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We present the first result for the hyperon vector form factor f1 for �0 ! �þl �� and �� ! nl ��

semileptonic decays from fully dynamical lattice QCD. The calculations are carried out with gauge

configurations generated by the RBC and UKQCD collaborations with (2þ 1)-flavors of dynam-

ical domain-wall fermions and the Iwasaki gauge action at � ¼ 2:13, corresponding to a cutoff

a�1 ¼ 1:73 GeV. Our results, which are calculated at the lighter three sea quark masses (the lightest

pion mass down to approximately 330 MeV), show that a sign of the second-order correction of SU(3)

breaking on the hyperon vector coupling f1ð0Þ is negative. The tendency of the SU(3)-breaking correction
observed in this work disagrees with predictions of both the latest baryon chiral perturbation theory result

and large Nc analysis.

DOI: 10.1103/PhysRevD.86.114502 PACS numbers: 11.15.Ha, 12.38.�t, 12.38.Gc

I. INTRODUCTION

Greater knowledge of the vector form factor f1 in
�S ¼ 1 semileptonic hyperon decays paves the way for
an alternative determination of the element Vus of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix in addition
to kaon semileptonic (Kl3) decays, leptonic decays of
kaons and pions, and hadronic decays of � leptons [1]. A
stringent test of CKM unitarity through the first row rela-
tion jVudj2 þ jVusj2 þ jVubj2 ¼ 1 can be accomplished
with the precision of jVusj [3]. A theoretical estimation
of the vector coupling f1ð0Þ is required to extract Vus from
the experimental rate of hyperon beta-decay [4,5].

The matrix element for hyperon beta-decays, B1 !
B2l ��, is composed of the vector and axial-vector transi-
tions, hB2ðp0ÞjV�ðxÞ þ A�ðxÞjB1ðpÞi, which are described
by six form factors: the vector (f1), weak magnetism (f2),
and induced scalar (f3) form factors for the vector current,
and the axial-vector (g1), weak electricity (g2), and in-
duced pseudoscalar (g3) form factors for the axial current
[4]. The experimental decay rate of the hyperon beta-
decay, B1 ! B2, is given by

� ¼ G2
F

60�3
ðMB1

�MB2
Þ5ð1� 3�ÞjVusj2jfB1!B2

1 ð0Þj2

� ð1þ �RCÞ
�
1þ 3

��������
gB1!B2

1 ð0Þ
fB1!B2

1 ð0Þ
��������

2þ� � �
�
; (1)

where GF is the Fermi constant measured from the muon
lifetime, which already includes some electroweak radiative
corrections [4].The remaining radiative corrections to thedecay
rate are approximately represented by �RC [6]. Here, MB1

(MB2
) denotes the rest mass of the initial (final) octet baryon

state. The ellipsis can be expressed in terms of a power series
in the small parameter � ¼ ðMB1

�MB2
Þ=ðMB1

þMB2
Þ,

which is regarded as a size of flavor SU(3) breaking [7].
The first linear term in �, which should be given by
�4�½g2ð0Þg1ð0Þ=f1ð0Þ2�B1!B2

[8], is safely ignored as

small asOð�2Þ since the nonzero value of the second-class
form factor g2 [11] should be induced at first order of the �
expansion [7]. The absolute value of g1ð0Þ=f1ð0Þ can be
determined by measured asymmetries such as electron-
neutrino correlation [4,7]. A theoretical attempt to evaluate
SU(3)-breaking corrections on the vector coupling f1ð0Þ,
whose value is given by SU(3) Clebsch-Gordan coefficients
in the exact SU(3) limit, is primarily required for the precise
determination of jVusj.
The value of f1ð0Þ should be equal to the SU(3) Clebsch-

Gordan coefficients up to the second-order in SU(3) break-
ing, thanks to the Ademollo-Gatto theorem (AGT) [12]. As
the mass splittings among octet baryons are typically of the
order of 10–15%, an expected size of the second-order
corrections is a few percent level. However, either the
size or the sign of their corrections is somewhat contro-
versial among various theoretical studies at present as
summarized in Table I. A model independent evaluation
of SU(3)-breaking corrections is highly desired. Although
recent quenched lattice studies suggest that the second-
order correction on f1ð0Þ is likely negative [9,10], we need
further confirmation from (2þ 1)-flavor dynamical lattice
QCD near the physical point.
Our paper is organized as follows. In Sec. II, we first

summarize the numerical lattice QCD ensembles used for
this work and then give the details of our Monte Carlo
simulations. The numerical results are presented in Sec. III.
We begin with our determination of the scalar form factor
fSðq2Þ, which will be defined in the later session, at finite
momentum transfer. We discuss in detail the interpolation
of the form factor to zero momentum transfer and also
the chiral extrapolation of the hyperon vector coupling
f1ð0Þ. Finally, in Sec. IV, we summarize our results and
conclusions.*ssasaki@nucl.phys.tohoku.ac.jp

PHYSICAL REVIEW D 86, 114502 (2012)

1550-7998=2012=86(11)=114502(7) 114502-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.114502


II. SIMULATION DETAILS

In this paper, we will present the first result for the
hyperon vector form factor for �0 ! �þl �� and �� !
nl �� semileptonic decays from simulations with 2þ 1 fla-
vors of domain-wall fermions (DWFs). We use the RBC
and UKQCD collaboration ensembles, which are gener-
ated on a 243 � 64 lattice with two light degenerate quarks
and a single flavor heavier quark and the Iwasaki gauge
action at � ¼ 2:13 [20]. The dynamical light and strange
quarks are described by DWF actions with fifth dimen-
sional extent Ls ¼ 16 and the domain-wall height ofM5 ¼
1:8, which gives a residual mass of amres � 0:003. Each
ensemble of configurations uses the same dynamical
strange quark mass, ams ¼ 0:04, which is close to its
physical value [20]. We have already published our find-
ings in nucleon structure from the same ensembles in three
publications (Refs. [21–23]).

The inverse of lattice spacing is a�1 ¼ 1:73ð3Þ [a ¼
0:114ð2Þ fm], which is determined from the �� baryon
mass [20]. Accordingly, the physical spatial extent is ap-
proximately 2.7 fm, where the nucleon vector form factor
at low q2 doesn’t suffer much from the finite size effect
though such effect may influence other nucleon form fac-
tors [21,22]. We choose three values for the light quark
masses, amud ¼ 0:005, 0.01, and 0.02, which correspond
to about 330, 420, and 560 MeV pion masses [24]. We use
4780, 2350, and 1580 trajectories separated by 20 trajec-
tories for amud ¼ 0:005, 0.01, and 0.02 [20]. The total
number of configurations is 240 for amud ¼ 0:005, 120
for amud ¼ 0:01, and 80 for amud ¼ 0:02, as summarized
in Table II.

We make four (two) measurements on each configuration
using a single source location, which is located at ðx;y;z;tÞ¼
ð6n;6n;6n;16nÞ with n ¼ 0, 1, 2, 3 (n¼0, 2) for amud ¼
0:02 (amud ¼ 0:01 and 0.005), and then they are averaged
on each configuration in order to reduce possible autocorre-
lations among measurements. The statistical errors are esti-
mated by the jackknife method on such blocked
measurements. The quark propagators are calculated by
gauge-invariant Gaussian smearing at the source with smear-
ing parameters ðN;!Þ ¼ ð100; 7Þ. Details of our calculation
of the quark propagators are described in Ref. [22].

III. NUMERICAL RESULTS

A. Scalar form factor fSðq2Þ at q2 ¼ q2max

We focus on vector couplings f1ð0Þ for two different
hyperon beta-decays, �0 ! �þl �� and �� ! nl ��. These
decays are simply denoted by � ! � and � ! N here-

after. We recall that f�!�
1 ð0Þ ¼ þ1 and f�!N

1 ð0Þ ¼ �1 in
the exact SU(3) limit. For convenience in numerical cal-
culations, instead of the vector form factor f1ðq2Þ, we
consider the so-called scalar form factor

fB1!B2

S ðq2Þ ¼ fB1!B2

1 ðq2Þ þ q2

M2
B1

�M2
B2

fB1!B2

3 ðq2Þ; (2)

where f3 represents the second-class form factor, which is
identically zero in the exact SU(3) limit [11]. The renor-
malized value of fSðq2Þ at q2max ¼ �ðMB1

�MB2
Þ2 < 0

[26] can be precisely evaluated by the double ratio method
proposed in Ref. [9], where all relevant three-point func-
tions are determined at zero three-momentum transfer

TABLE II. Nconf , Nsep, and Nmeas denote the number of gauge configurations, trajectory separation between each measured
configuration, and the number of measurements on each configuration, respectively. The table contains the pion, kaon, nucleon,
�-baryon, and �-baryon mass for each ensemble.

mud Nconf Nsep Nmeas M� [GeV] MK [GeV] MN [GeV] M� [GeV] M� [GeV]

0.005 240 20 2 0.3297(7) 0.5759(8) 1.140(12) 1.330(9) 1.431(6)

0.01 120 20 2 0.4200(12) 0.6064(11) 1.237(13) 1.386(12) 1.465(8)

0.02 80 20 4 0.5580(11) 0.6651(11) 1.412(10) 1.501(9) 1.544(8)

TABLE I. Theoretical uncertainties of ~f1ð0Þ ¼ f1ð0Þ=fSUð3Þ1 ð0Þ for various hyperon beta-decays. HBChPT and EOMS-CBChPT
stand for heavy baryon chiral perturbation theory and covariant baryon chiral perturbation theory with the extended on-mass-shell
(EOMS) renormalization scheme.

Type of result (reference) � ! p �� ! n �� ! � �0 ! �þ

Bag model [13] 0.97 0.97 0.97 0.97

Quark model [14] 0.987 0.987 0.987 0.987

Quark model [15] 0.976 0.975 0.976 0.976

1=Nc expansion [16] 1.02(2) 1.04(2) 1.10(4) 1.12(5)

Full Oðp4Þ HBChPT [17] 1.027 1.041 1.043 1.009

FullOðp4Þ þ partialOðp5Þ HBChPT [18] 1.066(32) 1.064(6) 1.053(22) 1.044(26)

Full Oðp4Þ EOMS-CBChPT [19] 0.943(21) 1.028(02) 0.989(17) 0.944(16)

FullOðp4ÞEOMS-CBChPTþ decuplet [19] 1.001(13) 1.087(42) 1.040(28) 1.017(22)

Quenched lattice QCD [9,10] N/A 0.988(29) N/A 0.987(19)
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jqj ¼ 0. For the three-point functions, we use the sequen-
tial source method. We use the source-sink separation of 12
lattice units following previous works related to nucleon
structure [21–23]. Details of the construction of the three-
point functions from the sequential quark propagator are
described in Ref. [27].

Here we note that the absolute value of the renormalized
fSðq2maxÞ is exactly unity in the flavor SU(3) symmetric
limit, where fSðq2maxÞ becomes f1ð0Þ, for the hyperon
decays considered here. Thus, the deviation from unity in
jfSðq2maxÞj is attributed to three types of the SU(3)-breaking
effect: (1) the recoil correction (q2max � 0) stemming from
the mass difference of B1 and B2 states, (2) the presence of
the second-class form factor f3ðq2Þ, and (3) the deviation
from unity in the renormalized f1ð0Þ. Taking the limit of
zero four-momentum transfer of fSðq2Þ can separate the
third effect from the others, since the scalar form factor at
q2 ¼ 0, fSð0Þ, is identical to f1ð0Þ. Indeed, our main target
is to measure the third one.

In Fig. 1, we plot the absolute value of the renormalized
fSðq2maxÞ as a function of the current insertion time slice.
Good plateaus are observed in the middle region between
the source and sink points. The lines represent the average
value (solid lines) and their 1 standard deviations (dashed
lines) over range of 3 � t=a � 8. The obtained values of
jfSðq2maxÞj, which are naturally renormalized in the double
ratio method, as well as q2max values, are summarized in
Table III.

B. Interpolation to zero four-momentum squared

The scalar form factor fSðq2Þ at q2 > 0 is also calculable
with nonzero three-momentum transfer (jqj � 0). To avoid
unnecessary repetition, we simply give a Ref. [10], where
all the technical details are available.

We use the four lowest nonzero momenta: q ¼ 2�=L�
ð1; 0; 0Þ, (1,1,0), (1,1,1), and (2,0,0), corresponding to a q2

range from about 0.2 to 0:8 GeV2. We then can make the
q2 interpolation of fSðq2Þ to q2 ¼ 0 by the values of fSðq2Þ
at q2 > 0 together with the precisely measured value of
fSðq2Þ at q2 ¼ q2max < 0 from the double ratio.

In Fig. 2, we plot the absolute value of the renormalized
fSðq2Þ as a function of q2 for � ! � (upper panels) and
� ! N (lower panels) atamud ¼ 0:005 (left), 0.01 (middle),
and 0.02 (right). In this work, we also calculate the time-
reversal process B2 ! B1 as well as B1 ! B2, to get more
data points in the q2 > 0 region. Open circles are jfSðq2Þj at
the simulated q2. The solid (dashed) curve is the fitting result
with the seven lowest-q2 data points by using the monopole
(quadratic) interpolation form [10], while the open diamond
(square) represents the interpolated value to q2 ¼ 0.

As shown in Fig. 2, two determinations to evaluate
fSð0Þ ¼ f1ð0Þ from measured points are indeed consistent
with each other. Thus, this observation indicates that the
choice of the interpolation form does not affect the inter-
polated value f1ð0Þ significantly. We simply prefer to use

the values obtained from the monopole fit in the following
discussion.

C. Chiral extrapolation of f1ð0Þ
In order to estimate f1ð0Þ at the physical point, we

perform the chiral extrapolation of f1ð0Þ. The ratio of
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FIG. 1 (color online). The absolute value of frenS ðq2maxÞ as a
function of the current insertion time slice. The upper (lower)
panel is for � ! � (� ! N) decay. In each panel, results for
amud ¼ 0:005, 0.01, and 0.02 are plotted from top to bottom.
The lines represent the average value (solid lines) and their 1
standard deviations (dashed lines) over range of 3 � t=a � 8.

TABLE III. Results for jfrenS ðq2maxÞj, where q2max ¼
�ðMB1

�MB2
Þ2 with ðB1; B2Þ ¼ ð�;�Þ and ð�; NÞ.

� ! � � ! N
mud q2max [GeV2] jfrenS ðq2maxÞj q2max [GeV2] jfrenS ðq2maxÞj
0.005 �0:0103ð16Þ 0.9879(71) �0:0360ð30Þ 1.0166(112)

0.01 �0:0063ð15Þ 0.9795(55) �0:0223ð28Þ 1.0108(39)

0.02 �0:0019ð4Þ 0.9928(16) �0:0080ð7Þ 1.0013(6)
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f1ð0Þ=fSUð3Þ1 can be parametrized as ~f1ð0Þ ¼ f1ð0Þ=fSUð3Þ1ð0Þ ¼ 1þ�f, where �f represents all SU(3)-breaking
corrections on f1ð0Þ. We then introduce the following ratio
[9,10]:

R�fðMK;M�Þ ¼ �f

ðM2
K �M2

�Þ2
; (3)

where the leading symmetry-breaking correction, which is
predicted by the Ademollo-Gatto theorem, is explicitly

factorized out. The remaining dependence related to either
the higher-order corrections of the SU(3) breaking or
simulated pion and kaon masses is hardly observed within
the statistical errors, as shown in Fig. 3.
Indeed, if we simply adopt a linear fit form on �R as a

function of M2
K þM2

� to extrapolate the value at the
physical point,

R�fðMK;M�Þ ¼ R0 þ R1 � ðM2
K þM2

�Þ; (4)
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FIG. 2 (color online). Interpolation of fSðq2Þ to q2 ¼ 0. The upper (lower) panels are for � ! � (� ! N) decay at amud ¼ 0:005
(left), 0.01 (middle), and 0.02 (right). Open circles are jfSðq2Þj at the simulated q2. The solid (dashed) curve is the fitting result by
using monopole (quadratic) interpolation form, while the open diamond (square) represents the interpolated value to q2 ¼ 0.
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physical point. The open square (circle) symbols, which have been shifted slightly to the left (right), represent the extrapolated values
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the resulting coefficient R1, which is approximately zero,
ensures that the remaining dependence of eitherMK orM�

is negligible at least within the current statistics. This
observation suggests that although the simulated strange
quark mass is slightly heavier than the physical mass, the
corresponding systematic error is likely to be small in the
chiral extrapolation of R�f.

We may rather use fitting the data of R�f to a constant to

estimate the value at the physical point. The two fits are
mutually consistent, but the latter provides the smaller
error, as shown in Fig. 3. All fitted results are also tabulated
in Table IV as well as the values of R�f given at all

simulated quark masses. We thus quote the value of R�f

at the physical point

R�fðMphys
K ;M

phys
� Þ ¼

��0:524ð77Þ for � ! �

�0:529ð125Þ for � ! N;
(5)

in ðGeVÞ�4, which is obtained from the latter fit, as our best
estimate. We evaluate the SU(3)-breaking correction �f
via Eq. (3), together with the physical kaon and pion
masses, and then get

~fAGT1 ð0Þ ¼ 1þ �f ¼
�
0:9737ð39Þ for � ! �

0:9734ð63Þ for � ! N;
(6)

which we call the AGT fit result hereafter. Alternatively,

we may perform a global fit of the data on ~f1ð0Þ as multiple
functions of M2

K �M2
� and M2

K þM2
�

~f 1ð0Þ ¼ C0 þ ðC1 þ C2 � ðM2
K þM2

�ÞÞ � ðM2
K �M2

�Þ2;
(7)

whose form is motivated by the AGT fit. Our simulations
are performed with a strange quark mass slightly heavier
than the physical mass. To take into account this slight
deviation in this global analysis of the chiral extrapolation,
we simply evaluate a correction using the Gell-Mann-
Oakes-Renner relation for the pion and kaon masses,
which corresponds to the quark mass dependence of pseu-
doscalar meson masses at the leading order of ChPT. This
correction could be accurate in as much as the ratio of R�f

has shown neither any higher-order corrections of SU(3)
breaking nor the remaining MK and M� dependences.

In Fig. 4, we present the results of ~f1ð0Þ (filled circles) as
a function of the pion mass squared for� ! � (left panel)
and � ! N (right panel). In each panel, fitting curves
indicated by dashed and solid curves represent the fitting
results with and without the correction for the strange
quark mass, respectively. The extrapolated results of
~f1ð0Þ at the physical point, which are denoted as open
circles, agree very well with the AGT fit results indicated
by filled diamond symbols. Both results are tabulated in
Table V together with the data calculated at all simulated
quark masses. The statistical errors from the AGT fit are
rather smaller than those of the global fits.
The excellent agreement observed here between two

different fitting procedures indicates that the systematic
uncertainty stemming from the small deviation of the
strange quark mass appears to be relatively small in the
AGT fit, where we directly insert the physical kaon and
pion masses into Eq. (3) with the weighted average of R�f

in order to determine ~f1ð0Þ at the physical point. However,
we conservatively quote the global fit results as our final
estimates. The differences between two determinations
may be regarded as the reliability of the extrapolation to

TABLE IV. Results for R�f in ðGeVÞ�4.

mud � ! � � ! N

0.005 �0:386ð159Þ �0:689ð281Þ
0.01 �0:706ð160Þ �0:503ð229Þ
0.02 �0:501ð114Þ �0:472ð193Þ
Physical point (linear) �0:498ð243Þ �0:717ð398Þ
Physical point (average) �0:524ð77Þ �0:529ð125Þ
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FIG. 4 (color online). Chiral extrapolation of ~f1ð0Þ for � ! � (left) and � ! N (right). In each panel, the filled circles denote our
results obtained with the three ensembles, while open circles are extrapolated results at the physical point using a global fitting
procedure described in the text. Fitting curves indicated by dashed and solid curves represent the fitting results for the physical strange
mass and the simulated one (ams ¼ 0:04), respectively. The AGT fit results are also included as filled diamond symbols, which have
been moved slightly to the right, for comparison.
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the physical point in our current uncertainty. Hence, our
final results are

f1ð0Þ ¼
�þ0:9732ð66Þð7Þð5Þ for � ! �

�0:9698ð106Þð15Þð36Þ for � ! N;
(8)

where the first error is statistical, and the second and
third are estimates of the systematic errors due to our
choice of q2 interpolation and the reliability of the ex-
trapolation to the physical point, respectively. Note that
since we simulate at a single lattice spacing, the system-
atic error introduced by the lattice discretization is not
estimated there.

It is worth emphasizing that the signs of the second-
order corrections on f1ð0Þ are consistent with what was
reported in earlier quenched lattice studies [9,10] and
preliminary results from mixed action calculation [28]
and nf ¼ 2þ 1 dynamical improved Wilson fermion cal-

culations [29]. However, we recall that the tendency of the
SU(3)-breaking correction observed here disagrees with
predictions of both the latest baryon ChPT result [19]
and large Nc analysis [16,30].

We additionally remark that the latter has received some
criticism from Mateu and Pich [5]. They pointed out that
the large Nc fit including second-order SU(3)-breaking
effects on f1ð0Þ becomes unreliable within the present
experimental uncertainties [31].

IV. SUMMARY

We have studied the flavor SU(3)-breaking effect on
hyperon vector coupling f1ð0Þ for the �0 ! �þ and
�� ! n decays in (2þ 1)-flavor QCD using domain-
wall quarks. We have observed that the second-order cor-
rection on f1ð0Þ is still negative for both decays at

simulated pion masses of M� ¼ 330–558 MeV. The size
of the second-order corrections observed here is also com-
parable to what was observed in our DWF calculations of
Kl3 decays [32]. Using the best estimate of jVusj ¼
0:2254ð6Þ with imposing CKM unitarity [33], we then
predict the values jVusf1ð0Þj�!� ¼ 0:2194ð8ÞVus

ð15Þf1
and jVusf1ð0Þj�!N ¼ 0:2186ð8ÞVus

ð24Þf1 . The former is

barely consistent with a single experimental result of
jVusf1ð0Þj�!� ¼ 0:209ð27Þ [34], albeit with its large ex-
perimental error. However, the latter is slightly deviated
from the currently available experimental result of
jVusf1ð0Þj�!N ¼ 0:2282ð49Þ [4] due to reaching the value
of f1ð0Þ with an accuracy of less than one percent. We plan
to extend our research to evaluate the systematic uncer-
tainty due to the lattice discretization error and also to
decrease the reliance on the chiral extrapolation using
RBC/UKQCD 2þ 1 flavor DWF dynamical ensembles at
a second, finer lattice spacing with simulated pion masses
closer to the physical point.
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