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The masses of the low-lying strange and charm baryons are evaluated using two degenerate flavors

of twisted mass sea quarks for pion masses in the range of about 260 to 450 MeV. The strange and

charm valence quark masses are tuned to reproduce the masses of the kaon and D meson at the

physical point. The tree-level Symanzik improved gauge action is employed. We use three values of the

lattice spacing, corresponding to � ¼ 3:9, � ¼ 4:05 and � ¼ 4:2, with r0=a ¼ 5:22ð2Þ, r0=a ¼ 6:61ð3Þ
and r0=a ¼ 8:31ð5Þ, respectively. We examine the dependence of the strange and charm baryons on the

lattice spacing and the strange and charm quark masses. The pion mass dependence is studied and

physical results are obtained using heavy-baryon chiral perturbation theory to extrapolate to the

physical point.
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I. INTRODUCTION

Lattice QCD simulations with two light degenerate sea
quarks (Nf ¼ 2), as well as those with a strange sea quark

(Nf ¼ 2þ 1) close to physical values of the pion mass, are

being carried out. Masses of low-lying hadrons are primary
quantities that can be extracted using these simulations.
Comparing the lattice and experimental values provides a
check of lattice discretization effects. Such a comparison is
necessary before one can use the lattice approach to study
hadron structure. The European Twisted Mass (ETM)
Collaboration has generated a number of Nf ¼ 2 ensem-

bles at four values of the lattice spacing, ranging from
0.1 fm to about 0.05 fm, at several values of the light sea
quark mass, and for several physical volumes with maxi-
mally twisted mass fermions. We will use ensembles gen-
erated at the three smallest lattice spacings to evaluate the
masses of strange and charm baryons. The strange and
charm quarks are added as valence quarks.

For heavy quarks, the Compton wavelength of the asso-
ciated heavy-light meson is comparable to presently attain-
able lattice spacings, which means that cutoff effects may
be large. The charm quark mass is at the upper limit of the
range of masses that can be directly simulated at present. In
order to obtain values for the masses that can be compared
to experiment, it is important to assess the size of lattice
artifacts. A first study of cutoff effects was carried out for
light and strange baryons in Refs. [1,2]. In this work, we
extend the study by including a finer lattice spacing and
calculate the masses of charm baryons in addition to the
masses of strange baryons. Having three lattice spacings,
the continuum extrapolation can be better assessed.

In this work, we compare our results in the strange baryon
sector with recent results obtained with Clover-improved
Wilson fermions with different levels of smearing. The
PACS-CS [3] and BMW [4] collaborations evaluated the
octet spectrum using two degenerate flavors of light quarks
and a strange quark with mass tuned to its physical value.
The PACS-CS has also computed the decuplet baryon
masses. In addition, we compare our data with the LHPC,
which computed the octet and decuplet spectrum using a
hybrid action with domain-wall valence fermions on Kogut-
Susskind sea quarks [5].
Besides the strange baryons, we also study the ground

state spectrum of charm baryons with spin J ¼ 1=2þ and
spin J ¼ 3=2þ. Experimental searches of charm hadrons
have received significant attention, mainly due to the
experimental observation for candidates of the doubly
charmed baryons �þ

ccð3520Þ and �þþ
cc ð3460Þ by the

SELEX Collaboration [6–8]. The 60 MeV mass difference
between the singly and doubly charged states is difficult to
understand, since it is an order of magnitude larger com-
pared to what is expected. No evidence was found for
these states by the BABAR experiment [9] and FOCUS
Collaboration [10]. The Belle Collaboration [11] finds �
states lower in mass that can be candidates of excited states
of �c, but no doubly charmed � baryons. Additional
experiments are planned at the new Beijing Spectrometer
(BES-III) and at the antiProton ANnihilation at DArmstadt
(PANDA) experiment at GSI, that can shed light on these
charm baryon states. Several lattice QCD studies have been
carried out to study charm baryons. We will compare the
results of the current work with recent lattice QCD results,
all computed in a hybrid action approach where the charm
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valence quark was introduced on gauge configurations
produced with staggered sea fermions by the MILC
Collaboration [12–14].

As in the case of the other lattice QCD studies of heavy
baryons, in this work we use a mixed action approach.
For the strange and charm sector, we use an Osterwalder-
Seiler valence quark, following the approach employed
in the study of the pseudoscalar meson decay constants
[15,16]. The bare strange and charm valence quark mass
is tuned by requiring that the physical values of the
masses of the kaon and D meson are reproduced after
the lattice results are extrapolated at the physical value of
the pion mass. The ETMC Nf ¼ 2 configurations [17,18]

analyzed in this work correspond to pion masses in the
range of 260 to 450 MeV and three values of the lattice
spacing corresponding to � ¼ 3:9, 4.05 and 4.2, with
r0=a ¼ 5:22ð2Þ, 6.61(3) and 8.31(5), respectively. The
Sommer parameter r0 is determined from the force
between two static quarks, the continuum value of which
is determined to be 0.462(5) fm. At � ¼ 4:2 we use two
ensembles, one corresponding to the lowest value of the
pion mass considered in this work and one corresponding
to the upper pion mass range. We find that the baryon
masses, in general, show a very weak dependence on the
lattice spacing and are fully compatible with an Oða2Þ
behaviour with an almost vanishing coefficient of the a2

term. This justifies neglecting the Oða2Þ term in extrap-
olating results to the continuum limit.

An important issue raised by the twisted mass fermion
formulation is isospin symmetry breaking. This symmetry,
although exact in the continuum limit, is broken at a non-
vanishing lattice spacing to Oða2Þ. There are, however,
theoretical arguments [19] and numerical evidences
[20,21] that these isospin breaking effects are only sizable
for the neutral pseudoscalar mass, whereas for other quan-
tities studied so far by ETMC they are compatible with
zero. In this paper, we demonstrate that in the baryon sector
also, these isospin breaking effects are, in general, small or
even compatible with zero. Small isospin breaking effects
decrease as the lattice spacing decreases, and they vanish
at the continuum limit. This corroborates our previous
findings [1,2]. The isospin breaking effects are relevant
not only for neutral pions but also for other particles, e.g.,
the kaons. However, since the mass of the kaon is higher,
the relative splitting (between K0 and Kþ) is less drastic.

The paper is organized as follows: The details of our
lattice formulation, namely those concerning the twisted
mass action, the parameters of the simulations, the inter-
polating fields used, and the tuning of the strange and
charm quark masses are given in Sec. II. Section III con-
tains the numerical results of the baryon masses computed
for different lattice volumes, lattice spacings and bare
quark masses. Lattice artifacts, including finite volume
and discretization errors, and continuum extrapolation are
also discussed in Sec. III, with special emphasis on the

Oða2Þ isospin breaking effects inherent to the twisted mass
formulation of lattice QCD. The chiral extrapolations are
analyzed in Sec. IV. Section V contains a comparison with
other existing calculations. Our conclusions are finally
drawn in Sec. VI.

II. LATTICE FORMULATION

A. The lattice action

For the gauge fields, we use the tree-level Symanzik
improved gauge action [22], which includes, besides the
plaquette term U1�1

x;�;�, rectangular (1� 2) Wilson loops

U1�2
x;�;�:

Sg ¼ �

3

X
x

0
@b0

X4
�;�¼1
1��<�

f1� ReTrðU1�1
x;�;�Þg

þ b1
X4
�;�¼1
���

f1� ReTrðU1�2
x;�;�Þg

1
A; (1)

with b1 ¼ �1=12 and the (proper) normalization condi-
tion b0 ¼ 1–8b1. Note that at b1 ¼ 0, this action becomes
the usual Wilson plaquette gauge action.
The fermionic action for two degenerate flavors of

quarks in twisted mass QCD is given by

SF ¼ a4
X
x

��ðxÞðDW½U� þm0 þ i��5�
3Þ�ðxÞ; (2)

with �3 the Pauli matrix acting in the isospin space, � the
bare twisted mass, and the massless Wilson-Dirac operator
given by

DW½U� ¼ 1

2
��ðr� þr�

�Þ � ar

2
r�r�

�; (3)

where

r�c ðxÞ ¼ 1

a
½Uy

�ðxÞc ðxþ a�̂Þ � c ðxÞ� and

r�
�c ðxÞ ¼ � 1

a
½U�ðx� a�̂Þc ðx� a�̂Þ � c ðxÞ�:

(4)

Maximally twisted Wilson quarks are obtained by setting
the untwisted quark mass m0 to its critical value mcr, while
the twisted quark mass parameter � is kept nonvanishing
in order to work away from the chiral limit. In Eq. (2),
the quark fields � are in the so-called ‘‘twisted basis.’’
The ‘‘physical basis’’ is obtained for maximal twist by the
simple transformation

c ðxÞ ¼ exp

�
i�

4
�5�

3

�
�ðxÞ;

�c ðxÞ ¼ ��ðxÞ exp
�
i�

4
�5�

3

�
:

(5)

In terms of the physical fields, the action is given by
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Sc
F ¼ a4

X
x

�c ðxÞ
�
1

2
��½r� þr�

��

� i�5�
3

�
�ar

2
r�r�

� þmcr

�
þ�

�
c ðxÞ: (6)

In this paper, unless otherwise stated, the quark fields will
be understood as physical fields, c , in particular when we
define the baryonic interpolating fields.

A crucial advantage of the twisted mass formulation is
the fact that, by tuning the bare untwisted quark massm0 to
its critical valuemcr, all physical observables are automati-
cally OðaÞ-improved. In practice, we implement maximal
twist of Wilson quarks by tuning to zero the bare untwisted
current quark mass, commonly called the PCAC mass,
mPCAC [23], which is proportional to m0 �mcr up to
OðaÞ corrections. The value of mcr is determined at each
� value at the lowest twisted mass used in our simulations,
a procedure that preserves OðaÞ improvement and keeps
Oða2Þ small [18,24]. The twisted mass fermionic action
breaks parity and isospin at nonvanishing lattice spacing,
as is apparent from the form of the Wilson term in Eq. (6).
In particular, the isospin breaking in physical observables

is a cutoff effect of Oða2Þ [25]. To simulate the strange
quark in the valence sector, several choices are possible.
The strange and charm quarks are added as Osterwalder-

Seiler valence quarks, and their action reads

SOSheavy ¼ a4
X
x

Xc

h¼s

��hðxÞ
�
��

2
ðr� þr�

�Þ � a

2
r�

�r�

þMcr þ i�5�h

�
�hðxÞ; (7)

where �s and �c are the strange and charm valence quark
masses. This is naturally realized in the twisted mass
approach by introducing two additional doublets of strange
and charm quarks and keeping only the positive diagonal
component of �3. The m0 value is taken to be equal to the
critical mass determined in the light sector, thus guarantee-
ing the OðaÞ improvement in any observable. The reader
interested in the advantage of this mixed action in the
mesonic sector is referred to Refs. [15,16,26–28].

B. Simulation details

The input parameters of the calculation, namely �, L=a
and a�, are summarized in Table I. The corresponding

TABLE I. Input parameters ð�;L;�Þ of our lattice simulations and corresponding lattice
spacing (a) and pion mass (m�). The statistics refer to the number of configurations used in
the calculation of the masses of the strange and charm baryons. The first entry gives the number
used for the tuned value of the strange quark; the second, for the tuned value of the charm. An
entry of ‘‘� � �’’ indicates that no mass was computed. The lattice spacing was determined using
the nucleon mass [29].

� ¼ 4:2, a ¼ 0:056ð1Þ fm r0=a ¼ 8:31ð5Þ
323 � 64, L ¼ 1:8 fm a�sea 0.0065

statistics 240, 76

m� (GeV) 0.4698(18)

m�L 4.24

483 � 92, L ¼ 2:7 fm a�sea 0.0020

statistics 458, 456

m� (GeV) 0.262(1)

m�L 3.55

� ¼ 4:05, a ¼ 0:070ð1Þ fm, r0=a ¼ 6:61ð3Þ
323 � 64, L ¼ 2:13 fm a�sea 0.0030 0.0060 0.0080

statistics 144, 144 194, 193 201, 201

m� (GeV) 0.2925(18) 0.4035(18) 0.4653(15)

m�L 3.31 4.57 5.27

� ¼ 3:9, a ¼ 0:089ð1Þ fm, r0=a ¼ 5:22ð2Þ
243 � 48, L ¼ 2:05 fm a�sea 0.0040 0.0064 0.0085 0.010

statistics 4112, 310 545, 278 1817, 369 477, 475

m� (GeV) 0.3032(16) 0.3770(9) 0.4319(12) 0.4675(12)

m�L 3.25 4.05 4.63 5.03

323 � 64, L ¼ 2:74 fm a�sea 0.0030 0.0040

statistics 659, � � � 242, � � �
m� (GeV) 0.2600(9) 0.2978(6)

m�L 3.74 4.28
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lattice spacing a and the pion mass values, spanning a mass
range from 260 to 450 MeV, are taken from Ref. [29]. At
m� � 300 MeV we have simulations for lattices of spatial
sizes L ¼ 2:1 fm and L ¼ 2:7 fm at � ¼ 3:9, allowing us
to investigate finite size effects. Finite lattice-spacing ef-
fects are investigated using three sets of results at � ¼ 3:9,
� ¼ 4:05, and � ¼ 4:2. These sets of gauge ensembles
allow us to estimate all the systematic errors in order to
have reliable predictions for the baryon spectrum.

C. Tuning of the bare strange and charm quark masses

The dependence of the pseudoscalar meson mass on the
valence and sea quarks can be written as a polynomial of
the form [15]

a2M2
PSða�sea; a�1; �2Þ

¼ B0ða�1 þ a�2Þ½1þ aV�12 þ asea�sea þ aVV�
2
12

þ a0sea�2
sea þ aV;sea�12�sea þ aVD�

2
D12�; (8)

where�sea is the sea quarkmass,a�1 anda�2 are thevalence
quark masses, �i ¼ B0a�i=ð4�fÞ2, �ij¼2B0ða�iþa�jÞ=
ð4�fÞ2, and �Dij ¼ B0ða�i � a�jÞ=ð4�fÞ2. For the

� ¼ 3:9 ensembles, we consider in total 164 pseudoscalar
meson masses using all possible combinations of sea and
valence quark masses. Namely, we consider 150 combina-
tions obtained from a�sea and a�1 independently taking
the values

fa�sea;a�1g¼ f0:0040 0:0064 0:0085 0:0100 0:0150g;
whereas a�2 takes the values

a�2 ¼ f0:0040 0:0064 0:0085 0:0100 0:0150

0:0220 0:0270 0:0320g:
We have an additional 12 combinations coming from

a�sea ¼ �1 ¼ f0:0040 0:0064 0:0085 0:0100g;
�2 ¼ f0:24 0:27 0:30g;

plus two extra combinations from

a�sea ¼ a�1 ¼ 0:0040; a�2 ¼ f0:0217 0:25g:
For the tuning at � ¼ 4:05, we use the following 20
combinations:

a�sea ¼ a�1 ¼ 0:0030;

a�2 ¼ f0:0030 0:014 0:0166 0:020 0:17

0:20 0:23 0:26g;
a�sea ¼ a�1 ¼ 0:0060;

a�2 ¼ f0:0060 0:0166 0:019 0:025g;
a�sea ¼ a�1 ¼ 0:0080;

a�2 ¼ f0:0080 0:014 0:0166 0:020 0:17

0:20 0:23 0:26g:
For the tuning at � ¼ 4:2, we consider ten pseudoscalar
meson masses:

a�sea ¼ a�1 ¼ 0:0065;

a�2 ¼ f0:0065 0:14 0:16 0:185 0:21g;
a�sea ¼ a�1 ¼ 0:0020;

a�2 ¼ f0:0020 0:012 0:015 0:136 0:17g:
In Figs. 1 and 2, we show representative fits to the

pseudoscalar masses in the range of the kaon and
D-meson masses using the expression given in Eq. (8).
The values of the strange and charm quark masses are
varied until the resulting kaon and D-meson masses are
matched to their physical values. The resulting fit parame-
ters are listed in Table II. We note that for � ¼ 3:9, two
fitting ranges are used—one range spanning the strange
quark mass, and one the charm quark mass. For � ¼ 4:05
and � ¼ 4:2 we fit all data together, since we do not have
enough mass combinations in order to apply Eq. (8). If one
does the same for � ¼ 3:9, then the tuned value for the
strange quark mass is a�s ¼ 0:0216ð7Þ, compatible with
the value of a�s ¼ 0:0217ð5Þ if we restrict the fit to the
strange region. In addition, at each � value we can restrict
the fit in the charm region using the ansatz

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.005  0.01  0.015  0.02  0.025  0.03

a 
M

P
S

a µ2

β=4.05

aµsea=aµ1=0.003
aµsea=aµ1=0.006
aµsea=aµ1=0.008

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.16 0.18  0.2  0.22 0.24 0.26 0.28  0.3

a 
M

P
S

a µ2

β=4.05

aµsea=aµ1=0.003
aµsea=aµ1=0.008

FIG. 1 (color online). Pseudoscalar meson masses for � ¼ 4:05 as a function of the heavy valence quark mass a�2 in the relevant
mass range for the strange quark (left) and charm quark (right). In all the examples shown, the sea quark mass a�sea is set equal to the
light valence quark mass a�1.
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mB ¼ m0
B þ b�h þ c=�h: (9)

The tuned charm quark value is found to be compatible
with the one extracted using Eq. (8). This procedure can be
carried out using the lattice spacing determined either from
the nucleon mass or from f�. The difference in the tuned
masses reflects the systematic error in setting the scale.

The tuned values of the strange and charm quark masses
ms and mc obtained at the physical pion are given in
Table III. In a previous paper, the ETMC computed pseu-
doscalar meson masses for a number of sea and valence
quark masses using the � ¼ 3:9 gauge configurations. By
matching the experimental value of the mass ratio of the

kaon to the pion, mK=m�, the bare strange quark mass was
determined [15]. Depending on the polynomial fit used, the
values for ams at � ¼ 3:9 varied from 0.0243(5) to 0.0218
(10). Thus, our value of a�s ¼ 0:0216ð7Þ from matching
the physical value of the kaon mass in combination with
the lattice spacing determined from the nucleon mass is
compatible with the value determined in Ref. [15]. Such an
agreement is satisfactory and shows that the two proce-
dures lead to the same determination within the uncertain-
ties associated with the extrapolation. The systematic error
introduced from the way the lattice scale is fixed can be
assessed by comparing the tuned values extracted using the
lattice spacing determined from the nucleon mass and from

TABLE III. The strange and charm quark masses at each value of �, tuned using the kaon and D-meson masses; the lattice spacing
determined from the nucleon masses is given in lattice units in the second and third columns for strange and charm quarks,
respectively. The tuned strange and charm quark masses in GeV are given in the fourth and fifth columns. In the sixth and seventh
columns, we give the corresponding masses in GeV using the lattice determined from f�.

� a�s a�c �s (GeV) �c (GeV) �f�
s (GeV) �f�

c (GeV)

3.9 0.0216(7) 0.27(3) 0.0478(16) 0.598(66) 0.0431(17) 0.64(12)

4.05 0.0178(5) 0.21(1) 0.0501(14) 0.591(28) 0.0451(12) 0.556(31)

4.2 0.014(1) 0.17(2) 0.0493(35) 0.598(70) 0.0464(15) 0.575(38)

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0  0.004  0.008  0.012  0.016
a 

M
P

S

a µ1

a MK
phys

a µ2=0.015
a µ2=0.022
a µ2=0.027

 0.6

 0.65

 0.7

 0.75

 0.8

 0  0.004  0.008

a 
M

P
S

a µ1

a MD
phys

a µ2=0.20
a µ2=0.23
a µ2=0.26

FIG. 2 (color online). The dependence of the pseudoscalar masses on the strange quark mass at � ¼ 3:9 (left) and the charm
quark mass at � ¼ 4:05 (right). In each plot, the solid line shows the variation of the pseudoscalar mass at the tuned strange (left)
and charm (right) quark masses. The dashed vertical line corresponds to the value of a�1 at which the physical pion mass is recovered.
The asterisk denotes the physical value of the kaon or D-meson mass in lattice units. The lattice spacing is determined from the
nucleon mass.

TABLE II. The values of the fit parameters.

� ¼ 3:9 (Strange quark) � ¼ 3:9 (Charm quark) � ¼ 4:05 � ¼ 4:2

B0 2.252(5) 2.38(6) 1.652(5) 1.295(5)

f 0.077(2) 0.112(2) 0.093(4) 0.069(4)

aV �0:45ð2Þ 0.3(1) 0.85(5) 0.56(5)

asea 0.0 0.0 0.0 0.0

aVV 3.0(1) 1.8(5) �4:0ð3Þ 2.6(2)

aV:sea 0.0 0.0 0.0 0.0

a0sea 0.0 0.0 0.0 0.0

aVD �2:25ð3Þ �1:4ð6Þ 4.94(5) �1:8ð3Þ
�2=d:o:f: 0.51 1.33 4.52 4.40
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the pion decay constant f�. The values of the lattice
spacing determined using f�, taken from Ref. [30], are
a�¼3:9 ¼ 0:0801ð14Þ fm, a�¼4:05 ¼ 0:0638ð10Þ fm, and

a�¼4:2 ¼ 0:05142ð38Þ fm. In Table III, we give the tuned

values for the charm and strange quark masses expressed in
physical units. As can be seen, the values for the charm
quark masses are in agreement, whereas for strange quark
masses the differences are within about two standard
deviations.

D. Interpolating fields

The low-lying baryons belonging to the octet and dec-
uplet representations of SUð3Þ are given in Figs. 3 and 4,

respectively. They are classified by giving the isospin I, the
third component of the isospin I3, the strangeness S, the
spin, and the parity. In order to extract their masses in
lattice QCD, we evaluate two-point correlators. We use
interpolating fields to create states from the vacuum that
have the correct quantum numbers and reduce to the quark
model wave functions in the nonrelativistic limit. The
interpolating fields used in this work are collected in
Tables IV [31,32] and V [31,33] for the octet and decuplet,
respectively.
Charm baryons with no strange quarks are obtained from

the interpolating fields of strange baryons by replacing the
strange with the charm quark. There are additional charm
baryons containing strange quarks, giving a 20-plet of
spin-1=2 and a 20-plet of spin-3=2. In most of this work,
we do not consider the particles that contain both strange
and charm quarks. For the lattice with the smallest lattice
spacing and at the smallest pion mass, we also consider the
spin-1=2 �c, �

0
c, �c and �cc baryons and the spin-3=2

��
c,�

�
c and�

�
cc baryons. The interpolating fields for these

baryons are given in Table VI.
Local interpolating fields are not optimal for suppressing

excited-state contributions. We instead apply Gaussian
smearing to each quark field, qðx; tÞ: qsmearðx; tÞ ¼P

yFðx; y;UðtÞÞqðy; tÞ, using the gauge-invariant smearing

function

Fðx; y;UðtÞÞ ¼ ð1þ 	HÞnðx; y;UðtÞÞ; (10)

constructed from the hopping matrix,

Hðx; y;UðtÞÞ ¼ X3

i¼1

ðUiðx; tÞ
x;y�i þUy
i ðx� i; tÞ
x;yþiÞ:

(11)

Furthermore, we apply APE smearing to the spatial links
that enter the hopping matrix. The parameters of the
Gaussian and APE smearing are the same as those used in
our previous work devoted to the nucleon and�masses [1].

E. Two-point correlators

To extract masses in the rest frame, we consider two-
point correlators, defined by

FIG. 4. The low-lying baryons belonging to the decuplet
representation, labeled by value of I3 and hypercharge.

FIG. 3. The low-lying baryons belonging to the octet repre-
sentation, labeled by value of I3 and hypercharge.

TABLE IV. Interpolating fields and quantum numbers for baryons in the octet representation.

Strangeness Baryon Interpolating field I Iz

S ¼ 0
p �p ¼ �abcðuTaC�5dbÞuc 1=2 þ1=2
n �n ¼ �abcðdTaC�5ubÞdc 1=2 �1=2

S ¼ 1

� ��8 ¼ 1ffiffi
6

p �abcf2ðuTaC�5dbÞsc þ ðuTaC�5sbÞdc � ðdTaC�5sbÞucg 0 0

�þ ��þ ¼ �abcðuTaC�5sbÞuc 1 þ1
�0 ��0 ¼ 1ffiffi

2
p �abcfðuTaC�5sbÞdc þ ðdTaC�5sbÞucg 1 þ0

�� ��� ¼ �abcðdTaC�5sbÞdc 1 �1

S ¼ 2
�0 ��0 ¼ �abcðsTaC�5ubÞsc 1=2 þ1=2
�� ��� ¼ �abcðsTaC�5dbÞsc 1=2 �1=2
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C�
X ðt; ~p ¼ ~0Þ ¼ 1

2
Trð1� �0Þ

� X
xsink

hJXðxsink; tsinkÞ �JXðxsource; tsourceÞi;

t ¼ tsink � tsource: (12)

Space-time reflection symmetries of the action and the
antiperiodic boundary conditions in the temporal direction
for the quark fields imply, for zero three-momentum
correlators, that Cþ

X ðtÞ ¼ �C�
X ðT � tÞ. So, in order to

decrease errors, we average correlators in the forward
and backward directions and define

TABLE V. Interpolating fields and quantum numbers for baryons in the decuplet representation.

Strangeness Baryon Interpolating field I Iz

S ¼ 0 �þþ ��þþ
� ¼ �abcðuTaC��ubÞuc 3=2 þ3=2

�þ ��þ
� ¼ 1ffiffi

3
p �abcf2ðuTaC��dbÞuc þ ðuTaC��ubÞdcg 3=2 þ1=2

�0 ��0

� ¼ 1ffiffi
3

p �abcf2ðdTaC��ubÞdc þ ðdTaC��dbÞucg 3=2 �1=2
�� ���

� ¼ �abcðdTaC��dbÞdc 3=2 �3=2

S ¼ 1 ��þ ���þ
� ¼

ffiffi
2
3

q
�abcfðuTaC��u

bÞsc þ 2ðuTaC��s
bÞucg 1 þ1

��0 ���0
� ¼

ffiffi
2
3

q
�abcfðuTaC��d

bÞsc þ ðdTaC��s
bÞuc þ ðsTaC��u

bÞdcg 1 þ0

��� ����
� ¼

ffiffi
2
3

q
�abcfðdTaC��d

bÞsc þ 2ðdTaC��s
bÞdcg 1 �1

S ¼ 2 ��0 ���0
� ¼ �abcðsTaC��ubÞsc 1=2 þ1=2

��� ����
� ¼ �abcðsTaC��dbÞsc 1=2 �1=2

S ¼ 3 �� ���
� ¼ �abcðsTaC��sbÞsc 0 þ0

TABLE VI. Interpolating fields for the spin-1=2 �c, �
0
c, �c and �cc baryons, and the spin-3=2 ��

c, �
�
c and ��

cc baryons.

J ¼ 1=2 J ¼ 3=2

��c ¼ 1ffiffi
6

p �abcf2ðsTaC�5dbÞcc þ ðsTaC�5cbÞdc � ðdTaC�5cbÞscg ���
c

� ¼
ffiffi
2
3

q
�abcfðsTaC��d

bÞcc þ ðdTaC��c
bÞsc þ ðcTaC��s

bÞdcg
��0

c ¼ 1ffiffi
2

p �abcfðsTaC�5cbÞdc þ ðdTaC�5cbÞscg
��c ¼ �abcðsTaC�5cbÞsc ���

c
� ¼

ffiffi
2
3

q
�abcfðsTaC��s

bÞcc þ 2ðsTaC��c
bÞscg

��cc ¼ �abcðcTaC�5sbÞcc ���
cc

� ¼ �abcðcTaC��sbÞcc
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CXðtÞ ¼ Cþ
X ðtÞ � C�

X ðT � tÞ: (13)

In order to decrease correlation between measurements, we
choose the source location randomly on the whole lattice
for each configuration. Masses are then extracted from the
so-called effective mass, which is defined by

mX
effðtÞ ¼ � logðCXðtÞ=CXðt� 1ÞÞ

¼ mX þ log

�
1þP1

i¼1 cie
�it

1þP1
i¼1 cie

�iðt�1Þ

�
!
t!1mX;

(14)

where �i ¼ mi �mX is the mass difference of the excited
state i with respect to the ground mass mX.

In Fig. 5, we show representative examples of the effec-
tive masses of strange and charm baryons. As can be seen,
a plateau region can be clearly identified. What is shown in
these figures are effective masses extracted from correla-
tors where smearing is applied at both the sink and the
source. Although local correlators are expected to have the
same value in the large time limit, smearing suppresses
excited state contributions, yielding a plateau at earlier

time separations and to a better accuracy in the mass
extraction. We therefore extract the masses using smeared
sources and sinks. Our fitting procedure to extract mX is as
follows: The sum over excited states in the effective mass
given in Eq. (14) is truncated, keeping only the first excited
state. Allowing a couple of time slice separations, the
effective mass is fitted to the form given in Eq. (14). This
yields an estimate for the parameters c1 and�1. The lower-
fit range is increased until the contribution due to the first
excited state is less than 50% of the statistical error of mX.
This criterion is in most of the cases in agreement with a
�2=d:o:f: < 1. In the cases in which this criterion is not
satisfied, a careful examination of the effective mass is
made to ensure that the fit range is in the plateau region.

III. LATTICE RESULTS

Before we extrapolate our lattice results on the strange
and charm baryon masses to the physical point, we need to
examine their dependence on the heavy quark mass as well
as cutoff effects. We collect lattice results for the masses of
the strange and charm baryons in the Appendix. The errors

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.01  0.015  0.02  0.025  0.03

a 
m

Σ−

a µs

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.01  0.015  0.02  0.025  0.03

a 
m

Ξ−

a µs

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.01  0.015  0.02  0.025  0.03

a 
m

Λ

a µs

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.01  0.015  0.02  0.025  0.03

a 
m

Σ∗−

a µs

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.01  0.015  0.02  0.025  0.03

a 
m

Ξ∗−

a µs

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.01  0.015  0.02  0.025  0.03

a 
m

Ω

a µs

FIG. 6 (color online). Baryon masses versus the strange quark mass for � ¼ 3:9 and a�l ¼ 0:0064 (circles), � ¼ 4:05 and a�l ¼
0:006 (squares), and � ¼ 4:2 and a�l ¼ 0:0065 (triangles).

C. ALEXANDROU et al. PHYSICAL REVIEW D 86, 114501 (2012)

114501-8



are evaluated using jackknife and the � method [34] to
check consistency.

In Figs. 6 and 7, we show the dependence of the strange
and charm baryon masses on the strange and charm quark
masses, respectively. Overall, the data display a linear
dependence on both the strange and charm quark mass.
One can therefore interpolate between different values of
quark masses, if needed.

A. Strange baryon mass with strange quark mass
tuned to its physical value

In this subsection, we restrict our analysis only to the
subset of data obtained at the tuned values of the strange
quark mass. Namely, for� ¼ 3:9 and� ¼ 4:05, we use the
tuned value given in Table III, whereas for � ¼ 4:2 we use
a�s ¼ 0:015, which agrees with the tuned strange quark
mass within error bars.

It is interesting to examine the degree of isospin splitting
as a function of the lattice spacing. The splitting is expected
to be zero in the continuum limit. In Fig. 8, we show the
masses of �þ, �0, and �� baryons at � ¼ 3:9, 4.05, and
4.2. As expected, the mass splitting among the three charge

states of the � baryon decreases with the lattice spacing.
The same behavior is observed for the other strange parti-
cles studied in this work. This is shown in Fig. 9, where we
plot the mass difference as a function of a2 at our smallest
and heaviest pion masses. As can be seen, the mass differ-
ence is consistent with zero for all particles at the smallest
lattice spacing. The small nonzero values seen for the �
and � particles are just outside one standard deviation.
Therefore, the general conclusion is that isospin splitting
is indeed small at these values of the lattice spacing, and it
vanishes at the continuum limit. Since for finite a there are
small differences, for the chiral extrapolation where we use
all lattice data, we do not average the masses for the differ-
ent charge states of �, �, and ��.
Volume effects can be studied at � ¼ 3:9, where we

have simulations at two volumes for a pion mass of about
300 MeV. As can be seen in Figs. 8, 10, and 11, results at
different volumes are consistent. Therefore, we conclude
that any volume effects are smaller than our statistical
accuracy.
In order to examine the continuum limit, we interpolate

our lattice result at a given pion mass in units of r0.
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For � ¼ 4:2 we have simulations at only two values of the
pion mass, at the upper and lower range of pion masses
considered in this work, namely for m� ¼ 0:254 GeV and
m� ¼ 0:459 GeV. Therefore, we interpolate the results for
the other two values of � to these two pion masses. In
Figs. 10 and 11, we show results for the octet and decuplet
strange baryon masses, respectively, at our three values of
the lattice spacing. We perform a continuum extrapolation
by performing a linear fit in ða=r0Þ2 as well as to a constant.
As can be seen from Fig. 10, the values obtained in the
continuum limit agree for all octet baryons. In the case of
the decuplet, the statistical errors are larger and the value
obtained at a ¼ 0 with the linear fit carries a large error.
The value obtained using a constant fit has a smaller error
and is compatible with the one obtained using a linear fit.
Therefore, for a given charge state and within the current
statistical accuracy, the ða=r0Þ2 term can be taken as neg-
ligible. Therefore, we can use results at all � values to
extrapolate to the physical point, since cutoffs are small for
a given charge state. There are two exceptions in the case

of the decuplet. At � ¼ 4:05, the masses of the �� and �
baryons at the lowest pion mass are systematically higher
than at the other two � values. Since the results at � ¼ 3:9
with larger lattice space are consistent with those at
� ¼ 4:2, we conclude that this is not a cutoff effect.

B. Charm baryon mass with charm quark mass
tuned to its physical value

As in the previous subsection, we consider results
obtained at the tuned charm mass given in Table III. The
only exception is at � ¼ 4:2 for the heavy pion mass,
where we have results close to the tuned value, namely at
a�c ¼ 0:16, 0.185, 0.21. As we have seen, the dependence
on the heavy quark is linear, and therefore the charm
baryon masses at the tuned value can be easily determined
by a linear interpolation.
We follow the same analysis as in the case of the strange

baryon sector. In Fig. 12, we show the mass difference
between different charged states as a function of the lattice
spacing at the smallest and largest pion masses used in this
work. As can be seen, the mass splittings are zero at the
smallest value of the lattice spacing for all particles,
confirming restoration of isospin symmetry in the contin-
uum limit. Furthermore, except for the case of the �cc

mass, the mass splitting is also consistent with zero at the
other two � values. Therefore, for all particles except the
�cc baryon, one may average over the masses of different
charge states.
In order to examine the continuum limit, we interpolate

our results at the three � values at a given pion mass in
units of r0. In Figs. 13 and 14, we show the masses in the
octet and decuplet charm sector as a function of lattice
spacing for a given charge state, at the smallest and largest
values of the pion mass. A linear fit in ða=r0Þ2 and a
constant fit yield consistent results at the continuum limit,
albeit with large errors in the case of the linear fit. We also
note that at the largest pion mass—although results at
� ¼ 3:9 are in agreement with those at� ¼ 4:2, indicating
negligibleOða2Þ dependence—at � ¼ 4:05, the results are
systematically lower. We note that we show only statistical
errors. Systematic errors due, for example, to the matching
are not shown. As discussed in the next section, these are
5–10%. Therefore, a reasonable way to extrapolate our
results in the charm sector is to compare the chiral extrapo-
lation using all lattice data to those using results at� ¼ 3:9
and � ¼ 4:2. We will take the difference between the two
values at the physical point as an estimate of a systematic
error.

IV. CHIRAL EXTRAPOLATION

Having determined that Oða2Þ effects are small for the
lattice spacings considered here, we can combine our
lattice results at the various � values to extrapolate to the
physical pion mass (physical point).
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For the strange baryon sector, we consider SUð2Þ heavy-
baryon chiral perturbation, which has been found to
describe lattice data satisfactorily [2]. To leading one-
loop, one can describe the pion mass dependence using

mB ¼ mð0Þ
B � 4cð1ÞB m2

� þ cm3
�; (15)

where c is a known coefficient given in Ref. [2]. For
completeness, we give below the coefficients c [35,36]
for the octet baryons �, �, and �:

c¼� g2��

16�f2�
; �2g2��þg2��=3

16�f2�
; � 3g2

��

16�f2�
; (16)

respectively, and for the decuplet baryons ��, ��, and �:

c ¼ � 10

9

g2����

16�f2�
; � 5

3

g2
����

16�f2�
m3

�; 0: (17)

In addition, we consider next-to-leading-order (NLO)
SUð2Þ �PT results [37]. The expressions are included
here for completeness:
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mNLO
� ðm�Þ ¼ mð0Þ

� � 4cð1Þ� m2
� � g2��

ð4�f�Þ2
F ðm�;���; �Þ �

4g2���

ð4�f�Þ2
F ðm�;���� ; �Þ;

mNLO
�

ðm�Þ ¼ mð0Þ
�

� 4cð1Þ
�
m2

� � 2g2��
16�f2�

m3
� � g2��

3ð4�f�Þ2
F ðm�;����; �Þ �

4g2���

3ð4�f�Þ2
F ðm�;���� ; �Þ;

mNLO
�

ðm�Þ ¼ mð0Þ
�

� 4cð1Þ
�
m2

� � 3g2
��

16�f2�
m3

� � 2g2
���

ð4�f�Þ2
F ðm�;���� ; �Þ;

(18)

and for the decuplet baryons:

mNLO
�� ðm�Þ ¼ mð0Þ

�� � 4cð1Þ
��m2

� � 10

9

g2����

16�f2�
m3

� � 2

3ð4�f�Þ2
½g2���F ðm�;�����;�Þ þ g2���F ðm�;�����;�Þ�;

mNLO
�� ðm�Þ ¼ mð0Þ

�� � 4cð1Þ
��m2

� � 5

3

g2
����

16�f2�
m3

� � g2
���

ð4�f�Þ2
F ðm�;�����;�Þ;

mNLO
� ðm�Þ ¼ mð0Þ

� � 4cð1Þ� m2
�;

(19)

with the nonanalytic function [38]

 2.9

 3

 3.1

 3.2

 3.3

 3.4

 0  0.01  0.02  0.03  0.04
r 0

 m
Σ−

(a/r0)2

r0 mπ=0.599

r0 mπ=1.085

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 0  0.05  0.1  0.15  0.2  0.25

m
Σ−  

(G
eV

)

mπ
2 (GeV2)

β=3.90
β=4.05
β=4.20

 3.2

 3.3

 3.4

 3.5

 3.6

 0  0.01  0.02  0.03  0.04

r 0
 m

Ξ−

(a/r0)2

r0 mπ=0.599

r0 mπ=1.085

 1.32

 1.36

 1.4

 1.44

 1.48

 0  0.05  0.1  0.15  0.2  0.25

m
Ξ−  

(G
eV

)

mπ
2 (GeV2)

β=3.90
β=4.05
β=4.20

 2.7
 2.8
 2.9

 3
 3.1
 3.2
 3.3
 3.4
 3.5

 0  0.01  0.02  0.03  0.04

r 0
 m

Λ

(a/r0)2

r0 mπ=0.599

r0 mπ=1.085

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 0  0.05  0.1  0.15  0.2  0.25

m
Λ
 (

G
eV

)

mπ
2 (GeV2)

β=3.90
β=4.05
β=4.20
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F ðm;�; �Þ

¼ ðm2 � �2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i�

p
log

0
@��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i�

p

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i�

p
1
A

� 3

2
�m2 log

�
m2

�2

�
� �3 log

�
4�2

m2

�
; (20)

depending on the threshold parameter �XY ¼ mð0Þ
Y �mð0Þ

X

and on the scale � of chiral perturbation theory, fixed to
� ¼ 1 GeV. For �> 0, the real part of the function
F ðm;�; �Þ has the property

F ðm;��;�Þ¼
8<
:
�F ðm;�;�Þ m<�

�F ðm;�;�Þþ2�ðm2��2Þ3=2 m>�
;

(21)

which corrects a typo in the sign of the second term in

Ref. [5]. We follow the procedure of Ref. [2] and fix the

nucleon axial charge gA and pion decay constant f� to

their experimental values (we use the convention such that

f� ¼ 130:70 MeV). The remaining pion-baryon axial

coupling constants are taken from SUð3Þ relations [37].

The fit parameters extracted for fitting to the NLO are

given in Table VII. The deviation of the mean values

obtained at the physical point when the results are fitted

to leading order—i.e., to Eq. (15) with c ¼ 0—and when

they are fitted to the NLO expressions provide an estimate

of the systematic error due to the chiral extrapolation.

We give this error in Table VII. In the case of the� baryon,

there is no difference between leading order (LO) and next-

to-leading order. Since the� baryon contains three strange

quarks, any systematic error in the tuning of the strange

quark mass will be the largest in this case. Having results at
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several values of the strange quark mass, we can estimate
the change in the � mass if the strange quark mass takes
the maximum and minimum values allowed by the statis-
tical error in the tuned strange quark mass. We take the
difference in the mean values at the physical point obtained
by varying the strange quark mass to be the systematic
error due to the tuning. In Table VII, we give the systematic
error on the mass of � that we find following this proce-
dure. This gives an upper bound of the error expected from
the uncertainty in the tuning. As can be seen, this is smaller
as compared to the systematic error due to the chiral

extrapolation, and therefore it is only taken into account
for the case of the � baryon.
In Figs. 10 and 11, we show the chiral extrapolation for

the octet and the decuplet. In the cases of the � and ��
baryons, the physical point is reproduced. However, for
most other particles, the lattice results extrapolate to a
higher value. The worse deviation is seen for the� baryon.
Since this has three strange quarks, it may indicate that the
tuning of the strange quark mass performed using the kaon
mass introduces a systematic error. One can study partial
quenching effects using twisted mass fermion simulations
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with a dynamical strange quark. This will be considered in
a future study.

In the charm baryon sector, we use the ansatz

mB ¼ aþ bm2
� þ cm3

�; (22)

motivated by SUð2Þ HB�PT to leading one-loop order,
with c taken as a fit parameter. For the �ccc baryon, we
set c ¼ 0, since one does not expect a cubic term.

In order to assess the systematic error associated with the
tuning of the charm quark mass, we consider our results at
� ¼ 3:9. At this value of �, we have computed the charm
baryon masses at the tuned value of the charm quark and at
values of the charm quark shifted by the error on the tuned
value. Since these computations were performed at four
different light quark masses, we can perform a chiral ex-
trapolation using the ansatz of Eq. (22) for the set of masses
obtained at the tuned value and at the value shifted by the
error. The difference in the masses obtained at the physical
pion mass is given in Table VIII. As can be seen, this

difference introduces an error that varies between about
5% and 10%. This gives us an estimate of the systematic
error due to the tuning of the charm quark mass. Since this
analysis can only be done at � ¼ 3:9, we can only make a
qualitative estimate of this error. Therefore, in what follows,
we will not quote this error on our values. However, one has
to bear in mind that our final values can have a systematic
error of about 10% due to the tuning.
In Figs. 13 and 14, we show fits for our three� values. We

showfits using all data andfits using only data at� ¼ 3:9 and
� ¼ 4:2. The latter case yields a better fit with a smaller
value of �=d:o:f:, and this is the value quoted in Table IX.
This is particularly noticeable for the case of �ccc baryons,
where the results at � ¼ 4:05 are systematically lower. This
may be due to a small mismatch in the tuned value of the
charm quark mass, which for the�ccc baryon, that contains
three charm quarks, would lead to the largest deviation. We
take the difference in the extrapolated values at the physical
points when we exclude the � ¼ 4:05 data from the fit as a
systematic error.
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of the pion mass indicates the level of isospin breaking for the �c particle.
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The extrapolation of the lattice data reproduces experi-
mentally measured charm baryon masses within a standard
deviation, namely the masses of the�c,�c, and�

�
c baryons.

Therefore, the extrapolated lattice value can be taken as a
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TABLE VII. The bare mass and cB (related to the 
 term by

B ¼ �4cBm

2
�) determined from fitting to the NLO expressions

for strange baryons at the tuned strange quark mass. In the last
column, we give the mass in GeV that we obtain at the physical
point using the NLO expressions. The error given in the second
parenthesis is an estimate of the systematic error coming from a
comparison between the values obtained at the physical point
using the LO expressions given in Eqs. (16) and (17) and the
NLO expressions given by Eqs. (18) and (19). In the case of
the � baryon, the systematic error is estimated by evaluating the
impact of the error of the tuned strange quark mass on the
extrapolated � mass.

Particle(PDG) mð0Þ
B (GeV) �4cð1ÞB ðGeV�1Þ �2=d:o:f: m (GeV)

��ð1193Þ 1.1368(70) 3.560(40) 2.7 1.1930(62)(660)

��ð1315Þ 1.3334(46) 1.386(26) 0.82 1.3538(41)(179)

�ð1116Þ 1.0678(64) 4.362(37) 1.04 1.1276(57)(721)

��
avð1384Þ 1.4244(58) 2.807(34) 2.4 1.4757(51)(740)

���ð1531Þ 1.4808(96) 1.582(58) 3.3 1.5113(89)(400)

�ð1673Þ 1.7522(76) 0.361(45) 2.0 1.7591(67)(200)

TABLE VIII. For each particle listed in the first column, we
give in the second column its mass at the physical pion mass,
using for the chiral extrapolation the masses computed at the
tuned value of the charm quark mass mc. In the third column, we
give the mass difference between the baryon masses obtained at
the tuned value of mc and at the tuned value plus the error, after
extrapolation to the physical point. This is done at � ¼ 3:9
where we have computed the masses at mc� error.

Particle(PDG) m (GeV) �m (GeV)

�c;avð2:454Þ 2.494(47) 0.143

�þ
cc 3.563(25) 0.397

�þ
c ð2286Þ 2.229(43) 0.223

��
c;avð2:520Þ 2.650(39) 0.147

��
cc;av 3.672(42) 0.274

�ccc 4.702(11) 0.308
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prediction for the masses of the ��
cc and �ccc baryons

within one standard deviation.

V. COMPARISON WITH THE RESULTS OF
OTHER LATTICE FORMULATIONS

In this section, we compare our results with those using
different discretization schemes by other collaborations. We
also include a comparison for the nucleon and � masses,
although they were not discussed in detail until now.

Several collaborations have calculated the strange baryon
spectrum. The Budapest-Marseille-Wuppertal (BMW)
Collaboration carried out simulations using tree-level-
improved six-step stout smeared Nf ¼ 2þ 1 clover fermi-

ons and a tree-level Symanzik improved gauge action.
Volume effects were studied using lattices of spatial extent
from 2 fm to 4.1 fm. The continuum limit was taken using
results produced on three lattice spacings of a ¼ 0:065 fm,

a ¼ 0:085 fm, and a ¼ 0:125 fm. Using pion masses down
to 190 MeV, a polynomial was performed to extrapolate to
the physical value of the pion mass [4]. The PACS-CS
Collaboration obtained results usingNf ¼ 2þ 1 nonpertur-

batively OðaÞ-improved clover fermions on an Iwasaki
gauge action on a lattice with a spatial length of 2.9 fm and
lattice spacing a ¼ 0:09 fm [3]. The QCDSF-UKQCD
Collaboration [39] used Nf ¼ 2þ 1 Clover fermions with

a single mild stout smearing and a lattice spacing of a ¼
0:076ð2Þ fm. Finally, the LPHC Collaboration [5] obtained
results using a hybrid action of domain-wall valence quarks
on a staggered sea on lattices of spatial length 2.5 fm and
3.5 fm at a lattice spacing of a ¼ 0:124 fm.
In Fig. 15, we compare our results on the strange octet

baryons with those from the BMW, the PACS-CS, the
QCDSF-UKQCD and the LHPC collaborations. Our results
and the results by the PACS-CS and LHPC are not

TABLE IX. Parameters of the chiral fit for charm baryons at the tuned charm quark mass, fitting results at � ¼ 3:9 and � ¼ 4:2. The
last column is our prediction (in GeV) of the mass at the physical point. The statistical error is given in the first parenthesis, and the
systematic error, computed by comparing the fit with all lattice data, is given in the second parenthesis.

Particle (PDG) m0
B (GeV) �4cB ðGeV�1Þ c ðGeV�2Þ �2=d:o:f: m (GeV)

�c;avð2:454Þ 2.437(25) 1.92(54) �2:09ð91Þ 1.1 2.468(17)(23)

�þ
cc 3.476(35) 2.39(83) �3:39ð1:5Þ 2.7 3.513(23)(14)

�þ
c ð2286Þ 2.198(40) 2.99(96) �3:6ð1:7Þ 0.10 2.246(27)(15)

��
c;avð2:520Þ 2.520(25) 2.37(51) �2:96ð86Þ 1.3 2.556(18)(51)

��
cc;av 3.571(25) 2.02(57) �2:62ð99Þ 1.0 3.603(17)(21)

�ccc 4.6706(53) 0.327(35) 0 2.5 4.6769(46)(30)
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FIG. 15 (color online). The results of this work for the octet strange baryons are shown with filled (red) circles, results by the BMW
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continuum extrapolated. The BMW results are extrapolated
to the continuum limit and have larger errors than the rest.
Nevertheless, there is an overall agreement, indicating that
cutoff effects are small. In Fig. 16, we compare our results
on the strange decuplet baryons with the ones by PACS-CS
and LHPC. Lattice results are in agreement except for the
case of the �� baryon, where our results are consistently
lower. Given the agreement of our results in the case of the
� baryon, this deviation cannot come from the mismatch in
the strange quark mass. It is not clear what is the origin of
this deviation for the �� baryon, but the fact that the value
obtained by PACS-CS at almost physical pion mass is higher
than the experimental value may indicate that the strange
quark mass is larger than physical. In Fig. 17, we show the

masses for the strange baryons after extrapolating to the
physical pion mass. For the results of this work, we plot
the values extracted using NLOHB�PT. Error shown on the
twisted mass results is the estimate of the systematic error
due to the chiral extrapolation, whereas the statistical errors
are equal to the sizes of the symbols and are not shown. As
can be seen, our results are in agreement with experiment
except for the� baryon, which is higher by 2%, just like the
value found by PACS-CS.
We also compare in Fig. 18 our results for the charm

baryons to those obtained using dynamical gauge configu-
rations. All previous lattice computations of the masses of
charm baryons used gauge configurations produced with
staggered sea quarks with a number of different actions
for the valence quarks. In Refs. [40,41], a Clover charm
valence quark was used on MILC Nf ¼ 2þ 1 gauge con-

figurations at three values of the lattice spacing, a ¼ 0:09,
0.12, 0.15 fm. In Ref. [42], Nf ¼ 2þ 1þ 1 gauge con-

figurations were produced using the highly improved
staggered quark (HISQ) action. The valence light quark
(up, down and strange) propagators are generated using the
clover-impoved Wilson action. In order to reduce discreti-
zation artifacts, a relativistic heavy quark action was
adopted for the charm quark. Finally, in Ref. [43],
domain-wall fermions are used for the up, the down and
the strange quarks on Nf ¼ 2þ 1 improved Kogut-

Susskind sea quarks at one value of the lattice spacing,
a ¼ 0:12 fm. The relativistic Fermilab action was
employed for the charm quark. We show the comparison
of our results to those obtained in the aforementioned
references in Fig. 18. Our results for �c, �c, �cc, �

�
c,

��
cc, and �ccc baryons are extrapolated to the physical
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FIG. 16 (color online). Comparison of the results of this work for the strange decuplet baryons to those obtained using domain wall
valence quarks on a staggered sea [5]. The notation is the same as that in Fig. 15.

C. ALEXANDROU et al. PHYSICAL REVIEW D 86, 114501 (2012)

114501-18



pion mass using a polynomial fit with up m3
� terms. For

the spin-1=2 �c, �
0
c, �c, and �cc baryons, we show the

results obtained at m� ¼ 260 MeV, the smallest value of
the pion mass considered in this work on the lattice with
the smallest lattice spacing at � ¼ 4:2, for which cutoff
effects are smallest. As can be seen, our results are in
agreement with the results of the other studies except
for the �cc baryon, and with the experimental values.
Although for the �cc baryon we find a value consistent
with the result of the SELEX experiment, one has to
study the pion mass dependence in order to reach a final
conclusion. In Fig. 18, we compare results for the
spin-3=2 charm baryons. Our results for ��

c, ��
c, and

��
cc baryons are obtained at m� ¼ 260 MeV at �¼4:2.

There is good agreement among lattice results and with
the known experimental values for ��

c, ��
c, and ��

c

baryon masses. Thus, the lattice results can be taken as
a prediction for the masses of the other charm spin-3=2
baryons shown in the figure.

VI. SUMMARYAND CONCLUSIONS

In this work we have computed the strange and charm
baryon masses using Nf ¼ 2 twisted mass fermions. For

the strange and charm sector, we use Osterwalder-Seiler
valence quarks. The bare strange and charm valence quark
mass is tuned by requiring that the physical values of the
mass of the kaon and D meson be reproduced after the
lattice results are extrapolated at the physical value of
the pion mass.

We analyze gauge configurations for three values of
the lattice spacings at the largest and smallest pion mass
used in this study. We find that cutoff effects are small
even in the case of the charm baryons. This is a some-
what surprising result, given that the Compton wave-
length of the D-meson mass is of the same order as the
lattice spacing.

Using simulations on two different volumes, we have
obtained results that are consistent, showing that any
volume effects are smaller than our statistical accuracy.

Another artifact of our lattice formulation is isospin
breaking at finite lattice spacing. We have found that
isospin breaking decreases with the lattice spacing, and it
is consistent with zero for a ¼ 0:056 fm, confirming the
expected restoration of isospin symmetry.
Our results on the strange quark sector are consistent

with recent results using Clover-improved fermions and
domain-wall fermions on a staggered sea. There is an
overall agreement also in thee case of the charm sector,
where we compare our results to other studies that used
staggered sea quarks. The overall consistence among
lattice results, despite the different discretizations used,
provides a strong validation of lattice QCD computations.
Our results on the charm baryons reproduce the experi-
mentally known values, and thus provide an estimate for
the masses of the �cc, �

�
cc, �

�
cc and �ccc baryons.
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FIG. 18 (color online). Masses for charm baryons with spin-1=2 (left) and spin-3=2 (right) computed within lattice QCD, with the
experimental values shown by the horizontal lines. Our results for �c, �c, �cc, �

�
c, �

�
cc and �ccc baryons are extrapolated to the

physical pion mass (shown with filled red circles), whereas for the rest we give the results obtained at m� ¼ 260 MeV and � ¼ 4:2
(shown with open red circles). We include results obtained using a number of hybrid actions with staggered sea quarks from Refs. [43]
(open blue squares), [40,41] (open green triangles) and [42] (filled magenta triangles).
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APPENDIX

In Tables X, XI, and XII we give the strange octet baryon masses for � ¼ 3:9, � ¼ 4:05, and � ¼ 4:2, respectively and
in Tables XIII, XIV, and XV the strange decuplet baryon masses. In Tables XVI, XVII, and XVIII we collect the charm
octet baryon masses for the three beta and in Tables XIX, XX, and XXI the charm decuplet baryon masses. In Table XXII
we give the masses for the spin-1=2 and spin-3=2 charm baryons with strangeness at � ¼ 4:2 at the lightest pion mass.

TABLE X. Strange octet baryon masses at � ¼ 3:9.

L=a a�h a�l am�0 am�� am�þ am�0 am�� am�

32 0.0217 0.0030 0.597(3) 0.577(4) 0.607(7) 0.657(4) 0.628(3) 0.561(3)

24 0.0217 0.0040 0.610(5) 0.600(3) 0.622(4) 0.671(3) 0.638(2) 0.577(4)

32 0.0217 0.0040 0.616(4) 0.596(5) 0.628(7) 0.675(4) 0.635(3) 0.574(4)

24 0.0217 0.0064 0.628(5) 0.610(6) 0.640(9) 0.687(5) 0.650(4) 0.602(4)

24 0.0217 0.0085 0.649(3) 0.631(2) 0.668(4) 0.697(3) 0.659(2) 0.619(3)

24 0.0217 0.0100 0.654(4) 0.643(5) 0.666(6) 0.696(5) 0.668(3) 0.633(4)

24 0.015 0.0064 0.596(9) 0.585(6) 0.633(9) 0.658(11) 0.597(12) 0.588(4)

24 0.015 0.0085 0.641(5) 0.598(11) 0.663(6) 0.674(5) 0.621(6) 0.594(9)

24 0.015 0.0100 0.635(7) 0.627(8) 0.645(15) 0.659(14) 0.622(7) 0.614(6)

32 0.025 0.0040 0.623(5) 0.606(5) 0.633(9) 0.687(6) 0.651(4) 0.587(8)

32 0.030 0.0040 0.645(4) 0.630(5) 0.664(6) 0.729(6) 0.688(4) 0.606(5)

24 0.030 0.0064 0.654(5) 0.640(6) 0.674(7) 0.732(5) 0.682(7) 0.624(4)

24 0.030 0.0085 0.688(5) 0.651(9) 0.703(6) 0.739(6) 0.706(4) 0.626(9)

TABLE XI. Strange octet baryon masses at � ¼ 4:05.

L=a a�h a�l am�0 am�� am�þ am�0 am�� am�

32 0.0178 0.0030 0.477(5) 0.470(8) 0.488(9) 0.519(6) 0.504(4) 0.455(5)

32 0.0178 0.0060 0.500(5) 0.483(5) 0.503(8) 0.529(5) 0.519(4) 0.482(5)

32 0.0178 0.0080 0.512(4) 0.506(5) 0.522(4) 0.541(4) 0.527(3) 0.496(5)

32 0.014 0.0030 0.463(5) 0.456(9) 0.474(9) 0.496(6) 0.482(4) 0.445(6)

32 0.014 0.0060 0.495(4) 0.473(6) 0.497(8) 0.513(6) 0.500(4) 0.479(4)

32 0.014 0.0080 0.494(8) 0.508(9) 0.508(5) 0.512(7) 0.507(3) 0.485(6)

32 0.0166 0.0030 0.477(5) 0.465(5) 0.487(6) 0.515(4) 0.498(3) 0.451(4)

32 0.0166 0.0060 0.496(5) 0.483(5) 0.502(5) 0.526(4) 0.511(4) 0.480(5)

32 0.0166 0.0080 0.510(3) 0.502(3) 0.518(4) 0.535(3) 0.521(3) 0.496(3)

32 0.019 0.0060 0.501(6) 0.495(8) 0.519(13) 0.532(6) 0.524(6) 0.483(5)

32 0.020 0.0030 0.486(6) 0.478(8) 0.495(8) 0.531(6) 0.517(4) 0.461(5)

32 0.020 0.0060 0.510(6) 0.493(5) 0.515(7) 0.544(6) 0.534(4) 0.492(5)

32 0.020 0.0080 0.516(4) 0.510(7) 0.514(7) 0.547(4) 0.533(4) 0.500(5)

32 0.025 0.0060 0.522(5) 0.501(6) 0.531(7) 0.572(5) 0.556(4) 0.501(5)

TABLE XII. Strange octet baryon masses at � ¼ 4:2.

L=a a�h a�l am�0 am�� am�þ am�0 am�� am�

32 0.012 0.0065 0.402(4) 0.396(4) 0.405(5) 0.418(4) 0.406(4) 0.392(4)

48 0.012 0.0020 0.362(3) 0.360(3) 0.368(4) 0.390(2) 0.381(2) 0.344(3)

32 0.013 0.0065 0.406(7) 0.405(7) 0.417(7) 0.430(6) 0.416(6) 0.395(7)

32 0.015 0.0065 0.411(4) 0.409(4) 0.413(4) 0.431(4) 0.421(4) 0.397(4)

48 0.015 0.0020 0.374(2) 0.371(3) 0.380(3) 0.404(2) 0.397(2) 0.352(2)

32 0.016 0.0065 0.417(7) 0.409(4) 0.413(4) 0.442(5) 0.421(4) 0.397(4)
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TABLE XIII. Strange decuplet baryon masses at � ¼ 3:9.

L=a a�h a�l am��0 am��� am��þ am��0 am��� am�

32 0.0217 0.0030 0.700(7) 0.713(5) 0.700(6) 0.710(6) 0.702(5) 0.798(3)

32 0.0217 0.0040 0.726(4) 0.718(6) 0.715(6) 0.739(4) 0.721(4) 0.809(3)

24 0.0217 0.0040 0.716(12) 0.726(14) 0.717(17) 0.737(8) 0.714(8) 0.805(7)

24 0.0217 0.0064 0.749(7) 0.749(7) 0.740(11) 0.754(8) 0.734(8) 0.815(6)

24 0.0217 0.0085 0.759(5) 0.755(4) 0.755(5) 0.767(3) 0.738(5) 0.820(3)

24 0.0217 0.0100 0.773(8) 0.772(8) 0.773(9) 0.784(5) 0.749(7) 0.834(4)

24 0.015 0.0064 0.737(24) 0.736(7) 0.746(7) 0.728(15) 0.708(10) 0.772(16)

24 0.015 0.0085 0.751(10) 0.736(20) 0.755(7) 0.723(11) 0.659(18) 0.771(9)

24 0.015 0.0100 0.730(18) 0.757(19) 0.746(16) 0.720(15) 0.667(10) 0.771(11)

32 0.025 0.0040 0.730(9) 0.723(12) 0.710(14) 0.747(12) 0.738(8) 0.827(7)

32 0.030 0.0040 0.724(11) 0.743(10) 0.739(9) 0.782(7) 0.765(8) 0.870(6)

24 0.030 0.0064 0.772(6) 0.769(6) 0.760(11) 0.797(7) 0.781(6) 0.874(6)

24 0.030 0.0085 0.782(11) 0.736(7) 0.746(7) 0.812(7) 0.751(11) 0.771(9)

TABLE XIV. Strange decuplet baryon masses at � ¼ 4:05.

L=a a�h a�l am��0 am��� am��þ am��0 am��� am�

32 0.0178 0.0030 0.597(11) 0.589(10) 0.590(13) 0.596(8) 0.588(6) 0.661(7)

32 0.0178 0.0060 0.593(8) 0.586(8) 0.582(8) 0.582(7) 0.583(7) 0.638(6)

32 0.0178 0.0080 0.606(6) 0.607(7) 0.606(6) 0.609(6) 0.598(5) 0.651(6)

32 0.014 0.0030 0.589(12) 0.595(8) 0.603(6) 0.578(8) 0.570(6) 0.627(8)

32 0.014 0.0060 0.586(11) 0.574(13) 0.582(12) 0.568(10) 0.559(11) 0.623(7)

32 0.014 0.0080 0.588(10) 0.606(7) 0.592(6) 0.574(9) 0.574(6) 0.614(8)

32 0.0166 0.0030 0.570(12) 0.578(7) 0.561(8) 0.573(6) 0.567(6) 0.630(5)

32 0.0166 0.0060 0.582(12) 0.578(10) 0.568(14) 0.579(6) 0.577(7) 0.622(8)

32 0.0166 0.0080 0.615(4) 0.609(6) 0.604(7) 0.601(5) 0.586(5) 0.648(4)

32 0.019 0.0060 0.592(16) 0.576(13) 0.551(19) 0.579(8) 0.583(9) 0.648(5)

32 0.020 0.0030 0.611(7) 0.605(8) 0.610(7) 0.606(7) 0.596(8) 0.671(5)

32 0.020 0.0060 0.599(10) 0.591(9) 0.595(11) 0.594(11) 0.591(9) 0.657(6)

32 0.020 0.0080 0.610(6) 0.619(6) 0.605(6) 0.613(8) 0.597(6) 0.660(5)

32 0.025 0.0060 0.598(11) 0.589(12) 0.577(15) 0.613(7) 0.613(8) 0.674(8)

TABLE XV. Strange decuplet baryon masses at � ¼ 4:2.

L=a a�h a�l am��0 am��� am��þ am��0 am��� am�

32 0.012 0.0065 0.480(7) 0.482(6) 0.476(8) 0.468(6) 0.464(6) 0.498(6)

48 0.012 0.0020 0.453(4) 0.451(4) 0.451(4) 0.444(3) 0.440(3) 0.487(3)

32 0.013 0.0065 0.501(11) 0.500(10) 0.495(14) 0.494(9) 0.489(9) 0.522(10)

32 0.015 0.0065 0.478(6) 0.487(5) 0.477(6) 0.478(5) 0.475(5) 0.513(4)

48 0.015 0.0020 0.458(4) 0.455(3) 0.452(2) 0.440(4) 0.448(4) 0.505(3)

32 0.016 0.0065 0.507(11) 0.487(5) 0.503(12) 0.504(10) 0.505(9) 0.540(10)
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TABLE XVII. Charm spin-1=2 baryon masses at � ¼ 4:05.

L=a a�h a�l am�þ
c

am�0
c

am�þþ
c

am�þþ
cc

am�þ
cc

am�þ
c

32 0.170 0.0030 0.843(4) 0.841(5) 0.839(6) 1.134(5) 1.137(4) 0.774(5)

32 0.170 0.0060 0.844(4) 0.831(9) 0.836(8) 1.149(3) 1.139(4) 0.791(5)

32 0.170 0.0080 0.852(4) 0.852(5) 0.852(7) 1.146(2) 1.142(3) 0.791(6)

32 0.200 0.0030 0.900(4) 0.888(7) 0.894(6) 1.244(3) 1.244(5) 0.828(6)

32 0.200 0.0060 0.903(4) 0.886(10) 0.891(8) 1.255(2) 1.250(3) 0.843(5)

32 0.200 0.0080 0.905(5) 0.907(5) 0.908(8) 1.250(2) 1.247(3) 0.848(5)

32 0.210 0.0030 0.917(4) 0.912(6) 0.908(7) 1.282(3) 1.276(4) 0.845(6)

32 0.210 0.0060 0.919(4) 0.911(4) 0.921(4) 1.286(3) 1.279(3) 0.859(5)

32 0.210 0.0080 0.926(3) 0.925(4) 0.926(4) 1.288(2) 1.283(2) 0.865(4)

32 0.230 0.0030 0.952(5) 0.942(7) 0.948(6) 1.345(3) 1.342(5) 0.883(5)

32 0.230 0.0060 0.952(4) 0.940(11) 0.945(8) 1.355(3) 1.353(3) 0.895(5)

32 0.230 0.0080 0.959(5) 0.960(5) 0.959(5) 1.349(3) 1.349(3) 0.899(5)

32 0.260 0.0030 1.004(5) 1.005(10) 1.003(5) 1.444(3) 1.441(5) 0.935(5)

32 0.260 0.0060 1.001(5) 0.992(11) 0.997(8) 1.457(3) 1.451(4) 0.946(5)

32 0.260 0.0080 1.010(6) 1.011(7) 1.012(8) 1.449(3) 1.446(5) 0.955(3)

TABLE XVI. Charm spin-1=2 baryon masses at � ¼ 3:9.

L=a a�h a�l am�þ
c

am�0
c

am�þþ
c

am�þþ
cc

am�þ
cc

am�þ
c

24 0.240 0.0040 1.100(6) 1.105(13) 1.102(14) 1.532(5) 1.528(4) 1.015(8)

24 0.240 0.0064 1.117(6) 1.059(20) 1.122(6) 1.552(3) 1.533(4) 1.045(5)

24 0.240 0.0085 1.131(6) 1.125(5) 1.135(5) 1.555(4) 1.541(5) 1.063(3)

24 0.240 0.0100 1.139(4) 1.131(5) 1.138(5) 1.559(3) 1.551(2) 1.070(3)

24 0.250 0.0040 1.128(7) 1.120(9) 1.099(14) 1.591(5) 1.575(5) 1.055(6)

24 0.270 0.0040 1.154(5) 1.157(5) 1.161(6) 1.640(4) 1.628(3) 1.069(4)

24 0.270 0.0064 1.172(7) 1.164(5) 1.176(7) 1.648(5) 1.634(4) 1.096(5)

24 0.270 0.0085 1.192(4) 1.181(4) 1.188(5) 1.658(3) 1.651(3) 1.115(3)

24 0.270 0.0100 1.196(4) 1.189(4) 1.197(4) 1.660(3) 1.649(25) 1.122(3)

24 0.300 0.0040 1.203(9) 1.214(5) 1.221(5) 1.736(6) 1.731(4) 1.135(4)

24 0.300 0.0064 1.227(4) 1.162(22) 1.236(5) 1.747(4) 1.722(6) 1.148(5)

24 0.300 0.0085 1.244(4) 1.236(4) 1.244(4) 1.759(3) 1.736(6) 1.169(3)

24 0.300 0.0100 1.251(3) 1.237(5) 1.249(4) 1.762(2) 1.751(3) 1.172(3)

TABLE XVIII. Charm spin-1=2 baryon masses at � ¼ 4:2.

L=a a�h a�l am�þ
c

am�0
c

am�þþ
c

am�þþ
cc

am�þ
cc

am�þ
c

32 0.130 0.0065 0.696(6) 0.694(6) 0.698(6) 0.932(4) 0.927(5) 0.653(4)

32 0.160 0.0065 0.733(6) 0.731(6) 0.734(7) 0.999(4) 0.997(5) 0.688(4)

32 0.185 0.0065 0.778(7) 0.776(6) 0.779(7) 1.085(4) 1.082(5) 0.731(4)

32 0.210 0.0065 0.821(7) 0.819(7) 0.822(7) 1.168(4) 1.156(5) 0.774(4)

48 0.136 0.0020 0.653(3) 0.656(3) 0.652(3) 0.899(2) 0.898(2) 0.603(2)

48 0.170 0.0020 0.716(3) 0.719(3) 0.715(4) 1.017(2) 1.016(2) 0.663(3)
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TABLE XX. Charm spin-3=2 baryon masses at � ¼ 4:05.

L=a a�h a�l am��þ
c

am��0
c

am��þþ
c

am��þþ
cc

am��þ
cc

am�ccc

32 0.170 0.0030 0.889(6) 0.889(6) 0.890(4) 1.170(6) 1.174(5) 1.468(3)

32 0.170 0.0060 0.887(4) 0.883(5) 0.868(12) 1.184(3) 1.172(6) 1.476(2)

32 0.170 0.0080 0.885(5) 0.890(7) 0.884(5) 1.176(3) 1.175(4) 1.468(3)

32 0.200 0.0030 0.940(6) 0.940(6) 0.941(4) 1.277(4) 1.281(4) 1.616(3)

32 0.200 0.0060 0.928(6) 0.937(4) 0.918(11) 1.288(3) 1.281(3) 1.623(2)

32 0.200 0.0080 0.936(5) 0.945(6) 0.935(5) 1.279(3) 1.281(3) 1.612(3)

32 0.210 0.0030 0.956(6) 0.956(6) 0.958(4) 1.310(4) 1.314(4) 1.663(3)

32 0.210 0.0060 0.955(5) 0.954(4) 0.948(5) 1.316(3) 1.310(4) 1.667(2)

32 0.210 0.0080 0.957(4) 0.962(4) 0.958(4) 1.316(3) 1.313(3) 1.663(3)

32 0.230 0.0030 0.989(6) 0.989(6) 0.992(4) 1.376(4) 1.379(4) 1.761(3)

32 0.230 0.0060 0.984(4) 0.987(4) 0.967(11) 1.387(3) 1.380(4) 1.768(2)

32 0.230 0.0080 0.986(5) 0.995(6) 0.986(5) 1.378(3) 1.380(3) 1.758(3)

32 0.260 0.0030 1.039(6) 1.038(6) 1.036(7) 1.473(4) 1.476(4) 1.905(3)

32 0.260 0.0060 1.033(5) 1.032(5) 1.016(11) 1.485(3) 1.478(4) 1.910(3)

32 0.260 0.0080 1.034(5) 1.039(6) 1.032(10) 1.472(3) 1.472(5) 1.898(4)

TABLE XIX. Charm spin-3=2 baryon masses at � ¼ 3:9.

L=a a�h a�l am��þ
c

am��0
c

am��þþ
c

am��þþ
cc

am��þ
cc

am�ccc

24 0.240 0.0040 1.148(10) 1.142(16) 1.147(15) 1.572(6) 1.564(6) 1.989(3)

24 0.240 0.0064 1.159(10) 1.151(9) 1.166(11) 1.580(6) 1.572(5) 1.991(4)

24 0.240 0.0085 1.175(8) 1.164(8) 1.174(10) 1.594(5) 1.578(7) 1.997(4)

24 0.240 0.0100 1.184(6) 1.184(4) 1.181(6) 1.599(3) 1.591(3) 1.999(3)

24 0.250 0.0040 1.173(8) 1.182(9) 1.173(11) 1.602(7) 1.606(8) 2.043(4)

24 0.270 0.0040 1.201(8) 1.204(7) 1.210(5) 1.671(7) 1.668(5) 2.130(3)

24 0.270 0.0064 1.209(10) 1.210(5) 1.225(6) 1.680(5) 1.672(5) 2.133(3)

24 0.270 0.0085 1.231(4) 1.224(5) 1.230(4) 1.692(5) 1.686(3) 2.136(4)

24 0.270 0.0100 1.239(4) 1.234(4) 1.238(5) 1.694(4) 1.690(4) 2.141(3)

24 0.300 0.0040 1.263(5) 1.245(15) 1.260(6) 1.775(6) 1.764(5) 2.269(3)

24 0.300 0.0064 1.267(5) 1.260(5) 1.275(6) 1.779(5) 1.768(5) 2.270(3)

24 0.300 0.0085 1.281(4) 1.274(5) 1.280(4) 1.794(3) 1.770(8) 2.274(4)

24 0.300 0.0100 1.292(3) 1.283(4) 1.282(6) 1.795(3) 1.789(3) 2.277(2)

TABLE XXI. Charm spin-3=2 baryon masses at � ¼ 4:05.

L=a a�h a�l am��þ
c

am��0
c

am��þþ
c

am��þþ
cc

am��þ
cc

am�ccc

32 0.130 0.0065 0.730(8) 0.730(8) 0.727(8) 0.958(6) 0.963(6) 1.191(3)

32 0.160 0.0065 0.763(8) 0.763(8) 0.761(8) 1.025(6) 1.029(6) 1.287(3)

32 0.185 0.0065 0.805(8) 0.804(8) 0.802(8) 1.107(6) 1.109(6) 1.408(3)

32 0.210 0.0065 0.845(9) 0.845(8) 0.843(8) 1.188(6) 1.193(6) 1.526(3)

48 0.136 0.0020 0.686(4) 0.688(3) 0.683(4) 0.925(2) 0.926(2) 1.166(1)

48 0.170 0.0020 0.744(4) 0.746(3) 0.741(4) 1.039(2) 1.039(2) 1.333(1)

TABLE XXII. Strange charm spin-1=2 and spin-3=2 baryon masses at � ¼ 4:2 at the tuned heavy quark masses.

L=a a�s a�c a�l am�c
am�0

c
am�c

am�cc
am��

c
am��

c
am��

cc

48 0.015 0.17 0.0020 0.708(2) 0.745(3) 0.771(2) 1.044(1) 0.770(3) 0.794(2) 1.065(2)
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