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Motivated by the statistical fluctuation of Dirac spectrum of QCD-like theories subjected to (pseudo)

reality-violating perturbations and in the " regime, we compute the smallest eigenvalue distribution and

the level spacing distribution of chiral and nonchiral parametric random matrix ensembles of Dyson-

Mehta-Pandey type. To this end we employ the Nyström-type method to numerically evaluate the

Fredholm Pfaffian of the integral kernel for the chG(O,S)E-chGUE and G(O,S)E-GUE crossover. We

confirm the validity and universality of our results by comparing them with several lattice models, namely

fundamental and adjoint staggered Dirac spectra of SU(2) quenched lattice gauge theory under the twisted

boundary condition (imaginary chemical potential) or perturbed by phase noise. Both in the zero-virtuality

region and in the spectral bulk, excellent one-parameter fitting is achieved already on a small 44 lattice.

Anticipated scaling of the fitting parameter with the twisting phase, mean level spacing, and the system

size allows for precise determination of the pion decay (diffusion) constant F in the low-energy effective

Lagrangian.
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I. INTRODUCTION

The understanding of the phase structure of fermion/
gauge systems has posed a challenge for particle and
nuclear physics communities alike. One possible option
to avoid the sign problem that the Euclidean Dirac operator
becomes non-Hermitian and the Boltzmann weight com-
plex in the presence of chemical potential� is to substitute
QCD by its hypothetical two-color version on a lattice [1],
in which the Boltzmann weight (with pairs of degenerated
quark flavors) is positive-definite even at finite � due to
the (pseudo)reality of the representations of SU(2). It has
long been appreciated that the theories with quarks in the
(pseudo)real representation exhibit exotic types of sponta-
neous breakdown of global flavor symmetry [2,3]. Quarks
and charge-conjugated antiquarks are combined into an
extended Nambu multiplet, which in turn is expected to
break down to the extended vector subgroup [4]. Then the
effect of the chemical potential that breaks the extended
flavor symmetry is unambiguously incorporated in the low-
energy effective description through the flavor-covariant
derivative [5–8]. The assertions and/or analytic predic-
tions, possibly based upon the effective theory, can be
quantitatively compared with the Monte Carlo simulations
of SU(2) lattice gauge theory [9–12], provided that the
lattice regularization respects the relevant flavor symmetry
group. Accordingly, the two-color QCD has served as an
insightful testing ground for the realistic chromodynamics,
as well as a tractable lattice model that is interesting by its
own right.

The difference in the global symmetries is a reflection of
the difference in the antiunitary symmetries of the Dirac

operators: Dirac operators in the fundamental represen-
tation of SU(2) and in the adjoint of SUðNÞ are essentially
real symmetric and quaternion selfdual, respectively,
whereas that in the fundamental of SUðN � 3Þ is merely
complex Hermitian, as Verbaarschot [13] dubbed ‘‘three-
fold way’’ after Dyson’s original proposal [14]. Thus the
inclusion of the reality- or selfduality-violating chemical
potential � in two-color QCD casts itself in statistical
properties of Dirac spectra. As the symmetry-violating
effect of � in the two-color QCD is inherent in its low-
energy effective theory and is well under control, one can
predict the fluctuation of the Dirac eigenvalues in the "
regime (i.e., below the Thouless energy) from its zero-
momentum part. This, in turn, is equivalent to the chiral
Gaussian orthogonal or symplectic ensemble (chGOE,
chGSE) [15,16] in its non-Hermitian extended form by
the introduction of schematic (real) � component [17,18].
At this point we should note that, the reality or self-duality

of the SU(2)-chromodynamic Dirac operator could as well
be violated by the inclusion of any Hermitian component
in the complex representation, most simply by U(1) electro-
dynamics or random phases, or even by a fixed Abelian
Aharonov-Bohm (AB) flux background (i.e., twisted boun-
dary condition or imaginary chemical potential) [19–21].
These cases are distinct from the previously mentioned case
in that the Dirac eigenvalues stay real even after the inclusion
of symmetry violations and their statistical behavior exhi-
bits crossover, rather than develops into the complex plane.
In terms of the effective �-model description, these two
cases are almost identical, save for the difference of the

sign of trB̂QyB̂Q term (�2F2 or ði�Þ2F2, see Sec. IV.
Crossover between universality classes of Hermitian

random matrix ensembles [22–24], namely GOE-GUE
and GSE-GUE, is extensively studied in the context of*mochizuki@riko.shimane-u.ac.jp

PHYSICAL REVIEW D 86, 114505 (2012)

1550-7998=2012=86(11)=114505(17) 114505-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.114505


disordered [25,26] and quantum-chaotic Hamiltonians
[27–29] with its time-reversal invariance slightly broken
by weak magnetic field or AB flux applied [30]. On the
other hand, the chiral or superconducting variant of univer-
sality crossover appears to be a relatively unexplored field
so far. Previous attempts in this area either focused on the
level number variance and the spectral form factor (both of
which are integral transforms of the two-level correlator
and insensitive to chiralness) of two-color QCD with AB
fluxes versus GOE-GUE crossover [19], or have fruited in
a series of tours de force by Damgaard and collaborators
[31,32] devoted to the analytical computation of the level
density and individual small eigenvalue distributions for
the spectral crossover within the chiral Gaussian unitary
ensemble (chGUE) class, due to the imaginary isospin
chemical potential. Despite that analytic results for the
microscopic spectral correlation functions are known for
some time for chGOE-chGUE and chGSE-chGUE cross-
over [33,34],1 they are yet to encounter with physical
application. To the best of our knowledge, the only example
of the crossover involving different Hermitian chiral uni-
versality classes discussed in a physical setting is the CI-C
transition for the normal/superconducting hybrid interface
in a magnetic field [35]. Part of the aim of this paper is to
present novel examples of the physical application of the
crossover between chiral Hermitian universality classes
in the realm of lattice gauge theory, namely of QCD-like
theories.

In this paper we shall show that such Dirac spectra
indeed exhibit symmetry crossover from the chGOE or
chGSE to the chGUE universality class, precisely as pre-
dicted by the chiral variants of parametric random matrix
ensembles of Dyson [22] and Mehta-Pandey [23,24], both
in the zero-virtuality region and in the spectral bulk.
Through the excellent one-parameter fit to the parametric
random matrix results, we extract the pion decay (diffu-
sion) constant in the effective Lagrangian. As our method
adopts the level spacing and the smallest eigenvalue dis-
tributions that are extremely sensitive to the fitting para-
meter as primary fitting observables (see Refs. [36–38] for
recent efforts along this line), it enjoys a clear advantage
over the methods using n-level correlation functions, and
presents promising applications in analyzing the numerical
data of QCD-like theories.

This paper is composed as follows: In Sec. II we briefly
review the universality crossover in the spectrum of random

matrices. Then we shall compute and plot the level spacing
distribution in the bulk and the smallest eigenvalue distri-
bution at the hard edge (origin) of the spectrum using the
Nyström-type method, the latter being our new contribution.
In Sec. III we measure the level spacing and smallest eigen-
value distributions of fundamental and adjoint staggered
Dirac operators of SU(2) quenched lattice gauge theory
with weak AB flux or phase noise included, and fit the
spectral data with the predictions of (ch)GSE-(ch)GUE and
(ch)GOE-(ch)GUE crossover. We show that an excellent
one-parameter fitting can be achieved for all of our cases
of concern, so that an accurate determination of the crossover
parameter is possible. In Sec. IV we extract the pion decay
constant in the effective chiral Lagrangian from the flux
dependence of the crossover parameter. We shall conclude
in Sec. V with some discussions on the two-color QCDþ
QED simulation and on possible directions of future study.

II. PARAMETRIC (CHIRAL) RANDOM MATRICES

Transition of spectral fluctuation from one universality
class to another with a different antiunitary symmetry has
been proven to occur both in quantum-chaotic and disor-
dered Hamiltonians with weakly broken time-reversal
invariance. The result is universal in a sense that the local
spectral fluctuation is sensitive only to a single crossover
parameter � defined below. The reason for this universality
is traced back to the nonlinear � model governing the
spectral statistics, which can either be derived by the
conventional disorder averaging of random Hamiltonians
[25] or by the summation over Sieber-Richter-like encoun-
tering multiplet of periodic orbits of chaotic dynamical
systems [28], completely irrespective of the details of
dynamics. Accordingly, one can resort to the simplest
model which yields the identical � model, i.e., parametric
random matrix ensembles. Below, we collect established
results on the spectral correlation of the parametric random
matrices of nonchiral and chiral types for completeness
and refer the reader to the original references [22–24,33]
for their derivations.

A. GOE-GUE and GSE-GUE crossover

We consider an ensemble of N � N Hermitian complex
(quaternion) matricesH ¼ HS þ i�HA, withHS real sym-
metric (quaternion self-dual) and HA real antisymmetric
(quaternion anti-self-dual) matrices distributed according
to Gaussian measures of variance�2. This parametric (also
called Brownian-motion or dynamical) random matrix en-
semble interpolates between the two limiting cases, GOE
(GSE) at � ¼ 0 and GUE at � ¼ 1. Take a point � from
the bulk part of the spectrum of H and denote the mean
level spacing around � by �ð�Þ. Then the n-point correla-
tion function of the eigenvalues f�ig of H in the vicinity of
� is given, in the limit N ! 1, � ! 0 and � � ��=�ð�Þ
fixed (we follow Mehta’s book [24] for the definition of �),
as a Pfaffian,

1Both of Refs. [33,34], which practically computed n-level
correlators of parametric chiral random matrices in the Pfaffian
form, cited Ref. [16] by mentioning that ‘‘chiral random matrices
serve as effective models of lattice gauge theory, namely QCD’’
[translation from the former] and ‘‘three chiral versions of
random matrix ensembles in the particle physics of QCD’’
[quote from the latter]. Thus it would be fair to presume that
these authors have envisaged possible application of their results
toward the crossover phenomena in the QCD Dirac spectrum.
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Rnðx1; . . . ;xnÞ¼PfðZ½Kðxi;xjÞ�ni;j¼1Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det½Kðxi;xjÞ�ni;j¼1

q
;

Kðx;yÞ¼ Sðx;yÞ Iðx;yÞ
Dðx;yÞ Sðy;xÞ

" #
; Z¼ i�2�1n; (1)

where xi � �i=�ð�Þ are the unfolded eigenvalues, and
Sðx; yÞ,Dðx; yÞ, Iðx; yÞ as functions of r ¼ x� y are given by

½GOE-GUE� SðrÞ ¼ sin�r

�r
;

DðrÞ ¼ 1

�

Z �

0
dvve2�

2v2
sinvr;

IðrÞ ¼ 1

�

Z 1

�

dv

v
e�2�2v2

sinvr;

(2)

½GSE-GUE� SðrÞ ¼ sin�r

�r
;

DðrÞ ¼ 1

�

Z 1

�
dvve�2�2v2

sinvr;

IðrÞ ¼ 1

�

Z �

0

dv

v
e2�

2v2
sinvr:

(3)

The probability EðsÞ that an interval of width s contains no
eigenvalue is then given as the Fredholm Pfaffian or square
root of the Fredholm determinant [23]:

EðsÞ ¼ X1
n¼0

ð�1Þn
n!

Z s

0
dx1 � � �

Z s

0
dxnRnðx1; . . . xnÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Detð1� K̂sÞ

q
; (4)

where K̂s is an integral operator of convoluting with the
‘‘dynamical’’ sine kernel Kðx; yÞ (1)–(3), restricted to the
interval ½0; s�. The probability distribution PðsÞ of level
spacings s¼xiþ1�xi is given by its second derivative
PðsÞ¼E00ðsÞ.

We should emphasize that for parametric random matrix
ensembles, local correlations of unfolded eigenvalues in

the vicinity of � still depend upon the mean level spacing
�ð�Þ of the eigenvalue window in concern through the
parameter �. Accordingly, if the parameter � is adiabati-
cally increased from zero to unity, universality crossover
from GOE or GSE to GUE takes place at a different rate in
each window in the spectrum (the denser the eigenvalues,
the faster the speed of crossover). Also note that the
universal intermediate behavior of spectral fluctuations
appears only in a double limit, where the system size tends
to infinity and the � parameter to zero in a correlated
manner; a simple thermodynamic limit N ! 1 with �
fixed would drive the whole spectrum to the GUE class.

B. chGOE-chGUE and chGSE-chGUE crossover

The chiral version of the parametric random matrix
ensembles is simply obtained by setting the N=2� N=2
block-diagonal parts of H ¼ HS þ i�HA to zero.
Accordingly, the matrix in concern takes the form

H ¼ 0 H1 þ i�H2

ðH1 � i�H2ÞT;D 0

 !
;

H1; H2:
N

2
� N

2
ðquaternion-Þreal matrices; (5)

distributed according to Gaussian measures of variance �2.
This ensemble interpolates between the two limiting cases,
chGOE (chGSE) at � ¼ 0 and chGUE at � ¼ 1. Since the
nonzero eigenvalues of H occur in the � pairs of equal
magnitude, if suffices to retain only non-negative eigen-
values. The n-point correlation function of the eigenvalues
f�ig ofH in the vicinity of the origin is similarly expressed,
in the limit N ! 1, � ! 0 and � � ��=�ð0Þ fixed, as a
Pfaffian (1) with S, D, I given by (after substituting X !
�2x2, Y ! �2y2 into the ‘‘Laguerre-type’’ formulas
(7.2.28–56) of Ref. [33] and multiplying them by 2�

ffiffiffiffiffi
xy

p
),

½chGOE-chGUE� Sðx; yÞ ¼ �
ffiffiffiffiffi
xy

p �
xJ1ð�xÞJ0ð�yÞ � J0ð�xÞyJ1ð�yÞ

x2 � y2
þ J0ð�yÞ

2

Z 1

�
dve��2ðv2��2ÞJ0ðvxÞ

�
;

Dðx; yÞ ¼ �
ffiffiffiffiffi
xy

p
2

Z �

0
dvv2e2�

2v2fxJ1ðvxÞJ0ðvyÞ � J0ðvxÞyJ1ðvyÞg;

Iðx; yÞ ¼
ffiffiffiffiffi
xy

p
2

Z 1

�
dvv

Z 1

1
due��2v2ð1þu2ÞfJ0ðvuxÞJ0ðvyÞ � J0ðvxÞJ0ðvuyÞg;

(6)

½chGSE-chGUE� Sðx; yÞ ¼ �
ffiffiffiffiffi
xy

p �
xJ1ð�xÞJ0ð�yÞ � J0ð�xÞyJ1ð�yÞ

x2 � y2
� J0ð�xÞ

2

Z �

0
dve�

2ðv2��2ÞJ0ðvyÞ
�
;

Dðx; yÞ ¼
ffiffiffiffiffi
xy

p
2

Z �

0
dvv

Z 1

0
due�

2v2ð1þu2ÞfJ0ðvuxÞJ0ðvyÞ � J0ðvxÞJ0ðvuyÞg;

Iðx; yÞ ¼
ffiffiffiffiffi
xy

p
2

Z 1

�
dvv2e�2�2v2fxJ1ðvxÞJ0ðvyÞ � J0ðvxÞyJ1ðvyÞg;

(7)

where xi � �i=�ð0Þ are the unfolded eigenvalues (see also Ref. [34]).
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The probability EðsÞ that no eigenvalue is smaller than s is
again given as the Fredholm determinant (4), where K̂s in
this case is an integral operator of convoluting with the
dynamical Bessel kernel Kðx; yÞ (1), (6), and (7), restricted
to the interval ½0; s�. The probability distribution p1ðsÞ of
the unfolded smallest eigenvalue s ¼ �1=�ð0Þ, which is
one half of the very central level spacing, is then given by
its first derivative p1ðsÞ ¼ �E0ðsÞ.

C. Nyström-type method

A simple but exceptionally efficient way of evaluating
the Fredholm determinant of a trace-class integral operator

K̂s acting on the Hilbert space of L2 functions f over an

interval ½0; s� by ðK̂sfÞðxÞ ¼
R
s
0 dyKðx; yÞfðyÞ, such as the

one with the sine kernel SðrÞ, is the Nyström-type method
[39,40]. It simply discretizes the Fredholm determinant:

Detð1� K̂sÞ ’ det½�ij � Kðxi; xjÞ ffiffiffiffiffiffiffiffiffiffiffi
wiwj

p �mi;j¼1: (8)

Here, the quadrature rule fx1; . . . ; xm;w1; . . . ; wmg consists
of a set of points fxig taken from the interval ½0; s� and of
positive weights fwig such that

R
s
0 fðxÞdx ’ P

m
i¼1 fðxiÞwi.

Efficient choices for the quadrature rule are Gauss (sampling
at the Legendre nodes) and Clenshaw-Curtis (sampling at the
Chebyshev nodes), for which the computational cost grows
optimally as Oðm2Þ and Oðm logmÞ, respectively [41]. As
the order m of the approximation increases, the rhs of (8) is
proven to uniformly converge to its lhs. The convergence is
rapid and exponentially fast; the approximation error decays
as Oðe�const mÞ [40]. In this paper we choose the Gauss
quadrature rule, as 15-digit accuracy is already attainable
only with m ¼ 5 for the Fredholm determinant Eð0:1Þ for
the sine kernel. An extension to the matrix-valued kernel (1)
is trivial: one merely takes the determinant over the matrix
indices as well. Practical significance of the method in the
context of random matrices and stochastic processes is
recently reappreciated and stressed in Ref. [40].

We have applied thisNyström-typemethod to the dynami-
cal sine kernel (1)–(3) and the dynamical Bessel kernel (1),
(6), and (7) to obtain PðsÞ and p1ðsÞ for G(O,S)E-GUE and
chG(O,S)E-chGUE crossover, respectively. In order to
achieve accuracy that is needed for computing the first or
second derivatives (p1ðsÞ or PðsÞ) to a good precision, we
have chosen the approximation order m to be (at least) 20
for the former and 100 for the latter and confirmed the
stability of the results under the increment of m.
Numerical results for the region 0	s	3
4 and for the
parameter range � & 1 are exhibited in Figs. 1 and 2 (left)
[PðsÞ for nonchiral random matrices] and in Figs. 3 and 4
(left) [p1ðsÞ for chiral random matrices]2 Although

Mehta-Pandey (in their second paper of Ref. [23]) have
expressed the Fredholm determinant for the dynamical
sine kernel in terms of eigenvalues of an infinite-
dimensional matrix (each matrix element of which is an
integral involving prolate spheroidal functions), these
numerical plots of PðsÞ and p1ðsÞ for (namely the chiral
version of) parametric random matrix ensembles do not
seem to have appeared explicitly in the literature, to
the best of our knowledge.3 Also plotted in the figures
are PðsÞ’s for the two limiting cases � ¼ 0 and � ¼ 1,
i.e., for GOE (GSE) and GUE obtained by Jimbo-Miwa-
Môri-Sato [43] in terms of a solution to the Painlevé
V transcendental equation subjected to an appropriate
boundary condition, and p1ðsÞ’s for chGOE (chGSE) and
chGUE [44],

p1ðsÞ¼� d

ds

8>>>>>><
>>>>>>:

exp
�
��

2 s
�
exp

�
��2

8 s
2
�
½chGOE�

cosh�2 s exp
�
��2

8 s
2
�
½chGSE�

exp
�
��2

4 s
2
�
½chGUE�

: (9)

We immediately observe the asymptotic behaviors of
PðsÞ and p1ðsÞ for parametric (chiral) random matrices at
finite �,

Pð�ÞðsÞ 
 C�s
2; p

ð�Þ
1 ðsÞ 
 c�s

1 ðs � 1Þ;
logPð�ÞðsÞ; logp

ð�Þ
1 ðsÞ 
 �	�s

2 ðs � 1Þ:
(10)

Here C�, c�, 	� are �-dependent constants, monotonically

varying in �, in ranges �2=3<C� <1, �2=2< c� <1,

�2=16< 	� < �2=8, i.e., in between the (ch)GUE and the

(ch)G(O,S)E limits.
For a bookkeeping purpose, we exhibit plots of the two-

level correlation function R2ðx; 0Þ for nonchiral cases (1) in
Figs. 1 and 2 (right) and the single-level density R1ðxÞ for
chiral cases in Figs. 3 and 4 (right). Note that the first peaks
of R2ðx; 0Þ and R1ðxÞ (right figures) are comprised of the
corresponding PðsÞ and p1ðsÞ (left figures), respectively.
In the subsequent section, these analytic results will be
tested to fit the Dirac eigenvalue data numerically obtained
from modified SU(2) lattice gauge models. The practical
advantage of adopting distributions of individual level
spacings [PðsÞ and p1ðsÞ] over n-level correlation func-
tions [R2ðx; 0Þ and R1ðxÞ] for fitting is clear from the
figures. As the oscillation of the latter consists of over-
lapping of multiple peaks, the characteristic shape of each
peak is inevitably smoothed out, leaving us with a rather
structureless curve for which an accurate fit is difficult.
On the other hand, the former and its cousins pkðsÞ (the
distribution of the kth smallest eigenvalue [44])

2Due to Kramers degeneracy, a half of all the level spacings of
GSE are zero and its distribution has a peak at the origin,
PGSEðs  0Þ 
 �ðsÞ=2. Thus, its smooth part is rescaled and
normalized as

R1
þ0 PGSEðsÞds ¼ 1=2. Accordingly, PðsÞ for

GSE-GUE crossover becomes peaky near s  0 as the � pa-
rameter is decreased. It also leads to the loss of accuracy of the
Nyström approximation at very small �.

3The first reference of Ref. [30] did not use the analytic form
of Pð�ÞðsÞ for GOE-GUE crossover plotted in Fig. 1 (left), but
employed the Wigner-surmised form (see also Ref. [42]).
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FIG. 3 (color online). Smallest eigenvalue distribution p1ðsÞ and microscopic level density R1ðxÞ for chGOE-chGUE crossover.
The � parameter ranges 0:02 	 � 	 1:00 by step 0.02. The two bounding curves correspond to the chGOE and chGUE limits, � ¼ 0
and 1.

FIG. 1 (color online). Level spacing distribution PðsÞ and two-level correlation function R2ðx; 0Þ for GOE-GUE crossover.
The � parameter ranges 0:02 	 � 	 0:70 or 0.50 by step 0.02. The two bounding curves correspond to the GOE and GUE limits,
� ¼ 0 and 1.

FIG. 2 (color online). Level spacing distribution PðsÞ and two-level correlation function R2ðx; 0Þ for GSE-GUE crossover.
The � parameter ranges and 0:01 	 � 	 0:70 or 0.50 by step 0.01. The two bounding curves correspond to the GSE and GUE
limits, � ¼ 0 and 1.
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pkðsÞ¼� d

ds

1

ðk�1Þ!
�
� @

@z

�
k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Detð1�zK̂sÞ

q
jz¼1; (11)

that could as well be computed by the Nyström-type
method are very sensitive to the value of the crossover
parameter, because Eqs. (9) and (10) imply that the ratio
of PðsÞ or p1ðsÞ for the orthogonal and sympletic classes

to that for the unitary class grows as exp�
2s2

16 for large s

(it exceeds 10 at s ’ 2, 102 at s’2:7, and 104 at s’4).

Therefore, Pð�ÞðsÞ and pð�Þ
1 ðsÞ should in principle admit

very sharp one-parameter fitting by the least square method
or simply from the tail of the curve (in the range of s where
the systematic deviation due to finite size is not promi-
nent), as done for the Anderson tight-binding Hamiltonians
at the metal-insulator transition [45] versus the critical
random matrix ensembles interpolating G(O,U,S)E and
Poisson statistics [46]. In the chGSE-chGUE case, the
microscopic level density R1ðxÞ [Fig. 4(b)] would also be
suited for fitting, due to its characteristic oscillatory behav-
ior for a wide range of x.

III. DIRAC SPECTRUM

A. Antiunitary symmetry

Dirac operator for the ‘‘real’’ QCD, i.e., for quark fields
belonging to the real or pseudoreal representation of the
gauge group, is known to possess a particular antiunitary
symmetry unlike that for the complex representation [13].
Namely, Euclidean Dirac operator D ¼ 	�ði@� þ Aa

�
aÞ
for quarks in the fundamental representation of SU(2)
commutes with C
2K. Here, C is the charge conjugation
matrix satisfying C	�C

�1 ¼ �	�
�, 
2 is one of the gen-

erators of the SU(2) gauge group satisfying 
2
a

�1
2 ¼�
�a,

and K denotes the complex conjugation. As ðC
2KÞ2 ¼
þ1, D can be brought to a real symmetric matrix by a
similarity transformation. Similarly, the Dirac operator for
quarks in the adjoint representation of SUðNÞ commutes

with CK. As ðCKÞ2 ¼ �1, D can be brought to a quater-
nion self-dual matrix. By the same token, Dirac operators
in fundamental representations of OðNÞ and Spð2NÞ gauge
groups are real symmetric and quaternion self-dual,
respectively. It is also well known that the reality and the
self-duality of the continuum Dirac operators are inter-
changed for the corresponding Kogut-Susskind staggered
Dirac operators [(15) below], i.e.,DKS in SU(2) fundamen-
tal is essentially quaternion self-dual, whereas DKS in
SUðNÞ adjoint is real symmetric, due to the the absence
of the charge conjugation matrix [47]. The spectrum of the
SU(2) fundamental staggered Dirac operator was indeed
numerically shown to belong to the chGSE class [48].
Since theDirac operator in the fundamental representation

of U(1) (or SUðN0 � 3Þ if one prefers) in continuum or on a
lattice possesses no such antiunitary symmetry, the Dirac
operator in the SU(2) fundamental ðSUðNÞadjointÞ � Uð1Þ,

D ¼ 	�ði@� þ Aa
�Ta þ B�Þ; (12)

where Ta’s are the generators of the corresponding represen-
tation of SU(2) orSUðNÞ, andB� theUð1Þ gauge field, either
weakly fluctuating or fixed as a background, is endowedwith
a weakly broken antiunitary symmetry as compared to the
pure SU(2)-fundamental or SUðNÞ-adjoint case.

B. Modified SU(2) lattice gauge theory

In contrast to the parametric random matrices
H ¼ HS þ i�HA for which the breaking of the

antiunitary symmetry is uniquely parametrized by � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihkImHk2i=hkReHk2ip
, it is not straightforward to identify

the bare U(1) gauge coupling constant as proportional to�,
due to the gauge invariance: a Dirac operator that appears
complex could actually be a U(1) gauge transform of some
purely real matrix. In that case, its spectral fluctuation
would perfectly be described by chGOE or chGSE. Thus,
in this paper, we restrict ourselves to simpler models

FIG. 4 (color online). Smallest eigenvalue distribution p1ðsÞ and microscopic level density R1ðxÞ for chGSE-chGUE crossover.
The � parameter ranges 0:02 	 � 	 1:00 by step 0.02. The two bounding curves correspond to the chGSE and chGUE limits, � ¼ 0
and 1.
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without such a subtlety: SU(2) quenched lattice gauge
theory associated with twisted boundary condition or
coupled with U(1) noise, each of which does contain an
unambiguous counterpart of the � parameter.

We consider SU(2) quenched lattice gauge theory under
the twisted boundary condition (TBC), that is to multiply
SU(2) links variable at the temporal boundary of the hyper-
cubic lattice of size V ¼ L4 by a constant phase4

ei�n;� ¼
�
ei2�’ ðn4 ¼ L;� ¼ 4Þ
1 ðelseÞ ; (13)

with ’ � 1. This twisting is gauge equivalent to the
fixed vector U(1) background B� ¼ ð2�’=LÞ��;4 of

AB flux 2�’ [30] or the imaginary chemical potential
� ¼ i2�’=L. The flux ’ is the measure of antiunitary-
symmetry violation and plays the role of � in the para-
metric random matrices. Its effect on the low-energy
effective Lagrangian is completely dictated through the
flavor-covariant derivative [20], just as in the case of
symmetry-violating real chemical potentials [6].

We also consider the SUð2Þ þ Uð1Þ phase noise (PhN)
model, where an independent and identically distributed
random phase ei�n;� taken from the uniform distribution � 2
½�p; p� (p � 1) (one could alternatively adopt Gaussian
distribution of variance p2) is multiplied to each link SU(2)
variable. The parameter p of randomness is expected to be
proportional to � in the parametric random matrices, since

hkImDk2i
hkReDk2i ’

hkU sin�k2i
hkU cos�k2i ’ h�2i ¼ 1

3
p2: (14)

The PhN model was previously used to uncover the fake
nature [49] of the apparent chGUE-chGSE crossover of the
Dirac spectrum of Ginsparg-Wilson type [50], so it would be
a good exercise to exploit it again to our actual universality
crossover.

For our purpose of confirming that the lattice model
exhibits chG(S,O)E-chGUE crossover, it is sufficient to
focus on the strong coupling region of SU(2) at � ¼
4=g2 ¼ 0
 1:5, where the smoothed level density at the
origin, 1=�ð0Þ, is sufficiently above zero and the chiral
symmetry is spontaneously broken, accepting that the
model is away from the continuum limit. Accordingly,
we employ the simplest algorithm possible: the unim-
proved plaquette action and the 10-hit heat-bath update
coupled with overrelaxation. The staggered Dirac operator

DKS
nm¼1

2
ðn;��nþ�̂;mUn;�e

i�n;� �m;��n;mþ�̂U
y
m;�e�i�m;�Þ;

n;��ð�1Þn1þ...þn��1 (15)

is diagonalized using the standard LA package.

Because of our need to detect possibly small devia-
tions of spectral fluctuation from the universal random
matrix statistics at either end (� ¼ 0 or 1), we give
priority to the number of independent samples and
perform our simulation on a lattice of the smallest size
V ¼ 44. This choice is sufficient for measuring the short-
distance behavior of eigenvalues within up to 3–4 mean
level spacings and determining the � parameter precisely.
In this region the systematic deviation due to the small
size of the lattice is less prominent (they shall manifest at
larger separation) than the statistical fluctuation. Only if
one dares to test the symmetry crossover on the large-
distance correlation of eigenvalues, such as the number
variance �2ðsÞ, would the use of larger lattices become
essential.

C. Fitting Dirac spectra

Our procedure of fitting Dirac spectral statistics to the
parametric random matrix predictions consists of the fol-
lowing steps:
(1) Determination of �ð0Þ. Perform the pure SU(2)

simulation for each � and measure the fundamental
and adjoint staggered Dirac spectrum f�ig for
Oð105Þ configurations. Taking for granted that the
small Dirac eigenvalues obey the chG(S,O)E statis-
tics, determine the mean level spacing at the origin
�ð0Þ in the following two ways:
(a) Using the least square method, fit the histo-

gram of the smallest Dirac eigenvalues
}1ð�1Þ to the rescaled chG(S,O)E result (9),
p1ð�1=�Þ=�, by varying �. The fitting range is
chosen to be within 3� (chGSE) and 2:2�
(chGOE), which is divided into bins of widths
0:1�. Errors of � are estimated as those
increase �2 by 1.

(b) Compare the mean value of the smallest Dirac
eigenvalue h�1i with that of the (unfolded) chi-
ral random matrix eigenvalues from (9),

hx1i ¼
Z 1

0
sp1ðsÞds

¼

8>>><
>>>:

ffiffiffiffi
2e
�

q
erfc 1ffiffi

2
p ½chGOE�;ffiffiffiffi

2e
�

q
½chGSE�;

) �ð0Þ ¼ h�1i
hx1i

(16)

Typically, the values of mean level spacing
determined by the above two methods agree
within 0.1%. This provides a ground for a pre-
cise determination of the crossover parameter at
the origin in step 2.

(2) Fitting the smallest eigenvalue. Multiply SU(2) link
variables Un;� by the phases ei�n;� (either TBC or

PhN) and measure the Dirac spectrum f�ig for

4As the Dirac operator possesses (pseudo-)reality either for
periodic or antiperiodic boundary condition, we adopt periodic
conditions for all directions for simplicity and consider small
deviations from it.
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Nconf ¼ Oð104Þ independent configurations. The

unfolded smallest eigenvalue is still defined by x1 ¼
�1=�ð0Þ with respect to �ð0Þ determined in step 1,

i.e., from unmodified SU(2) configurations. Fit the
frequencies of x1 to the prediction by the least
square method as follows: we choose the valid range

of fitting the smallest eigenvalue x1 to be [0, 2.8]
(fundamental) and [0, 1.6] (adjoint) and divide them
into r ¼ 20 segments I0; . . . ; Ir�1 of equal width.
The remainder is denoted as Ir ¼ ½2:8 or 1:6;1Þ.
Define �2

� ¼ P
r
i¼0ðFi � fð�Þi Þ2=fð�Þi , where Fi

denotes the frequency of x1 falling on the ith interval

Ii, and fð�Þi ¼ Nconf

R
Ii
pð�Þ
1 ðsÞds its expected value

from the chG(S,O)E-chGUE parametric random

matrices. By varying �, find the optimal value of

� that minimizes �2
� and estimate the error of � as

that increases �2
� by 1.

(3) Fitting level spacings. Fluctuation of Dirac eigen-
values in the spectral bulk is, by itself, not directly
related to the low-energy effective description of the
gauge theory but rather to the diffusion of quarks in
a hypothetical ‘‘time’’ evolution with Dirac operator
as its Hamiltonian [51]. Nevertheless, we shall argue
that the distribution of level spacings from the spec-
tral ‘‘plateaux’’ ½�m; �M� adjacent to, but not includ-
ing, the origin, in which the mean level spacing�ð�Þ
is well approximated as a constant close to �ð0Þ
(Fig. 5), provides an efficient way of determining
F. It also serves as a clearer indicator of the presence

FIG. 5 (color online). Macroscopic level densities �ð�Þ of SU(2) fundamental (left) and adjoint (right)DKS at various � in the strong
coupling region. Lattice size: 44, number of configurations: 100,000. Level spacings from the eigenvalue windows (plateaux) ½�m; �M�
marked by orange strips in the vicinity of � ¼ 0 are used for fitting Pð�ÞðsÞ.

TABLE I. SUð2Þ þ TBC model on V ¼ 44: Crossover parameters and low-energy constants.

�

� rep/dist ½�m; �M� � � ’ ¼ :01 .02 .03 .04 .05 .06
ffiffiffiffi
�

p
�=� F2=� F2

0 F/SED .00933(1) 1.315(2) .061(1) .123(1) .181(1) .245(2) .305(2) .364(2) .375(1) .221(1) .290(2)

F/LSD [.10, .30] .00929(0) 1.321(0) .061(0) .122(0) .183(1) .243(1) .303(2) .364(4) .374(1) .219(1) .290(1)

A/SED .00617(0) 1.989(1) .076(1) .153(2) .224(3) .309(5) .391(8) .453(11) .382(2) .229(3) .455(6)

A/LSD [.10, .50] .00618(0) 1.984(0) .075(2) .150(4) .224(6) .297(8) .371(14) .447(25) .374(5) .219(5) .435(11)

0.5 F/SED .01020(1) 1.203(2) .055(1) .110(1) .160(1) .210(2) .263(2) .313(2) .339(1) .180(1) .217(1)

F/LSD [.10, .26] .01004(0) 1.223(0) .052(0) .103(0) .155(1) .206(1) .257(2) .306(2) .329(1) .170(1) .208(1)

A/SED .00626(2) 1.960(6) .067(1) .131(2) .200(3) .263(4) .327(6) .386(8) .332(2) .173(2) .339(5)

A/LSD [.10, .50] .00622(0) 1.972(0) .067(3) .134(4) .202(5) .269(7) .333(11) .407(17) .337(4) .179(5) .353(9)

1.0 F/SED .01150(5) 1.067(5) .056(1) .102(1) .148(1) .193(1) .241(2) .286(2) .329(1) .170(1) .181(1)

F/LSD [.10, .30] .01105(0) 1.110(0) .048(0) .095(0) .143(1) .190(1) .237(1) .284(2) .319(1) .160(1) .177(1)

A/SED .00631(3) 1.944(9) .065(1) .132(2) .200(3) .266(4) .338(6) .397(8) .336(2) .177(2) .344(5)

A/LSD [.10, .50] .00632(0) 1.943(0) .066(3) .133(4) .199(5) .266(7) .331(10) .394(16) .335(4) .176(4) .343(9)

1.5 F/SED .01412(1) 0.869(0) .061(1) .101(2) .138(1) .178(1) .218(2) .257(2) .335(1) .176(1) .153(1)

F/LSD [.13, .28] .01280(0) 0.959(0) .043(0) .085(0) .127(1) .169(1) .210(1) .251(1) .305(1) .146(0) .140(0)

A/SED .00654(1) 1.877(3) .067(1) .128(2) .193(3) .251(4) .312(6) .392(8) .330(2) .171(2) .320(4)

A/LSD [.10, .50] .00650(0) 1.887(0) .065(3) .128(4) .194(5) .257(7) .322(10) .386(15) .331(4) .172(4) .324(8)
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of the universality crossover in modified SU(2)
lattice gauge theories and as a consistency check
of the � value directly measured from the smallest
eigenvalues distribution. In order to avoid possible
distortion of the level spacing distribution due to the
chiralness, we take �m not too close to the origin and
set it to be, at smallest, the 11th eigenvalue.
Define unfolded level spacings in that eigenvalue
window as s ¼ ð�iþ1 � �iÞ=�ð ��Þ, �i, �iþ1 2
½�m; �M�. In case the density profile near the origin
is not quite flat (such asDKS in SU(2) fundamental at
� ¼ 0:5–1:5), we alternatively used unfolding
by the linearized level density ��ð�Þ, �i ! xi ¼R
�i ��ð�Þd�, even within the window chosen, to

offset the explicit local variation in the mean level
spacing. For a window containing 
20 eigenvalues,
the distortion in PdataðsÞ caused by the small local
inhomogeneity of the � parameter through its dep-
endence on � ¼ 1= �� is expected to be negligible.
Find the best fit of the histogram of the unfolded
smallest Dirac eigenvalues PdataðsÞ to the crossover

chiral randommatrix resultPð�ÞðsÞ [Figs. 2(a) or 1(a)]
by varying �, as done in step 2. Thanks to the enor-
mous gain in statistics due to the spectral averaging,
we can safely set the fitting range to be as large as
[0, 4] and divide it into r ¼ 40 segments.

D. Simulation results

We present the outcome of one-parameter fitting of
smallest eigenvalue distributions (SED) and level spacing
distributions (LSD) to the parametric random matrix
ensembles. We set the symmetry-breaking parameters to
be ’ ¼ 0:01–:06 for the SUð2Þ þ TBC model and p ¼
0:02–:10 for the SUð2Þ þ PhN model and performed
simulations at the gauge-coupling constants � ¼ 0, 0.5,
1, 1.5 on a lattice of dimension V ¼ 44. Nconf ¼ 40; 000
configurations are generated for each set of parameters.

Optimal values of the � parameter for the TBC (PhN)
model in fundamental (F) and adjoint (A) representation
are tabulated in the six (seven) columns in the middle of
Table I (II).
Sample plots of p1ðsÞ, R1ðxÞ, and PðsÞ for � ¼ 0 are

exhibited in Figs. 6–8 [SUð2Þ þ TBC] and in Figs. 9–11
[SUð2Þ þ PhN]. In all figures, measured histograms are
plotted by colored dots, and parametric random matrix
results that fit the data optimally are shown in curves of
the same color (’ ¼ :01 or p ¼ :02 in red to ’ ¼ :06 or
p ¼ :10 in green). Also plotted in the figures are the results
from chG(S,O)E or G(S,O)E (black real line), and chGUE
or GUE (broken line). Note that the microscopic level
density R1ðxÞ is not fitted to the corresponding data by
the least square method; the � parameter determined from
the SED is adopted to the respective R1ðxÞ.
Even at inspection, one is convinced of the accuracy of

one-parameter fitting in all cases. The �2=d:o:f: deviations
from optimally fitting random matrix distributions are
summarized in Table III. Considering the smallness of
our lattice (44), the goodness-of-fit achieved is astonishing
(except for LSDs for SU(2) fundamental at very small � &
0:1, where the distribution becomes extremely peaky at
small s due to the onset of Kramers degeneracy and the
fitting error is inevitably enhanced). These listed values
are comparable to those reported in the pioneering papers
in this field [31] using chGUE-chGUE (i.e., Hermitian)
crossover, fitted to the spectral data from larger lattices:
�2=d:o:f: ¼ 0:33 for quenched QCD on 124 and
�2=d:o:f: ¼ 1:13–1:33 for dynamical QCD on 64.
From Tables I and II one immediately notices that for a

fixed bare coupling �, ’-� and p-� plots are all quite

linear. In Fig. 12 we exhibit sample plots of
ffiffiffiffi
�

p
�=’ for

SUð2Þ þ TBC and
ffiffiffiffi
�

p
�=p for SUð2Þ þ PhN,5 showing that

TABLE II. SUð2Þ þ PhN model on V ¼ 44: Crossover parameters.

�
� rep/dist ½�m; �M� � p ¼ :02 .03 .04 .05 .06 .08 .10

ffiffiffiffi
�

p
�=p

0 F/SED .00933(1) .079(1) .117(1) .154(1) .194(1) .235(2) .311(2) .390(1) .376(0)

F/LSD [.10, .30] .00929(0) .078(0) .117(0) .156(1) .194(1) .233(1) .311(2) .387(3) .375(0)

A/SED .00617(0) .094(2) .145(2) .193(3) .244(4) .288(5) .381(8) .481(7) .377(2)

A/LSD [.10, .50] .00618(0) .095(3) .142(4) .191(5) .237(6) .285(8) .383(15) .471(18) .374(4)

0.5 F/SED .01020(1) .071(1) .106(1) .143(1) .178(1) .213(1) .286(1) .353(2) .360(0)

F/LSD [.10, .26] .01009(0) .072(0) .108(0) .143(1) .179(1) .215(1) .286(1) .359(4) .361(0)

A/SED .00626(2) .094(2) .140(2) .185(3) .230(4) .274(4) .367(5) .446(10) .365(2)

A/LSD [.10, .50] .00622(0) .094(3) .142(4) .189(5) .235(6) .283(8) .377(10) .468(28) .372(4)

1.0 F/SED .01150(5) .062(1) .094(1) .125(1) .156(1) .188(1) .255(2) .316(2) .338(0)

F/LSD [.10, .30] .01120(0) .065(0) .097(0) .130(0) .162(1) .194(1) .259(2) .322(3) .343(0)

A/SED .00631(3) .092(2) .140(2) .188(3) .233(4) .286(5) .376(7) .490(12) .373(2)

A/LSD [.10, .50] .00632(0) .094(3) .138(4) .186(5) .231(6) .280(8) .374(14) .459(27) .369(4)

5The factor
ffiffiffiffi
�

p
is included to facilitate extraction of F2=� in

the next section.
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FIG. 7 (color online). Microscopic level densities of SUð2Þ þ TBC DKS in fundamental (left) and adjoint (right), at � ¼ 0 and
’ ¼ 0:01–:06.

FIG. 8 (color online). Level spacing distributions of SUð2Þ þ TBC DKS in fundamental (left) and adjoint (right), at � ¼ 0 and
’ ¼ 0:01–:06.

FIG. 6 (color online). Smallest eigenvalue distributions of SUð2Þ þ TBC DKS in fundamental (left) and adjoint (right), at � ¼ 0
and ’ ¼ 0:01–:06.
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FIG. 10 (color online). Microscopic level densities of SUð2Þ þ PhN DKS in fundamental (left) and adjoint (right), at � ¼ 0 and
p ¼ 0:02–:10.

FIG. 11 (color online). Level spacing distributions of SUð2Þ þ PhN DKS in fundamental (left) and adjoint (right), at � ¼ 0 and
’ ¼ 0:02–:10.

FIG. 9 (color online). Smallest eigenvalue distributions of SUð2Þ þ PhN DKS in fundamental (left) and adjoint (right), at � ¼ 0
and p ¼ 0:02–:10.
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(i) these ratios, namely from LSDs, are very stable
under the change of symmetry-violating parameters
’ or p and

(ii) the values of � determined from SED and from LSD
are in a good agreement, as should be. This precisely
linear dependence is essential in accurately deter-
mining the pion decay constant from SUð2Þ þ TBC
models in the next section. We note that in the
strong coupling limit � ¼ 0, four plots nearly
overlap on top of each other, regardless of the
representation being fundamental (F) or adjoint (A)
(see also Fig. 13). The splitting between fundamen-
tal and adjoint becomes more apparent at larger
value of �.

IV. LOW-ENERGY CONSTANTS

A. Chiral Lagrangian

Below, we briefly review the chiral Lagrangian descrip-
tion of QCD-like theories and sketch the identification of
the low-energy constants with the parameters of random
matrices. The effective low-energy Lagrangian for QCD-
like theories with NF flavors of quarks in (pseudo-)real
representation, at finite chemical potential � and bare
quark mass m is unambiguously fixed by the global sym-
metry alone (provided that � is much smaller than the �
meson mass) and takes the form containing two phenome-
nological free parameters F and � [6],

LeffðQÞ ¼ 1

2
F2tr@�Q

y@�Qþ 2F2�trB̂Qy@0Q

� F2�2trðB̂QyB̂Qþ B̂ B̂Þ � 1

2
�mRe trM̂Q:

(17)

HereQðxÞ is an SUð2NFÞmatrix-valued Nambu-Goldstone

field, B̂ ¼ �3 � 1NF
, M̂ ¼ �1 � 1NF

ði�2 � 1NF
Þ for

quarks in a real (pseudoreal) representation. F is the
‘‘pion’’ decay constant and � ¼ h �c c i=NF the chiral con-
densate, both measured in the chiral and zero-chemical
potential limit m, � ! 0. If the theory is in a finite volume
V ¼ L4 and Thouless energy defined as Ec ’ F2=�L2 is
much larger than m, the path integral is dominated by the
zero-mode integration

Z ¼
Z
SUð2NFÞ

dQ exp

�
V�2F2trðB̂QyB̂Qþ B̂ B̂Þ

þ 1

2
V�mRe trM̂Q

�
; (18)

and the theory is said to be in the " regime. In order to
extract the Dirac spectrum, one introduces fictitious
bosonic quarks as well as fermionic quarks in the funda-
mental theory, leading to the graded group version of (18)
on the effective theory side. For the actual computation,
one needs to parametrize the graded matrix Q in terms of
its eigenvalues. Comparing the resulting expression (after

FIG. 12 (color online). The ratio between the symmetry-violating parameters ’ and p versus the crossover parameter
ffiffiffiffi
�

p
� for

SUð2Þ þ TBC model (left) and SUð2Þ þ PhN model (right) in the strong coupling limit � ¼ 0, as tabulated in Table I and II.

TABLE III. �2=d:o:f: for fitting spectral distributions.

SUð2Þ þ TBC SUð2Þ þ PhN
dist rep � ¼ 0 0.5 1.0 1.5 � ¼ 0 0.5 1.0

SED F 0.79–1.22 0.54–1.00 0.64–1.80 0.86–3.13 0.58–1.33 0.63–1.50 0.73–1.44

A 0.61–1.11 0.36–1.24 0.80–1.59 0.79–1.31 0.41–1.42 0.65–1.88 0.60–1.49

LSD Fa 0.65–1.07 1.11–1.53 0.63–1.61 0.89–1.41 0.61–1.54 0.55–1.29 0.78–1.71

A 0.97–1.55 0.63–1.09 0.57–1.15 0.60–1.17 0.61–1.40 0.80–1.22 0.72–1.21

aexcludes F/LSD for TBC at � & 0:1, for which �2=d:o:f: ¼ 3–5.
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analytic continuation � ! i� and m ! i�) with the ran-
dom matrix results (6) and (7), the coefficients of
chemical-potential and ‘‘mass’’ terms in the exponents on
both sides are readily identified as 4VF2�2 ¼ 2�2�2 and
V�� ¼ �x. The latter is merely the definition of unfolded
eigenvalues x ¼ �=�, when combined with Banks-Casher
relation � ¼ �=�V that determines one of the low-energy
constants � in terms of the mean spacing � of small Dirac
eigenvalues. Eliminating the volume in favor of the level
spacing, the former equation reads

ffiffiffiffi
�

p
� ¼

ffiffiffiffiffiffiffiffiffiffiffi
2

�

F2

�

s
�; (19)

where the left-hand side is a volume-independent combi-
nation. Accordingly, one can determine another low-

energy constant F2=� from the slope of �-
ffiffiffiffi
�

p
� plots,

preferably on lattices of various sizes. Note that in the
parameter region V�jmj � 1, Eq. (18) should approach
the � model of nonchiral parametric random matrix
ensembles [25], but we see no reason why the ‘‘pion

decay’’ or diffusion constant multiplying trB̂QyB̂Q is

affected. Accordingly, if the mean level spacing is approxi-
mately constant in a window in the very vicinity of the
origin, one can determine F2=� from the bulk correlation
(namely the LSD) in that window.

B. SUð2Þ þ twistedBC

As the imaginary chemical potential is equal to the flux
per link, � ¼ ð2�=LÞ’, F2=� can be extracted from the

’-
ffiffiffiffi
�

p
� plots for the SUð2Þ þ TBC model. In Table I we

exhibit the values of F2=� determined from the slopes of

these ’-
ffiffiffiffi
�

p
� plots, with all the numerals in the lattice unit.

We also list the mean level spacings (�ð0Þ for the SED
rows and �ð½�m; �M�Þ for the LSD rows) and the chiral
condensate �. The pion decay constant F2 is then obtained
by multiplying F2=� and � in each row. Coupling depen-
dence of these low-energy constants as determined from
respective spectral distributions are summarized in Fig. 13.
In order to offset the number of components in the gauge
multiplet, the constants for adjoint quarks are multiplied
by 2=3 in the plot. We notice that except for the SU(2)
fundamental at � ¼ 0:5
 1:5, two values of F2, one
determined solely from the zero-virtuality correlations
(SED) and the other from the bulk correlations (LSD),
agree within the one-� error bars. Although it is admittedly
difficult to calibrate the systematic deviations involved in
employing the bulk correlation for the determination of F
(part of which could originate from nonzero modes of the
effective theory or from the nonuniformity of the mean
level spacing within the eigenvalue window (see Fig. 5,
left) due to the smallness of the lattice), these numerical
agreements could justify the latter method using LSDs
a posteriori.
At � ¼ 0, both low-energy constants agree between

fundamental and adjoint representations. This observation
is consistent with the fact that in the strong coupling limit
the low-energy constants are identical to the SpðNÞ and
OðNÞ lattice gauge theories at large N [52], which share
the same antiunitary symmetries as SU(2) fundamental and

FIG. 13 (color online). Low-energy constants F2 and � for
SU(2) quenched lattice gauge theory. Values are multiplied by
2=3 for the adjoint.

FIG. 14 (color online). Microscopic level density (left) and level spacing distribution (right) of SUð2Þ þ TBC DKS in fundamental
representation, at � ¼ 1:5 and ’ ¼ 0:01–:06.

UNIVERSALITY CROSSOVER BETWEEN CHIRAL RANDOM . . . PHYSICAL REVIEW D 86, 114505 (2012)

114505-13



adjoint. We also notice that due to the onset of chiral
symmetry restoration at � ¼ 1:5, the microscopic level
density R1ðxÞ for SU(2) fundamental starts to deviate from
the random matrix result at x * 2 (Fig. 14, left). Thus the
range of x available for fitting the SED is rather limited,
especially on a lattice as small as V ¼ 44. On the other
hand, the LSDs near the origin, not being directly sensitive
to the chiral symmetry, are still fittable to the randommatrix
result without noticeable deviation throughout the plotted

region (Fig. 14, right), and the values of
ffiffiffiffi
�

p
� determined

from the LSD retain the linear dependence on ’. Therefore,
we consider the fitting of LSDs to the parametric nonchiral
random matrices to be an efficient method of extracting F2

from small lattices.

C. SUð2Þ þ phase noise

The strength of phase randomness p in the SUð2Þ þ PhN
model is not related to the imaginary chemical potential
and thus cannot be directly used to determine F2 from the
response of the Dirac spectra. Thus, we merely list in

Table II the slopes of p-
ffiffiffiffi
�

p
� plots as a counterpart of

�-
ffiffiffiffi
�

p
� plots. We, however, noticed, rather unexpectedly,

that for the SU(2) theory at the strong coupling limit
� ¼ 0, the ‘‘conversion ratio’’ between the phase random-
ness p and the imaginary chemical potential � is unity

within numerical error (see the
ffiffiffiffi
�

p
�=� column in Table I

and the
ffiffiffiffi
�

p
�=p column in Table II). This fact will have to

be accounted for analytically. They gradually disagree for
increasing �.

Finally, we need to check the volume dependence of

the crossover parameter, which should scale as � ¼
ð ffiffiffi

2
p

F�=�Þ ffiffiffiffi
V

p
. Only for the purpose of varying the volume

of the lattice in small steps, we adopted the two-
dimensional toy model of SUð2Þ þ PhN at � ¼ 0. Nconf ¼
22000 independent configurations are generated for each

set of parameters. First, we confirmed that the model shares
the features in four dimensions, i.e., all spectral distribu-
tions fit nicely to the parametric random matrices, andffiffiffiffi
�

p
� scales with the randomness p on a lattice of fixed

size V ¼ 162 (Fig. 15). The eigenvalue windows for sam-
pling levels spacings are chosen to be ½�m; �M� ¼
½0:30; 0:65� (fundamental) and [0.16, 0.60] (adjoint).
Then the � parameter is measured from the level spacing
distributions on lattices of size V ¼ 102–242 at fixed phase
randomness p ¼ 0:03. � is indeed seen to scale as

expected, linearly increasing in
ffiffiffiffi
V

p
(Fig. 16).

V. CONCLUSIONS

In this paper we have computed the level spacing
and smallest eigenvalue distributions of Hermitian random
matrices in the G(O,S)E-GUE and chG(O,S)E-chGUE
crossover. The results are shown to be perfectly fittable to
the adjoint and fundamental staggered Dirac spectra of
quenched SU(2) lattice gauge theory whose antiunitary
symmetry is weakly violated by twisted boundary condi-
tion or noisy phases. This leads to the precise determination
of the pion decay constant F (in the chiral and zero-density
limit) from theDirac spectral data. This method, feasible on
a small-size lattice, has an advantage over the conventional
method of measuring the decay rate of axial correlators,
which requires a large temporal dimension.
Our treatment is complementary to the previous approach

of determining F of two-color QCD from its Dirac spec-
trum: Akemann and collaborators have concentrated on the
real chemical potential, measured the response of Dirac
eigenvalues that permeate into the complex plane, and
fitted the lattice data to the non-Hermitian parametric
chiral random matrices [18]. On the other hand, we con-
sidered the twisted boundary condition, i.e., the imaginary
chemical potential and measured the response of Dirac

FIG. 15 (color online). (left) Crossover parameter
ffiffiffiffi
�

p
� for

SUð2Þ þ PhN model at � ¼ 0 and p ¼ 0:02–:10. Lattice size:
162, number of configurations: 22,000. Eigenvalue windows:
½�m; �M� ¼ ½0:30; 0:65� (F), [0.16, 0.60] (A). Real lines are
linear fits to the data.

FIG. 16 (color online). (right) Volume dependence of the
crossover parameter � for SUð2Þ þ PhN model at � ¼ 0 and
p ¼ 0:03, determined from LSDs. Lattice size: 102–242. Other
parameters are common to Fig. 15.

SHINSUKE M. NISHIGAKI PHYSICAL REVIEW D 86, 114505 (2012)

114505-14



eigenvalues that cross over within the real axis, and fitted to
the Hermitian parametric chiral random matrices. In terms
of chiral Lagrangian, the difference is solely in the sign of
�2, and the integral formulas involving (original or modi-
fied) Bessel functions (6) and (7) originated from the �
model action are shared by the two. Similar comple-
mentary treatments were applied for three-color QCD at
real and imaginary isospin chemical potential, which
correspond to non-Hermitian chiral random matrices [31]
and Hermitian chiral random matrices in chGUE-chGUE
crossover [32,38,53], respectively, resulting in a successful
determination of F. Combined with the results reported in
this paper filling the missing pieces, the fact that the Dirac
spectral statistics in all three cases (SUð2Þ fundamentalþ
�, SUð2Þ adjointþ�, SUð3Þ fundamentalþ�iso) agree
perfectly with the predictions from corresponding identical
zero-mode-approximated chiral Lagrangians in both
regions of signs of �2 constitutes a solid evidence for the
validity of analytic continuation in the � plane, which is
much required for the actual physics, i.e., three-color QCD
at real baryon number chemical potential.

We consider the use of imaginary chemical potential
has a practical advantage for the following reason. In order
to fit non-Hermitian Dirac spectra to the non-Hermitian
random matrix result, one usually projects the complex
eigenvalues either to the real or imaginary axis, and this
projection could blur the fitting. Freer two-dimensional
motion of complex eigenvalues is likely to lead to large
statistical fluctuation. On the other hand, confining the
eigenvalues within the real axis averts such issues, yielding
a precise fitting shown in Figs. 6–11.

Sharpness of the fitting functions chosen, p1ðsÞ and PðsÞ,
is also in our advantage. Note that the use of Wigner
surmise (random 2� 2 matrices) of p1ðsÞ and PðsÞ for
the parametric random matrices [42,54] is an uncontrolled
approximation and is not suited for the precise determi-
nation of F, especially from fitting in the range of s * 2
[55].6 The advantage of our treatment is that exponentially
fast, uniform convergence is guaranteed for Nyström-type
method at increasing order.

Our next obvious step is to include weakly coupled QED
in the simulation, rather than the phase noise treated in this
paper. Our preliminary study shows that Dirac spectra of
SUð2Þ � Uð1Þ quenched gauge theory are again fitted well
to the parametric random matrix predictions, and we are
currently accumulating numerical data on lattices of larger
size than the current paper. This two-color QCDþ QED
model could be of interest to the lattice gauge community
in which the three-color QCDþ QED simulation in pur-
suit of precise measurement of isospin-related observables
has attracted attention recently [56], although we are

exploiting the very difference of symmetry of SUð2Þ �
Uð1Þ as compared to SUð3Þ � Uð1Þ. Other possible exten-
sions are the following:
(i) In order to reduce the statistical error of fitting

SEDs p1ðsÞ for which the spectral averaging is
not applicable, one could simultaneously use the
kth smallest eigenvalues distribution pkðsÞ, k ¼
2; 3; . . . [computable by Eq. (11)] alongside with
p1ðsÞ for fitting � and look for the overlapping of
their error bars.

(ii) Extension of our treatment to Dirac spectrum in a
nontrivial SU(2) gauge field topology is straight-
forward: on the lattice side one should measure the
overlap Dirac spectrum [53], whereas on the ran-
dom matrix side the indices of the Bessel J func-
tions in Eqs. (6) and (7) are to be incremented by the
topological charge �.

(iii) Introduction of dynamical quarks is interesting
beyond the obvious reason of approaching more
‘‘realistic’’ models of QCD; the weakly symmetry-
violating U(1) gauge randomness couples to the
SU(2) gauge randomness through the quark loops
(fermion determinant) only in that case. This cor-
relation between perturbed and perturbing can pos-
sibly bring nontrivial distortion to the relationship
between the bare U(1) coupling constant and the
crossover parameter, i.e., the pion decay constant.
Introduction of finite quark masses on the random
matrix side could become cumbersome, but in the
light of individual eigenvalue distributions for
chGUE-chGUE crossover (the latter of Ref. [32]),
the computation is still feasible.

(iv) Our result suggests a possibility of an exotic con-
tinuum limit, in which the rate of decoupling of U(1)
gauge field is adjusted to the rate of approaching
the thermodynamic limit, while keeping the �2F2

fixed. Albeit a rather artificial limit, this procedure
might define a theory in which a nontrivial effect
is induced to the interaction of Nambu-Goldstone
bosons by the decoupling gauge interaction through
the violation of antiunitary symmetry. The asymp-
totic slavery of U(1) is not an essential obstacle to
this possibility, because any gauge field in the com-
plex representation, namely the fundamental of
SUðN0 � 3Þ, is equally suited as a pertinent pertur-
bation violating the antiunitary symmetry of SU(2).

In forthcoming papers we wish to complete the project
started here by covering up the directions listed above.
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