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We prove that D0 � �D0 mixing in the standard model occurs only at second order in U-spin breaking.

The U-spin subgroup of SU(3) is found to be a powerful tool for analyzing the cancellation of

intermediate-state contributions to the D0 � �D0 mixing parameter y ¼ ��=ð2�Þ. Cancellations due to

states within a single U-spin triplet are shown to be valid to first order in U-spin breaking. Illustrations are

given for triplets consisting of (a) pairs of charged pions and kaons; (b) pairs of neutral pseudoscalar

members of the meson octet; (c) charged vector-pseudoscalar pairs, and (d) states of four charged kaons

and pions.
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I. INTRODUCTION

The parameters x ¼ �m=� and y ¼ ��=2� describing
mixing between D0 and �D0 have been established
at levels of an appreciable fraction of a percent [1],
x ¼ ð0:63þ0:19

�0:20Þ%, y ¼ ð0:75� 0:12Þ%. A key question is

whether such levels can be attained in the standard model
or require new physics.

In the SU(3) limit, the contributions to y of classes of
intermediate states shared byD0 and �D0 cancel one another
in the standard model. Previous investigations have exam-
ined the degree to which this cancellation holds inclusively
[2]. Applying an exclusive approach, Ref. [3] finds that for
multiparticle states near threshold, SU(3) is broken enough
by phase space effects that values of y (and, generically
via dispersion relations [4], x) of order a percent are
conceivable. This is despite the fact, proved using the
full machinery of SU(3) in Ref. [3], that neutral D meson
mixing occurs only at second order in SU(3) breaking.

Contributions to y of intermediate states with zero
strangeness typically cancel with those of states with
strangeness�1. For example, a contribution from the singly
Cabibbo-suppressed transitions D0 ! ð�þ��; KþK�Þ !
�D0 is canceled by a contribution from the doubly Cabibbo-
suppressed (DCS) transition D0 ! Kþ�� followed by the
Cabibbo-favored transition Kþ�� ! �D0, plus a contribu-
tion from the Cabibbo-favored transition D0 ! K��þ
followed by the DCS transition K��þ ! �D0. The inter-
mediate states in this case comprise a single triplet of the
SU(3) subgroup known as U-spin [5]. Just as the fundamen-
tal representation of I-spin (isospin) is composed of ðu; dÞ,
that of U-spin is ðd; sÞ.

U-spin symmetry has been known for a long time to
provide useful relations among amplitudes of hadronic D
decays [6,7]. Typical U-spin breaking, described by quan-
tities such as ðms �mdÞ=�QCD or fK=f� � 1, is of order

0:2–0:3 and may be treated perturbatively in hadronic
matrix elements. A very early suggestion was made in
Ref. [8] that SU(3) breaking at this level in a penguin
amplitude may account for the somewhat unexpected large
value of the ratio of branching ratios BðD0 ! KþK�Þ=
BðD0 ! �þ��Þ ¼ 2:8 [9]. A recent study of D decays
into two pseudoscalars [10,11] has shown that U-spin
breaking at a level between 10% and 20% in an enhanced
nonperturbative penguin amplitude may account well for
this ratio and for the unexpected large difference between
CP asymmetries measured recently in these two processes
[12,13]. Two other studies discussing these two effects
of U-spin breaking have been presented recently in
Refs. [14,15].
In this paper we shall show that a cancellation, to first

order in U-spin breaking, of contributions to D0 � �D0

mixing within single U-spin triplets is a very general result.
In Sec. II we apply U-spin and its first-order breaking to a
D0 � �D0 mixing amplitude, AD �D � h �D0jHWHW jD0i. In
Sec. III we express �� as a sum of contributions from
U-spin triplet states, deriving in Sec. IVa general sum rule
corresponding to the cancellation of triplet state contribu-
tions to ��. Examples of these sum rules for pairs of
charged pseudoscalar mesons, pairs of neutral pseudosca-
lar mesons, and charged vector-pseudoscalar pairs are
given in Sec. V. Some results involving large U-spin break-
ing are noted in Sec. VI for states of four charged pions and
kaons and for states involving K0 �K0 and a pair of charged
pions or kaons, while Sec. VII concludes.

II. U-SPIN BREAKING IN A
D0 � �D0 MIXING AMPLITUDE

Let us consider an amplitude which connects D0 and �D0

through second order weak interactions,

AD �D � h �D0jH�C¼�1
W H�C¼�1

W jD0i: (1)
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We will now show that this amplitude vanishes in the
U-spin symmetry limit, and that it vanishes also when
including first-order U-spin corrections. Keeping the flavor
structure of the �C ¼ �1weak Hamiltonian but suppress-
ing its Lorentz structure and denoting C � cos�c,
S � sin�c, one has

H�C¼�1
W ¼GFffiffiffi

2
p ½Cð �scÞ�Sð �dcÞ�½Cð �udÞþSð �usÞ�: (2)

Only six out of the sixteen terms in HWHW obey �S ¼ 0
and contribute to AD �D:

AD �D ¼ G2
FC

2S2

2
h �D0j � ½ð �dcÞð �usÞ�½ð�scÞð �udÞ�

� ½ð�scÞð �udÞ�½ð �dcÞð �usÞ� þ ½ð �dcÞð �udÞ�½ð �dcÞð �udÞ�
þ ½ð�scÞð �usÞ�½ð�scÞð �usÞ� � ½ð �dcÞð �udÞ�½ð�scÞð �usÞ�
� ½ð�scÞð �usÞ�½ð �dcÞð �udÞ�jD0i: (3)

We will now show that the operator contributing to AD �D

in Eq. (3) transforms like U ¼ 2, U3 ¼ 0. Neglecting c �u
terms, which are singlets under U-spin, this operator
reduces to

OD �D¼�ð �dsÞð�sdÞ�ð �sdÞð �dsÞþ½ð�ssÞ�ð �ddÞ�½ð�ssÞ�ð �ddÞ�:
(4)

Taking the quark and antiquark pairs of states, ðjdi; jsiÞ and
ðj �si;�j �diÞ, to be U-spin doublets, we find the following
behavior of �qq0 operators under U-spin,

ð �sdÞ ¼ ð1;�1Þ; �ð �dsÞ ¼ ð1; 1Þ;
ð�ssÞ � ð �ddÞ ¼ ffiffiffi

2
p ð1; 0Þ;

(5)

implying

OD �D¼ð1;1Þ�ð1;�1Þþð1;�1Þ�ð1;1Þþ2ð1;0Þ�ð1;0Þ:
(6)

Using Clebsch-Gordan coefficients for 1 � 1, the operator
OD �D is seen to transform as pure U ¼ 2, U3 ¼ 0.

D0 and �D0 are U-spin singlets. Therefore, AD �D vanishes
in the U-spin symmetry limit. Assuming that U-spin break-
ing may be treated perturbatively, a U-spin-breaking mass
term (/ �ss� �dd) behaves like U ¼ 1, U3 ¼ 0. Thus, AD �D

vanishes also in the presence of first-order U-spin-breaking
corrections, and may obtain a nonzero value only when
including second-order U-spin breaking. For a short nota-
tion, we will refer to this behavior of vanishing in the
U-spin symmetry limit including first-order U-spin-
breaking corrections as ‘‘vanishing in USFB.’’

Reference [3] presented a lengthy SU(3) group theoreti-
cal argument involving high representations of this group
showing that AD �D vanishes in the limit of flavor SU(3)
symmetry and when including first-order SU(3)-breaking
corrections. We have shown that this behavior is actually
due only to U-spin, a particular SU(2) subgroup of SU(3).

III. �� AS A SUM OVER U-SPIN
TRIPLET STATES

Let us consider the width difference between the two
neutral D mass eigenstates, neglecting CP violation in
D0 � �D0 mixing [16–18],

�� ¼X
fD

�ðfDÞðh �D0jH�C¼�1
W jfDihfDjH�C¼�1

W jD0i þ c:c:

(7)

Here jfDi are normalized states into which bothD0 and �D0

may decay, while �ðfDÞ are the corresponding densities of
states, i.e., phase space factors.
The �C ¼ �1 weak Hamiltonian involves three parts

corresponding to �S ¼ �1, 0, 1, and behaving like three
components of a U-spin vector,

H�C¼�1
W ¼ HU3¼�1 þHU3¼0 þHU3¼þ1;

HU3¼�1 ¼ GFC
2ffiffiffi

2
p ð�scÞð �udÞ;

HU3¼0 ¼ GFCSffiffiffi
2

p ½ð�scÞð �usÞ � ð �dcÞð �udÞ�;

HU3¼þ1 ¼ �GFS
2ffiffiffi

2
p ð �dcÞð �usÞ:

(8)

As D0 and �D0 are U-spin singlets, the sum in (7) obtains
contributions only from intermediate U-spin vector states,
jfU¼1

U3¼0;�1i,

�� ¼ X
fU¼1

X
U3¼0;�1

�ðfU¼1
U3

Þðh �D0jH�U3
jfU¼1

U3
i

� hfU¼1
U3

jHU3
jD0i þ c:c:Þ: (9)

The sum over fU¼1 involves all possible U-spin triplet
states to which D0 decays.

IV. SUM RULE FOR A
SINGLE U-SPIN TRIPLET

Let us now consider the contribution to �� of a single
U-spin triplet jfU¼1i accessible to D0 decay,

��ðffU¼1gÞ ¼ X
U3¼0;�1

�ðfU¼1
U3

Þðh �D0jH�U3
jfU¼1

U3
i

� hfU¼1
U3

jHU3
jD0i þ c:c:Þ: (10)

The triplet jfU¼1
U3

i may consist, for instance, of three states

involving pairs of charged pseudoscalar mesons, as studied
below in Sec. VA. These states have a common phase
space factor in the U-spin symmetry limit. All other triplet
states in the sum (9) are orthogonal to jfU¼1

U3
i.

As mentioned, in the limit of U-spin symmetry �ðfU¼1
U3

Þ
is independent of U3,
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��ðffU¼1gÞ ¼ �ðfU¼1Þh �D0jH�U3

X
U3¼0;�1

jfU¼1
U3

i

� hfU¼1
U3

jHU3
jD0i þ c:c: (11)

The operator
P jfU¼1

U3
ihfU¼1

U3
j acts as a unit operator in the

triplet jfU¼1
U3

i space and as a zero operator on all other

triplet states in (9) which are orthogonal to jfU¼1
U3

i. Thus,
our argument in Sec. II implies ��ðffU¼1gÞ ¼ 0. This
result holds also in the presence of first-order U-spin break-
ing in hfU¼1jHW jD0i and h �D0jHW jfU¼1i, as such correc-
tions behaving like U ¼ 1, U3 ¼ 0 cancel in ��ðffU¼1gÞ.
First-order U-spin breaking in phase space factors
�ðfU¼1

U3
Þ, which have been neglected in (11), may be

made to cancel by a judicious choice of low mass final
states. This will be demonstrated in Sec. V through several
specific examples.

Neglecting CP violation in D0 decays and denoting
j �fi � CPjfi, one has

h �D0jHW jfi ¼ h �fjHW jD0i�; (12)

implying

h �D0jHW jfihfjHW jD0i þ c:c:

¼ 2Reðh �fjHW jD0i�hfjHW jD0iÞ: (13)

The generic form of a U-spin sum rule which holds in
USFB by a judicious choice of final states is thus

Re

" X
U3¼�1;0

h �f1U3
jHW jD0i�hf1U3

jHW jD0i
#
¼0: (14)

We note that the states jfi and j �fi do not necessarily belong
to the same U ¼ 1 representation. For instance, jK�þ��i
and jK���þi, which are each others’ CP conjugates, are
U3 ¼ 1 and U3 ¼ �1 states in two different U ¼ 1
triplets.

In the special case that jf10i is a CP eigenstate with

eigenvalue �CP, we will denote CPjf1U3
i ¼ �CPj �f1U3

i for
all three triplet states. [Note that while j �f1U3

i is a state

transforming as j1;�U3i, the two states j �f11i and jf1�1i
may differ by a sign. See Eq. (18) below.] Using this
convention one finds

h �D0jHW jf10ihf10jHW jD0i þ c:c: ¼ 2�CPjhf10jHW jD0ij2;
(15)

h �D0jHW jf1�1ihf1�1jHW jD0i þ c:c:

¼ 2�CP Reðh �f11jHW jD0i�hf11jHW jD0iÞ: (16)

Thus, we have derived the following generic form for a
U-spin sum rule in USFB for triplet states of which jf10i is a
CP eigenstate,

�CP

2
��ðffU¼1gÞ

¼ jhf10jHW jD0ij2 þ 2Reðh �f11jHW jD0i�hf11jHW jD0iÞ
¼ 0: (17)

Note that the triplet states jf1U3
i may be admixtures of

low mass physical states. We will now demonstrate the
sum rule (17) and corresponding expressions for
yðffU¼1gÞ � ��ðffU¼1g=2� in several examples.

V. EXAMPLES OF U¼ 1 SUM RULES

A. D0 decays to pairs of charged
pseudoscalar mesons, ��, K�

The pairs ð��; K�Þ and ðKþ;��þÞ are U-spin doublets.
The four possible two-particle states can be written in the
form of U-spin states:

j��Kþi ¼ j1; 1i; jK��þi ¼ �j1;�1i; (18)

1ffiffiffi
2

p jK�Kþ � ���þi ¼ j1; 0i;
1ffiffiffi
2

p jK�Kþ þ ���þi ¼ j0; 0i:
(19)

Using h0; 0jHW jD0i ¼ 0 one may write

jh1;0jHW jD0ij2
¼jh1;0jHW jD0ij2þjh0;0jHW jD0ij2
¼jhK�KþjHW jD0ij2þjh���þjHW jD0ij2: (20)

Consequently, the sum rule (17) reads

1

2
��ð��; K�Þ
¼ jhK�KþjHW jD0ij2 þ jh���þjHW jD0ij2

þ 2Reðh��KþjHW jD0i�hK��þjHW jD0iÞ
¼ 0: (21)

A corresponding expression for yð��; K�Þ ¼
��ð��; K�Þ=2� is obtained in terms of branching ratios
and the strong phase difference � between amplitudes for
D0 ! ��Kþ and D0 ! K��þ,

yð��;K�Þ¼BðD0!���þÞþBðD0!K�KþÞ
�2cos�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðD0!K��þÞBðD0!��KþÞ

q
:

(22)

The minus sign of the last term on the right-hand-side may
be traced back to three minus signs appearing in the second
operator equation (5), the third operator equation (8)
and the second state equation (18). The strong phase
difference � vanishes in the U-spin symmetry limit [19],
and cos� ¼ 1 holds up to a first-order U-spin-breaking
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correction. Thus the quantity yð��; K�Þ which vanishes in
USFB is given by

yð��; K�Þ ¼ BðD0 ! ���þÞ þBðD0 ! K�KþÞ
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðD0 ! K��þÞBðD0 ! ��KþÞ

q
¼ 0: (23)

Using updated branching fractions [9]

BðD0 ! �þ��Þ ¼ ð1:401� 0:027Þ � 10�3; (24)

BðD0 ! KþK�Þ ¼ ð3:96� 0:08Þ � 10�3; (25)

BðD0 ! K��þÞ ¼ ð3:88� 0:05Þ%; (26)

BðD0 ! Kþ��Þ ¼ ð1:31� 0:08Þ � 10�4; (27)

we find yð��; K�Þ ¼ ð0:85� 0:17Þ � 10�3, substantial
cancellation between positive and negative terms in (23)
(corresponding to almost an order of magnitude suppres-
sion), and an order of magnitude below the observed value
of y ¼ ð0:75� 0:12Þ% (no CP violation assumed [1]).

One can see that U-spin breaking cancels to first order in
phase space factors in Eq. (23). Expand the ratios of phase
space factors �ðKþK�Þ=�ð�þ��Þ and �ð��K�Þ=
�ð�þ��Þ to first order in � � ðm2

K �m2
�Þ=m2

D [equiva-
lently, to first order in ðms �mdÞ=mc]. The coefficients of
� in the three terms on the right-hand side of Eq. (23) are in
the ratio 0:� 2:2 and hence cancel one another.

Reference [3] discussed contributions to y from two
pseudoscalar states belonging to a common SU(3) repre-
sentation. The expression (22) corresponding to states
which are members of a U-spin triplet has been considered
as an arbitrary partial contribution to this value of y,
without motivating that choice and without noticing that
yð��; K�Þ in Eq. (23) vanishes to first-order U-spin
breaking.

B. Decays to pairs of neutral
pseudoscalar mesons, �0, �, K0, �K0

When considering final states involving two neutral
pseudoscalar mesons we will neglect �� �0 mixing by
taking � ¼ �8. This approximation does not spoil the
derived USFB sum rule because �� �0 mixing is due to
first-order U-spin breaking transforming as U ¼ 1.

The following superpositions of single-particle states
belong to a U-spin triplet:

jK0i ¼ j1; 1i; j �K0i ¼ �j1;�1i;
1

2
ð ffiffiffi

3
p j�i � j�0iÞ ¼ j1; 0i;

(28)

while the orthogonal U-spin singlet is

1

2
ðj�i þ ffiffiffi

3
p j�0iÞ ¼ j0; 0i: (29)

Here we have used the convention �0 ¼ ðd �d� u �uÞ= ffiffiffi
2

p
,

� ¼ ð2s�s� u �u� d �dÞ= ffiffiffi
6

p
, and all states are labeled by

jU;U3i.
We now form U-spin multiplets out of pairs of the above

states. Consider first the states with U3 ¼ 1:

j2;1i¼ ðj1;1i�j1;0iþj1;0i�j1;1iÞ= ffiffiffi
2

p
; (30)

j1; 1i ¼ ðj1; 1i � j1; 0i � j1; 0i � j1; 1iÞ= ffiffiffi
2

p
; (31)

j10; 1i ¼ j1; 1i � j0; 0i; (32)

where the states on the left are two-particle states,
while those on the right are one-particle states given in
Eqs. (28) and (29) in terms of neutral pseudoscalar mesons.
By Bose statistics we need not consider the state (31) as it
is made of an antisymmetric product. We shall also
need the two-particle states with U3 ¼ 0. There are two
U ¼ 0 states

j00; 0i ¼ j0; 0i � j0; 0i; (33)

j0; 0i ¼ ðj1; 1i � j1;�1i þ j1;�1i � j1; 1i
� j1; 0i � j1; 0iÞ= ffiffiffi

3
p

; (34)

two U ¼ 1 states

j10; 0i ¼ j1; 0i � j0; 0i; (35)

j1; 0i ¼ ðj1; 1i � j1;�1i � j1;�1i � j1; 1iÞ= ffiffiffi
2

p
; (36)

and one U ¼ 2 state

j2; 0i ¼ ðj1; 1i � j1;�1i þ j1;�1i � j1; 1i
þ 2j1; 0i � j1; 0iÞ= ffiffiffi

6
p

: (37)

Again, by Bose statistics, we need not consider the state
(36) further. Now we calculate the contribution to y of
decay amplitudes participating in the transition D0 ! �D0

due to pairs of neutral mesons belonging to the U ¼ 1
multiplet. We first discuss the contributions of the S ¼ �1
states K0�0, K0�0, �K0�0, and �K0�.
As HW transforms according to �U ¼ 1, and the initial

D0 has U ¼ 0, the transition amplitude h2; 1jHW jD0i van-
ishes. Expressed in terms of physical mesons, this means

½ ffiffiffi
3

p
AðD0 ! K0�Þ � AðD0 ! K0�0Þ�=2 ¼ 0: (38)

We also have the transition of interest,

h10; 1jHW jD0i ¼ ½AðD0 ! K0�Þ þ ffiffiffi
3

p
AðD0 ! K0�0Þ�=2

¼ ð2= ffiffiffi
3

p ÞAðD0 ! K0�0Þ; (39)

where (38) was used in the second equality. Thus, in
analogy with the last term in Eq. (22), one gets a contri-
bution to y of the form
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yðj�Sj ¼ 1Þ ¼ �ð8=3Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðD0 ! K0�0ÞBðD0 ! �K0�0Þ

q
: (40)

Using (38) one obtains a contribution to y from the �S ¼ �1 transitions involving all pairs of neutral octet members,

yðj�Sj ¼ 1Þ ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½BðD0 ! K0�Þ þBðD0 ! K0�0Þ�½BðD0 ! �K0�Þ þBðD0 ! �K0�0Þ�

q
: (41)

Here, as in the case of charged pions and kaons, one may
neglect the cosine of a strong phase difference which is
second order in U-spin breaking.

Nowwe turn to the singly Cabibbo-suppressed (�S ¼ 0)
transitions h10; 0jHW jD0i. We have a number of relations
between amplitudes for D0 decays to ��, ��0, and �0�0,
and will find the usual SU(3) result AðD0 ! K0 �K0Þ ¼ 0,
stemming from the vanishing of the transitions
h00; 0jHW jD0i, h0; 0jHW jD0i, and h2; 0jHW jD0i. The first
of these implies

AðD0!��Þþ2
ffiffiffi
3

p
AðD0!��0Þþ3AðD0!�0�0Þ¼0:

(42)

Linear combinations of the second and third imply
AðD0 ! K0 �K0Þ ¼ 0 and the relation

3AðD0!��Þ�2
ffiffiffi
3

p
AðD0!��0ÞþAðD0!�0�0Þ¼0:

(43)

The transition of interest is

h10; 0jHW jD0i ¼
ffiffiffi
3

p
4

AðD0 ! ��Þ þ 1

2
AðD0 ! ��0Þ

�
ffiffiffi
3

p
4

AðD0 ! �0�0Þ: (44)

The absolute square of this equation contains three
interference terms. However, adding to that expression a
suitable linear combination of the absolute square of the
previous two equations (the coefficients each turn out
to be 1=32), one finds an expression without interference
terms:

jh10; 0jHW jD0ij2 ¼ 1

2
jAðD0 ! ��Þj2 þ jAðD0 ! ��0Þj2

þ 1

2
jAðD0 ! �0�0Þj2: (45)

When calculating decay rates involving identical particles,
one must multiply the first and last terms by 2, leading to
the result

yð�S ¼ 0Þ ¼ BðD0 ! ��Þ þBðD0 ! ��0Þ
þBðD0 ! �0�0Þ: (46)

The final result for yð�0; �; K0; �K0Þ is obtained by adding
this contribution to that from the �S ¼ �1 transitions to
pairs of neutral mesons:

yð�0; �; K0; �K0Þ ¼ BðD0 ! ��Þ þBðD0 ! ��0Þ þBðD0 ! �0�0Þ
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½BðD0 ! K0�Þ þBðD0 ! K0�0Þ�½BðD0 ! �K0�Þ þBðD0 ! �K0�0Þ�

q
: (47)

The relation yð�0; �; K0; �K0Þ ¼ 0 which holds in USFB is,
of course, satisfied by less precise SU(3) rate relations
summarized in Table I. Early examples of SU(3) analyses
may be found in Refs. [20,21]. The results in Table I follow
from the behavior of the�S ¼ �1, 0 pieces inHW as three
components U3 ¼ �1, 0 of a U-spin triplet operator.

As in the example of charged pions and kaons, first-
order SU(3)-breaking contributions from phase space can-
cel in �yð�0; �; K0; �K0Þ. Here we use the rate relations of
Table I. An � in the final state counts for 4=3 of a strange
quark, as �8 is an s�s pair 2=3 of the time. [This is equiva-
lent to using a Gell-Mann–Okubo mass formula (either
linear or quadratic) for M� in terms of MK and M�.] The

contributions to the sum rule (47) are then (neglecting
common factors)

1

2
þ 1

3
þ 1

2
� 4

3
¼ 0; (48)

while the coefficients of � from these corresponding terms
are

1

2
	 8
3
þ 1

3
	 4
3
þ 1

2
	 0 � 2 	

�
1

2
þ 1

6
	
�
1þ 4

3

��
¼ 16

9
� 16

9
¼ 0:

(49)

No information is available for the decays D0 ! K0�0

and D0 ! K0�0, so we cannot tell how well Eq. (47)
cancels. Since we expect it vanishes to first order in
U-spin breaking, we have a sum rule that may be used to
predict the sum of these two DCS branching fractions:
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B ðD0 ! K0�Þ þBðD0 ! K0�0Þ ¼ ð7:4� 1:2Þ � 10�5:

(50)

This is for a pure octet �, but we have argued that �� �0
mixing is second order in SU(3) breaking. When data
become available it will be interesting to compare this
prediction with the data and with the central value obtained
from an SU(3) fit with an 11.7
 �� �0 mixing angle [22],

BðD0 ! K0�Þ þBðD0 ! K0�0Þ
¼ ð2:8þ 6:9Þ � 10�5 ¼ 9:7� 10�5: (51)

This value involves, however, an uncertainty from first-
order SU(3)-breaking corrections which do not affect the
prediction (50).

C. Decays to charged PV states

When one of the final state mesons is a pseudoscalar
meson P and the other a vector meson V, there are more
U-spin [or SU(3)] amplitudes as the final-state particles do
not belong to the same multiplet. The U-spin doublets are

Pseudoscalar mesons:
Kþ

��þ

 !
;

��

K�

 !
; (52)

Vector mesons:
K�þ

��þ

 !
;

��

K��

 !
: (53)

One can then form U-spin triplet PV states of charge zero
out of the above doublets in two different ways: using the
two pairs ð��; K�Þ and ðK�þ; �þÞ on the one hand and
their charge conjugates on the other. A test of the very
generic sum rule (14) is quite challenging, as it requires
measuring relative phases between D0 decay amplitudes
for a PV state and its charge conjugate. In principle, this
may be achieved by a Dalitz plot analysis for decays to a
common three-body final state.

Facing this experimental difficulty, we will now study
testable U-spin sum rules similar to (23), in which first-
order U-spin-breaking corrections cancel in phase space

factors but may occur in hadronic amplitudes. In the U-spin
symmetry limit there are two classes of amplitude rela-
tions, depending on which pair of U-spin doublets we
consider:

AðD0 ! ��K�þÞ ¼ ��AðD0 ! K�K�þÞ
¼ �AðD0 ! ���þÞ
¼ ��2AðD0 ! K��þÞ; (54)

AðD0 ! ��KþÞ ¼ ��AðD0 ! K��KþÞ
¼ �AðD0 ! ���þÞ
¼ ��2AðD0 ! K���þÞ; (55)

where � � tan�c. One can form sets of contributions to y
out of either set, but in neither case do we have assurance
that first-order U-spin-breaking effects in hadronic ampli-
tudes cancel one another.

1. ðK�þ; �þÞð��; K�Þ final states
Using one pair of U-spin doublets, a set of contributions

to y for which branching fractions are known for all four
processes is

y1 � BðD0 ! ���þÞ þBðD0 ! K�K�þÞ
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðD0 ! K��þÞBðD0 ! ��K�þÞ

q
¼ 0: (56)

Substituting the known branching fractions [9]

BðD0 ! ���þÞ ¼ ð9:8� 0:4Þ � 10�3; (57)

BðD0 ! K�K�þÞ ¼ ð4:38� 0:21Þ � 10�3; (58)

BðD0 ! K��þÞ ¼ ð10:8� 0:7Þ%; (59)

BðD0 ! ��K�þÞ ¼ ð3:39þ1:80
�1:02Þ � 10�4; (60)

one finds y1 ¼ ð2:1þ1:9
�3:3Þ � 10�3, with the error dominated

by the uncertainty in the last branching fraction. Some
cancellation occurs, but it is not as well determined as
for charged pions and kaons (Sec. VA).
The effects of U-spin breaking in phase space factors

lead to first-order corrections proportional to M2
K �M2

� or
M2

K� �M2
�, both of which can be seen to cancel one

another in Eq. (56).

2. ðKþ; �þÞð��; K��Þ final states
Using the other combination of P and V U-spin dou-

blets, one can write their contribution to y as

y2 � BðD0 ! ���þÞ þBðD0 ! K��KþÞ
� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðD0 ! K���þÞBðD0 ! ��KþÞ

q
¼ 0: (61)

TABLE I. Absolute squares of amplitudes AðD0 ! fÞ for final
states consisting of two neutral pseudoscalar mesons. A factor of
2 has been included for final states with two identical particles.
An overall common factor has been omitted. The � is taken as a
pure octet member.

Final state f jAj2
�K0�0 ð1=2ÞC4

�K0� ð1=6ÞC4

�0�0 ð1=2ÞC2S2

�0� ð1=3ÞC2S2

�� ð1=2ÞC2S2

K0�0 ð1=2ÞS4
K0� ð1=6ÞS4
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We have almost enough information to check this
sum rule:

BðD0 ! ���þÞ ¼ ð4:96� 0:24Þ � 10�3; (62)

BðD0 ! K��KþÞ ¼ ð1:56� 0:12Þ � 10�3; (63)

BðD0 ! K���þÞ ¼ ð5:63� 0:35Þ%; (64)

BðD0 ! ���0KþÞ ¼ ð3:04� 0:17Þ � 10�4: (65)

The value BðD0 ! K���þÞ ¼ ð5:63� 0:35Þ% quoted
above is three times the average of the values [9]
BðD0!K���þ!K��0�þÞ¼ð2:22þ0:40

�0:19Þ% and BðD0 !
K���þ ! KS�

��þÞ ¼ ð1:66þ0:15
�0:17Þ%, using the lower

error bar for the first and the upper error bar for the second
(because the average lies between them).

The most recent data contributing to this last branching
fraction are from Belle [23] and BABAR [24]. The former
makes no statement about how much of the ���0 state
corresponds to a ��, but a �� is clearly visible in the Dalitz
plot of the latter. Assuming that all the ���0 is in a ��,
one obtains a value of y2 ¼ ð�1:75� 0:44Þ � 10�3, but
one may be oversubtracting. It would be very useful if an
analysis of the decay D0 ! ���0Kþ could extract
BðD0 ! ��KþÞ.

As in the case of y1, the contributions of SU(3) breaking
in the phase space factors of y2 cancel one another to first
order.

C. Using both pairs of U-spin multiplets

One can write a sum rule involving all eight PV modes,
which involves only the products of decay amplitudes and
their charge conjugates. In the absence of strong phase
differences one then finds a contribution to y of the form

y3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðD0 ! ���þÞBðD0 ! �þ��Þ

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðD0 ! K��KþÞBðD0 ! K�þK�Þ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðD0 ! K���þÞBðD0 ! K�þ��Þ

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðD0 ! �þK�ÞBðD0 ! ��KþÞ:

q
(66)

Evaluation yields y3 ¼ ð�0:5þ0:8
�1:2Þ � 10�3. This is

reassuringly small, but we have not justified the neglect
of the strong phase differences between the amplitudes
for charge-conjugate final states, contributing to y1
(proportional to TP þ EV in the notation of Ref. [25])
and to y2 (proportional to TV þ EP in that notation). An
analysis of related charm decays to PV final states finds a
small but non-negligible strong phase difference between
the two [25,26].

VI. FOUR-BODY STATES OF
PIONS AND KAONS

The states of four pions and/or kaons were identified in
Ref. [3] as likely candidates for substantial SU(3) breaking
in D0 � �D0 mixing. The four-kaon channel is closed to D0

decays so arguments based on the cancellation of first-
order SU(3) breaking or U-spin-breaking effects will fail.
A full analysis of cancellations in four-body final states

would require comparison of similar kinematic regions for
individual U-spin multiplets. This is beyond the scope of
the present article, but we can identify some useful group-
ings of charged pions and kaons. These belong to U-spin
doublets, as mentioned earlier, so the U-spin multiplets
containing them are those in the product�
U ¼ 1

2

�
4 ¼ 1ðU ¼ 2Þ þ 3ðU ¼ 1Þ þ 2ðU ¼ 0Þ: (67)

It is the U ¼ 1 multiplets which interest us as they are the
only ones reached from D0 via H�C¼�1

W . Three mutually
orthogonal U ¼ 1 multiplets are summarized in Table II.
If they obey the pattern of previous examples, the sum

rules will involve cancellations of U3 ¼ 0 contributions
against ones of U3 ¼ �1. By counting kaons one can see

TABLE II. U-spin triplets of four charged pions and kaons.

Multiplet Norm Meson states

j1; 1i1 1=2 �j�þKþ����i þ jKþ�þ����i þ jKþKþK���i � jKþKþ��K�i
j1; 0i1 1=

ffiffiffi
2

p �j�þKþK���i þ jKþ�þ��K�i
j1;�1i1 1=2 j�þ�þK���i � j�þKþK�K�i � j�þ�þ��K�i þ jKþ�þK�K�i
j1; 1i2 1=2 �j�þKþ����i � jKþ�þ����i � jKþKþK���i � jKþKþ��K�i
j1; 0i2 1=

ffiffiffi
2

p j�þ�þ����i � jKþKþK�K�i
j1;�1i2 1=2 j�þ�þK���i þ j�þ�þ��K�i þ j�þKþK�K�i þ jKþ�þK�K�i
j1; 1i3 1=2 �j�þKþ����i þ jKþ�þ����i � jKþKþK���i þ jKþKþ��K�i
j1; 0i3 1=

ffiffiffi
2

p �j�þKþ��K�i þ jKþ�þK���i
j1;�1i3 1=2 j�þ�þ��K�i � j�þKþK�K�i � j�þ�þK���i þ jKþ�þK�K�i
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that, at least formally, first-order U-spin-breaking correc-
tions in phase space seem to cancel one another. However,
the j1; 0i2 state is particularly susceptible to U-spin break-
ing because it is the only one which contains the state of
four charged kaons. Hence, if a source of a significant
contribution to y is to be sought in the states of four kaons,
the sum rule associated with the triplet j1; U3i2 would be a
good place to look. As we will show now, this contribution
is expected to be negative, while the measured value of y is
positive [1].

One may assume that nonresonant four-body decays are
dominated by states in which relative angular momenta for
all particle pairs are zero, so that the state with four charged
pions is CP even. The branching fraction for a nonresonant
state involving three charged kaons and a charged
pion [9], BðKþK�K��þÞnonres ¼ ð3:3� 1:5Þ � 10�5, is
three orders of magnitude smaller than the branching
fraction for a single kaon and three pions [9],
BðK����þ�þÞnonres ¼ ð1:88� 0:26Þ%, and may be
neglected. Thus, the contribution to y from the triplet
j1; U3i2 is given by an expression similar to (23), but a
term BðKþKþK�K�Þ is missing on the right-hand-side,

yðj1; U3i2Þ ¼ Bð�þ�þ����Þ

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK����þ�þÞBðKþ�þ����Þ

q
:

(68)

All three branching ratios correspond to nonresonant four-
body final states. Assuming the usual U-spin hierarchy
similar to (54),

BðKþ�þ����Þ:Bð�þ�þ����Þ:BðK����þ�þÞ
’ �4:�2:1; (69)

one finds yðj1; U3i2Þ to be negative. Using the measured
value of BðK����þ�þÞnonres to normalize the other
two branching fractions, one obtains yðj1; U3i2Þ ’
�1:0� 10�3.

To conclude this section we discuss briefly a U-spin sum
rule for four-body D0 decays involving K0 �K0 and a pair of
charged pions or kaons. AU-spin relation following from a
symmetry under a d $ s reflection,

hK0 �K0�þ��jHW jD0i ¼ �h �K0K0KþK�jHW jD0i; (70)

is strongly broken by phase space which forbids decays
into four kaons [9],

BðD0 ! K0 �K0�þ��Þ ¼ ð4:92� 0:92Þ � 10�3;

BðD0 ! �K0K0KþK�Þ ¼ 0:
(71)

The first branching ratio would explain the measured value
of y, if a sum rule including the difference

B ðK0 �K0�þ��Þ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðK0 �K0�þK�ÞBðK0 �K0Kþ��Þ

q
(72)

(in which branching fractions involving three kaons are
highly suppressed) could be obtained for a U-spin triplet
state. K0 and �K0 are two members of a U-spin triplet to

which ð ffiffiffi
3

p
�� �0Þ= ffiffiffi

2
p

also belongs [see Eq. (28)]. One
may show that in fact there exists a U-spin triplet sum rule
including the difference (72) which, however, involves also
unmeasured branching fractions and interference terms
with amplitudes involving �0 and � in addition to a pair
of charged pions or kaons.

VII. CONCLUSIONS

In the limit of U-spin symmetry, contributions of on-
shell intermediate states to the parameter y ¼ ��=ð2�Þ
describing D0 � �D0 mixing cancel one another. This has
been shown to be a consequence of the fact that the mixing
amplitude transforms as a U-spin operator with U ¼ 2,
U3 ¼ 0, while the states jD0i and j �D0i have U ¼ 0
because they contain no s or d quarks or antiquarks.
The cancellation of first-order U-spin-breaking effects

then follows from the fact that first-order U-spin breaking
(equivalent to insertion of a term ms �md) transforms as
U ¼ 1, U3 ¼ 0 and therefore cannot contribute to the
mixing.
This result implies that sum rules may be written for

contributions to y each involving a distinct U-spin triplet,
explaining, for example, why the cancellation of contribu-
tions from the intermediate states K��þ, K�Kþ, ���þ,
and Kþ�� occurs. These states belong to a U ¼ 1 multi-
plet whose members are all sufficiently far below MD that
U-spin-breaking effects in phase space factors may be
treated to first order in perturbation theory, and indeed–as
expected from the general theorem–they cancel one
another to first order in U-spin breaking.
Examples of multiplets for which cancellation of con-

tributions to y cancel one another have been given. In
addition to the above case of pairs of charged kaons or
pions, sum rules are seen to hold for pairs of neutral
members of the pseudoscalar octet, pairs of charged pseu-
doscalar and vector mesons, and specific groupings of four
charged pions and kaons.
When looking for standard model culprits which

could induce large values of y, Ref. [3] identified final
states consisting of four particles, noting that four-kaon
final states lie above MD and hence are inaccessible.
Perturbative U-spin breaking is thus a very poor approxi-
mation for sum rules involving such states. We have iden-
tified a grouping of amplitudes which includes the state
jKþKþK�K�i and thus is a good candidate to participate
in strong U-spin-breaking contributions to y. We have
shown that this contribution is most likely negative of
order �10�3. In contrast, we have shown that four-body
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D0 decays involving K0 �K0 and a pair of charged pions or
kaons may lead to a positive contribution to y at the level
observed experimentally. Thus, summing over U-spin trip-
let contributions provides an order of magnitude estimate
for y, but is short of being a precise method for calculating
this parameter.
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