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Thermal finite energy QCD sum rules for the vector current correlator are used to study quark-gluon

deconfinement. Assuming �-meson saturation of the correlator in the hadronic sector, and the operator

product expansion in QCD, we obtain the temperature behavior of the resonance parameters (coupling,

mass, and width) and of the leading vacuum condensates, as well as the perturbative QCD threshold in the

complex squared energy plane. The results are consistent with quark-gluon deconfinement at a critical

temperature Tc ’ 197 MeV. The temperature dependence of the �-meson width is of importance for

current experiments on dimuon production in nuclear collisions.
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I. INTRODUCTION

The temperature behavior of the light-quark vector cur-
rent correlator in the framework of thermal QCD sum rules
(QCDSR) was first discussed in Ref. [1], and later rean-
alyzed by others [2] mostly using Laplace transform sum
rules. Inconsistent results from the use of these sum rules
were first pointed out in Refs. [3,4]. A better understanding
of the QCDSR method [5], both at zero and at finite
temperature, and in particular the use of Cauchy’s theorem
in the complex energy plane to formulate quark-hadron
duality, has led to a preference of finite energy QCDSR
(FESR) over the Laplace transform counterparts. In fact,
modern determinations of the QCD strong coupling [6] and
quark masses [7], as well as thermal properties of hadrons
[8,9] are now mostly done in the framework of FESR.
Regarding the latter, the emerging picture is as follows.
A key parameter signaling quark-gluon deconfinement is
the squared energy threshold, s0ðTÞ, above which the had-
ronic spectral function is well approximated by perturba-
tive QCD (PQCD), as first proposed in Ref. [1]. Explicit
determinations of s0ðTÞ in several light- and heavy-light-
quark systems [1–4,8,9] find this parameter to decrease
with increasing temperature, vanishing at a critical value
T ¼ Tc interpreted as the deconfinement temperature. Two
other hadronic parameters, the coupling and the width, also
behave as expected from a deconfinement scenario, i.e., the
coupling decreases and the width increases with increasing
temperature. A monotonically increasing hadronic width
interpreted as resonance absorption in a hot plasma was
proposed long ago as a clear signal of deconfinement [10],
and used to predict resonance broadening in dimuon pro-
duction in high energy nuclear collisions [11]. This effect
was later confirmed by several experiments [12]. An
exception to the above behavior has been found for the
heavy-heavy-quark states J=c , �c, and �c, which appear
to survive above Tc [13], in agreement with lattice QCD
results [14]. It should be recalled that the conceptual

interpretation of a hadronic width at finite temperature is
different from that at T ¼ 0. While in the latter case the
width is entirely related to decay into allowed hadronic
channels, at T � 0 particles hadronically stable at T ¼ 0
develop a width due to the emergence of scattering chan-
nels which modify the interaction rate. This has been
demonstrated explicitly in hadronic models, e.g., the linear
sigma model [15], chiral perturbation theory [16], and
others, as well as in QCD sum rules [8], where e.g., the
pion and the nucleon develop a width which increases
monotonically with temperature. In other words, an
increasing width signals an increase in the interaction
probability, rather than only a decrease in a decay rate.
Regarding the hadron mass, its temperature behavior is

hardly of any interest in the context of the deconfinement
transition. In fact, the mass is nothing but the real part of
the pole of the hadron propagator in the complex squared
energy plane. Whether the pole moves up or down with
increasing T does not provide, in itself, any information
regarding deconfinement. It is the imaginary part of the
hadron propagator, i.e., the hadronic width, which signals
deconfinement if it grows with increasing T. One could
picture the extreme situation of the mass decreasing and
vanishing at some T�. If this behavior is not accompanied
by an increasing width then the hadron would still be
present in the spectral function at T ¼ T�. Explicit deter-
minations of the temperature dependence of hadron masses
indicate a mild change with temperature, increasing or
decreasing slightly depending on the channel.
In this paper we consider the first three thermal FESR for

the vector current correlator to find the behavior of s0ðTÞ
and the �-meson parameters, as well as the dimension
d ¼ 4 gluon condensate, and the d ¼ 6 four-quark conden-
sate entering the operator product expansion (OPE) in QCD.
This follows a recent analysis [17] of the axial-vector
channel with a much improved hadronic spectral function
involving not only the pion pole as in Refs. [10,18] but also
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the a1ð1260Þ resonance. Since the pion pole in this channel
is related to the quark condensate, a connection can be
established between chiral-symmetry restoration and
deconfinement. Given the absence of a pole in the vector
channel, it is not a priori obvious that results in this case
should be similar to those in the axial-vector channel,
where the thermal quark condensate mostly drives the
behavior of s0ðTÞ. Another difference between axial-vector
and vector channels is the presence in the latter of a space-
like cut in the complex energy plane interpreted as due to
the scattering of the vector current off pions in the hot
plasma [1]. This term is of higher order (two loop) in the
axial-vector channel, and thus negligible [10,17,18]. On
the other hand, PQCD is chiral symmetric (in the chiral
limit), and so is the leading dimension d ¼ 4 term in the
OPE. Additional motivation for reexamining the thermal
vector current correlator using FESR and modern informa-
tion is to determine the T dependence of the �-meson
width entirely from QCD, as opposed to earlier work based
on current algebra [11]. This is important in connection
with current experiments on dimuon production in high
energy nuclear collisions [12].

II. QCD SUM RULES

The light-quark vector current correlator at T ¼ 0 is
defined as

���ðq2Þ ¼ i
Z

d4xeiqxh0jTðV�ðxÞVy
� ð0ÞÞj0i

¼ ð�g��q
2 þ q�q�Þ�ðq2Þ; (1)

whereV�ðxÞ ¼ 1
2 ½: �uðxÞ��uðxÞ � �dðxÞ��dðxÞ:� is the (elec-

tric charge neutral) conserved vector current in the chiral
limit, and q� ¼ ð!; ~qÞ is the four-momentum carried by the

current. The function�ðq2Þ in PQCD is normalized as

Im�ðq2Þ ¼ 1

8�
½1þOð�sðq2ÞÞ�; (2)

where radiative corrections are currently known up to five-
loop order, i.e., Oð�4

sÞ. The QCD FESR rest on two pillars
[5]: (i) the OPE of current correlators at short distances
beyond perturbation theory, and (ii) Cauchy’s theorem in
the complex squared energy plane, which relates the (had-
ronic) discontinuity across the cut on the real semiaxis with
the integral around a contour of radius js0jwhere the OPE is
expected to be valid. The latter is usually referred to as
quark-hadron duality. This leads to the FESR

ð�ÞðN�1ÞC2NhÔ2Ni ¼ 8�2
Z s0

0
dssN�1 1

�
Im�ðsÞjHAD

� sN0
N

½1þOð�sÞ� ðN ¼ 1; 2; . . .Þ;
(3)

where the leading order vacuum condensates in the chiral
limit are the dimension d ¼ 4 gluon condensate

C4hÔ4i ¼ �

3
h�sG

2i; (4)

and the dimension d ¼ 6 four-quark condensate

C6hÔ6i ¼ �8�3�s

�
hð �q���5	

aqÞ2i þ 2

9
hð �q��	

aqÞ2i
�
:

(5)

The radiative corrections in Eq. (3) are known up to five-
loop order, i.e., Oð�4

sÞ, and they will be used at T ¼ 0 to
normalize the FESR.
Under the extreme approximation of vacuum saturation,

the four-quark condensate can be related to the square of
the quark condensate. However, there is no convincing
theoretical support for such an approximation. In fact,
determinations of the vacuum condensates from data on
hadronic decays of the 
 lepton [19], as well as e�eþ
annihilation into hadrons [20], indicate strong deviations
from vacuum saturation. Theoretical arguments from chi-
ral perturbation theory also do not support this approxima-
tion at next-to-next-to-leading order and at T ¼ 0 [21]. An
extension of this analysis to finite temperature indicates a
breakdown of vacuum saturation except in the chiral limit
[22]. Since there are no gauge invariant operators of
dimension d ¼ 2 in QCD, it is standard practice to assume
they are not present in the OPE. This assumption is sup-
ported by results from data analyses [19,20].
In the hadronic sector, assuming �-meson saturation of the

spectral function and a Breit-Wigner resonance form gives

1

�
Im�jHADðsÞ ¼ 1

�

1

f2�

M3
���

ðs�M2
�Þ2 þM2

��
2
�

; (6)

where [23] f� ¼ 5 is the leptonic decay constant, and

M� ¼ 0:776 GeV and �� ¼ 0:145 GeV are the � mass

and width, respectively. This finite-width parametrization
has been normalized such that the area under it equals the
area under a zero width expression, i.e., Im�jHADðsÞ ¼
f2�M

2
��ðs�M2

�Þ.
A test of the FESR Eq. (3) with N ¼ 1, 2, 3 can be

performed by determining s0 together with the gluon con-
densate and the four-quark condensate, and comparing them
with results from data analyses. Using the full PQCD infor-
mation on �ðsÞ to five-loop order, with �sðM2


Þ ¼ 0:338�
0:012 [6] and Eq. (6), one finds s0 ¼ 1:44 GeV2, C4hÔ4i ¼
0:12 GeV4, and C6hÔ6i ¼ �0:39 GeV6. These results are
in reasonable agreement within errors with Refs. [19,20].
This is not surprising, as the condensate determinations
based on experimental data [19,20] require similar values
of s0. The value

ffiffiffiffiffi
s0

p ¼ 1:2 GeV validates the assumption of

� dominance, as the first radial excitation of the � is the
�ð1450Þ with a mass M ’ 1:5 GeV.
The finite-width parametrization [Eq. (6)] is clearly

not unique. In order to test its impact on the results
at T ¼ 0 we used instead of the standard � propagator
1=½s�M2 þ iM�� the alternative 1=½s�M2 þ i

ffiffiffi
s

p
��.
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We find essentially the same solution to the FESR at five-
loop order for s0 and the d ¼ 4, 6 vacuum condensates
provided the leptonic coupling f� is somewhat smaller,

i.e., f� ’ 3. This will play no role at finite T, as we shall

normalize all results to their T ¼ 0 values, i.e., we are
essentially interested in finding the thermal behavior of
ratios. These ratios are hardly distinguishable from those
using Eq. (6).

The extension of the FESR program to finite temperature
was first outlined in Ref. [1]. Field theory arguments in
support of the validity of this extension were later given in
Ref. [24]. At finite T there is an additional longitudinal
structure in Eq. (1), but we shall consider the FESR for the
transverse part. In the QCD sector one needs to restrict
PQCD to the leading, one-loop level, as the appearance of
two scales in �sðq2; TÞ, i.e.,�QCD and Tc, remains an open

problem (QCD sum rules approach Tc starting from T ¼ 0,
where PQCD is not valid). At this order there are two
thermal contributions to the vector correlator, one in the
timelike region (q2 > 0) and one in the spacelike region
(q2 < 0). In the static limit (q ! 0) these terms are

Im�þð!; TÞ ¼ 1

4�

�
1� 2nF

�
!

2T

��
(7)

for the timelike contribution, and

Im ��ð!; TÞ ¼ 4

�
�ð!2Þ

Z 1

0
ynF

�
y

T

�
dy ¼ �

3
T2�ð!2Þ

(8)

in the spacelike region, where nFðzÞ ¼ 1=ð1þ ezÞ is the
Fermi thermal function, and the chiral limit was assumed.
The vacuum condensates develop a T dependence which
can be obtained from the sum rules themselves, or by
resorting to lattice QCD (LQCD) determinations. A non-
gauge invariant, nonzero dimension d ¼ 2 term in the OPE
only appears at high temperatures [25], beyond the domain
being normally explored with QCDSR so that it can be
safely neglected.

In the hadronic sector the leptonic coupling, the mass,
and the width of the � meson entering Eq. (6) become
temperature dependent. In addition, there is a hadronic
contribution in the spacelike region due to the coupling
of the vector current to two pions in the thermal bath, and
given by

1

�
Im��jHADð!; TÞ ¼ 2

3�2
�ð!2Þ

Z 1

0
ynB

�
y

T

�
dy; (9)

where nBðzÞ ¼ 1=ðez � 1Þ is the Bose thermal function.

III. RESULTS AND CONCLUSIONS

Given that there are only three leading FESR and a few
more parameters, the following strategy has been adopted.
First, results for the quark condensate from LQCD [26]
were used as a first approximation to C6hO6iðTÞ in vacuum

saturation. Next, we took guidance from the temperature
dependence of leptonic couplings, masses, and widths
determined in other light- and heavy-light-quark hadronic
channels. We then explored the six-dimensional parameter
space using this information, seeking a solution to the three
FESR that would make physical sense, i.e., that would
agree with expectations as developed in other channels.
This means a decreasing s0ðTÞ, f�ðTÞ, C4hO4iðTÞ, and
C6hO6iðTÞ, together with an increasing �ðTÞ with increas-
ing T. A scanning of the parameter space shows a welcome
highly peaked structure with almost overlapping solutions
involving two critical temperatures. One for deconfine-
ment Tc pertaining to the vanishing of s0ðTÞ, f�ðTÞ and
C4hO4iðTÞ, and to the divergence of ��ðTÞ. And another

temperature for the vanishing of the four-quark condensate
T�
q, which turns out to be essentially the same as that for the

vanishing of the gluon condensate, and some 5% lower than
Tc. This set of solutions requires the �mass to decrease with
increasing T, although it remains nonzero at T ¼ Tc.
However, since the resonance width diverges at this tem-
perature, the �meson is no longer seen in the spectrum. The
FESR cease to have solutions close to the deconfinement
temperature, T=Tc ’ 0:90–0:95, as found in previous analy-
ses of this channel [1–3], as well as in the axial-vector
channel [17,18]. The results are shown in Figs. 1–6 and
correspond to the following analytical expressions:

��ðTÞ ¼
��ð0Þ

1� ðT=TcÞa ; (10)

where a ¼ 3 and Tc ¼ 197 MeV,

C6hÔ6iðTÞ ¼ C6hÔ6ið0Þ½1� ðT=T�
qÞb�; (11)

with b ¼ 8 and T�
q ¼ 187 MeV, and

M�ðTÞ ¼ M�ð0Þ½1� ðT=T�
MÞc�; (12)

where c ¼ 10 and T�
M ¼ 222 MeV, constrained to satisfy

T�
M > Tc. The slight 5% difference between Tc and T�

q is

FIG. 1. The normalized thermal behavior of the PQCD threshold
in the vector channel (solid curve) for Tc ¼ 197 MeV, and in the
axial-vector channel (dotted curve) from Ref. [17] for the same Tc.
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well within the accuracy of the method. A change in the
values of the parameters a, b, c in Eqs. (10)–(12) affects the

behavior of s0ðTÞ, f�ðTÞ, and C4hÔ4iðTÞ. In order to retain

the qualitative behavior of the full six quantities, the pa-
rameters a, b, c are restricted to changes not greater than

�30%,�50%, and�30%, respectively. The temperatureT�
q

is rather tight, with a maximum allowed change of�3 MeV,
while T�

M could vary in the range T�
M ¼ 210–240 MeV.

A fit to the results for the remaining three parameters gives
s0ðTÞ=s0ð0Þ ¼ 1 � 0:5667ðT=TcÞ11:38 � 4:347ðT=TcÞ68:41,
C4hÔ4iðTÞ=C4hÔ4ið0Þ ¼ 1� 1:65ðT=TcÞ8:735 þ 0:04967�
ðT=TcÞ0:7211, and f�ðTÞ=f�ð0Þ¼1�0:3901ðT=TcÞ10:75þ
0:04155ðT=TcÞ1:269, corresponding to Tc ¼ 197 MeV.
The behavior of s0ðTÞ (Fig. 1) is somewhat similar to the

recent result in the axial-vector channel [17]. While the
hadronic spectral function is very different in these two
channels, PQCD is chiral symmetric (in the chiral limit).
This result is pointing to an approximate universality of the
deconfinement transition in light-quark systems. The differ-
ent behavior close to the critical temperature can be traced to
the contribution of the quark condensate (equivalently the
pion decay constant) in the axial-vector channel, which is
absent in the vector correlator (at d ¼ 4 the term mqh �qqi is
negligible). The thermal width of the � meson (Fig. 3)
exhibits a dramatic increase of roughly a factor of 20 near
Tc. Its functional form [Eq. (10)] should be of use in current

FIG. 3. The normalized thermal behavior of the �-meson
width for Tc ¼ 197 MeV.

FIG. 5. The normalized thermal behavior of the dimension
d ¼ 4 gluon condensate (solid curve), together with lattice
QCD results [14] (solid circles) for Tc ¼ 197 MeV.

FIG. 2. The normalized thermal behavior of the �-meson
leptonic decay constant for Tc ¼ 197 MeV.

FIG. 4. The normalized thermal behavior of the �-meson mass
for Tc ¼ 197 MeV.

FIG. 6. The normalized thermal behavior of the dimension
d ¼ 6 four-quark condensate for Tc ¼ 197 MeV.
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experiments measuring dimuon production in heavy ion
collisions [12]. The result for the thermal gluon condensate
(Fig. 5) is in good agreement with LQCD [14], and the four-
quark condensate (Fig. 6) is compatible with the behavior of
jh �qqiðTÞj2, albeit with a coefficient different from that in the
vacuum saturation approximation. This coefficient, though,
cancels out in the ratio.
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