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We compare lattice data for the short-distance part of the static energy in 2þ 1 flavor quantum

chromodynamics (QCD) with perturbative calculations, up to next-to-next-to-next-to leading-logarithmic

accuracy. We show that perturbation theory describes very well the lattice data at short distances, and

exploit this fact to obtain a determination of the product of the lattice scale r0 with the QCD scale �MS.

With the input of the value of r0, this provides a determination of the strong coupling �s at the typical

distance scale of the lattice data. We obtain �sð1:5 GeVÞ ¼ 0:326� 0:019, which provides a novel

determination of �s with three-loop accuracy (including resummation of the leading ultrasoft logarithms),

and constitutes one of the few low-energy determinations of �s available. When this value is evolved to

the Z-mass scale MZ, it corresponds to �sðMZÞ ¼ 0:1156þ0:0021
�0:0022.
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The static energy in quantum chromodynamics (QCD),
i.e., the energy between a static quark and a static antiquark
separated by a distance r, is a basic object to understand the
behavior of the theory [1] and constitutes a fundamental
ingredient in the description of many physical processes
[2]. The short-distance part of the static energy can be
computed using perturbative techniques, and it is nowa-
days known at next-to-next-to-next-to leading-logarithmic
(N3LL) accuracy, i.e., including terms up to order
�4þn
s lnn�s with n � 0 [3–9] ( ln�s terms appear due to

virtual emissions of ultrasoft gluons, which can change
the color state of the quark-antiquark pair [10,11]). It can
also be computed on the lattice, and the comparison of the
two approaches tests our ability to describe the short-
distance regime of QCD, besides providing information
on the region of validity of the perturbative weak-coupling
approach [12]. A comparison of the static energy at N3LL
accuracy with quenched lattice data [13] was presented in
Ref. [3]. Here we present lattice data for the short-distance
part of the static energy in 2þ 1 flavor QCD and compare
it with the perturbative calculation up to N3LL accuracy.
This allows us to determine the strong coupling �s at
three-loop accuracy (including resummation of the leading
ultrasoft logarithms), in a way which is largely indepen-
dent from the other determinations that currently enter
into the world average [14]. The natural scale where our
determination is performed corresponds to the inverse
of the typical distance where we have lattice data, i.e.,
around 1.5 GeV. Therefore, our analysis provides a deter-
mination of �s at a scale smaller than those entering the
current world average [14], and constitutes in this way
an important ingredient to further test asymptotic freedom
in QCD.

The static energy has been calculated on the lattice in
2þ 1 flavor QCD using a combination of tree-level
improved gauge action and highly improved staggered
quark action [15] in Ref. [16]. The strange-quark mass
ms is fixed to its physical value, while the light-quark
masses are chosen to be ml ¼ ms=20. These correspond
to the pion mass of about 160 MeV in the continuum limit,
which is very close to the physical value. The calculation
of the static energy is performed in a wide range of gauge
couplings: 5:9 � � � 10=g2 � 7:28. At each value of
the gauge coupling we calculate the scale parameters r0
and r1 defined in terms of the static energy E0ðrÞ as
follows [17,18]:

r2
dE0ðrÞ
dr

��������r¼r0

¼1:65; r2
dE0ðrÞ
dr

��������r¼r1

¼1: (1)

The values of r0 and r1 were given in Ref. [16] for each �.
The above range of the gauge couplings corresponds to a
lattice spacing of 1:909=r0 � a�1 � 6:991=r0. Using
the most recent value r0 ¼ 0:468� 0:004 fm [16], we
get 0:805 GeV< a�1 < 2:947 GeV. Thus we can study
the static energy down to distances r ¼ 0:14r0 or r ’
0:065 fm. For the comparison with perturbation theory
the most relevant data set is the one corresponding to lattice
gauge coupling � ¼ 6:664, 6.740, 6.800, 6.880, 6.950,
7.030, 7.150, 7.280, which is what we use here. The static
energy can be calculated in units of r0 or r1. Since the static
energy has an additive ultraviolet renormalization we need
to normalize the results calculated at different lattice spac-
ings to a common value at a certain distance. We fix the
static energy in units of r0 to 0.954 at r ¼ r0 [16]. At
distances comparable to the lattice spacing the static
energy suffers from lattice artifacts. To correct for these
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artifacts we use tree-level improvement. From the lattice
Coulomb potential

CLðrÞ ¼
Z d3k

ð2�Þ3 D00ðk0 ¼ 0; ~kÞei ~k ~r; (2)

we can define the improved distance rI ¼ ð4�CLðrÞÞ�1

for each separation r. Here D00 is the tree-level gluon
propagator for the a2 improved gauge action. The tree-
level improvement amounts to replacing r by rI [13].
Alternatively, following Refs. [18,19] we fit the lattice
data at short distances to the form const� a=rþ �rþ
a0ð1=r� 1=rIÞ and subtract the last term from the lattice
data. We have found that both methods of correcting for
lattice artifacts lead to the same results within errors of the
calculations. Furthermore, the static energies calculated for
different lattice spacings agree well with each other after
the removal of lattice artifacts. The corrected lattice data
obtained for several lattice spacings are shown in Fig. 1 as
the data points. All the lattice data seem to lie on a single
curve even at short distances, indicating that the above
procedure of removing the lattice artifacts works.

As mentioned before, the static energy is known atN3LL
accuracy in perturbation theory. Detailed expressions for
E0 were given in Ref. [3] (and references therein) and will
not be reproduced here. For our present analysis, it is only
important to recall the following. (i) In order to obtain
a well-behaved perturbative series, it is necessary to

implement a scheme that cancels the leading renormalon
singularity [20]. This kind of scheme introduces depen-
dence on a dimensional scale in the problem, which we
denote as �. In particular, we implement the renormalon
cancellation according to the scheme described in
Ref. [21]. Then, the natural value for the scale � corre-
sponds to the center of the range where we have lattice
data. (ii) At N3LL accuracy the perturbative expression
depends on an additional constant (which was not present
at lower levels of accuracy). This is due to the structure of
the renormalization group equations at that order. We call
this constant K2. It should satisfy the power counting
condition jK2j ��MS (where �MS is the QCD scale in

the MS scheme), but apart from that it is unconstrained.
We can now compare the perturbative results for the

static energy with the lattice data. This comparison goes
along the same lines as the quenched case in Ref. [3], except
that now we use nf ¼ 3 everywhere (nf is the number of

light flavors); we also include finite strange-mass effects at
one loop, although they turn out to be negligible.We use the
maximum known accuracy (four loop) for the running of�s

everywhere (as opposed to changing the accuracy for the
running depending on the order we are working at), since,
for the nf ¼ 3 case, the hierarchy of scales underlying the

perturbative calculation would not bewell satisfied with the
running of �s at one loop. The perturbative expressions
depend on the value of the quantity r0�MS, and we will use

the lattice data to determine it. That is, we search for the
range of r0�MS that is allowed by lattice data, taking

into account all the uncertainties involved. Then, using
the value for r0 determined in Ref. [16] we can obtain a
determination of �sðMZÞ (MZ is the Z-boson mass).
Under the assumption that perturbation theory by itself

(after canceling the leading renormalon) is enough to
accurately describe the lattice data in the range of distances
we are considering (i.e., r < 0:5r0), a procedure to extract
r0�MS from the comparison of the perturbative expressions

for the static energy with lattice data was devised in
Ref. [3]. We will proceed in an analogous way here. The
procedure exploits the fact that any value of � (around its
natural value at the center of the range for which we have
lattice data, i.e., � ¼ 3:14r�1

0 ) cancels the renormalon

and is therefore allowed. Following Ref. [3], we search
for a set of � values which are optimal for the determi-
nation of r0�MS. The procedure to do that consists of the

following steps:
(1) We vary � by �25% around its natural value � ¼

3:14r�1
0 , that is, from � ¼ 2:36r�1

0 to � ¼ 3:93r�1
0 .

(2) For each value of � and at each order in the pertur-
bative expansion of the static energy, we perform a
fit to the lattice data (that is, we do fits at tree level,
one loop, two loops, and three loops; in the last
two cases with and without ultrasoft logarithmic
resummation). The parameter in each of these fits
is r0�MS.
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FIG. 1 (color online). Comparison of the singlet static energy
with lattice data [red (lighter) points]. [The comparison (and all
the analysis in the text) is done for r < 0:5r0 ’ 0:234 fm, which
is the region where perturbation theory is reliable. The blue
(darker) points and curves for r > 0:5r0 are shown just for
illustration]. The dotted blue curve is at tree level, the dot-dashed
magenta curve is at one loop, the long-spaced-dashed orange
curve is at two loops, the dashed brown curve is at N2LL
accuracy, the long-dashed green curve is at three loops plus
leading ultrasoft logarithmic resummation, and the solid black
curve is at N3LL accuracy. r0�MS ¼ 0:70 was used in all the

curves. The additive constant in the perturbative expression for
the static energy is taken such that each curve coincides with the
lattice data point at the shortest distance.
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(3) We select those � values for which the reduced �2 of
the fits decreases when increasing the number of
loops of the perturbative calculation.

For the analysis, we use the fits from tree level to three loop
plus leading ultrasoft logarithmic resummation accuracy.
We could also use the fits at N3LL accuracy (i.e., three
loops plus subleading ultrasoft logarithmic resummation),
which would involve the additional constant K2 (that
would also need to be fitted to the data, i.e., the fits involve
one additional parameter at this order). We find that, with
the present lattice data, the �2 as a function of r0�MS is

very flat in this case, and we cannot improve our extraction
of r0�MS by including the fits at N3LL accuracy in the

analysis. We interpret this as the unquenched lattice data
not being accurate enough to be sensitive to subleading
ultrasoft logarithms (unlike the quenched one used in
Ref. [3]), a fact that leaves room for future improvements.
Therefore, we take the numbers at three loop plus leading
ultrasoft logarithmic resummation accuracy as our best
result, and consider, at this order, the set of fitted values
of r0�MS for the � range obtained after step 3 above (we

denote these values by xi). We assign a weight to each xi,
given by the inverse of the reduced �2 of the fit. We take
the weighted average of the xi as our central value for the
determination of r0�MS. To estimate the error that we

should associate with this number, we consider the
weighted standard deviation of this set of values, and the
difference with the weighted average computed using
the result at the previous perturbative order (with the
corresponding � range that one obtains at that order; for
illustration, we show the results for r0�MS obtained at

different levels of accuracy in Table I). We obtain r0�MS ¼
0:7024� 0:0011� 0:0665 ¼ 0:70� 0:07, where the first
error is due to the weighted standard deviation, the second
to the difference with the two-loop result, and we summed

the two errors linearly on the right-hand side of the
equation. It is important to point out that the error assigned
to the result must account for the uncertainties associated
to the neglected higher-order terms in the perturbative
expansion of the static energy; in that sense, assigning
the difference with the result at the previous order as an
error (as we do) is a quite conservative estimate. Note that,
starting at the two-loop level, one can decide whether to
perform resummation of the ultrasoft logarithms or not;
when assigning the error, we take whichever difference is
larger. We also mention that there is an error associated to
each of the xi coming from the fit to the lattice data, but the
error that this induces in the average can be neglected. To
further assess the systematic errors stemming from our
procedure, we have redone the analysis using p-value
weights, obtaining r0�MS¼0:7022�0:0011�0:0628¼
0:70�0:06, and using constant weights, obtaining
r0�MS ¼ 0:7022�0:0011�0:0666¼ 0:70�0:07, which

are both compatible with the previous analysis. In our final
result we quote an error that covers the whole range
spanned by the three analyses. As an additional cross-
check of the result, we have redone the analysis with
the static energy normalized in units of the scale
r1 ¼ 0:3106� 0:0020 fm (rather than r0); these numbers
are presented in the third column of Table I, and are
consistent with our previous results. Finally, we point out
that in some cases the �2 as a function of r0�MS at next-to-

next-to leading-logarithmic (N2LL) accuracy develops a
second local minimum for larger values of r0�MS. To

discern which minimum should be taken as the physical
result when this happens, we have redone the fits using
smaller r ranges. We found that the position of the second
minimum is not stable, while the position of the first one is.
Furthermore, the minima of the �2 from lower orders in
perturbation theory come closer to the first of the two
minima at N2LL when we decrease the r range that we
use. In view of the above, when a second minimum devel-
ops, we keep the first one, which is stable and preferred by
lower perturbative orders.
According to the discussion in the previous paragraph,

our final result reads

r0�MS ¼ 0:70� 0:07; (3)

which, using r0 ¼ 0:468� 0:004 fm [16], gives

�sð� ¼ 1:5 GeV; nf ¼ 3Þ ¼ 0:326� 0:019: (4)

The uncertainty in r0 is negligible in the final error above.
When we evolve Eq. (4) to the scale MZ we obtain

�sðMZ; nf ¼ 5Þ ¼ 0:1156þ0:0021
�0:0022; (5)

where we have used the MATHEMATICA package RUNDEC

[22] to obtain the above number (four-loop running, with
the charm-quark mass equal to 1.6 GeV and the bottom-
quark mass equal to 4.7 GeV). We mention that the final
result employing the static energy normalized in units of r1

TABLE I. Values of r0�MS obtained at different levels of
accuracy. The second column shows the results obtained using
the static energy normalized in units of the scale r0. The third
column shows the results obtained with the static energy nor-
malized in units of the scale r1 and then (for easier comparison)
transformed to r0 units, using the factor r0=r1 ¼ 1:508� 0:005
[16]. ‘‘N2LL’’ stands for next-to-next-to leading-logarithmic
(i.e., two loop plus leading ultrasoft logarithmic resummation)
and ‘‘3 loopþ us:res:’’ stands for three loop plus leading ultra-
soft logarithmic resummation.

Accuracy r0�MS
r0
r1
r1�MS

tree level 0.395 0.397

1 loop 0.848 0.862

2 loop 0.636 0.654

N2LL 0.756 0.783

3 loop 0.690 0.701

3 loopþ us:res: 0.702 0.715
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is �sðMZÞ ¼ 0:1160þ0:0021
�0:0022, which is compatible with our

result in Eq. (5) and further shows its robustness. Figure 1
shows a comparison of the perturbative expressions for the
static energy with lattice data using our result r0�MS ¼
0:70 in Eq. (3) (� is set at the natural value, � ¼ 3:14r�1

0 ).

We can see that the perturbative series converges,
approaches the lattice data, and reproduces it very well at
N3LL accuracy (the constant K2 that appears at N3LL is
fixed by a fit to the lattice data, which gives r0K2 ¼ �2:3,
fulfilling the power counting condition). Note also that our
results for �s are not sensitive to the specific value of r that
we consider as the upper limit where perturbation theory is
reliable, as is manifest from Fig. 1.

Our result in Eq. (5) constitutes a novel determination of
�s (since it is largely independent of the other available
determinations) that stems from a perturbative calculation
of the QCD static energy at three loop plus leading ultra-
soft logarithmic resummation accuracy. With respect to the
other determinations currently entering the world average
it represents the one at lowest energy. The lowest-energy
determination so far was that from the � system, performed
at m� ¼ 1:78 GeV. Our result is therefore an important
new ingredient to test the running of �s.

Other recent determinations of �s, that also employ
comparisons with lattice data, include: Refs. [23,24],
where several observables related to Wilson loops (but
not the static energy) are used; Refs. [24,25], which
employ moments of heavy-quark correlators; Ref. [26],
which uses the vacuum polarization function; Ref. [27],
which uses the so-called Schrödinger functional scheme
(albeit employing rather high pion masses), and Ref. [28],
which employs the ghost-gluon coupling; they deliver
numbers that are mostly compatible with our result,
although with central values a bit higher than ours. We
also mention that comparisons of perturbative calculations
for the static energy with lattice data in QCD with nf ¼ 2

flavors have been presented recently in Refs. [29,30].
Let us also point out that the comparison of the pertur-

bative result with lattice data, shown in Fig. 1, is interesting
in itself, since the static energy constitutes a basic ingre-
dient in the description of many physical processes [2]. As
an example, it is relevant for the study of quarkonium
production in heavy-ion collisions: A direct lattice calcu-
lation of the quarkonium spectral functions is known to
be difficult [31]. The only viable option could be calculat-
ing quarkonium spectral functions within an effective
field theory framework, as potential Non-Relativistic
QCD provides [32,33]. To access the validity of a weak
coupling potential Non-Relativistic QCD approach at non-
zero temperature, one eventually will have to compare

weak-coupling calculations of the static quark-antiquark
correlators with the corresponding lattice calculations. The
comparison of the static energy at zero temperature to the
perturbative results, in 2þ 1 flavor QCD with physical
quark masses (as we have provided), is an important first
step in this direction.
In summary, we have shown that perturbation theory

(after canceling the leading renormalon singularity) can
describe the short-distance part of the QCD static energy
computed on the lattice (see Fig. 1); this is the first time
that this is done for QCD with nf ¼ 2þ 1 dynamical

quarks. Exploiting this fact, we have obtained the range
of r0�MS that is allowed by lattice data. Using the value of

r0 as an additional input, this provides a determination of
�s. We obtained �sð1:5 GeVÞ ¼ 0:326� 0:019, which
represents one of the few low-energy determinations of
�s available and, when evolved to the scale MZ, corre-
sponds to �sðMZÞ ¼ 0:1156þ0:0021

�0:0022. A comparison of our

result with the determinations of �s that currently enter
into the world average [14] is shown in Fig. 2.
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FIG. 2 (color online). Determinations of �s that enter into the
world average [14] [blue (darker) points] compared with our
result [leftmost red (lighter) point], as a function of the energy
scaleQ. The band is the world-average value of �sðMZÞ, evolved
with four-loop accuracy.
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