
Covariant spectator quark model description of the ��� ! �0 transition

G. Ramalho1 and K. Tsushima2
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We study the ��� ! �0 transition form factors by applying the covariant spectator quark model. Using

the parametrization for the baryon core wave functions as well as for the pion cloud dressing obtained in a

previous work, we calculate the dependence on the momentum transfer squared, Q2, of the electromag-

netic transition form factors. The magnetic form factor is dominated by the valence quark contributions.

The final result for the transition magnetic moment, a combination of the quark core and pion cloud

effects, turns out to give a value very close to the data. The pion cloud contribution, although small, pulls

the final result towards the experimental value. The final result, ���0 ¼ �1:486�N , is about one and a

half standard deviations from the central value in PDG, ���0 ¼ �1:61� 0:08�N . Thus, a modest

improvement in the statistics of the experiment would permit the confirmation or rejection of the present

result. Small but nonzero values for the electric form factor in the finite Q2 region are also predicted, as a

consequence of the pion cloud dressing.
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I. INTRODUCTION

There is presently strong motivation to understand the
structure of light baryons in terms of the quark and
gluon dynamics, or quantum chromodynamics (QCD).
Experimentally, however, we have no direct access to the
quarks and gluons. The experimental studies of the baryon
electromagnetic and weak internal structure is based on
measurements of their form factors. The measured form
factors encode the deviation of a baryon structure from
a pointlike particle, with the same quantum numbers.
Theoretical studies are often performed using effective
degrees of freedom revealed in the low Q2 region, such
as a baryon core with meson cloud excitations, where
the core is described by constituent quarks as a first
approximation.

Of particular basic interest is the study of the internal
electromagnetic structure of the low-lying spin 1=2 bary-
ons, the octet baryons. However, except for the proton and
neutron, the electromagnetic structure of the octet baryons
has not yet been uncovered experimentally. Only magnetic
moments of some members of the octet baryons were
measured. See Ref. [1] for a detailed bibliography.

Among the octet baryons the reaction ��� ! �0 is the
only one that is allowed in the electromagnetic transition
between the two different members in the octet under the
limit of isospin symmetry. The available experimental
information is restricted to the magnitude of the magnetic
moment (atQ2 ¼ 0): j���0 j ¼ 1:61� 0:08�N , where�N

is the nuclear magneton [2]. Although the sign of ���0 is

not known experimentally, SUð6Þ symmetry suggests that

���0 ¼
ffiffi
3

p
2 �n ’ �1:66�N [3] (�n is the neutron magnetic

moment), supporting the negative sign. Estimates based on
quark models depend on the model conventions and cannot

predict the sign unambiguously. The implications of the
sign will be discussed later.
In this work we study the ��� ! �0 reaction using the

covariant spectator quark model which was successfully
applied to investigate the electromagnetic structure of the
octet baryons [1,4]. Using the parametrization determined
in Ref. [4] for the octet baryon electromagnetic form
factors, we predict in this work the electromagnetic tran-
sition form factors for the ��� ! �0 reaction. We calcu-
late the contributions from the quark core as well as the
pion cloud dressing. This reaction was studied in the past
using chiral perturbation theory [5–9], Skyrme models
[10,11], chiral quark models [12–17], other quark models
[18–25], QCD sum rules [26–28], lattice QCD [29], and
some other methods [30–32].
The ��� ! �0 reaction is very interesting to study,

since the initial and final states are different and have
different masses, contrary to the case of the elastic reac-
tions of octet baryons. As a consequence, the Dirac-type
form factor F1ðQ2Þ and the electric form factor GEðQ2Þ
vanish atQ2 ¼ 0, and only the magnetic form factorGMð0Þ
survives. In addition, because ofGEð0Þ ¼ 0, we can expect
that the absolute value of GEðQ2Þ is small as a function of
Q2, as it happens for the neutron. This creates extra interest
in studying theQ2 dependence of the electric and magnetic
form factors. Another important reason to study the
��� ! �0 transition is to identify which degree of free-
dom gives dominant contributions for the form factors: the
valence quark (quark core) or the quark-antiquark contri-
bution, namely, the meson cloud, where the pion excita-
tions are expected to be dominant. The covariant spectator
quark model, supplemented with the pion cloud dressing, is
therefore particularly convenient to study the ��� ! �0

reaction.
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In the covariant spectator quark model, derived from
the covariant spectator theory [33], a baryon is described
as a three-constituent quark system where one quark is
free to interact with the photon field, and a pair of
noninteracting quarks is treated as a single on-mass-
shell spectator diquark with an effective mass mD

[34–36]. The quark current is parametrized based on a
vector meson dominance mechanism as explained in
Refs. [1,4,34,36]. The model was later improved by
the inclusion of the pion cloud effects [1,4,37]. The
formalism of the model will be presented in the next
section. The model was also successfully applied to study
the excitation of resonances such as �, the Roper,
N�ð1535Þ, and others [38–42].

This article is organized as follows: In Sec. II we present
the definitions of the form factors and explicit expressions
of the valence and pion cloud contributions. In Sec. III we
present numerical results. Finally, in Sec. IV we give a
summary and conclusions.

II. TRANSITION FORM FACTORS

The ��� ! �0 electromagnetic current between the �
(mass M� and momentum Pþ) and the �0 (mass M� and
momentum P�) can be represented by

J
�
��

¼ �u�ðPþÞ
�
F1��ðQ2Þ

�
�� � 6qq�

q2

�

þ F2��ðQ2Þ i���q�
M� þM�

�
u�ðP�Þ; (1)

where F1�� and F2�� are, respectively, the Dirac-type and
Pauli-type form factors. The subindex �� labels the reac-
tion to distinguish from the elastic one.

From Eq. (1) one can see that F2��ð0Þ gives the tran-
sition anomalous magnetic moment in units of e

M�þM�

(analogous to the nucleon case, �N ¼ e
2MN

, the nuclear

magneton with MN the nucleon mass). It is therefore
convenient to define the average mass of the initial (�)
and final (�0) baryon masses,

M ¼ 1

2
ðM� þM�Þ: (2)

We can also define the Sachs form factors for the transition:

GE��ðQ2Þ ¼ F1��ðQ2Þ � �F2��ðQ2Þ; (3)

GM��ðQ2Þ ¼ F1��ðQ2Þ þ F2��ðQ2Þ; (4)

with � ¼ Q2

4M2 . To express GM��ðQ2Þ in the nuclear mag-

neton, we need to convert by MN

M GM��ðQ2Þ.
In the covariant spectator quark model the transition

current can be decomposed as [1,4,37]

J
�
��

¼ Z��½J�0 þ J
�
� þ J

�
� �; (5)

where J�0 is the current associated with the direct coupling

of the photon field to the quark core, J�� the current result-
ing from the photon coupling with the pion [Fig. 1(a)], and
J
�
� the current related to the photon interaction with the
intermediate baryon state (� or �) when one pion is in the
air [Fig. 1(b)]. The factor Z�� arises from the � and �0

wave functions when the pion cloud contributions are
included, to be discussed later.
The final expressions for the form factors can be

written as

F1��ðQ2Þ ¼ Z��½F0
1��

ðQ2Þ þ �F1��ðQ2Þ�; (6)

F2��ðQ2Þ ¼ Z��½F0
2��

ðQ2Þ þ �F2��ðQ2Þ�; (7)

where F0
i��

(i ¼ 1, 2) are the contributions from the quark

core, and �Fi�� (i ¼ 1, 2) the contributions resulting from
the pion cloud dressing.

A. Valence quark contributions

In the valence quark sector, we have

F0
1��

ðQ2Þ ¼ �

1þ �
R��ðQ2ÞIðQ2Þ; (8)

F0
2��

ðQ2Þ ¼ 1

1þ �
R��ðQ2ÞIðQ2Þ; (9)

where

R��ðQ2Þ ¼ � 1ffiffiffi
3

p
�
f1�ðQ2Þ þ M

MN

f2�ðQ2Þ
�
; (10)

I ðQ2Þ ¼
Z
k
c �ðPþ; kÞc �ðP�; kÞ: (11)

In Eq. (10) the functions fi� (i ¼ 1, 2) are the isovector
quark form factors defined in Appendix A. (See Refs. [1,4]
for details.) By definition, f1�ð0Þ ¼ 1 and f2�ð0Þ ¼ ��,
where �� ¼ 1:803 as defined by the model for the octet
baryons in Ref. [4]. The dependence on the factor R�� in
Eqs. (8) and (9) reflects the isovector character of the
reaction.

FIG. 1. Electromagnetic interaction within the one-pion loop
level (pion cloud) through the intermediate baryon states B, B1,
and B2. In diagram (a) B ¼ ��, while in diagram
(b) ðB1; B2Þ ¼ ð��;��Þ, ð�þ;�þÞ, or ð�;�0Þ.
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In Eq. (11) c � and c � represent, respectively, the �
and �0 radial wave functions written in a covariant form
using two momentum range parameters, which character-
ize the spacial short- and long-range behavior of the wave
functions. The explicit expressions are given in
Appendix A. The symbol

R
k stands for the covariant

integration in the diquark momentum k:
R
k ¼

R
d3k

ð2�Þ32ED
,

where ED ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ k2
q

is the diquark energy with the

mass mD.
From Eq. (8) we can conclude that F0

1��
ð0Þ ¼ 0, as

required by the definition of the form factors (1), when
the pion cloud is absent.

So far, the signs of the form factors are not determined,
since the overlap integral (11) depends on the normaliza-
tion constants of the �0 and � radial wave functions, c �

and c �, respectively. However, we have a way to deduce
the signs as to whether the normalization constants have
the same or a different relative sign, as will be discussed
later. This relative sign is also important for the other
reactions such as ��Y ! �ð1670Þ with Y ¼ �, �0 [42].
In the following, we start by assuming the same sign for
both wave function normalization constants. The choice
determines the sign of F0

2��
ð0Þ, since F0

1��
ð0Þ ¼ 0.

Ultimately, the relative sign of the wave functions can be
determined by experiments for the sign of the transition
magnetic moment.

Using Eqs. (8) and (9), we can also calculate the valence
quark contributions for the electric and magnetic form
factors:

G0
E��

ðQ2Þ ¼ 0; (12)

G0
M��

ðQ2Þ ¼ R��ðQ2ÞIðQ2Þ: (13)

We can now estimate the valence quark contribution
for the transition magnetic moment. The result in the
equal mass limit is G0

M��
ð0Þ ¼ �1:82, where �0 and �

have exactly the same radial wave functions in their rest
frame at Q2 ¼ 0 [in this case Ið0Þ ¼ 1]. This leads to
���0 ¼ �1:53�N .

Note, however, that we have not yet taken into considera-
tion the effect of the pion cloud dressing. From one side, this
will require a redefinition of the valence quark contribution
by the renormalization factor Z�� according to Eqs. (6) and
(7), and on another side, we have additional contributions for
both form factors from the pion cloud dressing.

B. Pion cloud contributions

Now we consider the decomposition (5), and focus
particularly on the contributions J�� and J�� . Following
Refs. [1,4,37] we write

J
�
� ¼

�
~B1�

� þ ~B2

i���q�
2M

�
G���; (14)

J
�
� ¼

�
~C1�

� þ ~C2

i���q�
2M

�
Ge��

þ
�
~D1�

� þ ~D2

i���q�
2M

�
G���; (15)

where G��� is the coefficient that includes the coupling of
the photon with the pion, and Gz�� (z ¼ e, �) are the
coefficients from the couplings between the photon and
the intermediate baryon states, including the charge cou-
pling z ¼ e and the magnetic coupling z ¼ �, where e and
� stand, respectively, for the charge and anomalous mag-
netic moment. We follow the notations in Refs. [1,4,37]
except that we now need a double baryon index (��)
instead of just B, since the initial and final states are differ-
ent. The dependence on the global coupling constant,�NN,

is included in the coefficients ~Bi, ~Ci, and ~Di (i ¼ 1, 2),
which represent integrals of the corresponding Feynman
diagrams, each as a function of Q2. Here the tilde is a short
notation to remind us that they are functions of Q2.
Therefore, the coefficients G��� and Gz�� depend only
on the ratio of the coupling constants g�BB0=g�NN , with
g2�NN being absorbed in the respective integral coefficients.

As before [1,4,37], we assume that the integrals ~Bi, ~Ci,
and ~Di (i ¼ 1, 2) are only weakly dependent on the mass of
the octet baryon members B, and therefore the values of the
coefficients hold for all the octet members. The expressions

for ~Bi, ~Ci, and ~Di (i ¼ 1, 2) are given in Appendix B.
The explicit calculation of G��� and Gz�� gives

G��� � 0; (16)

Gz�� ¼ �	��ðz�� þ z�þÞ þ 	�z��0 ; (17)

with 	�� ¼ ffiffiffiffiffiffiffi
	�

p ffiffiffiffiffiffiffi
	�

p
, and

	� ¼ 4

3

2; 	� ¼ 4ð1� 
Þ2; (18)

where 
 � D
FþD is defined in terms of the SUð3Þ symmetric

(D) and antisymmetric (F) couplings [43], and we use the
SUð6Þ quark model value,
 ¼ 0:6. In Eq. (17) z stands for,
again, the charge (e) or the anomalous magnetic moment
(�) couplings corresponding to the bare, undressed case.
This means that z is replaced by a function of Q2 given by
F0
1BðQ2Þ for z ¼ e, and F0

2BðQ2Þ for z ¼ �, where F0
iBðQ2Þ

(i ¼ 1, 2) are the bare elastic form factors1 for the baryon
B. In the case of z��0 it represents the ��� ! �0 bare
form factors given by Eqs. (8) and (9). The bare elastic
form factors for �þ and �� were already obtained in the
previous works [1,4].
The result G��� ¼ 0 is a consequence of the cancella-

tion of the diagrams with �þ and �� intermediate states.

1In Ref. [1] we used ~eB and ~�B to represent, respectively,
F0
1BðQ2Þ and F0

2BðQ2Þ.
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Let us now discuss the normalization factor Z��, which
is a consequence of the �0 and � wave function modifi-
cation due to the pion cloud effect. In the elastic reactions it
is easy to see that ZB is related to the charge correction due
to the pion cloud [37]. A simple example is the nucleon
case. The correction from the pion cloud to the proton
charge is 3B1 with B1 ¼ ~B1ð0Þ. In this case we can write
GEð0Þ ¼ ZNð1þ 3B1Þ, where ‘‘1’’ corresponds to the pro-
ton bare charge. The correct, dressed charge GEð0Þ ¼ 1 is
ensured by setting ZN ¼ 1=ð1þ 3B1Þ.

In general, we can relate the normalization factor ZB

with the derivative of the baryon self-energy [37]. This
feature also appears in the cloudy bag model [44]. The
results for the octet baryons ZB were obtained in
Refs. [1,4,37]. In particular, for � and �, we have

Z� ¼ ½1þ 3	�B1��1; (19)

Z� ¼ ½1þ ð2	� þ 	�ÞB1��1: (20)

For the ��� ! �0 transition we cannot relate Z�� with the
form factor F1��ðQ2Þ at Q2 ¼ 0. In this case, we include a
factor

ffiffiffiffiffiffi
ZB

p
for the initial and final state baryons, which

leads to the factor Z�� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z�Z�

p
.

C. Total result

With the results for the currents J
�
� and J

�
� together with

the definition of J�
��

, we get

F1�� ¼ Z��fF0
1��

þ ½	�F
0
1��

� 	��ðF0
1�� þ F0

1�þÞ� ~C1

þ ½	�F
0
2��

� 	��ðF0
2�� þ F0

2�þÞ� ~D1g; (21)

F2�� ¼ Z��fF0
2��

þ ½	�F
0
1��

� 	��ðF0
1�� þ F0

1�þÞ� ~C2

þ ½	�F
0
2��

� 	��ðF0
2�� þ F0

2�þÞ� ~D2g: (22)

The expressions above show that we also need to know
the �� and �þ form factors to calculate the � to
�0 transition form factors. As mentioned already, the
�� and �þ form factors were evaluated in Ref. [4] in
the same framework. For completeness, we give their
expressions in Appendix A.

Note that, in Eq. (21), �� �0 contributions from the
quark core vanish for Q2 ¼ 0 [F0

1��0ð0Þ ¼ 0], and the

same is true for the terms with �þ and �� [F0
1�þð0Þ þ

F0
1��ð0Þ ¼ 0], and for the Pauli-type form factor contribu-

tions [ ~D1ð0Þ ¼ 0]. Therefore, the pion cloud contribution
for F1��ðQ2Þ vanishes at Q2 ¼ 0, the same as for the
bare contributions. As a consequence, F1��ð0Þ ¼ 0, as
expected.

We now calculate the transition magnetic moment given
by GM��ð0Þ � F2��ð0Þ. From Eq. (22), we have

F2��ð0Þ ¼ Z��f�0�� þ ½	��0��

� 	��ð�0�� þ �0�þÞ�D2g; (23)

where �0B and �0�� are the bare anomalous magnetic
moments, and D2 is the value of ~D2 at Q2 ¼ 0. With the
results �0�� ¼ �1:817 (determined before), and �0�þ ¼
2:137, �0�� ¼ �0:249, and D2 ¼ 0:0821 (from Ref. [4]),
and Z�� ¼ 0:9246, we obtain GM��ð0Þ ¼ �1:826, or
���0 ¼ �1:486�N . Here the pion cloud contribution is
�0:12�N . Comparing the magnitude of the experimental
value of �1:61� 0:08�N , our result differs 0:12�N from
the central value. The deviation is almost within the range
of error bars.

III. RESULTS

The results for the Dirac-type (F1 � F1��) and Pauli-
type (F2 � F2��) form factors, and also the Sachs form
factors, are, respectively, presented in Figs. 2 and 3. In both
figures the solid lines give the final results from Eqs. (21)
and (22) including the pion cloud effects, while the dotted
lines give the contributions from the quark core (setting
~C1 ¼ ~D1 ¼ ~C2 ¼ ~D2 ¼ 0). The calculations are per-
formed including the �� � mass difference, although
the approximation, M� ¼ M� ¼ M, leads to a small
deviation of �0:5%.
In Fig. 2 one can see that the pion cloud effects

(the difference between the solid and dotted lines) are
small but lead the total contribution in the direction of

5
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FIG. 2 (color online). Dirac- and Pauli-type form factors. The
total and quark core contributions are shown by the solid and
dotted lines, respectively.
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the experimental value F2ð0Þ�F2��ð0Þ¼�1:98�0:10,
extracted from ���0 .

As for GE � GE�� in Fig. 3, only the total result is
visible because the quark core contribution vanishes.
Therefore, GE�� is determined exclusively by the pion
cloud effects. We note, however, based on the scale pre-
sented, that the electric form factor is small and about 1/3
of the neutron electric form factor in the similar Q2 range.
As for the magnetic form factorGM � GM��, corrected by

the factor MN

M to be compared with ���0 in Fig. 3, it is

dominated by the valence quark contributions.
For F2 and GM we can observe the fast falloff of the

pion cloud effects. For F1 and GE the falloff is slower and
has a larger finite range, although the magnitude of the
form factors differs from F2 and GM by an order of
magnitude.

The results presented here show that we can study the
���!�0 reaction once we know the� and�0 systems. It
is very important to study theQ2 dependence of the���0

transition form factors, since most of the studies were re-
stricted to the pointQ2¼0. Some exceptions are Refs. [7,24].
Our result for ���0 ¼�1:49�N can well be compared with
the other estimates, 1:4�N<j���0 j<1:9�N [5–28,30–32],

and is also close to the SUð6Þ result of���0 ’ �1:66�N . In
addition, the available result from lattice QCD in the
quenched approximation is ���0 ¼�1:15ð16Þ�N [29], and
it underestimates the experimental result.

We note that some other works have a different sign for
���0 . The difference in sign can be a consequence of the
convention of the relative sign between the� and �0 wave
functions (in particular, the � and �0 quark flavor states).
In our model the contribution from the quark core (nega-
tive) has the same sign as the pion cloud contribution and is
additive.
The relative phase between the � and �0 states, which

we call ���0 , is very important also for other reactions. So
far in the discussion, we have assumed that ���0 ¼ þ1. In
Ref. [42] it is suggested that the study of the reactions
��Y ! �ð1670Þ (Y ¼ �, �0) can also be used to deduce
the phase ���0 . In this case the results for the form factors
are dependent on the two phases: ���0 and ���ð1670Þ; the
latter is the relative sign between the � and �ð1670Þ wave
functions. Once the phase ���ð1670Þ is determined by one

of the reactions, for instance, the case Y ¼ �, ���0 can be
fixed by the other reaction. In the case ���0 ¼ ����ð1670Þ,
the suppression of the Pauli-type form factor is expected in
the reaction with Y ¼ �0 [42].
Alternatively, an independent determination of ���0 , as

in the reaction ��� ! �0, can be used in the study of the
��Y ! �ð1670Þ (Y ¼ �, �0) reactions.
We can also use the present model to calculate the decay

width of �0 ! ��, using our result for GM��ð0Þ. We
obtain � ¼ 7:9 keV, which is close to the experimental
value of 8:9� 0:9 keV [2].

IV. SUMMARYAND CONCLUSIONS

In this work we have studied the ��� ! �0 transition
form factors using the covariant spectator quark model
including the pion cloud effects. The parameters of the
model, including the pion cloud contribution, are all deter-
mined in the previous studies of the electromagnetic form
factors of the octet baryons.
We conclude that the Dirac- and Pauli-type form

factors are dominated by the valence quark contributions.
However, the relative contributions from the quark core
and the pion cloud change when we consider the Sachs
form factors. The magnetic dipole form factor is largely
dominated by the valence quark contributions as F2. As for
the electric form factor, the contribution from the quark
core is zero; therefore,GE is determined exclusively by the
pion cloud contributions. In all cases the pion cloud effects
fall off faster than those of the valence quarks with increas-
ing Q2. We predict that the magnitude of GE is at most
�2% of that ofGM in the lowQ2 region. Note thatGE=GM

gives a rough estimate for the ratio between the pion cloud
and valence quark contributions in our model. It will be
interesting to explore if the proportion can somehow be
accessed by experiment in the near future.
About the transition magnetic moment ���, although

the magnitude of the pion cloud contribution is small
compared to that of the valence quark core, it pulls the
final result towards the experimental value. The final result,

5
-2

-1.5

-1

-0.5

0

(M
N

/M
) 

G
M

(Q
2 )

0 1 2 3 4

0 1 2 3 4 5

Q
2
 (GeV

2
)

0

0.01

0.02

0.03

0.04

G
E
(Q

2 )

FIG. 3 (color online). Electric and magnetic form factors. The
total and quark core contributions are shown by the solid and
dotted lines, respectively.
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���0 ¼ �1:486�N, is nearly within the experimental
error bars, about 1.5 standard deviations from the central
value in PDG (���0 ¼ �1:61� 0:08�N). Thus, a modest
improvement in the statistics of the experiment would
permit the confirmation or rejection of the present result.

Finally, we recall that the sign of ���0 is given by the
phase ���0 between the� and�0 wave functions [���0 /
����0]. This phase can also be determined by experimen-
tal measurements of the ��Y ! �ð1670Þ (Y ¼ �, �0)
transition form factors. Thus, the sign of ���0 can be
determined consistently with the ��� ! �ð1670Þ and
���0 ! �ð1670Þ reactions.
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APPENDIX A: VALENCE QUARK FORM FACTORS

1. Wave functions

Following Ref. [1] we consider a generic wave function
c B for the octet baryon member B in terms of the baryon
momentum P and diquark momentum k,

�BðP; kÞ ¼ 1ffiffiffi
2

p ½�0
SjMAiB þ�1

SjMSiB�c B; (A1)

where �0;1
S are the spin wave functions, and jMAiB and

jMSiB are, respectively, the mixed-antisymmetric and
mixed-symmetric flavor states with respect to quarks 1
and 2. For simplicity, spin and polarization indices are
suppressed.

The spin wave functions are expressed by

�0
S ¼ uBðPÞ; (A2)

�1
S ¼ �ð"�PÞ
ð
ÞU


BðPÞ; (A3)

where uB is the Dirac spinor, "Pð
Þ with 
 ¼ 0, � is the
diquark polarization state [34,45] and U


B is the vector
spinor given by [34,38]

U

BðPÞ ¼

1ffiffiffi
3

p �5

�
�
 � P


MB

�
uBðPÞ: (A4)

The flavor wave functions are listed in Table I based on
SUð3Þ symmetry, and were also given in Ref. [1].
The spin and flavor states are expressed in terms of the

states of quark 3 [1,34,36,37]. The total wave function is
obtained by the permutations of the quark states. However,
for the present case it is not explicitly necessary because all
the diquark pairs (12), (23) and (13) give equal contribu-
tions for the transition current.

2. ��� ! �0 form factors

The form factors associated with the photon coupling
with the quarks in the spectator quark model are calculated
by the relativistic impulse approximation [1,4,34,36],

J
�
0 ¼ 3

X
�

Z
k
��ðPþ; kÞj�q��ðP�; kÞ; (A5)

where Pþ (P�) is the momentum of the final (initial) state,
and � ¼ fs; 
Dg holds for the sum in the scalar (spin-0) and
vectorial (spin-1) polarizations 
D ¼ 0,�1 of the diquark.
The factor 3 assures equal contributions from the three
independent diquark states (12), (23) and (13). The quark
current operator j

�
q can be decomposed as

j
�
q ¼ j1

�
�� � 6qq�

q2

�
þ j2

i���q�
2MN

; (A6)

where MN is the nucleon mass. The quark form factors ji
(i ¼ 1, 2) act on the third quark state. The inclusion of the
term �6qq�=q2 in the quark current (A6) is equivalent to
using the Landau prescription [46,47] for the final electro-
magnetic current. The term restores current conservation
but does not affect the results of the observables [46].
The operators ji (i ¼ 1, 2) can be decomposed into the

sum of operators in flavor SUð3Þ space [1,36],

ji ¼ 1

6
fiþ
0 þ 1

2
fi�
3 þ 1

6
fi0
s; ði ¼ 1; 2Þ; (A7)

where 
0 ¼ diagð1; 1; 0Þ, 
3 ¼ diagð1;�1; 0Þ, and 
s ¼
diagð0; 0;�2Þ. The operators act on the quark wave func-
tion q ¼ ðudsÞT of the third quark.
The functions fi�ðQ2Þ (i ¼ 1, 2) define the quark elec-

tromagnetic form factors. They are normalized as f1nð0Þ ¼
1 (n ¼ 0,�), f2�ð0Þ ¼ ��, and f20ð0Þ ¼ �s. The isoscalar
(�þ) and isovector (��) anomalous magnetic moments are
related to the u and d quark anomalous magnetic moments

TABLE I. Flavor wave functions for � and �0.

B jMSiB jMAiB
� 1

2 ½ðdsu� usdÞ þ sðdu� udÞ� 1ffiffiffiffi
12

p ½sðdu� udÞ � ðdsu� usdÞ � 2ðdu� udÞs�
�0 1ffiffiffiffi

12
p ½sðduþ udÞ þ ðdsuþ usdÞ � 2ðudþ duÞs� 1

2 ½ðdsuþ usdÞ � sðudþ duÞ�
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by �þ ¼ 2�u � �d and �� ¼ 1
3 ð2�u þ �dÞ [34]. As for �s,

it is the strange quark anomalous magnetic moment [36].
The effect of the flavor space overlap results in the

projection of the final and initial states in the operator ji
(i ¼ 1, 2). We then define

jAi ¼ �hMAjjijMAi�; jSi ¼ �hMSjjijMSi�: (A8)

Using the current (A5) with the wave functions defined
by Eq. (A1), one obtains after some algebra the form
factors defined by Eq. (1) for the valence quark part:

F0
1��

¼
�
3

2
jA1 þ 1

2

3� �

1þ �
jS1 � 2

�

1þ �

M� þM�

2MN

jS2

�
I ;

(A9)

F0
2��

¼
��

3

2
jA2 � 1

2
jS2

�
M� þM�

2MN

� 2
1

1þ �
jS1

�
I ; (A10)

where I is the overlap integral defined by Eq. (11).
We note that Eqs. (A9) and (A10) are equivalent to the

expressions obtained for the octet baryon electromagnetic
form factors in Refs. [1,4] if we replaceMB by the average
masses of the � and �0, M ¼ 1

2 ðM� þM�Þ. This is inter-
esting since the definitions of the elastic form factors for
the octet baryons and those for the inelastic reaction
��� ! �0 as in Eq. (1) are in fact different [see correction
term in the Dirac form factor].

To get the final results we need only to use the explicit
expressions for jAi and jSi for i ¼ 1, 2 given by Eq. (A8).
They can be expressed as

jSi ¼ �jAi ¼ 1ffiffiffiffiffiffi
12

p fi� ði ¼ 1; 2Þ: (A11)

Using these relations, we convert Eqs. (A9) and (A10) into
Eqs. (8) and (9).

3. Elastic form factors

For the baryons �� and �þ we use the expressions
derived previously [1,4],

F0
1B ¼

�
3

2
jA1 þ 1

2

3� �

1þ �
jS1 � 2

�

1þ �

MB

MN

jS2

�
IB; (A12)

F0
2B ¼

��
3

2
jA2 � 1

2
jS2

�
MB

MN

� 2
1

1þ �
jS1

�
IB; (A13)

where

I B ¼
Z
k
c BðPþ; kÞc BðP�; kÞ: (A14)

The coefficients jA;Si (i ¼ 1, 2) are presented in Table II.

4. Parametrizations for quark form factors

To parametrize the quark current, we adopt the structure
inspired by the vector meson dominance mechanism as in
Refs. [34,36],

f1�¼
qþð1�
qÞ
m2

�

m2
�þQ2

þc�
M2

hQ
2

ðM2
hþQ2Þ2 ;

f10¼
qþð1�
qÞ
m2

�

m2
�þQ2

þc0
M2

hQ
2

ðM2
hþQ2Þ2 ;

f2�¼��
�
d�

m2
�

m2
�þQ2

þð1�d�Þ M2
h

M2
hþQ2

�
;

f20¼�s

�
d0

m2
�

m2
�þQ2

þð1�d0Þ M2
h

M2
hþQ2

�
;

(A15)

where m�, m�, and Mh are the masses, respectively,

corresponding to the light vector meson (� meson),
the � meson (associated with an s�s state), and an ef-
fective heavy meson with mass Mh ¼ 2MN to represent
the short-range phenomenology. The coefficients c0, c�
and d0, d� were determined in the previous studies for
the nucleon (model II) [34] and �� [36]. The values
are, respectively, cþ ¼ 4:160, c� ¼ 1:160, dþ ¼ d� ¼
�0:686, c0 ¼ 4:427, and d0 ¼ �1:860 [36]. The constant

q ¼ 1:21 is obtained so as to reproduce correctly the

quark number density in deep inelastic scattering [34].

5. Parametrizations for radial wave functions

The radial wave functions for the � and �0 (denoted by
B below) are defined in terms of the dimensionless variable
[1,34,36]

�B ¼ ðMB �mDÞ2 � ðP� kÞ2
mDMB

; (A16)

where P is the baryon momentum and k the diquark
momentum. The radial wave functions are then given by

c BðP; kÞ ¼ NB

mDð	1 þ �BÞð	3 þ �BÞ ; (A17)

where 	i (i ¼ 1, 3) are two parameters that define the
momentum scale (in units of mD) of the radial wave
function in momentum space. The normalization constant
NB is determined by the condition

R
k jc Bð �P; kÞj2 ¼ 1,

where �P ¼ ðMB; 0; 0; 0Þ is the baryon rest frame momen-
tum. As in Ref. [4] we use 	1 ¼ 0:0532 and 	3 ¼ 0:6035.
In simple terms, 	1 characterizes the long-range region in
position space in the radial wave functions, while	3 shows
the short-range region.

TABLE II. Mixed-symmetric and mixed-antisymmetric coef-
ficients for �þ and �� [1].

B jSi jAi

�þ 1
18 ðfiþ þ 3fi� � 4fi0Þ 1

6 ðfiþ þ 3fi�Þ
�� 1

18 ðfiþ � 3fi� � 4fi0Þ 1
6 ðfiþ � 3fi�Þ
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APPENDIX B: PION CLOUD DRESSING

1. Lagrangian

The relevant part of the Yukawa-type Lagrangian den-
sity for the octet baryons and pseudoscalar octet mesons
without the Dirac structure is given by [48]

L PB ¼ g�NN
�N ~�N � ~�þ g���½ �� ~� � ~�þ H:c:�

þ g���½�ið ~��� ~�Þ � ~��; (B1)

¼ g�NN½
ffiffiffi
2

p
�pn�þ þ ffiffiffi

2
p

�np�� þ ð �pp� �nnÞ�0

þ ffiffiffiffiffiffiffi
	�

p ð �����þ þ ���þ�� þ ���0�0 þ H:c:Þ
þ ffiffiffiffiffiffiffi

	�

p ð ��0���þ � ��þ�0�þ þ ����0��

� ��0�þ�� þ ��þ�þ�0 � ������0Þ�; (B2)

where 	� ¼ 4
2=3 and 	� ¼ 4ð1� 
Þ2 with 
 ¼ D
FþD .

D and F correspond, respectively, to the SUð3Þ symmetric
and antisymmetric couplings.

2. Pion cloud parametrization functions

We consider the following parametrizations for the func-

tions ~Bi, ~Ci, and ~Di in Eqs. (14) and (15),

~B 1 ¼ B1ð1þ t1Q
2Þ
�

�2
1

�2
1 þQ2

�
5
; (B3)

~C 1 ¼ B1

�
�2

1

�2
1 þQ2

�
2
; (B4)

~D 1 ¼ D0
1

Q2�4
1

ð�2
1 þQ2Þ3 ; (B5)

~B 2 ¼ B2ð1þ t2Q
2Þ
�

�2
2

�2
2 þQ2

�
6
; (B6)

~C 2 ¼ C2

�
�2

2

�2
2 þQ2

�
3
; (B7)

~D 2 ¼ D2

�
�2

2

�2
2 þQ2

�
3
; (B8)

where B1, B2, C2, D2 are constants given, respectively,

by ~B1ð0Þ, ~B2ð0Þ, ~C2ð0Þ, ~D2ð0Þ, and �1, �2 are two cutoffs;

D0
1 is also a constant defined by D0

1 ¼ 1
�2

1

dD1

dQ2 ð0Þ. The

coefficients t1 and t2 are defined next. The parametrization
for Eqs. (B3)–(B8) is chosen to reproduce the charge of

the dressed nucleon [which requires ~C1ð0Þ ¼ ~B1ð0Þ and
~D1ð0Þ ¼ 0] [1,4,37] and also to simulate the chiral
behavior of the nucleon radii in the limit of the very small
pion mass m� [4]. The coefficients t1 and t2 are obtained
as [4]

t1 ¼ 1

ZNB1

�
1

24

5g2A þ 1

8�2F2
�

logm� þ b01
�
; (B9)

t2 ¼ 1

ZNB2

�
� 1

24

g2A
8�F2

�

MN

m�

þ b02
�
; (B10)

where ZN is the nucleon renormalization factor ZN ¼
1=ð1þ 3B1Þ, gA the nucleon axial vector coupling con-
stant, andF� the pion decay constant. As for b01 and b02 they
are two additional parameters determined by the nucleon
isovector radii [4].
All the parameters were determined in Ref. [4] in the

study of the octet baryon electromagnetic form factors, and
the values are listed in Table III.
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