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We discuss single diffractive gauge boson ð��;W�; ZÞ production in proton-proton collisions at

different (Large Hadron Collider and Relativistic Heavy Ion Collider) energies within the color dipole

approach. The calculations are performed for gauge bosons produced at forward rapidities. The diffractive

cross section is predicted as a function of the fractional momentum and invariant mass of the lepton pair.

We found a dramatic breakdown of the diffractive QCD factorization caused by an interplay of hard and

soft interactions. Data from the CDF experiment on diffractive production of W and Z are well explained

in a parameter-free way.
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I. INTRODUCTION

The characteristic feature of diffractive processes at high
energies is the presence of a large rapidity gap between the
remnants of the beam and target. The general theoretical
framework for such processes was formulated in the pio-
neering works of Glauber [1], Feinberg and Pomeranchuk
[2], and Good and Walker [3]. The new diffractive state is
produced only if different Fock components of the incom-
ing plane wave, which are the eigenstates of interaction,
interact differently with the target. This results in a new
combination of the Fock components, which can be pro-
jected to a new physical state (e.g., see the review on QCD
diffraction in Ref. [4]).

The main difficulty in the formulation of a theoretical
QCD-based framework for diffractive scattering arises from
the fact that it is essentially contaminated by soft, non-
perturbative interactions. For example, diffractive deep-
inelastic scattering (DIS), ��p ! Xp, although it is a
higher twist process, is dominated by soft interactions [5].
Within the dipole approach [6], such a process looks like
elastic scattering of �qq dipoles of different sizes and of
higher Fock states containing more partons. Although for-
mally the process �� ! X is an off-diagonal diffraction, it
does not vanish in the limit of unitarity saturation, the so-
called black-disk limit. This happens because the photon
distribution functions and hadronic wave functions are not
orthogonal. Such a principal difference between diffractive
processes in DIS and hadronic collisions is one of the
reasons for breakdown of diffractive QCD factorization
based, e.g., on the Ingelman-Schlein model [7]. In particu-
lar, the cross section of diffractive production of the W
boson was found in the CDF experiment [8,9] to be 6 times
smaller than was predicted by relying on factorization and

HERA data [10]. The phenomenological models based on
assumptions of the diffractive factorization, which are
widely discussed in the literature (see, e.g., Refs. [11,12]),
predict a significant increase of the ratio of the diffractive to
inclusive gauge boson production cross sections with en-
ergy. This is supposed to be tested soon at the LHC.
The process under discussion, diffractive Abelian radia-

tion of electroweak gauge bosons, is the real off-diagonal
diffraction. It vanishes in the black-disk limit and may be
strongly suppressed by the absorptive corrections even
being far from the unitarity bound. The suppression caused
by the absorptive corrections, also known as the survival
probability of a large rapidity gap, is related to the initial
and final state interactions. Usually, the survival probabil-
ity is introduced in the diffractive cross section in a proba-
bilistic way and is estimated in oversimplified models, like
eikonal, quasieikonal, two-channel approximations, etc.
The advantage of the dipole approach is the possibility to
calculate directly (although in a model-dependent way) the
full diffractive amplitude, which contains all the absorption
corrections, because it employs the phenomenological di-
pole cross section fitted to data. Below, we explicitly single
out from the diffractive amplitude the survival probability
amplitude as a factor.
Another source of factorization breaking is the simple

observation that diffractive Abelian radiation by a quark
vanishes in the forward direction (zero momentum transfer
to the target) [13]. Indeed, the Fock components of the
quark with or without the Abelian boson (��, Z, W, or
Higgs boson) interact with the same total cross sections,
because only the quark interacts strongly. Therefore, after
integration of the amplitude over the impact parameter, the
Fock state decomposition of the projectile remains
unchanged, and only elastic qp scattering is possible.
Notice that non-Abelian radiation (gluons) does not expose
this property, because the Fock components jqi and jqgi,*Roman.Pasechnik@thep.lu.se

PHYSICAL REVIEW D 86, 114039 (2012)

1550-7998=2012=86(11)=114039(18) 114039-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.114039


although they have the same color, interact differently
[13,14].

In the case of pp collisions, the directions of propagation
of the proton and its quarks do not coincide. Already this is
sufficient to get a nonvanishing diffractive Abelian radia-
tion in forward scattering. Moreover, interaction with the
spectator partons opens new possibilities for diffractive
scattering; namely, the color exchange in the interaction
of one projectile parton can be compensated (neutralized)
by interaction of another projectile parton. It was found in
Refs. [15,16] that this contribution leads to a dominant
contribution to the diffractive Abelian radiation in the for-
ward direction. This mechanism, leading to a dramatic
violation of diffractive QCD factorization, is under consid-
eration in the present paper. The breakdown of the diffrac-
tive (Ingelman-Schlein) QCD factorization is a result of the
interplay between the soft and hard interactions, which
considerably affects the corresponding observables [15].
Recently, such an effect has been analyzed in the diffractive
Drell-Yan (DY) process [15,16], and here we extend our
study of this interesting phenomenon to a more general
case—the diffractive gauge boson production.

II. DIFFRACTIVE GAUGE BOSON
PRODUCTION AMPLITUDE

Consider first the general formalism for diffractive ra-
diation of the electroweak gauge bosons, ��, Z0, and W�,
within the color dipole approach. Let us start with consid-
eration of the distribution functions for the Fock states
contributing to heavy gauge boson radiation by a quark
(valence or sea) in the projectile proton.

A. Gauge boson radiation by a quark

The qf ! qf�
� transition amplitude is given by the

vector ��q coupling only, i.e.,

Tðqf ! qf�
�Þ ¼ �ieZq"

�
���

�uf��uf; (2.1)

whereZf is the quark charge and �uf and uf are spinors for the

quark of the flavor f in the final and initial states, respectively.
The couplings of Z0 and W� bosons to quarks contain

both vector and axial-vector parts. The qf ! qfZ
0 transi-

tion amplitude is given by

Tðqf ! qfZ
0Þ ¼ �ie

sin2�W
"��Z

�uf½gZv;f�� � gZa;f���5�uf;
(2.2)

while the qf ! qf0W
� amplitudes read

Tðqfu ! qfdW
þÞ

¼ �ie

2
ffiffiffi
2

p
sin�W

Vfufd"
�
�W

�ufu½gWv;f�� � gWa;f���5�ufd;

Tðqfd ! qfuW
�Þ

¼ �ie

2
ffiffiffi
2

p
sin�W

Vfdfu"
�
�W

�ufd½gWv;f�� � gWa;f���5�ufu;

(2.3)
for the up (fu ¼ u, c, t) and down (fd ¼ d, s, b) quarks,
respectively. Here, Vfufd is the Cabibbo-Kobayashi-

Maskawa matrix element corresponding to fu ! fd tran-
sition, and �W is the Weinberg angle. The weak mixing
parameter sin2�W is related at the tree level to GF, MZ,

and �em by sin2�W ¼ 4��em=
ffiffiffi
2

p
GFM

2
Z [we adopt here

�emðmZÞ ’ 1=127:934]. The vector couplings at the tree
level are

gZv;fu ¼
1

2
�4

3
sin2�W; gZv;fd ¼�1

2
þ2

3
sin2�W; gWv;f ¼ 1;

(2.4)
whereas axial-vector couplings are

gZa;fu ¼
1

2
; gZa;fd ¼ � 1

2
; gWa;f ¼ 1: (2.5)

Heavy gauge boson polarization vectors describing
transverse (T), �G ¼ �1, and longitudinal (L), �G ¼ 0,
polarization states are defined in light-cone coordinates1 as

"�¼� ¼ ð0; 0; ~"�¼�Þ; ~"�¼� ¼ � 1ffiffiffi
2

p ð1;�iÞ; (2.6)

"�¼0 ¼
�
qþ

M
;� M

qþ
; ~0

�
: (2.7)

Note that we work in the physical (unitary) gauge. The
calculations are performed in the high energy limit, i.e., in
the limit where qþ is much larger than all other scales.
Let us start with the radiation of a heavy gauge boson by

a quark interacting with a proton target. We assume that the
longitudinal momentum of the projectile is not changed
significantly by the soft interaction at high energies. In the
high energy limit the corresponding s- and u-channel
amplitudes of the gauge boson bremsstrahlung in the
quark-target scattering can be written as follows (cf. dif-
fractive DY amplitude in Ref. [16]):

Ms ’ �i
ffiffiffiffiffiffiffi
4�

p
CGq �ð1� �Þ"��

X
�

�u�2
ðp2Þ½gGv;f�� � gGa;f���5�u�ðp2 þ qÞ

�2l2? þ �2
A��1

ðk?Þ;

Mu ’ i
ffiffiffiffiffiffiffi
4�

p
CGq �"

�
�

X
�

�u�ðp1 � qÞ½gGv;f�� � gGa;f���5�u�1
ðp1Þ

�2ð~l? þ ~k?Þ2 þ �2
A��2

ðk?Þ;
(2.8)

1As usual, the light-cone 4-vector p is defined as p ¼ ðpþ; p�; ~pÞ, where p� ¼ p0 � pz.
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where G ¼ �, W�, Z is the gauge boson under considera-

tion; �2 ¼ ð1� �ÞM2 þ �2m2
q; and � is the fractional

light-cone momentum carried by the gauge boson, which
has invariant mass M. The vector (v) and axial-vector (a)

couplings gZ;Wv=a;f are defined in Eqs. (2.4) and (2.5), whereas

our notations imply g�v;f ¼ 1 and g�a;f ¼ 0; �1;2 are the

helicities of initial and final quarks, respectively; ~k? ¼
~p2? � ~p1? þ ~q? is the transverse momentum of the ex-

changed gluon; and ~l? ¼ ~p2? � ð1� �Þ ~q?=� is the
transverse momentum of the final quark in the frame,
where the z axis is parallel to the gauge boson momentum.
The amplitude A for scattering of the quark on the nu-
cleon in the target rest frame has the following approxi-
mate form [17]:

A��1
ð ~k?Þ ’ 2p0

1	��1
V qð ~k?Þ;

A��2
ð ~k?Þ ’ 2p0

2	��2
V qð ~k?Þ;

where the factorized universal amplitudeV qð ~k?Þ does not
depend on the energy and helicity state of the quark. The

coupling factor CGf , f ¼ q, l, introduced in Eq. (2.8), is

defined for G ¼ ��, Z0, and W� bosons, respectively, as

C�f ¼ ffiffiffiffiffiffiffiffiffi
�em

p
Zf; CZf ¼

ffiffiffiffiffiffiffiffiffi
�em

p
sin2�W

;

CW
þ

f ¼
ffiffiffiffiffiffiffiffiffi
�em

p
2

ffiffiffi
2

p
sin�W

Vfufd ; CW
�

f ¼
ffiffiffiffiffiffiffiffiffi
�em

p
2

ffiffiffi
2

p
sin�W

Vfdfu ;

where �em ¼ e2=ð4�Þ ¼ 1=137 is the electromagnetic
coupling constant. In the case of gauge boson couplings
to leptons, we should substitute Vfufd ¼ Vfdfu ¼ 1.

Eventually, we can switch to impact parameter space by

performing the Fourier transformation over ~l? and ~k? and
write down the total amplitude Mq for gauge boson radia-

tion in quark-proton scattering as follows:

M
�
q ð ~b; ~rÞ¼�2ip0

1

ffiffiffiffiffiffiffi
4�

p ffiffiffiffiffiffiffiffiffiffiffiffi
1��

p
�2

���
V�Að ~r;�;MÞ � ½Vqð ~bÞ�Vqð ~bþ�~rÞ�;

Vqð ~bÞ¼
Z d2k?
ð2�Þ2e

�i ~k?� ~bV qð ~k?Þ;

�Z;W
V�Að ~r;�;MÞ¼�Z;W

V ð~r;�;MÞ��Z;W
A ð ~r;�;MÞ;

where �~r is the transverse separation between the initial
and final quarks; and ��

V=Að~r; �;MÞ are the light-cone

distribution functions of the vector q ! Vq and axial-
vector q ! Aq transitions in the mixed representation
defined as

�
�
V ð ~r;�;MÞ¼CGq gGv;q�3

ffiffiffiffiffiffiffiffiffiffiffiffi
1��

p

�
Z d2l?
ð2�Þ2e

�i~l?��~r
�u�2

ðpfÞ��u�ðp2þqÞ
�2l2?þ�2

;

��
A ð ~r;�;MÞ¼CGq gGa;q�3

ffiffiffiffiffiffiffiffiffiffiffiffi
1��

p

�
Z d2l?
ð2�Þ2e

�i~l?��~r
�u�2

ðp2Þ���5u�ðp2þqÞ
�2l2?þ�2

:

For an unpolarized initial quark the interference terms
between the vector and axial-vector wave functions cancel
each other, i.e.,X

�1;�2

��
V�Að�; ~
1Þ���

V�Að�; ~
2Þ

¼��
Vð�; ~
1Þ���

V ð�; ~
2Þþ��
Að�; ~
1Þ���

A ð�; ~
2Þ: (2.9)

The bilinear combinations of the vector V and axial-vector
A light-cone distribution functions, corresponding to radia-
tion of longitudinally (� ¼ 0) and transversely (� ¼ �1)
polarized gauge bosons, have the form2

�T
Vð�; ~
1Þ�T�

V ð�; ~
2Þ
¼ X

�¼�1

1

2

X
�1;�2

���ð�Þ��
V ð�; ~
1Þ��ð�Þ���

V ð�; ~
2Þ

¼ C2qðgGv;qÞ2
2�2

�
m2

q�
4K0ð�
1ÞK0ð�
2Þ

þ ½1þ ð1� �Þ2��2 ~
1 � ~
2


1
2

K1ð�
1ÞK1ð�
2Þ
�
;

�L
Vð�; ~
1Þ�L�

V ð�; ~
2Þ
¼ 1

2

X
�1;�2

���ð� ¼ 0Þ��
V ð�; ~
1Þ��ð� ¼ 0Þ���

V ð�; ~
2Þ

¼ C2qðgGv;qÞ2
�2

M2ð1� �Þ2K0ð�
1ÞK0ð�
2Þ: (2.10)

�T
Að�; ~
1Þ�T�

A ð�; ~
2Þ

¼ C2qðgGa;qÞ2
2�2

�
m2

q�
2ð2� �Þ2K0ð�
1ÞK0ð�
2Þ

þ ½1þ ð1� �Þ2��2 ~
1 � ~
2


1
2

K1ð�
1ÞK1ð�
2Þ
�
;

�L
Að�; ~
1Þ�L�

A ð�; ~
2Þ

¼ C2qðgGa;qÞ2
�2

�2

M2

�
�2K0ð�
1ÞK0ð�
2Þ

þ �2m2
q

~
1 � ~
2


1
2

K1ð�
1ÞK1ð�
2Þ
�
; (2.11)

where the averaging over helicity of the initial quark is
performed.

2In the case of a heavy photon �� bremsstrahlung by a quark,
such formulas were derived in Refs. [17–19].
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B. Forward diffractive radiation from a dipole

The amplitude of diffractive gauge boson radiation by a
quark-antiquark dipole does not vanish in the forward
direction, unlike the radiation by a single quark [13,15].
This can be understood as follows. According to the gen-
eral theory of diffraction [1–4], the off-diagonal diffractive
channels are possible only if different Fock components of
the projectile (eigenstates of interaction) interact with dif-
ferent elastic amplitudes. Clearly, the two Fock states
consisting of just a quark and of a quark plus a gauge
boson interact equally, if their elastic amplitudes are inte-
grated over impact parameter. Indeed, when a quark fluc-
tuates into a state jqGi containing the gauge boson G, with
the transverse quark-boson separation ~r, the quark gets a
transverse shift � ~r ¼ �~r. The impact parameter integra-
tion gives the forward amplitude. Both Fock states jqi and
jqGi interact with the target with the same total cross
section; this is why a quark cannot radiate at zero momen-
tum transfer, and, hence, G is not produced diffractively in
the forward direction. This is the general and model-
independent statement. The details of this general consid-
eration can be found in Ref. [13] (Appendixes A1 and A4).
The same result is obtained by calculating Feynman graphs
in Appendix B4 of the same paper. The unimportance of
radiation between two interactions was also demonstrated
by Brodsky and Hoyer in Ref. [20].

Notice that in all these calculations one assumes that the
coherence time of radiation considerably exceeds the time
interval between the two interactions, which is fulfilled in
our case, since we consider radiation at forward rapidities.

The situation changes if the boson is radiated diffrac-
tively by a dipole. Then the quark dipoles with or without a
gauge boson have different sizes and interact with the
target differently. So the amplitude of the diffractive gauge
boson radiation from the q �q dipole is proportional to the
difference between elastic amplitudes of the two Fock
components, jq �qi and jq �qGi [15], i.e.,
M �qqð ~b; ~rp; ~r; �Þ

¼ �2ip0
1

ffiffiffiffiffiffiffi
4�

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
�2

��
��qð�; ~rÞ½2Imfelð ~b; ~rpÞ

� 2Imfelð ~b; ~rp þ �~rÞ�; (2.12)

where ~rp is the transverse separation of the q �q dipole. The

partial elastic dipole-proton amplitude is normalized to the
dipole cross section, which is parameterized by the follow-
ing simple ansatz [21]:

� �qqðrp; xÞ ¼
Z

d2b2Imfelð ~b; ~rpÞ ¼ �0ð1� e�r2p=R
2
0
ðxÞÞ;
(2.13)

where �0 ¼ 23:03 mb, R0ðxÞ ¼ 0:4 fm� ðx=x0Þ0:144, and
x0 ¼ 0:003. This saturated form, although oversimplified
(compare with Ref. [22]), is rather successful in the
description of experimental HERA data with a reasonable

accuracy. We rely on this parametrization in what follows,

and the explicit form of the amplitude felð ~b; ~rÞ will be
specified later.
The diffractive amplitude (2.12), thus, occurs to be

sensitive to the large transverse separations between the
projectile quarks in the incoming proton. These distances
are controlled by a nonperturbative scale, which is one of
the reasons for the breakdown of diffractive QCD factori-
zation in the diffractive gauge boson production (for more
details, see Refs. [15,16]).

III. SINGLE DIFFRACTIVE CROSS SECTION

The differential cross section for the single diffractive
dilepton (l�l pair in the case of �� and Z and l�l pair in the
case of W�) production in the target rest frame can be
written in terms of the gauge boson production cross
section at a given invariant mass of the dilepton M.
Integrating the cross section over the solid angle of the
lepton pair and the boson transverse momentum ~q?, we get
for the diffractive Drell-Yan cross section [16]

d6�L;Tðpp ! pl�lXÞ
d2q?dx1dM2d2	?

¼ �em

3�M2

d5�L;Tðpp ! p��XÞ
d2q?dx1d2	?

;

(3.1)

where x1 is the fractional light-cone momentum of the

dilepton, ~	? is the transverse momentum of the recoil
proton, and ~q? is the transverse momentum of the outgoing
photon (or dilepton). Compared to our previous study, here
we are going to look at the q? dependence of the diffrac-
tive DY cross section in a much wider range of dilepton
invariant masses accessible at the LHC.
In the case of the diffractive production of G ¼ Z0, W�

bosons, it is convenient to employ the simple and phenom-
enologically successful model for the invariant mass dis-
tribution in the decay of an unstable particle (for details,
see, e.g., Ref. [23]) and to present the differential cross
section in the factorized form

d4�L;Tðpp ! pðG� ! l�l; l ��lÞXÞ
d2q?dx1dM2d2	?

¼ BrðG ! l�l; l�lÞ
GðMÞ d
3�L;Tðpp ! pG�XÞ
d2q?dx1d2	?

; (3.2)

where BrðZ0 ! P
l¼e;�;
l�lÞ ’ 0:101 and BrðW�!P

l¼e;�;
l�lÞ’0:326 [24] are the leptonic branching ratios

of Z0 and W� bosons, respectively, and 
GðMÞ is the
invariant mass distribution of the dileptons from the decay
of the gauge boson G:


GðMÞ¼ 1

�

M�GðMÞ
ðM2�m2

GÞ2þ½M�GðMÞ�2 ; �GðMÞ=M�1:

(3.3)
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Here, mG is the fixed on-shell boson mass, and �GðMÞ is its total decay width defined in the standard way by substitution
mG ! M, i.e.,

�WðMÞ ’ 3�emM

4sin2�W
;

�ZðMÞ ’ �emM

6sin22�W

�
160

3
sin4�W � 40sin2�W þ 21

�
:

(3.4)

Let us assume that the gauge boson is emitted by the quark q1. As a result of the hard emission, the quark position in the
impact parameters, being initially ~r1, gets shifted to ~r1 þ �~r. Applying the completeness relation to the wave function of
the proton remnant in the final state

X
f

�fð ~r1 þ �~r; ~r2; ~r3; fx1;2;...q g; fx1;2;...g gÞ��
fð~r01 þ �~r0; ~r02; ~r

0
3; fx01;2;...q g; fx01;2;...g gÞ

¼ 	ð~r1 � ~r01 þ �ð ~r� ~r0ÞÞ	ð ~r2 � ~r02Þ	ð~r3 � ~r03Þ
Y
j

	ðxjq=g � x0jq=gÞ; (3.5)

where ~ri and x
i
q=g are the transverse coordinates and fractional light-cone momenta of the valence or sea quarks and gluons,

we get the diffractive G� production cross section in the following form [15,16]:

d5��G
ðpp ! pG�XÞ

d2q?dx1d2	?
¼ 1

ð2�Þ2
1

64�2

1

x1

X
q¼val;sea

Z
d2r1d

2r2d
2r3d

2rd2r0d2bd2b0dxq
Y
i

dxiqdx
i
g

���G

V�Að ~r; �;MÞ��G�
V�Að~r0; �;MÞj�ið~r1; ~r2; ~r3; xq; fx2;3;...q g; fx2;3;...g gÞj2

��ð~r1; ~r2; ~r3; ~b; ~r; �Þ�ð~r1; ~r2; ~r3; ~b0; ~r0; �Þei ~	?�ð ~b� ~b0Þei~l?��ð~r�~r0Þ; (3.6)

where �i is the proton wave function, the summation is
performed over all valence or sea quarks and gluons in the
proton, and the light-cone fraction of the quark emitting
the gauge boson x1q 	 xq is fixed by the external phase
space variables x1 and � due to the momentum conserva-
tion, namely,

xq ¼ x1
�
; x1 ¼ qþ

Pþ
1

; (3.7)

where P1 is the 4-momentum of the projectile proton, q is
the 4-momentum of the produced gauge boson, and

�¼�2Imfelð ~b; ~r1� ~r2Þþ2Imfelð ~b; ~r1� ~r2þ�~rÞ
�2Imfelð ~b; ~r1� ~r3Þþ2Imfelð ~b; ~r1� ~r3þ�~rÞ (3.8)

is the properly normalized diffractive amplitude, where
felð ~b; ~r1 � ~r2Þ is the partial elastic amplitude for dipole
of transverse size r colliding with a proton at impact
parameter b to be specified below. As expected, the dif-
fractive amplitude � is proportional to the difference be-
tween elastic amplitudes for the dipoles of slightly
different sizes. This difference is suppressed by absorptive
corrections, the effect sometimes called survival probabil-
ity of large rapidity gaps.

The amplitude Eq. (3.8) is the full expression, which
includes by default the effect of absorption and does not
need any extra survival probability factor.3 This can be
illustrated on a simple example of elastic dipole scattering
off a potential. The dipole elastic amplitude has the eikonal
form

Im felð ~b; ~r1 � ~r2Þ ¼ 1� exp½i�ð ~r1Þ � i�ð ~r2Þ�; (3.9)

where

�ðbÞ ¼ �
Z 1

�1
dzVð ~b; zÞ; (3.10)

and Vð ~b; zÞ is the potential, which depends on the impact
parameter and longitudinal coordinate, and is nearly imagi-
nary at high energies. The difference between elastic
amplitudes with a shifted quark position, which enters
the diffractive amplitude, reads

Im felð ~b; ~r1 � ~r2 þ �~rÞ � Imfelð ~b; ~r1 � ~r2Þ
¼ exp½i�ð ~r1Þ � i�ð ~r2Þ� exp½i�~r � ~r�ð ~r1Þ�: (3.11)

The first factor exp½i�ð~r1Þ � i�ð~r2Þ� is exactly the survival
probability amplitude, which vanishes in the black-disk
limit, as it should be. This proves that the cross section
Eq. (3.6) includes the effect of absorption. Notice that
usually the survival probability factor is introduced into
the diffractive cross section probabilistically, while in

3Such a statement has already been made in a similar analysis
of the diffractive heavy flavor production performed in Ref. [14]
and in our previous work on diffractive DY study [16].
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Eq. (3.6) it is treated quantum mechanically, at the ampli-
tude level.

All the elastic amplitudes in Eq. (3.8) implicitly depend
on energy. They cannot be calculated reliably but are
known from phenomenology. Since large dipole sizes
j~ri � ~rjj 
 b
 Rp, i � j (Rp is the mean proton size),

are important in Eq. (3.8), the Bjorken variable x is ill
defined, and the collision energy is a more appropriate
variable. A parametrization of the dipole cross section as
a function of s was proposed and fitted to data in Ref. [13],
and the corresponding partial dipole amplitude is given by
[25–27]

Imfelð ~b; ~rp; s; xqÞ ¼ �0ðsÞ
8�BðsÞ

�
exp

�
�½ ~bþ ~rpð1� xqÞ�2

2BðsÞ
�
þ exp

�
�½ ~bþ ~rpxq�2

2BðsÞ
�

� 2 exp

�
� r2p

R2
0ðsÞ

� ½ ~bþ ~rpð1=2� xqÞ�2
2BðsÞ

��
;

BðsÞ ¼ R2
NðsÞ þ R2

0ðsÞ=8; (3.12)

where xq is the quark longitudinal quark fraction in the
dipole defined in Eq. (3.7), and

R0ðsÞ ¼ 0:88 fmðs0=sÞ0:14;
R2
NðsÞ ¼ B�p

el ðsÞ �
1

4
R2
0ðsÞ �

1

3
hr2chi�;

�0ðsÞ ¼ ��p
tot ðsÞ

�
1þ 3R2

0ðsÞ
8hr2chi�

�
:

(3.13)

Here, the pion-proton total cross section is parameterized
as [28] ��p

tot ðsÞ ¼ 23:6ðs=s0Þ0:08 mb, s0 ¼ 1000 GeV2, the
mean pion radius squared is [29] hr2chi� ¼ 0:44 fm2,
and the Regge parametrization of the elastic slope
B�p
el ðsÞ ¼ B0 þ 2�0

P lnðs=�2Þ, with B0 ¼ 6 GeV�2, �0
P ¼

0:25 GeV�2, and �2 ¼ 1 GeV2 can be used. We employ
the s-dependent parametrization (3.12) in what follows,
because diffraction is essentially controlled by soft
interactions.

Finally, we parameterize the proton wave function
assuming the symmetric Gaussian shape for the spacial
valence quark distributions in the proton, as

j�ið~r1; ~r2; ~r3; xq; fx2;3;...q g; fx2;3;...g Þj2

¼ 3a2

�2
e�aðr2

1
þr2

2
þr2

3
Þ
ðxq; fx2;3;...q g; fx2;3;...g gÞ

� 	ð ~r1 þ ~r2 þ ~r3Þ	
�
1� xq �

X
j

xjq=g

�
; (3.14)

where the sum is taken over all valence or sea quarks and
gluons not participating in the hard interaction, xq is

defined in Eq. (3.7), a ¼ hr2chi�1 is the inverse proton

mean charge radius squared, and 
 is the valence quark
distribution function in the proton. Notice that this distri-
bution has a low scale, so the valence quarks carry the
whole momentum of the proton, while gluons and the sea
are included in the constituent valence quarks. The
Gottfried sum rule based on this assumption is known to
be broken [30], but we neglect the related 
20%
correction.

Integrating over the fractional momenta of all partons
not participating in the hard interaction, we arrive at the
single valence quark distribution in the proton, probed by
the hard process—radiation of a heavy gauge boson,Z Y

i

dxiqdx
i
g	

�
1� xq �

X
j

xjq=g

�

ðxq; fx2;3;...q g; fx2;3;...g gÞ

¼ 
qðxqÞ; (3.15)

where q denotes the quark flavor emitting the gauge boson
G with the fraction xq given by Eq. (3.7). In the case of a

diffractive Drell-Yan reaction [16], generalization of the
three-body proton wave function (3.14) including different
quark and antiquark flavors leads to the proton structure
function asX

q

Z2
q½
qðxqÞ þ 
 �qðxqÞ� ¼ 1

xq
F2ðxqÞ: (3.16)

However, in the case of diffractiveW and Z production, the
coupling factor CGq gGv=a;q varies for different (valence or

sea) quark species in the proton, so one has to deal with the
original quark densities. Similar to the diffractive DY case,
in actual numerical calculations below, when summing up
the contributions of different quark flavors, we will gen-
eralize the above approach including the sea quark and
antiquark densities in the proton at the hard scale imposed
by the mass of the gauge boson. Also, the interference
terms between amplitudes corresponding to gauge boson
radiated by different valence quarks separated by large
transverse distances in the proton are strongly suppressed
in the hard limit r � R0ðsÞ and are neglected.

IV. SINGLE DIFFRACTIVE CROSS SECTION IN
THE FORWARD LIMIT

A. The two-scale approximation

The typical hard length scale related to hard vector
boson production, �r
 �=ð1� �ÞM, is usually much
smaller than any hadronic scale (see, however, the next
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section). Relying on the smallness of the hard scale, �r �
Rij ¼ j~ri � ~rjj 
 Rp, one can derive an approximate ana-

lytical formula for the diffractive cross section (3.6):

Im felð ~b; ~Rij þ �~rÞ � Imfelð ~b; ~RijÞ ’
@Imfelð ~b; ~RijÞ

@ ~Rij

�~r:

(4.1)

For the sake of convenience, we modify the integrals

in Eq. (3.6) by introducing new variables ~r2 ! ~R12 and

~r3 ! ~R13, so thatZ
d2r1d

2r2d
2r3e

�aðr2
1
þr2

2
þr2

3
Þ	ð~r1 þ ~r2 þ ~r3Þ

¼ 1

9

Z
d2R12d

2R13e
�2a

3 ðR2
12þR2

13þ ~R12
~R13Þ: (4.2)

Since in the forward limit 	? ! 0 the b dependence
comes only into the partial dipole amplitude fel defined
in Eq. (3.12), it can be easily integrated [15]:

Z
d2b

@Imfelð ~b; ~RijÞ
@ ~Rij

¼ �0ðsÞ
R2
0ðsÞ

~Rije
�R2

ij=R
2
0
ðsÞ; (4.3)

with the energy-dependent parameters defined after
Eq. (3.12).

We see that the amplitude of diffractive gauge boson
emission in the dipole-target scattering (2.12) integrated

over ~b,Z
d2bMqqð ~b; ~Rij; ~r; �Þ / �

�0ðsÞ
R2
0ðsÞ

ð ~r � ~RijÞe�R2
ij=R

2
0
ðsÞ;

(4.4)

is proportional to the product of the hard scale r
 1=
ð1� �ÞM and the soft hadronic scale Rij 
 R0 

1=�QCD. This means that the single diffractive cross

section depends on the hard scale as �sd 
 r2 
 1=M2.
It is well known that the cross section of diffractive deep

inelastic scattering (DDIS) �DDIS 
 r4 is dominated essen-
tially by soft fluctuations at large r (for more details, see,
e.g., Ref. [5]), as correctly predicted by the diffractive

(Ingelman-Schlein) QCD factorization. This happens since
the end-point q �q dipole fluctuations, driving the cross
section at � ! 0 or 1, have no hard scale dependence for
light quarks mq � Q2. In this case, the Q2 dependence

comes only into their weight as
1=Q2, even though it is of
the higher twist nature.
In opposition, the single diffractive gauge bosons pro-

duction cross section behaves as 
~r � ~R, soft and hard
fluctuations contribute in this process on the same footing,
and their interplay does not depend on the hard scale,
similar to the inclusive gauge boson production. Hence,
the forward diffractive Abelian radiation turns out to be of
the leading twist nature, and the diffractive-to-inclusive
production cross sections ratio can depend on the hard
scale only weakly through the x dependence of the satura-
tion scale, or more precisely R0ðx2Þ, and can only increase
(see below).
However, if one uses the conventional diffractive facto-

rization scheme [7] the single diffractive cross section,
similarly to the DDIS process, one does not find any soft-
hard interplay as observed above, and the cross section
turns out to behave as 
r4, providing the higher twist
nature of the single diffractive process. Correspondingly,
this strongly affects the M2 dependence of the diffractive-
to-inclusive boson production cross section ratio, such that
it decreases with M2, opposite to our observation above.
Therefore, the fundamental interplay between the hard

and soft interactions in the forward diffractive Abelian
radiation is the major reason for the diffractive QCD
factorization breaking leading to quite unusual features
of the corresponding observables (for a similar discussion
in the diffractive DY, see Refs. [15,16]). As we have
emphasized above, this interplay is absent in the DDIS
and in diffractive QCD factorization-based approaches to
the diffractive DY (see, e.g., Ref. [11]) leading to the
energy and scale dependence of the corresponding cross
section which is completely opposite to the one predicted
above by the color dipole model.

Furthermore, the integrations over ~R12 and ~R13 can be
performed analytically leading to the diffractive cross sec-
tion (3.6) in the forward limit 	? ! 0:

d4��G
ðpp ! pG�XÞ

d2q?dx1d	2
?

��������	?¼0
¼ a2

24�3

�2
0ðsÞ

R4
0ðsÞ

1

A2

�
2

ðA2 � 4A1Þ2
þ A2

2

ðA2
2 � 4A2

3Þ2
�

�X
q

Z 1

x1

d�

�

q

�
x1
�

�
þ 
 �q

�
x1
�

��Z
d2rd2r0ð~r � ~r0Þ��G

V�Að ~r;�;MÞ��G�
V�Að~r0; �;MÞei ~q?�ð~r�~r0Þ;

(4.5)

where

A1 ¼ 2a

3
þ 2

R2
0ðsÞ

; A2 ¼ 2a

3
; A3 ¼ 2a

3
þ 1

R2
0ðsÞ

: (4.6)
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Assuming Gaussian 	? dependence of the cross section,
the 	? integrated and forward cross sections are related as

d�ðpp ! pG�XÞ
d2q?dx1

¼ 1

BsdðsÞ
d3�ðpp ! pG�XÞ

d2q?dx1d	2
?

��������	?¼0
:

(4.7)

The slope of the single diffractive cross section, BsdðsÞ ’
hr2chi=3þ 2�0

P lnðs=s0Þ, is similar to the one measured in
diffractive DIS. In the next section, we will explicitly
derive the diffractive slope from the explicit parameteriza-
tion for the partial dipole amplitude (3.12).

Finally, one can explicitly calculate the remaining inte-
grations in the transverse plane over ~r and ~r0 by means of
the following Fourier transforms:

J1ðq?; �Þ 	
Z

d2rd2r0ð ~r � ~r0ÞK0ð�rÞK0ð�r0Þei ~q?�ð ~r�~r0Þ

¼ 16�2
q2?

ð�2 þ q2?Þ4
;

J2ðq?; �Þ 	
Z

d2rd2r0
ð~r � ~r0Þ2
rr0

K1ð�rÞK1ð�r0Þei ~q?�ð ~r� ~r0Þ

¼ 8�2
�4 þ q4?

�2ð�2 þ q2?Þ4
: (4.8)

And we arrive at the following expressions for the cross
section of transversely and longitudinally polarized gauge
boson production, respectively:

d4�Tðpp ! pG�XÞ
d2q?dx1

¼ 1

BsdðsÞ
a2

24�3

�2
0ðsÞ

R4
0ðsÞ

1

A2

�
2

ðA2 � 4A1Þ2
þ A2

2

ðA2
2 � 4A2

3Þ2
�X

q

ðCGq Þ2
2�2

Z 1

x1

d�

�

q

�
x1
�

�
þ 
 �q

�
x1
�

��

� fm2
q�

2½ðgGv;qÞ2�2 þ ðgGa;qÞ2ð2� �Þ2�J1 þ ½ðgGv;qÞ2 þ ðgGa;qÞ2�½1þ ð1� �Þ2��2J2g; (4.9)

d4�Lðpp ! pG�XÞ
d2q?dx1

¼ 1

BsdðsÞ
a2

24�3

�2
0ðsÞ

R4
0ðsÞ

1

A2

�
2

ðA2 � 4A1Þ2
þ A2

2

ðA2
2 � 4A2

3Þ2
�X

q

ðCGq Þ2
�2

Z 1

x1

d�

�

q

�
x1
�

�
þ 
 �q

�
x1
�

��

�
��
ðgGv;qÞ2M2ð1� �Þ2 þ ðgGa;qÞ2 �

4

M2

�
J1 þ ðgGa;qÞ2�2m2

q

�2

M2
J2

�
: (4.10)

These expressions for the differential distributions in the
transverse momentum of the produced gauge bosons allow
us to perform ~q? integration via the substitution

J1ðq?; �Þ ! I1ð�Þ 	
Z

d2q?J1ðq?; �Þ ¼ 8�3

3�4
;

J2ðq?; �Þ ! I2ð�Þ 	
Z

d2q?J2ðq?; �Þ ¼ 16�3

3�4
:

The rest of the integrations over � and x1 can be done
numerically.

B. Asymptotic behavior of diffraction

In most of theoretical models, the partial elastic ampli-
tude of hadron scattering is expected to reach the Froissart
regime, which corresponds to saturation of unitarity for the
amplitudes of all Fock states within a disk in the impact
parameter plane, with the radius rising as lns. In this case,
diffraction vanishes everywhere, except the periphery of
the disk, so the the fraction of diffractive cross section is
expected to fall with energy as �diff=�tot / 1= lns [4].

However, Eqs. (4.5) and (4.6) at s ! 1, when
R0ðsÞ ! 0, lead to the forward diffractive cross section
proportional to �2

totðsÞ. So the b-integrated diffractive cross
section behaves like the elastic and total cross sections,
contrary to the above expectations.

To trace the origin of this problem, we should recheck
our starting assumptions. So far, we assumed that the hard

length scale r
 1=M, which is indeed tiny, is much smaller
than any other soft hadronic scale. However, the hierarchy
of scales is expected to change at asymptotically high
energies. This is related to the rising energy dependence
of the saturation scale in the proton, Qs ¼ 1=R0ðsÞ ¼
0:086 GeV� ðs=1 GeV2Þ0:14, where we rely on the pa-
rametrization Eq. (3.13). Although this power energy de-
pendence is rather steep, the saturation scale reaches the
gauge boson mass at the energy s � 3� 109 GeV2, which
is much higher than that of the LHC. Therefore, in the
energy range of LHC the hard length scale 
1=M remains
the shortest in the process, and the expansion Eq. (4.1) can
be employed. Indeed, we performed an exact numerical
calculation of the cross section Eq. (3.6) and found no
sizable deviation from Eq. (4.5).
Apparently, the root of the problem is the approximation

of 1=M � R0ðsÞ, which breaks at very large s. To demon-
strate analytically that the fractional diffractive cross sec-
tion (3.6) vanishes at asymptotic energies, let us consider a
simple example of radiation of a heavy gauge boson by a
dipole of size R. In this case, the forward diffractive
amplitude, i.e., the amplitude Eq. (3.8) integrated over b,
takes the form (� ¼ 1)

Að ~R; ~r; s; 	? ¼ 0Þ ¼ � �qqð ~Rþ ~r; sÞ � � �qqð ~R; sÞ
¼ �0ðsÞ½e�R2=R2

0
ðsÞ � e�ð ~Rþ~rÞ2=R2

0
ðsÞ�:
(4.11)
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This amplitude should be averaged over the R and r
distributions:

Aðs;	?¼0Þ¼
Z
d2Rd2rj�hðRÞj2j�qGðrÞj2�ð ~R; ~r;sÞ

¼�R2
0ðsÞ�0ðsÞ

�
j�hð0Þj2

�
Z
d2rj�hðrÞj2j�qGðrÞj2

�

¼R2
0ðsÞ

�0ðsÞhr2i=hR2i
hR2iþhr2i

�R2
0ðsÞ�0ðsÞ hr

2i
hR2i2 : (4.12)

Here we assumed the energy to be sufficiently high, so
R0ðsÞ ! 0 and R2

0ðsÞ � hr2i. We also assumed that the

distribution function of the dipole �hðRÞ and of the
q�G fluctuation �qGðrÞ have Gaussian form with aver-

aged values hR2i and hr2i, respectively.
According to the parametrization (3.13), the ratio of

forward diffractive amplitude Eq. (4.12) to the forward
elastic amplitude vanishes as

Aðs; 	? ¼ 0Þ
Aelðs; 	? ¼ 0Þ � R2

0ðsÞ
2hr2i
hR2i2 / s�0:28: (4.13)

In fact, the parametrization (3.13) fitted to available data is
not expected to be valid at asymptotically high energies.
The saturation scale corresponding to a transition from the
linear Balitsky-Fadin-Kuraev-Lipatov evolution atQ>Qs

to the nonlinear saturation regime at Q<Qs rises with

energy asQs ¼ 1=R0ðsÞ / exp½const� ffiffiffiffiffiffiffi
lns

p � [31]. So it is
steeply falling with energy, also slower than in (4.13).
Thus, the diffractive amplitude vanishes at very high,

currently unreachable energies, while within the available
energy range the expression (4.5) is sufficiently accurate.

V. DIFFRACTIVE VS INCLUSIVE PRODUCTION
OF GAUGE BOSONS

The dipole description of inclusive gauge boson produc-
tion can be obtained by generalizing what is known for the
inclusive Drell-Yan process [18,19,32]. The cross section
of inclusive production of a virtual gauge boson G� with
mass M and transverse momentum q? has the form

d4��G
ðpp ! G�XÞ
d2q?dx1

¼ 1

ð2�Þ2
X
q

Z 1

x1

d�

�2

�

q

�
x1
�

�
þ 
 �q

�
x1
�

��Z
d2rd2r0

1

2
f�ð�rÞ þ �ð�r0Þ � �ð�j~r� ~r0jÞg

���G

V�Að~r; �;MÞ��G�
V�Að ~r0; �;MÞei ~q?�ð ~r�~r0Þ: (5.1)

The principal difference of the inclusive gauge boson
production from the diffractive one is in the typical size of
the dipoles involved in the scattering. As is seen from, e.g.,
Eqs. (2.13) and (3.8), the diffractive scattering is dominated
by large dipoles scattering at the hadronic scale, with the
transverse size rp ¼ Rij 
 R0 (soft scattering), whereas
the inclusive production cross section (5.1) is totally driven
by small-size dipoles scattering with rp ¼ �r � R0 (hard
scattering). Therefore, different parameterizations for the
dipole cross sections must be used—in the diffractive case
above we have adopted the Kopeliovich-Schäfer-Tarasov
parametrization for the dipole cross section [or the partial
amplitude (3.12)] with s-dependent parameters introduced
in Eq. (3.13) [13,27], whereas in the inclusive produc-
tion case the Bjorken x-dependent Golec-Biernat-
Wusthofparametrization Eq. (2.13) [21] is better justified:

��0 ¼ 23:03 mb;

R0 	 �R0ðx2Þ ¼ 0:4 fm� ðx2=x0Þ0:144;
x0 ¼ 3:04� 10�4;

(5.2)

where x2 ¼ q�=P�
2 , with P2 being the 4-momentum of the

target proton.

In the leading regime of �r, �r0 � R0,

1

2
f�ð�rÞ þ �ð�r0Þ � �ð�j~r� ~r0jÞg ’ �2 ��0

�R2
0ðx2Þ

ð~r � ~r0Þ;
(5.3)

so the inclusive gauge boson production cross section at
forward rapidities (x1 � x2) reads

d4��G
ðpp ! G�XÞ
d2q?dx1

¼ 1

ð2�Þ2
��0

�R2
0ðx2Þ

X
q

Z 1

x1

d�

�

q

�
x1
�

�
þ 
 �q

�
x1
�
Þ
�

�
Z

d2rd2r0ð ~r � ~r0Þ��G

V�Að ~r; �;MÞ

���G�
V�Að ~r0; �;MÞei ~q?�ð ~r�~r0Þ: (5.4)

We observe that the integrals over� and ~r, ~r0 have the same
form as in the diffractive cross section Eq. (4.5).
The M dependence of the differential cross sections for

dilepton inclusive production via an intermediate photon
�� or a gauge boson G� can be presented similar to the
diffractive case, as [32]
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d���
ðpp ! ð�� ! l�lÞXÞ
d2q?dx1dM2

¼ �em

3�M2

d�ðpp ! ��XÞ
d2q?dx1

;

d�ðpp ! ðG� ! l�l; l ��lÞXÞ
d2q?dx1dM2

¼ BrðG ! l�l; l�lÞ

� 
GðMÞd�ðpp ! G�XÞ
d2q?dx1

;

(5.5)

where the resonance mass distribution 
GðMÞ is given
by Eq. (3.3).

Eventually, we arrive at a simple form for the ratio of
the diffractive and inclusive cross sections for dilepton
production:

d�sd
�G
=d2q?dx1dM2

d�incl
�G

=d2q?dx1dM2

¼ a2

6�

�R2
0ðM2

?=x1sÞ
BsdðsÞ ��0

�2
0ðsÞ

R4
0ðsÞ

1

A2

�
�

2

ðA2 � 4A1Þ2
þ A2

2

ðA2
2 � 4A2

3Þ2
�
; (5.6)

where functions A1;2;3 were defined in Eq. (4.6) and frac-

tion x2 is explicitly given in terms of other kinematic
variables in Eq. (4.6).

It turns out that the ratio (5.6) does not depend either on
the type of the intermediate boson or on its helicity �G. To
a good approximation, it is controlled mainly by soft
interaction dynamics, in terms of the soft parameters
only �R0, R0, ��0, and �0. A slow dependence of these
parameters on the collision energy s, the hard scale M2,
and the boson transverse momentum q? completely deter-
mines such dependence of the diffractive-to-inclusive
production ratio. A measurement of theM2 (or q?) depen-
dence of this ratio would allow one to probe the x evolution
of the saturation scale, as well as to constrain its energy
dependence. Hence, such a quantity is a very useful probe
for the underlined QCD diffractive mechanism and the
saturation phenomenon and will be quantified based on
existing Kopeliovich-Schäfer-Tarasov and Golec-Biernat–
Wusthoff parameterizations in the next section.

VI. BREAKDOWN OF DIFFRACTIVE
FACTORIZATION

It is instructive to trace the origin of QCD factorization
in inclusive processes within the dipole description. The
1=Q2 dependence of the DIS cross section at small x
originates from two different sources. Most of the �qq
fluctuations of a virtual photon have a small size, r2 

1=Q2, except the end-point (aligned jet) configurations
with � ! 0, 1. The latter have large hadronic size and
cross section, but their weight is small 
1=Q2. Thus, both
contributions to the cross section behave as 1=Q2.

Similarly, in the Drell-Yan process of radiation of the
heavy photon with fractional momentum x1, the mean
size of the artificial dipole [18] has a small size r
 1=
ð1� �ÞQ, except the end-point configurations with
� ! 1. Like in DIS,� is not an observable but is integrated
from x1 to 1 [see Eq. (5.1)]. This similarity, which reflects
the factorization relation between the two processes, also
demonstrates its limitations. At large x1 ! 1 the inclusive
Drell-Yan reaction is fully dominated by the soft compo-
nent, and factorization breaks down.
For the diffractive channels, the factorization relation

breaks down at any x1. DIS diffraction is fully dominated
by the soft dynamics, since the probability of end-point
configurations is still the same, / 1=Q2, while the cross
section is enhanced by a factor of Q4 compared with the
hard component [5]. However, the mechanism of Drell-
Yan diffraction is quite different [15,16], apparently break-
ing the factorization relation. It comes from the hard-soft
interference, which imitates a leading twist throughout the
whole range of x1. Again, like in the inclusive process, the
hard and soft (end-point) components make comparable
contributions to the diffractive Drell-Yan cross sections. Of
course, this is true for other gauge bosons as well.
Although involvement of large distances in diffractive

heavy boson production is in obvious contradiction with
factorization of hard and soft scales, an observable mani-
festation of that is not trivial. Indeed, the cross section of a
hard process q �q ! l�l with the sea quark density in the
Pomeron measured in diffractive DIS, although it is a
higher twist, imitates the leading twist scale dependence.
Nevertheless, the predicted scale and energy dependencies
are quite different, as we demonstrate in Sec. VII. Notice
that a much more pronounced breakdown of diffractive
factorization was previously found in Ref. [14] for the
case when the hard scale is imposed by the mass of a
heavy flavor.

VII. NUMERICAL RESULTS

We now turn to a discussion of the numerical results for
the most important observables. First of all, we are inter-
ested in the dilepton (à la Drell-Yan pair) production
channel as the simplest one. Although the quark production
channel could also be of interest, this case will be consid-
ered elsewhere.
In Figs. 1 (for RHIC energy

ffiffiffi
s

p ¼ 500 GeV) and 2 (for
LHC energy

ffiffiffi
s

p ¼ 14 TeV), we present the single diffrac-
tive cross sections for Z0, �� (diffractive DY), and W�
boson production, differential in the dilepton mass squared
d�sd=dM

2 (left panels) and its longitudinal momentum
fraction d�sd=dx1 (right panels). These plots do not reflect
particular detector constraints—a thorough analysis
including detector acceptances and cuts has to be done
separately. The M2 distributions here are integrated over
the ad hoc interval of fractional boson momentum 0:3<
x1 < 1, corresponding to the forward rapidity region (at not
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extremely large masses). Then the mass distribution is
integrated over the potentially interesting invariant mass
interval 5<M2 < 105 GeV2 and can be easily converted
into (pseudo)rapidity ones widely used in experimental
studies, if necessary.

The M2 distributions of the Z0 and W� bosons clearly
demonstrate their resonant behavior and, in the resonant
region, significantly exceed the corresponding diffractive
Drell-Yan component; only for very low masses does the
�� contribution become important (left panels). For x1
distribution, when integrated over low mass and resonant
regions, diffractive Wþ and �� components become com-
parable to each other, in both shapes and values, whereas
the W� and, especially, Z boson production cross section
are noticeably lower (right panels). Quite naturally, theW�
cross section is (in analogy with the well-known inclusive
W� production) smaller than the Wþ one due to differ-
ences in valence u- and d-quark densities (dominating over
sea quarks at large xq) in the proton to which the bosons

couple. So the precise measurement of differences in

forward diffractive Wþ and W� rates would allow one to
constrain quark content of the proton at large xq 	 x1=�.

In Figs. 1 and 2, and in all calculations below, we have
used the most recent CTEQ10 valence or sea quark PDF
parametrization [33], if not declared otherwise.
In Fig. 3, we show the ratio of the longitudinal (L) to

transverse (T) gauge boson polarization contributions to
the diffractive production cross section. This ratio is pre-
sented differentially as a function of lepton-pair invariant
mass squared ð�L

sd=dM
2Þ=ð�T

sd=dM
2Þ (left panel) and

gauge boson fractional momentum ð�L
sd=dx1Þ=ð�T

sd=dx1Þ
(right panel). We see that the diffractive gauge boson
production process is always dominated by radiation of
transversely polarized lepton pairs. The ratio �L=�T only
slightly depends on M2 and even less on pp c.m. energyffiffiffi
s

p
, so it can be considered as energy independent [which,

in fact, can be already seen from approximate formulas
(4.9) and (4.10)]. The longitudinal boson polarization
roughly amounts to 10% at x1 
 0:5 and then steeply falls
down at large x1 ! 1 asymptotically approaching the
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FIG. 1. Diffractive gauge boson production cross section as a function of the dilepton invariant mass squared M2 (left panel) and
boson fractional light-cone momentum x1 (right panel) in pp collisions at the RHIC energy
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s

p ¼ 500 GeV. Solid, long-dashed,
dashed, and dotted curves correspond to Z, ��, Wþ, and W� bosons, respectively. CTEQ10 parton distribution function (PDF)
parametrization [33] is used here.
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relativistic (massless) boson case given, due to the gauge
invariance, by the transverse polarization only. Such a
behavior turns out to be the same as in the inclusive
Drell-Yan process [15]. At smaller x1 & 0:6, this ratio
becomes the same for different bosons, whereas at large
x1 ! 1 the relative contribution of the longitudinally po-
larized photon dominates in corresponding ratios for other
bosons.

From the phenomenological point of view, the distribu-
tion of the forward diffractive cross section in the dilepton
transverse momentum q? could also be of major impor-
tance.4 In Fig. 4 (left panel), we show the dilepton trans-
verse momentum q? distribution of the doubly differential
diffractive cross section at the LHC energy

ffiffiffi
s

p ¼ 14 TeV
at the dilepton invariant mass, fixed at a corresponding
resonance value—the Z or W mass. The shapes turned out

to be smooth and the same for different gauge bosons and
are different mostly in normalization. In Fig. 4 (right
panel), we show the q? dependence of the �L=�T ratio
in the resonances. We notice that the ratio does not strongly
vary for different bosons. It is peaked at about half of
the resonance mass and uniformly decreases to smaller or
larger q? values.
As one of the important observables, sensitive to the

difference between u- and d-quark PDFs, the W� charge
asymmetry AW is shown in Fig. 5 differentially as a func-
tion of the dilepton invariant mass squared M2 and inte-
grated over the 0:3< x1 < 1:0 interval (left panel):

AWðM2Þ ¼ d�Wþ
sd =dM2 � d�W�

sd =dM2

d�Wþ
sd =dM2 þ d�W�

sd =dM2
; (7.1)

and as a function of the boson momentum fraction x1 and
integrated over the 5<M2 < 105 GeV2 interval (right
panel):
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p ¼ 14 TeV at a fixed dilepton invariant mass is shown in the left panel. The longitudinal-to-transverse gauge boson polarization
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4The authors are indebted to Torbjörn Sjöstrand for pointing
this out.
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AWðx1Þ ¼ d�Wþ
sd =dx1 � d�W�

sd =dx1

d�Wþ
sd =dx1 þ d�W�

sd =dx1
: (7.2)

The ratio turns out to be independent on both the hard scale
M2 and the c.m. energy

ffiffiffi
s

p
. One concludes that, due to

different x shapes of valence u- and d-quark PDFs, at
smaller x1 & 0:9 the diffractive Wþ bosons’ rate domi-
nates over the W� one. However, at large x1 ! 1 the W�
boson cross section becomes increasingly important and
strongly dominates over the Wþ one.

An important feature of the diffractive-to-inclusive
Abelian radiation cross section ratio

RðM2; x1Þ ¼ d�sd=dx1dM
2

d�incl=dx1dM
2
; (7.3)

which makes these predictions different from ones
obtained in traditional diffractive QCD factorization-based
approaches (see, e.g., Refs. [11,12]), is their unusual en-
ergy and scale dependence demonstrated in Fig. 6. Notice

that we stick to the case of small boson transverse mo-
menta, q? � M, where the main bulk of diffractive signals
come from. The analytic formula for this ratio was derived
above and is shown by Eq. (5.6), which demonstrates that
the ratio is independent of the type of the gauge boson, its
polarization, or quark PDFs. In this respect, it is the most
convenient and model independent observable, which is
sensitive only to the structure of the universal elastic dipole
amplitude (or the dipole cross section), and can be used as
an important probe for the QCD diffractive mechanism for
forward diffractive reactions, essentially driven by the soft
interaction dynamics. We see from Fig. 6 that the �sd=�incl

ratio decreases with energy but increases with the hard
scale and, thus, behaves opposite to what is expected in the
diffractive factorization-based approaches. Therefore,
measurements of the single diffractive gauge boson pro-
duction cross section, at least, at two different energies
would provide important information about the interplay
between soft and hard interactions in QCD and its role
in the formation of diffractive excitations and color
screening effects.
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Finally, in Fig. 7, we present the diffractive-to-inclusive
cross section ratio as a function of the boson fractional
momentum x1 at RHIC (

ffiffiffi
s

p ¼ 500 GeV) and at LHC
(

ffiffiffi
s

p ¼ 14 TeV) energies (left panel). In the right panel,
we compare this ratio calculated at the Tevatron energy
(

ffiffiffi
s

p ¼ 1:96 TeV) with the recent measurements of diffrac-
tive W and Z production performed by the CDF
Collaboration [9]. The data show the x1-integrated ratio
of diffractive-to-inclusive cross sections. Because of the
weak x1 dependence of this ratio (left panel), with a good
accuracy the integrated values are numerically close to the
ratio of differential cross sections given by Eq. (7.3). We
see that the results of our calculations with Eq. (5.6) at
x1 ¼ 0, 5 agree well with the data. This agreement is
another confirmation of correctness of the absorption ef-
fects included into the parametrization of the dipole cross
section (3.12).

VIII. THE RESULTS MEET DATA

A. Link to the Regge phenomenology and data

The process pp ! Xp at large Feynman xF ! 1 of the
recoil proton, or small

� ¼ 1� xF ¼ M2
X

s
� 1; (8.1)

is described by triple-Regge graphs PPP and PPR
depicted in Figs. 8, (aa) and (ab) respectively, where we
also included radiation of a gauge boson. Examples of
Feynman graphs corresponding to the above triple-Regge
terms are shown in the second and third rows in Fig. 8. The
graphs (ba) and (ca) illustrate the triple-Pomeron term in
the diffraction cross section

d�PPP
diff

d�dt
/ ���Pð0Þ�2�0

PðtÞ; (8.2)

with the gauge boson radiated by either a sea (ba) or a
valence (ca) quark. The effective radiation amplitude qþ
g ! qþG is depicted by open circles and is defined in

Fig. 9. These Feynman graphs interpret the triple-Pomeron
term as a diffractive excitation of the incoming proton due
to radiation of gluons with small fractional momentum.
The proton can also dissociate via diffractive excitation of
its valence quark skeleton, as is illustrated in Figs. 8 (bb)
and (cb). The corresponding term in the diffraction cross
section reads

d�PPR
diff

d�dt
/ ��Rð0Þ��Pð0Þ�2�0

PðtÞ: (8.3)

Again, the gauge boson can be radiated either by a sea
quark (bb) or by the valence (cb) quark.
It is worth emphasizing that the quark radiating the

gauge boson cannot be a spectator but must participate in
the interaction. This is a straightforward consequence of
the Good-Walker mechanism of diffraction [3]. As was
discussed above, the contribution of a given projectile Fock
state to the diffraction amplitude is given by the difference
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FIG. 7. The diffractive-to-inclusive ratio as a function of the
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FIG. 8. Upper row: The triple-Regge graphs for the process
pp ! Xp, where the diffractively produced state X contains a
gauge boson. Examples of Feynman graphs corresponding to
diffractive excitation of a large invariant mass, going along with
radiation of a gauge boson, are displayed in the 2nd and 3rd
rows. Curly and waving lines show gluons and the radiated
gauge boson, respectively. The dashed line indicates the
unitarity cut.

FIG. 9. The effective amplitude of gauge boson radiation by a
projectile quark.
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of elastic amplitudes for the Fock states including or
excluding the gauge boson:

Im fðnÞdiff ¼ ImfðnþGÞ
el � ImfðnÞel ; (8.4)

where n is the total number of partons in the Fock state;

fðnþGÞ
el and fðnÞel are the elastic scattering amplitudes for the

whole n-parton ensemble, which either contains the gauge
boson or does not, respectively. Although the gauge boson
does not participate in the interaction, the impact parame-
ter of the quark radiating the boson gets shifted, and this is
the only reason why the difference Eq. (8.4) is not zero.
This also conveys that this quark must interact in order to
retain the diffractive amplitude nonzero [15]. For this
reason, in the graphs depicted in Fig. 8, the quark radiating
G always takes part in the interaction with the target.

Notice that there is no one-to-one correspondence
between diffraction in QCD and the triple-Regge phe-
nomenology. In particular, there is no triple-Pomeron
vertex localized in rapidity. The colorless ‘‘Pomeron’’
contains at least two t-channel gluons, which can couple
to any pair of projectile partons. For instance, in diffractive
gluon radiation, which is the lowest order term in the triple-
Pomeron graph, one of the t-channel gluons can couple to
the radiated gluon, while another one couples to another
parton at any rapidity, e.g., to a valence quark (see Fig. 3 in
Ref. [13]). Apparently, such a contribution cannot be asso-
ciated literally with either of the Regge graphs in Fig. 8.
Nevertheless, this does not affect much the xF and energy
dependencies provided by the triple-Regge graphs,
because the gluon has spin one.

It is also worth mentioning that in Fig. 8 we presented
only the lowest order graphs with two-gluon exchange. The
spectator partons in a multiparton Fock component also
can interact and contribute to the elastic amplitude of the
whole parton ensemble. This gives rise to higher order
terms, not shown explicitly in Fig. 8. They contribute to
the diffractive amplitude Eq. (8.4) as a factor, which we
define as the gap survival amplitude.

B. Gap survival amplitude

The amplitude of survival of a large rapidity gap is
controlled by the largest dipoles in the projectile hadron.
This was included in our evaluation of the diffractive
amplitude Eq. (4.11). Soft gluons in the light-cone wave
function of the proton should also be considered as spec-
tator partons, and the large (compared with 1=MG) distance
Rij in Eq. (4.1) in this case is the quark-gluon separation. In

fact, our calculations do include such configurations.
Indeed, data on diffraction show that diffractive gluon
radiation is quite weak (well known smallness of the
triple-Pomeron coupling), and this can be explained by
assuming that gluons in the proton are located within small
‘‘spots’’ around the valence quarks with radius r0 
 0:3 fm
[13,34–36]. Therefore, the large distance between one
valence quark and a satellite gluon of the other quark is

approximately equal (with 10% accuracy) to the quark-
quark separation. Since a valence quark together with
comoving gluons is a color triplet, in our calculations the
interaction amplitude of such an effective (‘‘constituent’’)
quark with the target is a coherent sum of the quark-target
and gluon-target interaction amplitudes.
In addition to the soft gluons, which are present in the

proton light-cone wave function at a soft scale, production
of a heavy gauge boson certainly leads to an additional
intensive hard gluon radiation. In other words, there might
be many more spectator gluons in the quark which radiates
the gauge boson. The transverse separation of those gluons
is controlled by the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi evolution. One can replace a bunch of gluons by
dipoles [37] whose transverse size rd varies from 1=MG up
to r0 and is distributed as drd=rd [38]. Therefore the mean
dipole size squared

hr2di ¼
r20

lnðr20M2
GÞ

(8.5)

is about hr2di � 0:01 fm2, i.e., quite small. The cross sec-

tion of such a dipole on a proton is also small, �d ¼
CðxÞhrdi2, where according to Eq. (2.13) a factor CðxÞ ¼
�0=R

2
0ðxÞ rises with energy. Fixing x ¼ M2

G=s and using

the parameters fitted in Ref. [21] to DIS data from HERA,
we get at the Tevatron collider energy �d � 0:9 mb.
The presence of each such dipole in the projectile light-

cone wave function brings an extra suppression factor to
the survival amplitude of a large rapidity gap:

SdðsÞ ¼ 1� Imfdðb; rdÞ: (8.6)

We aimed here at a demonstration that the second term in
(8.6) is negligibly small, so we rely on its simplified form
(see the more involved calculations in Ref. [39])

Im fdðb; rdÞ � �d

4�Bd

e�b2=2Bd; (8.7)

where Bd is the dipole-nucleon elastic slope, which was
measured at Bd � 6 GeV�2 in diffractive electroproduc-
tion of 
 mesons at HERA [40].
We evaluate the absorptive correction (8.7) at the mean

impact parameter hb2i ¼ 2Bd and for the Tevatron
energy

ffiffiffi
s

p ¼ 2 TeV arrive at the negligibly small value
Imfdð0; rdÞ � 0:01.
However, the number of such dipoles rises with hardness

of the process and may substantially enhance the magni-
tude of the absorptive corrections. The gap survival ampli-
tude for nd projectile dipoles reads

SðndÞd ¼ ½1� Imfdðb; rdÞ�nd : (8.8)

The mean number of dipoles can be estimated in the
double-leading-log approximation to the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi evolution formulated in
impact parameters [38]; the mean number of such dipoles
is given by
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hndi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

�0

ln

�
1

�sðM2
GÞ
�
ln

�
ð1� xFÞ ss0

�s
: (8.9)

Here the values of Bjorken x of the radiated gluons is
restricted by the invariant mass of the diffractive excita-
tion, x > s0=M

2
X ¼ s0=ð1� xFÞs. For the kinematics of

experiments at the Tevatron collider (see the next section),
1� xF < 0:1,

ffiffiffi
s

p ¼ 2 TeV, the number of radiated dipoles
is not large: hndi & 6. We conclude that the absorptive
corrections Eq. (8.8) to the gap survival amplitude are
rather weak, less than 5%, i.e., about 10% in the survival
probability. This correction is certainly small compared to
other theoretical uncertainties of our calculations. Notice
that a similar correction due to radiation of soft gluons was
found in Ref. [39] for the gap survival probability in
leading neutron production in DIS.

C. Comparison with data

Thus, our calculations effectively cover the gluon radia-
tion, so the triple-Pomeron term is included. This is impor-
tant, because this term dominates the diffractive cross
section [41]. So we can compare with available data from
the CDF experiment [9] onW and Z diffractive production
depicted in Fig. 10.

However, in order to compare our results with CDF data,
we have to introduce in our calculations the proper experi-
mental cuts, namely, 0:03< � 	 1� xF < 0:1 [9]. Since
our diffractive cross section formulas are differential in
M2, not in M2

X, and experimental cuts on y-rapidity distri-
bution of a produced gauge boson are unavailable at the
moment, a direct implementation of the � cuts into our
formalism cannot be performed immediately.

As a way out of this problem, at small � ! 0 one can
instead write the single diffractive cross section in the
phenomenological triple-Regge form [41]

� d�pp
sd

d�dp2
T

¼
ffiffiffiffiffi
s1
s

r
GPPRð0Þ
�3=2

e�BPPRp
2
T þG3Pð0Þ

�
e�Bpp

3Pp
2
T ;

(8.10)

where s1 ¼ 1 GeV2; BPPi ¼ R2
PPi � 2�0

P ln�; i ¼ P, R;
and �0

P � 0:25 GeV�2 is the slope of the Pomeron trajec-

tory. Then an effect of the experimental cuts on � in the
phenomenological cross section (8.10) and in our diffrac-
tive cross section calculated above (3.6) should roughly be
the same.
Since the data show no substantial rise of the diffractive

cross section with energy [42,43], which is apparently
caused by strong absorptive corrections, we incorporate
this fact by fixing the effective Pomeron intercept at
�Pð0Þ ¼ 1. This also allows us to use the results of the
comprehensive triple-Regge analysis of data performed
in Ref. [41], which led to the following values of the
parameters: G3Pð0Þ ¼ GPPRð0Þ ¼ 3:2 mb=GeV2; R2

3P ¼
4:2 GeV�2; R2

PPR ¼ 1:7 GeV�2.

Now we are in a position to evaluate the suppression
factor 	 caused by the experimental cut on �, by taking
the ratio

	 ¼
R
dp2

T

R
0:1
0:03 d�d�=dp

2
Td�R

dp2
T

R�max

�min
d�d�=dp2

Td�
: (8.11)

Here �min ¼ M2
X;min=s, where MX;min ’ MZ is the minimal

produced diffractive mass containing a heavy gauge boson.
The value of 	 in Ref. (8.11) is essentially determined by
the experimental cuts on � and is not sensitive to the upper
limit �max in the denominator, so we fix it at a realistic
value:5 �max 
 0:3. Then Eq. (8.11) leads to 	 ’ 0:2, the
factor reducing the diffractive gauge boson production
cross section calculated above. Our result plotted in
Fig. 10 demonstrates a good agreement with the CDF
data on single diffractive W and Z production [9].

IX. CONCLUSIONS

The diffractive radiation of Abelian fields, �, Z0, and
W�, expose unusual features, which make it very different
from diffraction in DIS, and lead to a dramatic breakdown
of QCD factorization in diffraction.
The first, rather obvious source for violation of diffrac-

tive factorization is related to absorptive corrections
(called sometimes survival probability of large rapidity
gaps). The absorptive corrections affect differently the
diagonal and off-diagonal terms in the hadronic current
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FIG. 10. The diffractive-to-inclusive ratio as a function of the
invariant mass squared of the produced dilepton. The CDF data
forW and Z production were taken at the Tevatron energy (

ffiffiffi
s

p ¼
1:96 TeV). The first CDF data point corresponds to the W
production, M2 ¼ M2

W , and the second to the Z production,

M2 ¼ M2
Z.

5The estimate for �max 
 0:3 corresponds to the limiting case
when one of the constituent quarks in a target (anti)proton loses
almost all its energy into a hard radiation of a gluon in the t
channel. The second and all subsequent t-channel gluon ex-
changes collectively screen the color charge taken away from
the target by the first gluon and transfer a much smaller fraction
of initial target momentum to projectile quarks as has been
recently advocated in Refs. [44,45].
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[46], leading to an unavoidable breakdown of QCD facto-
rization in processes with off-diagonal contributions only.
Namely, the absorptive corrections suppress the off-
diagonal diffraction much more strongly than the diagonal
channels. In the diffractive Abelian radiation in hadron-
hadron collisions, a new state, i.e., the gauge boson decay-
ing into the heavy lepton pair, is produced, and, hence, the
whole process is of entirely off-diagonal nature, whereas in
the diffractive DIS contains both diagonal and off-diagonal
contributions [4]. This is the first reason why QCD facto-
rization is broken in the diffractive gauge boson production
processes.

The second, more sophisticated reason to contradict
diffractive factorization is specific for Abelian radiation;
namely, a quark cannot radiate in the forward direction
(zero momentum transfer), where diffractive cross sections
usually have a maximum. Forward diffraction becomes
possible due to intrinsic transverse motion of quarks inside
the proton.

Third, the mechanism of Abelian radiation in the for-
ward direction in pp collisions is related to participation of
the spectator partons in the proton. Namely, the perturba-
tive QCD interaction of a projectile quark is responsible for
the hard process of a heavy boson radiation, while a soft
interaction with the projectile spectator partons provides
color neutralization [44,45], which is required for a dif-
fractive (Pomeron exchange) process. Such an interplay of
hard and soft dynamics is also specific for the process
under consideration, which makes it different from the
diffractive DIS, dominated exclusively by soft interactions,
and which also results in breakdown of diffractive
factorization.

The diffractive (Ingelman-Schlein) QCD factorization
breaking manifests itself in specific features of diffrac-
tive observables like a significant damping of the single
diffractive gauge boson production cross section at highffiffiffi
s

p
compared to the inclusive production case. This is

rather unusual, since a diffractive cross section, which is
proportional to the dipole cross section squared, could
be expected to rise with energy steeper than the total
inclusive cross section, like it occurs in the diffractive
DIS process. At the same time, the ratio of the single

diffractive-to-inclusive production cross sections rises
with the hard scale M2. This is also in variance with
diffraction in DIS associated with the soft interactions.
In this paper, we have presented the differential distri-

butions (in transverse momentum, invariant mass, and
longitudinal momentum fraction) of the diffractive ��,
Z0, and W� boson production at RHIC (500 GeV) and
LHC (14 TeV) energies, as well as the ratio of the boson
longitudinal-to-transverse polarization contributions. We
have also calculated the charge W� asymmetry, relevant
for upcoming measurements at the LHC. The ratio of
diffractive-to-inclusive gauge boson production cross sec-
tions does not depend on a particular type of gauge boson,
its polarization state, and quark PDFs and depends only on
properties of the universal dipole cross section and sensi-
tive to the saturation scale at small x. Finally, our predic-
tion for this ratio is numerically consistent with the one
measured for diffractive W and Z production at the
Tevatron.
The theoretical uncertainties of our calculations come

mainly from poorly known quark PDFs [or the proton
structure function F2ðxqÞ in diffractive DY (DDY)] at large

quark fractions xq ! 1. This issue has been discussed in

our previous analysis of the DDY process in Ref. [16],
where a strong sensitivity of the x1 dependence to a par-
ticular F2 parametrization has been pointed out. The same
situation extends to the more general case of diffractive
Abelian radiation considered in this paper. This tells us
again that measurements of forward diffractive gauge bo-
son production would be extremely important or even
crucial for settling further more stringent constraints on
the quark content of the proton.

ACKNOWLEDGMENTS

Useful discussions and helpful correspondence with
Gunnar Ingelman, Valery Khoze, Yuri Kovchegov,
Eugene Levin, Amir Rezaeian, Christophe Royon,
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