertheless, knowledge of the action along a particular
trajectory in configuration space does provide some infor-
mation about the full action.
As in the strong coupling case, we choose to investigate

the derivatives of SP along paths of the form (25), i.e.,
plane waves of fixed wave number and varying amplitude
on a constant background. The method is the same as
outlined in Sec. III, but the result is different. At � ¼
1:2, it was found that dSP=dða2Þ was linear in k2L and
independent of P0. That is not the case at � ¼ 2:2. What
happens in this case is shown in Fig. 9, where we display
L�3dSP=dða2Þ plotted against the magnitude of lattice

momentum kL ¼ ðk2LÞ1=2 at fixed values of P0 ¼ 0:1 and
P0 ¼ 0:8. It can be seen that the kL dependence of the data
in Fig. 9(a), at P0 ¼ 0:1, is consistent with linear, while the
kL dependence in Fig. 9(b), at P0 ¼ 0:8, seems to be
quadratic. This can be seen from fits to a� bkL in the
former case, and to a� bk2L in the latter. This suggests a
possible interpolating form

1

L3

�
dSP
dða2Þ

�
ja¼0

¼ fðP0Þ þ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2L þ gP2

0

q
; (49)

whose kL-dependence would vary continuously from lin-
ear, asP0 ! 0, to quadratic, for k2L 
 gP2

0. Figure 10 is the

same plot as Fig. 9(a), except that data obtained on both an
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FIG. 8 (color online). Derivative of the Polyakov line potential, per unit volume, with respect to the Polyakov line value P, for the
SU(2) gauge-Higgs theory on a 123 � 4 lattice. Data is taken at gauge coupling � ¼ 2:2 and gauge-Higgs coupling 
 ¼ 0:75. (a) the
data over the range �1<P< 1, together with the best fit; (b) the data in the vicinity of P ¼ 0, also showing the fit in this region
derived from the full range of data [i.e., same curve as in (a)]. Note that the line through the data does not pass through the origin,
which implies a small breaking of center symmetry.

TABLE II. The constants c00–3 derived from a best fit of c00 þ
c01Pþ c02signðPÞP2 þ c03P

3 to the potential data of the SU(2)

gauge-Higgs model.

Potential fit: gauge-Higgs model

c00 c01 c02 c03
0.025(1) 4.70(2) �4:70ð8Þ 1.91(7)

POTENTIAL OF THE EFFECTIVE POLYAKOV LINE . . . PHYSICAL REVIEW D 86, 114507 (2012)

114507-9



83 � 4 lattice and a 123 � 4 volume are displayed together,
and both sets of data points appear to have the same kL
dependence. This is, of course, evidence of the insensitivity
of our results to the spatial volume.

If (49) is correct, then it ought to be consistent with the
potential (43). This means that fðP0Þ can be, at most,
quadratic in P0, so let us write

1

L3

�
dSP
dða2Þ

�
ja¼0

¼b0þb1P0þb2P
2
0þc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2LþgP2

0

q
: (50)

The constants shown are subject to three constraints by
the potential, so if we insist on the potential (43) there
are really only two independent constants. In order to
derive those constraints, consider a very large lattice
volume L3, such that k2L can be made very small com-
pared to gP2

0, but still nonzero, and we assume that

fc1; c2; c3g do not vary much with L (we have already
seen evidence of this fact in Fig. 6). Then the kinetic
term is negligible compared to the potential term, and

along the trajectory (25), taking account of the spatial
average ðcos2k � xÞav ¼ 1

2 , we have

1

L3

�
dSP
dða2Þ

�
ja¼0

¼ 1

4
c1 þ 1

2
c2P0 þ 3

4
c3P

2
0: (51)

Comparison with (50) in the k2L 
 gP2
0 limit calls for

identifying

b0 ¼ 1

4
c1; b2 ¼ 3

4
c3; b1 þ c

ffiffiffi
g

p ¼ 1

2
c2: (52)

Figure 11 show a best fit of the data to the form (50),
with the best fit constants given in Table III. This is hardly a
perfect fit through the data points, given the value of the
reduced 	2 � 30. Still, except at very low k2L, P

2
0, the

fitting function gives a reasonable account of the depen-
dence of the data on k2L and P0. Table IV is a test of
constraints, listing three combinations of constants which,
according to the identities (52), should vanish. It is seen
that the second and third combinations in the table are
consistent with zero, and the first combination is very
nearly so.4

VII. TOWARD THE FULL ACTION

The interesting question, of course, is what is the full
action that gives rise to the variation (50) along the path,
with the given potential (43). We begin by noting that, with
the constants shown in Tables I and III, the action

SP ¼ 2c

�X
xy

PxQxyPy �
X
x

ffiffiffiffiffiffiffiffiffi
gP2

0

q
P2
x

�

þX
x

�
1

2
c1P

2
x þ 1

3
c2jP3

xj þ 1

4
c3P

4
x

�
;

¼ KP þX
x

V ðPxÞ; (53)
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FIG. 9 (color online). Derivative of the action along a path of plane-wave deformations. (a) Data at P0 ¼ 0:1 is consistent with a
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FIG. 10 (color online). A check of insensitivity to lattice
volume. Parameters are the same as in Fig. 9(a), but this time
including data obtained on an 83 � 4 lattice volume (L ¼ 8), in
addition to data on a 123 � 4 volume (L ¼ 12).

4All fits, and error estimates on fitting constants, are made
using the GNUPLOT software.
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where KP is the kinetic term

KP ¼ 2c

�X
xy

PxQxyPy �
X
x

ffiffiffiffiffiffiffiffiffi
gP2

0

q
P2
x

�
(54)

and

Qxy ¼ ð ffiffiffiffi
R

p Þxy
Rxy ¼ ð�r2

LÞxy þ gP2
0�xy

¼X3
i¼1

ð2�xy ��x;yþ{̂ ��xþ{̂;yÞþgP2
0�xy; (55)

gives the known results for the potential (43) and for the
variation of SP with a2 (50) along the paths of plane-wave

deformations (25). The operator r2
L is the usual lattice

Laplacian operator, and Q has the spectral representation

Q ¼ X
k

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2L þ gP2

0

q �
jkihkj

Qxy ¼ 1

L3

X
k

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2L þ gP2

0

q �
eik�ðx�yÞ;

(56)

where
P

k is shorthand for the sum over lattice wave
vectors with components ki ¼ ð2�=LÞmi, and lattice mo-
mentum kL has been defined previously in (28). The ket

vectors jki correspond to normalized L�3=2 exp½ik � x�
plane-wave states.
For the paths (25), set Px ¼ P0 þ a cosðk � xÞ and com-

pute the resulting action on such configurations up to
leading order in a2. Using the spectral representation for
the operator Q, a short calculation gives, up to Oða2Þ,

SP ¼ L3V ðP0Þ þ a2L3

�
1

4
c1 þ

�
1

2
c2 � c

ffiffiffi
g

p �
P0 þ 3

4
c3P

2
0

þ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2L þ gP2

0

q �
: (57)

Applying the identities (52), which are reasonably well
satisfied by the data, this becomes

SP¼L3V ðP0Þþa2L3

�
b0þb1P0þb2P

2
0þc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2LþgP2

0

q �
:

(58)

So we find that for constant configurations (a ¼ 0), the
action is simply the known potential, i.e., SP ¼ L3V ðP0Þ,
while the path derivative is

1

L3

�
dSP
dða2Þ

�
ja¼0

¼ b0 þ b1P1 þ b2P
2
0 þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2L þ gP2

0

q
;

(59)

in complete agreement with (50).
Denote by Pav and �P2 the lattice average value and

mean square deviation, respectively, of a given Polyakov
line configuration. It is clear that for the paths (25) con-
sidered so far, P0 ¼ Pav. One further generalization,
which will not affect agreement with the data so far, is to
allow the kinetic term to also depend on �P2, i.e.,5
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FIG. 11 (color online). Two views, at different viewing angles,
of the data (red crosses) for L�3dS=dða2Þ vs lattice momentum
kL and Polyakov line P0, and the best fit (green surface) of the
form (50) to the data.

TABLE III. Fitting constants b0–2, c, g obtained from a best fit
to the data points shown in Fig. 11, by a surface of the form (50).

Surface fit

b0 b1 b2 c g
1.105(14) 0.85(17) 1.365(56) �0:529ð13Þ 33(3)

TABLE IV. The constraints (52) imply that the combination of
constants in the second line of the table should vanish within
error bars, and the last line shows the actual values of these
combinations, for the constants given in Tables I and III.

Constraints

b0 � 1
4 c1 b1 þ c

ffiffiffi
g

p � 1
2 c2 b2 � 3

4 c3�0:05ð2Þ 0.06(23) 0.04(8)

5A generalization of (53) which does not work is the replace-
ment of P0 by Px in (53) and (55). This leads to additional
contributions to dSP=dða2Þ which spoil the agreement with (59).
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KP ¼ 2c

�X
xy

Px

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2

L þ gP2
av þ g0�P2

q �
xy
Py

�X
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gP2

av þ g0�P2
q

P2
x

�
: (60)

It is not hard to see that the Oða2Þ contribution that would
arise from the a2 dependence of the square root terms also
selects, at this order, the constant a2-independent part of Px

and Py. In that case kL ¼ 0, and this contribution to the

Oða2Þ part of the kinetic term vanishes.
In order to investigate the possibility of a �P2 depen-

dence a little further, let us consider trajectories consisting
of plane waves, of varying amplitude A, with Pav ¼ 0, i.e.,

Px ¼ A cosðk � xÞ; (61)

and study the derivative L�3dSp=dA evaluated at A ¼ A0.

To compute this derivative by the relative weights
approach, we construct a set of configurations

UðnÞ
x ¼PðnÞ

x 1þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðPðnÞ

x Þ2
q

�3; PðnÞ
x ¼Ancosðk �xÞ

An¼A0þ
�
n�1

2
ðMþ1Þ

�
�A; n¼1;2; . . . ;M

ki¼2�

L
mi; (62)

and proceed as before. The conjectured action is

SP ¼ 2c

�X
xy

Px

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�r2

L þ gP2
av þ g0�P2

q �
xy
Py

�X
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gP2

av þ g0�P2
q

P2
x

�

þX
x

�
1

2
c1P

2
x þ 1

3
c2jP3

xj þ 1

4
c3P

4
x

�
; (63)

whose path derivative is6

1

L3

�
dSP
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�
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2
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3
0

þ2cA0

0
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2
g0A2

0
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�
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2
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0

0
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k2Lþ 1
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0A2
0

q � 1ffiffiffiffiffiffiffiffiffiffiffiffi
1
2g

0A2
0

q
1
A: (64)

Taking c and c1�3 as given in Tables I and IV, there is
only one free constant left to fit the data, and the best fit,
shown in Fig. 12, is obtained at g0 ¼ 3:45ð4Þ. Once again,

this plot should not be interpreted as a perfect fit through
the data points within error bars, given that reduced 	2 �
45. On the other hand, with only one fitting constant, the
expression (64) does seem to give a quite reasonable
account of the dependence of the data on A0 and kL, despite
the highly nonlocal expression �P2 introduced into the
kinetic term.

VIII. CONCLUSIONS

I have presented a method for computing derivatives
dSP=d� of the effective Polyakov line action along any
given path through field configuration space, parametrized
by the variable �. The technique is easily implemented in a
lattice Monte Carlo code by simply replacing updates of
timelike links, on a single time slice, by a Metropolis step
which updates that set of links simultaneously, and the
potential part VP of the effective Polyakov line action
can be readily determined, for any given lattice coupling,
temperature, and set of matter fields, up to an irrelevant
constant. It is also possible to determine, from the deriva-
tives, the action SP along any given trajectory in field
configuration space.
The method has been applied here to SU(2) lattice gauge

theory, both without and with a scalar matter field. At a
strong coupling (� ¼ 1:2) and finite temperature, the
method easily determines the effective Polyakov line ac-
tion, which we have checked against the known result
derived from a strong-coupling expansion. At a weaker
coupling (� ¼ 2:2 on a 123 � 4 lattice), where the
Polyakov line action is not known, it has been shown
that, up to a constant, the potential term has the form

VP ¼ X
x

�
1

2
c1P

2
x þ 1

3
c2jPxj3 þ 1

4
c3P

4
x

�
; (65)
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FIG. 12 (color online). Variation of Polyakov line action with
Polyakov line amplitude, L�3dSP=dA evaluated at A ¼ A0, for
Polyakov line configurations proportional to plane waves Px ¼
A cosðk � xÞ, as a function of A0 and lattice momentum kL. Red
crosses are data points, and the green surface is a best fit to the
data by the analytic form (64).

6The numbers multiplying c1, c2, c3, are the lattice averages of
cos2ðk � xÞ, jcos3ðk � xÞj, cos4ðk � xÞ, respectively. These num-
bers are almost independent of the wave number k on finite
lattices, so long as k � 0, and converge rapidly to the infinite
volume limit as lattice volume increases.
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with coefficients given in Table I. The center-symmetric
but nonanalytic cubic term comes as a surprise; to the best
of my knowledge such a term has not been anticipated in
previous studies. It would be interesting to study the evo-
lution of the above potential as� andNt vary. Addition of a
scalar matter field in the underlying lattice gauge theory
introduces a center-symmetry breaking term into the po-
tential which is linear in Px, with a coefficient reported in
Sec. V.

Data has also been obtained from small plane-wave
deformations around a constant Polyakov line background
(Sec. VI), and for Polyakov lines proportional to a plane
waves with variable amplitude (Sec. VII). It was found that
the action (63) is consistent with the results that have been
found so far, and at this point we may conjecture that (63)
approximates the desired full Polyakov line action.

However, a strong caveat is called for. The results
obtained in this paper have been obtained for a set of
very special configurations, of the types just mentioned,
and the criterion for keeping only a few terms in the action
was simply the goodness of fit. In fact these simple con-
figurations were quite successful in determining the action

at strong couplings, but it is still the case that such con-
figurations have little in common with the set of Polyakov
lines found in, e.g., a typical thermalized lattice. We have
worked so far in only a small corner of configuration space,
and one cannot rule out the possibility that, at weaker
couplings, the action in the important regions of configu-
ration space would look quite different from (63).
Therefore the conjectured action needs to be investigated
in more complicated, and much more general, back-
grounds. Given an effective SP that seems to work, the
ultimate test is to calculate observables such as the
Polyakov line correlator hPxPyi in both the effective theory
and the underlying lattice theory and compare the results.
Those tests, and the extension to the SU(3) group, would

be the obvious next steps in the approach introduced here.
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