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We formulate an extended linear � model of a quarkonia nonet and a tetraquark nonet as well as a

complex isosinglet (glueball) by virtue of chiral symmetry SULð3Þ � SURð3Þ and UAð1Þ symmetry. In the

linear realization formalism, we study the mass spectra and components of the low-lying scalars and

pseudoscalars in this model. The mass matrices for physical states are obtained and the glueball candidates

are examined. We find that the model can accommodate the mass spectra of low-lying states quite well.

Our fits indicate that the most glueball-like scalar should be 2 GeV or higher while the glueball

pseudoscalar is �ð1756Þ. We also examine the parameter region where the lightest isoscalar f0ð600Þ
can be the glueball and quarkonia dominant but find such a parameter region may be confronted with the

problem of the unbounded vacuum from below.

DOI: 10.1103/PhysRevD.86.114022 PACS numbers: 12.39.Fe

I. INTRODUCTION

The pseudoscalar, vector, and axial-vector as well as
tensor mesons of light quarks have been well understood
in the naive quark model in terms of the chiral symmetry.
Despite its success, the naive quark model cannot explain
the scalar meson sector, which has the same quantum
numbers as the vacuum. There are about 19 states which
have twice more than the expected �qq nonet as in vector
and tensor sectors. Moreover, the masses and decay pat-
terns of these low-lying scalars are different from the
expectation of the naive quark model. To understand the
nature of these scalars has been the focus of recent studies;
e.g., see Refs. [1–5] and references therein.

Among the low-lying scalar mesons, the lightest scalar
f0ð600Þ or � attracts much interest. It is widely believed
that f0ð600Þ is like the Higgs boson which plays a crucial
role in the spontaneous chiral symmetry breaking.
Confirmation of the existence of the elusive f0ð600Þ from
�� scattering processes resolves a controversy that lasted
for more than a few decades [2,6]. The �K scattering [7]
and analysis from D decay Dþ ! K��þ�� [8] revealed
that � should also exist. BES II also found such a �-like
structure in J=� decays [9]. Combined with the well
determined sharp resonances [i.e., isoscalar f0ð980Þ and
isotriplet að980Þ from ��, ��, as well as KK scattering
processes], it is now accepted in literature that these
low-lying scalar mesons (say, less than 1 GeV) can be
cast into a chiral nonet. The next important issue is the
nature of this nonet.

There are a couple of viewpoints on the nature of this
nonet. For example, the tetraquark model [10] can explain

the mass hierarchy and decay pattern of this nonet quite
successfully and is further supported from other experi-
mental data, like the photon-photon collision data, which
prefers the tetraquark interpretation for the lowest scalar
meson nonet [11] [where it is demonstrated that f0ð980Þ
should be a tetraquark dominant state with great details].
An alternative interpretation is that this nonet is a bound
state of the meson-meson molecule [12]. In any way, this
nonet challenges a self-consistent interpretation in the
naive quark model.
Nonetheless, agreement on the nature of this nonet has

not been achieved yet. For example, recently by studying
�� and �� scattering, it was found that this particle could
have a sizable fraction of glueballs [13,14]. The K-matrix
analysis [15] suggested that f0ð600Þ=� should be a glue-
ball dominant state while f0ð980Þ should be a mixture
of tetraquark and q �q. A recent pole analysis with Padé
approximation suggests f0ð980Þ might be more like a
molecular state [16]. The nature of this nonet is also a
focus of lattice study [17]. For example, the physical state
of � and � can have sizable tetraquark components, as
demonstrated in a recent lattice simulation [18].
The great success of chiral symmetry in understanding

the nature of the lightest pseudoscalars motivates us to
extended the linear � models in Refs. [19,20] to study
the nature of these low-lying isoscalars and pseudoscalars
(say, scalars less than 2 GeV). The historic review on
scalars above 1 GeV but below 2 GeV can be found in
Ref. [1]. Such models may shed some light on the nature
of light isoscalars, especially on the issue of mixing among
glueballs, quarkonia, and tetraquarks. One interesting
question that can be addressed by such models is which
of these low-lying isoscalar and pseudoscalar states are
more glueball-like. The results from lattice simulations sug-
gest f0ð1500Þ or f0ð1700Þ could be a glueball rich isoscalar
while �ð1489Þ can be a glueball rich pseudoscalar [21].
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Since the 0þþ and 0�þ glueball states can significantly mix
with quarkonia and tetraquark states of the same quantum
numbers, it is necessary to include these states and a glueball
state in an extended linear � model.

In this work, we extend our previous work [19] by
including a nonet to accommodate the tetraquark states
and by focusing on the mixing of quarkonia and tetra-
quarks. Comparing with the systematic work shown in
Refs. [20,22] and the references therein, we extend the
linear � model by including a complex singlet field as a
pure glueball field and introduce a determinant interaction
term [23] instead of the logarithmic term to solve the
UAð1Þ problem as in Ref. [24]. The motivation for con-
structing an extended linear sigma model consisting of
effective quarkonia, tetraquark, and glueball fields comes
from the physical considerations that scalar condensates
are allowed by the QCD vacuum. So in principle, apart
from quarkonia and tetraquark condensates, scalar glue-
ball condensates should also be present in the QCD
vacuum and need to be considered while studying the
vacuum excitation. Now, the physical spectrum of mesons
arises out of the mixing between the bare effective fields.
The mixing pattern followed in our framework comes
from the consideration that mesons having identical ex-
ternal quantum numbers can mix even if they have differ-
ent internal flavor structures. As a result, isospin 1

2 and 1

states have quarkonia and tetraquark components, whereas
the isosinglet mesons are composed of all three effective
fields. We attempt to address issues such as which states in
the pseudoscalar and isoscalar sectors are most glueball-
like. Our model predicts that the isoscalar glueball should
be heavier than 2.0 GeV when the pseudoscalar �ð1726Þ is
the best glueball candidate. The lowest isoscalar f0ð600Þ is
found to be a quarkonia dominant state with a consider-
able tetraquark component.

The rest of the paper is organized as follows. In Sec. II,
we introduce the extended linear � model and derive the
vacuum conditions for the condensates of quarkonia and
glueball fields. In Sec. III, we describe our analysis strategy
for how to fix most of the free parameters in our model
by taking into account experimental data. In Sec. IV, we
present our main results of global fit and predictions. In
Sec. V we close our study with discussions and conclu-
sions. An Appendix is provided to show the mass matrices
of isotriplet, isodoublet, and isosinglet states.

II. THE EXTENDED LINEAR � MODEL

The extended linear � model can be systematically for-
mulated under the quark symmetry group URð3Þ �ULð3Þ

or alternatively UVð3Þ �UAð3Þ. This bigger symmetry
group can be further decomposed into SURð3Þ � SULð3Þ �
UVð1Þ �UAð1Þ or SUVð3Þ � SUAð3Þ �UVð1Þ �UAð1Þ.
The UVð1Þ group can be related to the baryon number
or the electric charge conservation laws and is always
respected at low energy hadronic processes. Thus, in
our model, the most relevant symmetry group is
SUVð3Þ � SUAð3Þ �UAð1Þ. To construct a Lagrangian in
terms of this symmetry, we include three types of chiral
fields: a 3� 3 matrix field � which denotes the quarkonia
states, a 3� 3matrix field�0 which denotes the tetraquark
states, and a complex field Y which denotes the pure
glueball states and is a chiral singlet. The transformation
properties of these fields under the chiral symmetry are
defined as follows:

� ! UL�Uy
R; �0 ! UL�

0Uy
R; (1)

where UL;R are group elements of the SULð3Þ � SURð3Þ
symmetry. Under the UAð1Þ transformation, each field is
changed by a global phase factor as defined below:

�!e2i�A�; �0 !e�4i�A�0; Y!e�6i�AY: (2)

Following the convention of the linear sigma model, we
express the quarkonia fields, the tetraquark fields, and the
glueball fields as

� ¼ Ta�a ¼ Tað�a þ i�aÞ;
�0 ¼ Ta�

0
a ¼ Tað�0

a þ i�0
aÞ;

Y ¼ 1ffiffiffi
2

p ðy1 þ iy2Þ;
(3)

where matrices Ta ¼ �a

2 are the generators of Uð3Þ and �a

are the Gell-Mann matrices with �0 ¼
ffiffi
2
3

q
13�3. Fields, �a

and �0
a, �a and �0

a, and y1 and y2 denote quarkonia,
tetraquark, and glueball bare states in the chiral basis,
respectively.
Up to the mass dimension Oðp4Þ (we assume that they

are the most important operators to determine the nature of
light scalars of ground states), the Lagrangian of our model
can include two parts: the symmetry invariant part LS and
the symmetry breaking one LSB:

L ¼ LS þLSB: (4)

The symmetry invariant part includes those terms which
respect SULð3Þ � SURð3Þ symmetry as well as UAð1Þ
symmetry:

LS ¼ Trð@��@��yÞþTrð@��0@��y0Þ þ @�Y@
�Y? �m�

2Trð�y�Þ �m�02Trð�y0�0Þ �mY
2YY? �	1Trð�y��y�Þ

�	1
0Trð�y0�0�y0�0Þ �	2Trð�y��y0�0Þ �	YðYY?Þ2 � ½	3
abc


def�d
a�e

b�f
0c þH:c:� þ ½kYDetð�Þ þH:c:�:

(5)
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The symmetry breaking part includes the following terms:

LSB ¼ ½TrðB:�Þ þ H:c:� þ ½TrðB0:�0Þ þ H:c:�
þ ðD:Y þ H:c:Þ � ½	mTrð��y0Þ þ H:c:�: (6)

As evident from the symmetry breaking part of the
Lagrangian, the first two terms violate the global flavor
symmetry and all the terms in LSB violate the UAð1Þ
symmetry. However, note that under UAð1Þ the first two
terms transform differently.

The guiding principle for choosing the interaction terms
between the quarkonia and tetraquark matrix fields is the
naive dimensional analysis. For the terms which break the
symmetries, we use the naive dimensional analysis and
only take into account terms up to Oðp2Þ. To construct
the symmetric terms in the Lagrangian we closely follow
Ref. [24] where the choice of terms are limited by the
number of internal quark plus antiquark lines at the vertex,
which is set to 8. This particular rule, like in Ref. [24],
dictates the choice of terms in our work. This restriction is
relaxed for only two Oðp4Þ terms: the tetraquark self-
interaction term with coupling constant 	1

0 and the tetra-
quark and quarkonia interaction term proportional to 	2.
The reason to include these two terms stems from the
practical consideration of making sure our potential is
bounded. Except for these two terms, all of the terms in
our Lagrangian obey the rule stated above. The mixing
term between quarkonia and tetraquark fields with the
coupling constant 	m is believed to be crucial in determin-
ing the mixing between quarkonia and tetraquarks [3] after
taking into account the instanton effects.

Other symmetric terms like Tr½�y��Tr½�y��,
Tr½�y�0�Tr½�y0��, Tr½�y�� YY�, etc. should be small
due to the Okuboı̈-Zweigı̈-Lizuka suppression rule and
are omitted here. Terms like 
abc


def�d
a�e

0b�f
0c and


abc

def�d

0a�e
0b�f

0c are omitted since they don’t respect

UAð1Þ symmetry and are assumed to be much smaller than
those terms listed in Eq. (6). The term like Y�Trð��y0Þ
apparently respects the chiral symmetry and the UAð1Þ
symmetry but is neglected here since we want to keep the
terms of the Lagrangian minimal in this study. Its effects
can be studied and published elsewhere.

The mixing between quarkonia and tetraquark fields is
determined by quadratic, cubic, and quartic interaction
terms in the Lagrangian, while the glueball and quarkonia
interaction is introduced through the instanton determinant
term. Our choice is motivated from the observation of
’t Hooft, who introduced the coupling between a scalar
spurion field to the determinant of the quarkonia field in
order to solve the UAð1Þ problem in a spontaneous sym-
metry breaking fashion. Furthermore, the study of lattice
QCD and sum rules reveal that the instanton effect plays an
important role in shaping the properties of the glueball
ground state. Therefore, it is necessary to include such a
term in the Lagrangian, as argued in Ref. [19].

At this point we would like to briefly discuss the pattern
of symmetry breaking in our work. As evident from the
Lagrangian and mentioned above, both chiral symmetry
SULð3Þ � SURð3Þ and UAð1Þ symmetry are explicitly bro-
ken by the terms in LSB. The 3� 3 matrices B and B0
responsible for the breaking of the symmetry can be pa-
rametrized as follows:

BðB0Þ ¼ TabaðTaba
0Þ: (7)

Since the vacuum expectation values of the quarkonia and
tetraquark fields can carry those quantum numbers which
are allowed by the QCD vacuum, only a ¼ ð0; 3; 8Þ fields
are allowed. The choice of these external fields baðba0Þ
control the nature and extent of the symmetry breaking.
For example,
(i) if b0ðb00Þ � 0 and b3ðb30Þ ¼ b8ðb80Þ ¼ 0, then

SUAð3Þ and UAð1Þ symmetries are explicitly broken,
but all of the quark masses are equal.

(ii) if b0ðb00Þ � 0, b3ðb30Þ ¼ 0 and b8ðb80Þ � 0, then
along with the broken SUAð3Þ and UAð1Þ symme-
tries, SUVð3Þ is also explicitly broken to SUVð2Þ. As
a resultmu ¼ md � ms, wheremi is the quark mass
of the ith flavor.

(iii) biðbi0Þ � 0, i ¼ 0, 3, 8. In this case, all of the
symmetries, viz., SUAð3Þ, UAð1Þ, and SUVð3Þ, are
completely and explicitly broken. Consequently,
mu � md � ms.

Out of these three scenarios, we will only consider the
second case in this study. This is reasonable considering
the up and down quark masses are nearly equal to each
other and thereby indicating SUVð2Þ is a good (approxi-
mate) symmetry. The remnant SUVð2Þ isospin symmetry
allows us to represent two condensates each for quarkonia
and tetraquark fields as v0, v8 and v0

0, v
0
8, respectively,

while the gluonic condensate in our theory is labeled as vy.

Expanding fields around these vacuum expectation val-
ues, we get the expression of tree level potential
Vðv0; v8; v

0
0; v

0
8; vyÞ which should be stable under the

variation of condensates, i.e.,

@Vðvi; v
0
i; vyÞ

@ðvi; v
0
i; vyÞ ¼ 0; i ¼ 0; 8: (8)

The explicit expressions for each equation can be
worked out straightforwardly and are given below:

@V

@v0

¼ b0 þ 1

4
ffiffiffi
3

p ð2v0
2 � v8

2Þvyk� v0m�
2

�
�
v0

3

3
þ v0v8

2 � v8
3

3
ffiffiffi
2

p
�
	1

� 1

3

�
v8v0

0v8
0 � v8v8

02

2
ffiffiffi
2

p þ v0v0
02

2
þ v0v8

02

2

�
	2

�
ffiffiffi
2

3

s
ð2v0v0

0 � v8v8
0Þ	3 � v0

0

2
	m; (9)
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@V

@v8

¼ b8 � 1

2
ffiffiffi
3

p v8

�
v0 þ v8ffiffiffi

2
p

�
vyk� v8m�

2

�
�
v0

2v8 �v0v8
2ffiffiffi

2
p þv8

3

2

�
	1 �

�
v8v0

02

6
�v8v0

0v8
0

3
ffiffiffi
2

p

þv8v8
02

4
þ v0v0

0v8
0

3
� v0v8

02

6
ffiffiffi
2

p
�
	2

þ
ffiffiffi
2

3

s
ðv8v0

0 þv0v8
0 þ ffiffiffi

2
p

v8v8
0Þ	3 �v8

0

2
	m;

(10)

@V

@v0
0 ¼ b0

0 � v0
0m�0

2

� 1

3

�
v0

2v0
0

2
þ v8

2v0
0

2
þ v0v8v8

0 � v8
2v8

0

2
ffiffiffi
2

p
�
	2

� 1ffiffiffi
3

p
� ffiffiffi

2
p

v0
2 � v8

2ffiffiffi
2

p
�
	3

�
�
v0

03

3
þ v0

0v8
02 � v8

03

3
ffiffiffi
2

p
�
	1

0 � v0

2
	m; (11)

@V

@v8
0 ¼ b8

0 � v8
0m�02 þ

�
v8

2v0
0

6
ffiffiffi
2

p � v0
2v8

0

6
�v8

2v8
0

4

�v0v8v0
0

3
þv0v8v8

0

3
ffiffiffi
2

p
�
	2 þ 1ffiffiffi

3
p ð ffiffiffi

2
p

v0v8 þv8
2Þ	3

�
�
v0

02 �v0
0v8

0ffiffiffi
2

p þv8
02

2

�
v8

0	1
0 �v8

2
	m; (12)

@V

@vy

¼ ffiffiffi
2

p
Dþ 1

2
ffiffiffi
3

p
�
v0

3

3
� v0v8

2

2
� v8

3

3
ffiffiffi
2

p
�
k

� vymy
2 � vy

3	Y: (13)

These five constraints are nonlinear in terms of conden-
sates v0, v8 and v0

0, v
0
8, vy, but are linear in terms of

couplings. To avoid solving nonlinear equations in our
numerical analysis, we can choose a set of v0, v8, and
v0
0, v

0
8, vy as input to solve couplings.

More precisely, in order to guarantee that our values of
fv0

0; v
0
8g are physically meaningful, we replace them with

two positive quantities, i.e., fv0
q; v

0
sg, where subscripts q

and s stand for the nonstrange and strange quark compo-
nents, respectively. The relation between fv0

0; v
0
8g and

fv0
q; v

0
sg can be found from Ref. [25] and is provided below

as

v0
0 ¼

ffiffiffi
2

p
ffiffiffi
3

p v0
q þ 1ffiffiffi

3
p v0

s; v0
8 ¼

1ffiffiffi
3

p v0
q �

ffiffiffi
2

p
ffiffiffi
3

p v0
s: (14)

The quarkonia condenstates v0 and v8 are solved out
from the decay constants of the pion and kaon, which
are given below:

f� ¼
� ffiffiffi

2
p
ffiffiffi
3

p v0 þ 1ffiffiffi
3

p v8

�
cos�� �

� ffiffiffi
2

p
ffiffiffi
3

p v0
0 þ

1ffiffiffi
3

p v0
8

�
sin��;

(15)

fK¼
� ffiffiffi

2
p
ffiffiffi
3

p v0� 1ffiffiffiffiffiffi
12

p v8

�
cos�K�

� ffiffiffi
2

p
ffiffiffi
3

p v0
0�

1ffiffiffiffiffiffi
12

p v0
8

�
sin�K:

(16)

These two relations between the decay constants and our
model parameters can be found by constructing the
Noether current and utilizing the partially conserved
axial-vector current relations, as demonstrated in Ref. [26].

III. NUMERICAL ANALYSIS STRATEGY

Due to the unbroken SUVð2Þ isospin symmetry, physi-
cal scalar and pseudoscalar states can be categorized into
three groups with isospin quantum numbers as I ¼ 1
(triplet), 1

2 (doublet), and 0, respectively. Only bare quar-

konia, tetraquark, and glueball fields with the same iso-
spin quantum number can mix with one another to form
physical states. Moreover, there is no mixing between
scalar and pseudoscalar fields. Thus, the chiral singlet
glueball field can only mix with the isospin singlets of
quarkonia and tetraquark fields.
Using these facts, the physical states below 2 GeV can

be tabulated as given in Table I, where the isodoublet
fK;K0g is connected with the isodoublet fK�; K�0g by
charge conjugation. Also, a similar relation holds for
f�; �0g and f��; ��0g.
For both isotriplet and isodoublet sectors, a 2� 2 mix-

ing matrix can be used to describe the mixing among
quarkonia and tetraquark states. For the isosinglet scalar
and pesudoscalar sectors, a 5� 5 mixing matrix must be
used. To extract the relevant mass matrices, we use the
substitutions �0 ! v0 þ �0, �8 ! v8 þ �8, �

0
0 ! v0

0 þ
�0

0, �0
8 ! v0

8 þ �0
8, and y1 ! vy þ y1, while assuming

that other fields have no vacuum expectation value.
These mass matrices are provided in the Appendix.

TABLE I. The categorization of scalar and pseudoscalar states in terms of isospin quantum
numbers. States in the same category can mix with one another.

Isospin I ¼ 1 I ¼ 1
2 I ¼ 0

Pseudoscalars (P ¼ �1) f�;�0g fK;K0g, fK�; K�0g f�1; �2; �3; �4; �5g
Scalars (P ¼ 1) fa; a0g f�; �0g, f��; ��0g ff1; f2; f3; f4; f5g
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It is useful to count the total number of free parameters
in our model. There are 15 free parameters, as shown in our
extended linear � model given in Eq. (4). Most of these
parameters can be fixed by the input from the isotriplet and
isodoublet sectors. The only unfixed parameters are related
to the glueball sector. Meanwhile, five vacuum stability
conditions further reduce the number of free parameters.
Therefore, our model is overconstrained by experimental
data except for the glueball sector. Below we describe how
to fix our model parameters.

(i) The tetraquark vacuum condensates fv0
q; v

0
sg are

treated as input and are assumed to be positive but
smaller than 2 GeV.

(ii) To fix the parameters in the triplet and doublet sector,
we use the physical masses and decay constants of
f�;�0g and fK;K0gmesons, as shown in Table II. The
mixing angles for isotriplets and isodoublets, which
are labeled as �K and ��, are treated as input and are
restricted to vary in the range f� �

4 ;
�
4g (since it is

widely believed that pions and kaons are quarkonia
states-we will address this issue in our discussions).
Accordingly, four free parameters in our model are
fixed while two other free parameters are traded off
by twomixing angles.We also impose the constraints
on the trace of the mass matrix of isotriplets a and
a0, i.e., Tr½M2

a� ¼
PðM2

aÞExp and the trace of mass
matrix of isodoublet � and �0, i.e., Tr½M2

�� ¼PðM2
�ÞExp. With these constraints, we choose pa-

rameters fv0; v8; m
2
�; ðm0

�Þ2; 	1; 	2; 	3; 	
0
1; 	m; kvyg

as solved out from input of isotriplet and isodoublet
sectors.

(iii) In order to further constrain the parameters related
to the glueball sector, following the method in
Ref. [22], we consider two broad conditions from
the isoscalar pseudoscalar sector:

Tr½M�
2�Model ¼ Tr½M�

2�Exp; (17)

Det½M�
2�Model ¼ Det½M�

2�Exp; (18)

where M� is the mass matrix for the isoscalar

pseudoscalar states. So, two more free parameters

are fixed and we choose fk;m2
Y þ 	Yv

2
Yg as solved

from these two constraints. Combined with the
solution of kvY given in the previous step, the
parameter vY is solved out.

(iv) The five vacuum stability conditions given in
Eqs. (9)–(13) can further help to reduce free pa-
rameters in our model. In practice, we choose the
five free parameters fb0; b8; b00; b08; Dg as solved

from these five equations.
After these inputs, there is one free parameter not fixed,

which is selected as the glueball mass m2
Y . By using it as

input, we can predict the masses of the lowest scalar and
pseudoscalar, as well as their components.
Considering that there is a large uncertainty in the

determination of �0 mass, we choose to vary this mass
within the range 1.2–1.4 GeV. We scan five mass values in
a 50 MeV step within the above specified range starting
with 1.2 GeV.
There are a huge number of possible solutions in our

parameter space. We regard that the best solution for the
parameter set is the one which closely reproduces the mass
spectra of scalars close to the experimental measured
values. The best fit solution is determined on the basis of
smallness of the below defined two quantities: the first one
is �1 as defined in [22]

�1 ¼
X13
i¼1

jMi
theo �Mi

expj
Mi

exp ; (19)

and we also consider the second one which is defined by
the least �2 method, labeled as �2 below:

�2 ¼
X13
i¼1

jMi
theo �Mi

expj2
ð�Mi

expÞ2 ; (20)

where Mi
theoðexpÞ is the mass of the each member of the

scalar or pesudoscalar family calculated from our model
(experiment) and �Mi

exp is the experimental error for each
mass. The sum takes into account five pseudoscalar
masses, four scalar masses, the masses of two triplets a
and a0, and the masses of two doublets � and �0. EachMexp

i

used in this work is tabulated in Table III.
We also take into account the decay width of the lowest

scalar f0ð600Þ ! �� as a constraint. This decay width is
computed at the tree level and those solutions which give
the decay width between 0.35–0.9 GeV are regarded as
reasonable.
Below we explain how we choose our best solution. For

this we apply two types of minimum �1 and �2 analysis in
two stages. Typically, �1 has a smaller value while �2 has a

TABLE II. The experimental masses and decay constants of a
triplet and a doublet.

Fields � �0 f� K K0 fK

Mass (GeV) 0.14 1.20–1.40 0.13 0.49 1.46 0.15

TABLE III. The experimental mass spectra for triplets, doublets, and isoscalars are used to determine the best fit.

Fields a a0 � �0 �1 �2 �3 �4 �5 f01 f02 f03 f04 f05

Mass (GeV) 0.98 1.47 0.80 1.43 0.55 0.96 1.30 1.48 1.76 0.4–1.2 0.98 1.2–1.5 1.505 1.72
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larger value due to the small experimental errors for some
scalars, like the �1 and �2. Firstly, for a given mass value
of m�0 we choose the best fit solution for the mass spectra
for all scalars. We generate more than 8 million random
parameter sets of f��; �K; v0

q; v
0
sg to find the best fit solu-

tion which minimizes the �i. For each value of m�
0 and

each set of f��; �K; v0
q; v

0
sg, we treat the bare glueball mass

m2
Y as a scanning parameter varying from �9 to 9. After

considering the constraint, the vacuum must be bounded
below, i.e., the coupling 	Y must be positive; we read out
the best fit value for m2

Y . Then we determine the best fit for
each scanned m�0 from 1.2 to 1.4 GeV with 50 MeV
intervals. The final best fit is chosen from these five best
fits with the minimum �1=�2 value.

IV. RESULTS

To test our model, here we are going to demonstrate how
well it can reproduce the mass spectra of mesons. Besides
that, we are also interested to know the composition of
these low-lying scalars.

The different �i definitions given in Eqs. (19) and (20)
yield a similar best fit, presented in Table IV.Wewould like
to highlight a few features from it. (1) In the absence of
explicit symmetry breaking terms, it is the negative mass
parameter m�

2 that triggers the spontaneous chiral sym-

metry breaking. (2) The sign of vY is correlated with the
sign of k, and the sign of k is determined from the mass
spectra of the pseudoscalar sector. (3) The couplings 	1,
	0
1, 	Y are positive, which guarantees the potential is

bounded from below. (4) The values of 	1, 	2, and 	Y as
well as k are large, which demonstrates the nonperturbative
nature of the model. (5) The value of 	m is found to be
negative.

Our best fit result favors the case where the percentage
of tetraquark components in the �0 meson is about 67.7%
and in the K0 meson is about 57.2%. When comparing our
result with the previous studies, we find that the tetraquark
component of K0 (1.46) in our result is quite low compared

to 95% in Ref. [27] and 76% in Ref. [22]. It would be
attributed to the effects of glueballs1 or decay widths of
these mesons will put a more stringent constraint on this
percentage. For �0 the percentage of the tetraquark com-
ponent is in qualitative agreement with that of Ref. [22],
where they found a tetraquark percentage of 85%.
One interesting issue is whether the best fit given in

Table IV by solving Eqs. (9)–(13) can guarantee that our
solution is the global minimum of the potential. The
answer is affirmative. Obviously, the constraints from
Eqs. (9)–(13) are crucial to guaranteeing our solutions
are a local minimum. The linear and trilinear terms in the
LSB can crucially split the eightfold degeneracy, as they
do for the twofold degeneracy in the �4 theory. The global
minimum of the potential can also be numerically exam-
ined by using the determined couplings and mass parame-
ters as inputs to examine the shape of the potential in five

TABLE IV. The values of parameters in our fit, where the best value of m�0 is found to be
m�0 ¼ 1:2 GeV.

Parameter Value Parameter Value

�� (radian) �0:604 	1
0 8.248

�K (radian) �0:714 	2 76.428

v0 (GeV) 0.074 	3 (GeV) �0:738
v8 (GeV) �0:115 	Y 38.327

v0
0 (GeV) 0.203 k �78:15

v8
0 (GeV) 0.126 	m ðGeV2Þ �1:044

vy (GeV) �0:109 b0 ðGeV3Þ �0:085

mY
2 ðGeV2Þ 3.0 b8 ðGeV3Þ �0:161

m�
2 ðGeV2Þ �0:025 b0

0 ðGeV3Þ 0.166

m�0
2 ðGeV2Þ 0.744 b8

0 ðGeV3Þ 0.18

	1 35.465 D ðGeV3Þ �0:265
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FIG. 1. The 1D plot of potential varying with vY . We show
three sets of v0

0 and v0
8, where the first set of parameters

corresponds to the best fit.

1Though glueballs do not directly mix with the other fields in
the doublet sector, the parameters like gluonic condensates and
the instanton coupling constants do contribute to the mass matrix
in the doublet sector, as shown by kvY .
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dimensional parameter space (i.e., fvq; vs; v
0
q; v

0
s; vyg). For

example, by choosing different sets of v0
0 and v0

8, we

demonstrate that the shape of the potential varies with
vY , as given in Fig. 1. By fixing vq and vs from physical

conditions, we can examine the shape of the potential
determined by ðv0

q; v
0
s; vyg, as demonstrated in Fig. 2.

With these numerical self-consistency checks, it is found
that our best fit point is indeed the global minimum of the
potential.

With the parameter set given in Table IV, the predicted
mass spectra and omponents for the triplet fa; a0g and the
doublet f�; �0g are provided in Table V. It is found that the
mass spectra of the triplet are close to their experimental
values but those of the doublet deviate considerably. The a
and �0 are more tetraquarklike while a0 and � are more
quarkonialike.
The predicted mass spectra of pseudoscalars and scalars

are shown in Tables VI and VII. We have a few comments

FIG. 2 (color online). The 2D contour in the v0
q and v0

s planes. We show three 2D contour plots with vY ¼ �0:8, vY ¼ �0:1, and
vY ¼ 0:5. The case vY ¼ �0:1 is the best fit.

TABLE V. Mass spectra and components for the triplet and doublet sectors based on our fit, where the best value of m�0 is found to
be m�0 ¼ 1:2 GeV.

�0 mass (GeV) Field Our value (GeV) Quarkonia (%) Tetraquark (%) Experimental value (GeV)

1.2

a 1.055 38.14 61.86 0.98

a0 1.417 61.86 38.14 1.47

� 1.13 62.14 37.86 0.80

�0 1.186 37.86 62.14 1.43

TABLE VI. Mass spectra and components for the pseudoscalar mesons based on our fit, where the best value of m�0 is found to be
m�0 ¼ 1:2 GeV.

�0 mass (GeV) JPC ¼ 0�þ Our value (GeV) Quarkonia (%) Tetraquark (%) Glueball (%) Experimental value (GeV)

1.2

�5 1.858 0.037 0.001 99.962 1:756� 0:009

�4 1.380 75.803 24.167 0.03 1:476� 0:004

�3 1.291 26.700 73.294 0.006 1:294� 0:004

�2 0.907 15.852 84.145 0.003 0:95766� 0:00024

�1 0.595 81.607 18.393 0.0 0:547853� 0:000024

TABLE VII. Mass spectra and components for the scalar mesons based on our fit, where the best value of m�0 is found to be
m�0 ¼ 1:2 GeV.

�0 mass (GeV) JPC ¼ 0þþ Our value (GeV) Quarkonia (%) Tetraquark (%) Glueball (%) Experimental value (GeV)

1.2

f5
0 2.09 0.01 0.0 99.99 � � �

f4
0 1.487 77.469 22.53 0.001 1:505� 0:006

f3
0 1.347 22.177 77.82 0.003 1.2–1.5

f2
0 1.124 21.561 78.439 0.0 0:980� 0:010

f1
0 0.274 78.784 21.211 0.005 0.4–1.2
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in order. (1) The pseudoscalar mass spectra can fit experi-
mental data better than the scalar mass spectra, but the
mixing pattern of scalar and pseudoscalar is quite similar.
(2) When the mass mf0

5
¼ 1:72 GeV is used for our fit, we

find a solution with 	Y < 0. To guarantee the condition that
the potential must be bound from below (i.e., 	Y > 0), we
have to keep mf0

5
out of our fit, which explains why in the

definition of �i we only sum over the masses of four
scalars. This condition can predict that the lightest scalar
glueball should be around 2.0 GeV or so, as can be read
from Fig. 3(b), while the lightest pseudoscalar glueball
should be �5. The mass splitting between these two glue-
ball states is controlled by parameters vY and 	Y and is
found to be around 0.15 GeV. When compared with the
lattice QCD prediction for the glueball bare mass reported
in Ref. [28], where the mass is 1.611 GeV, our resultmY ¼
1:73 GeV is slightly heavier than this prediction. When
mY ¼ 1:611 GeV is taken, then the predicted mass of the
lightest glueball ismf0

5
¼ 2:29 GeV. (3) The lightest scalar

f01ð600Þ is found to be 0.27 GeV or so and is a quarkonia

dominant state.
In Fig. 3, we demonstrate the dependence of 	Y and f0

masses upon the free parameter m2
Y , with the rest of the

parameters given in Table IV. As shown in Fig. 3(a), when
m2

Y is larger than 3:4 GeV2, the 	Y becomes negative. Then
the potential of our model has to confront the problem of
unbounded vacuum from below. In the allowed values of
m2

Y , the masses of f0i , i ¼ 1, 2, 3, 4 are almost independent
of its value, as demonstrated in Fig. 3(b). The upper bound
of m2

Y is determined from the condition �f0
1
> 0:35 GeV.

V. DISCUSSION AND CONCLUSION

In this work we develop a consistent model for the scalar
mesons below 2 GeVand focus on the mixing effects on the
mass spectra. In our model we have taken into account the
quarkonia, tetraquark, and glueball scalar and pseudoscalar
fields. Bare fields with the same quantum numbers are

allowed to mix with one another to form the physical
mesons. In this way our isospin triplet and doublet mesons
are composed of quarkonia and tetraquark states and the
isosinglet mesons are composed of all three chiral fields.
We have presented our prediction from the model for the
scalar mass spectra on the basis of two �2 methods and
found that they yield similar results.
We also investigated candidates for the glueball dominant

states in our model. What is more encouraging is that the
determined value of the bare glueball mass, which is treated
as a scanning parameter in our study, agrees quite well with
the lattice result [28]. The consequence of the uncertainty in
the bare glueball mass is also discussed in our work.
When the constraint for �� and �K to vary from f� �

4 ;
�
4g

is changed to f� �
2 ;

�
2g, we find solutions with m2

�0 < 0 and

m2
� > 0 which can accommodate data quite well but con-

tradict the general belief that the pion and kaon are quar-
konia states. It is also found that when the constraint for
	Y > 0 is loosened, we can find solutions that the lightest
scalar can be glueball dominant.
One should be cautious to interpret the results found in

our study. The general qualitative understanding coming
out of our study is that if the mixing of tetraquarks with
glueballs is absent or negligible, then the heaviest scalar
state is the glueball dominated meson. Since the bare
glueball mass (mY ¼ 1:73 GeV) is found to be heavy, after
mixing with the two quark states, the physical glueball
dominated meson is found to be even heavier. It should be
interesting to investigate the mixing between tetraquark
and glueball states and to examine how this mixing can
affect our results.
It is enlightening to address the predictive power of our

model. As evidence of the predictive power of our model,
we would like to highlight the value of one particular
parameter, namely, the bare glueball mass mY . The value
of this parameter in our model is determined in a self-
consistent way by following the best fit analysis. When we
compare our best fit value 1.73 GeV for the bare glueball

4 2 2 4
m2

Y
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400

500
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Y

4 2 2 4
m2

Y

1

2

3

4

f 0
5, f 0

4, f 0
3, f 0

2, f 0
1

FIG. 3 (color online). (a) The dependence of 	Y upon m2
Y . A solid circle marker shows the point 	Y ¼ 0, which corresponds to

m2
Y ¼ 3:452 (mY ¼ 1:858). (b) The dependence of mass of f0 upon m2

Y . A vertical line with m2
Y is drawn to read out the lowest mass

mf5
0
¼ 1:86.
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mass mY with the first principle lattice gauge theory result
of 1.611 GeV, we find out that our result closely matches
with the lattice data. This matching no doubt indicates the
credibility of the predictive power of our model. Except for
the prediction of mass spectra, especially the masses of
glueball candidates, our model can also be used to predict
decay properties of scalar mesons. Since free parameters in
our model can be fixed from the global fit with limited
inputs, the decay modes and branching fractions of all
scalars and pseudoscalars can be determined as predic-
tions. In particular, total and partial decay widths of glue-
ball states can be predicted, which is helpful to determine
which states found in experiments are more glueball-like.
Furthermore, the cross sections of scalar and pseudoscalar
scattering processes (say, ��, �K, ��, KK scatterings,
etc.) can also be predicted in our model, which can be used
to determine the production channels of glueball states at
colliders. When loop effects of scattering amplitudes are
taken into account, our model can also predict the poles of
bound states of mesons, which are necessary in order to
decide whether there are glueball signatures in data.

To simplify our study, we have assumed that operators in
our Lagrangian are the most crucial ones to determine the
mass spectra. We can extend the current study to those
cases where the interaction terms between glueball and
tetraquark fields are included. More than one choice is
available to define the interaction between different fields;
for example, our choice of the instanton induced term is
different from that in Ref. [24]. It would be interesting to
show the difference between these two different parame-
trizations. We included the decay width of the f0ð600Þ !
�� to constrain our parameter space; to put a tight con-
straint on our parameter sets we can consider more decay
widths of all scalars and pseudoscalars and even should
include �� and �K scattering data. In order to examine
whether our model can accommodate all experimental
data, a global fit by treating all free parameters on the
same footing in our model is necessary. To extend our
model by including the tetraquark field as demonstrated
in Refs. [29,30] to an AdS/QCD framework is also straight-
forward. Following the previous study [25,31–33], we can
extend our model to study the role played by tetraquark
states in the chiral phase transition at finite temperature and
finite chemical potential.
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APPENDIX: EXPRESSIONS FOR THE SCALAR
AND PSEUDOSCALAR MASS MATRIX AND

DECAY WIDTH

Different elements of the scalar mass matrix are as
follows:

ðMs
2Þ11 ¼ m�

2 þ ðv2
0 þ v2

8Þ	1 þ 1

6
ðv0

02 þ v8
02Þ	2

þ 2

ffiffiffi
2

3

s
v0

0	3 �
v0vyffiffiffi

3
p k; (A1)

ðMs
2Þ22 ¼ m�

2 þ
�
v2
0 �

ffiffiffi
2

p
v0v8 þ 3

2
v2
8

�
	1

þ
�
1

6
v0

02 � 1

3
ffiffiffi
2

p v0
0v8

0 þ 1

4
v8

02
�
	2

� 2ffiffiffi
3

p
�
v0

0ffiffiffi
2

p þ v8
0
�
	3 þ 1ffiffiffi

3
p

�
v0vy

2
þ v8vyffiffiffi

2
p

�
k;

(A2)

ðMs
2Þ33 ¼ m�02 þ ðv0

02 þ v8
02Þ	1

0 þ 1

6
ðv2

0 þ v2
8Þ	2;

(A3)

ðMs
2Þ44 ¼ m�02 þ

�
v0

02 � ffiffiffi
2

p
v0

0v8
0 þ 3v8

02

2

�
	1

0

þ
�
v2
0

6
� v0v8

3
ffiffiffi
2

p þ v2
8

4

�
	2; (A4)

ðMs
2Þ55 ¼ mY

2 þ ð3vy
2Þ	Y; (A5)

ðMs
2Þ12¼1

2

2
42

�
2v0v8� v2

8ffiffiffi
2

p
�
	1þ2

�
v0

0v8
0

3
�v8

02

6
ffiffiffi
2

p
�
	2

�2

0
@

ffiffiffi
2

3

s
v8

0
1
A	3þ

�
v8vyffiffiffi

3
p

�
k

3
5¼ðMs

2Þ21; (A6)

ðMs
2Þ13 ¼ 1

2

2
4	m þ 2

3

�
v0v0
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s
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0
@

ffiffiffi
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3
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3
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2

�
� 1ffiffiffi

3
p

�
v2
0 �

v2
8

2

�
k
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ðMs
2Þ23 ¼ 1

2

2
42

3
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v8v0

0 þ v0v8
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0ffiffiffi
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p
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Different elements of the pseudoscalar mass matrix are

as follows:
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ðM�
2Þ35 ¼ ðM�

2Þ53 ¼ ðM�
2Þ45 ¼ ðM�

2Þ54 ¼ 0; (A28)

where M2
�0�0

¼ ðM�
2Þ11 M2

�8�8
¼ ðM�

2Þ22 M2
�

0
0�

0
0 ¼

ðM�
2Þ33 M2

�8
0�8

0 ¼ ðM�
2Þ44 M2

y2y2 ¼ ðM�
2Þ55 M2

�0�8
¼

ðM�
2Þ12 M2

�0�0
0 ¼ ðM�

2Þ13 M2
�0�8

0 ¼ ðM�
2Þ14

M2
�0y1 ¼ ðM�

2Þ15 M2
�8�0

0 ¼ ðM�
2Þ23 M2

�8�8
0 ¼

ðM�
2Þ24 M2

�8y1 ¼ ðM�
2Þ25 M2

�
0
0�

8
0 ¼ ðM�

2Þ34 M2
�
0
0y2

¼
ðM�

2Þ35 M2
�

8
0y2

¼ ðM�
2Þ45.

For the decay constant, we have taken the following
standard formula: corresponding to the interaction
Lagrangian Lint ¼ Gf0�p�p (the subscript p denotes

the physical pion fields), the decay constant is given by

� ¼ 3sf
kf

8�mf0
2
j � iMj2 (A29)

where sf is the symmetry factor, which in our case is 1
2 ,

and kf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

f0

2

4 �m�p

2

r
. At the tree level, j � iMj2 ¼ G2.
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We calculated this coupling constant from our bare
Lagrangian, following the procedure presented in
Ref. [34]. The explicit expression for the coupling constant
is given below (where Rs stands for the rotation mass
matrix for scalars):

g11¼� ffiffiffi
2

p ð ffiffiffi
2

p
v0þv8Þ	1�

vyk

2
ffiffiffi
3

p ;

g12¼�2

3

�
v0

0 þv8
0ffiffiffi
2

p
�
	2þ2

ffiffiffi
2

3

s
	3;

g13¼�1

3

�
v0þ v8ffiffiffi

2
p

�
	2; g21¼�ð ffiffiffi

2
p

v0þv8Þ	1þ
vykffiffiffi
6

p ;

g22¼�1

3
ð ffiffiffi

2
p

v0
0 þv8

0Þ	2�4	3ffiffiffi
3

p ;

g23¼� 1

3
ffiffiffi
2

p
�
v0þ v8ffiffiffi

2
p

�
	2;

g31¼�1

3

�
v0

0 þv8
0ffiffiffi
2

p
�
	2þ

ffiffiffi
2

3

s
	3;

g32¼�2

3

�
v0þ v8ffiffiffi

2
p

�
	2; g33¼� ffiffiffi

2
p ð ffiffiffi

2
p

v0
0 þv8

0Þ	1
0;

g41¼� 1

3
ffiffiffi
2

p
�
v0

0 þv8
0ffiffiffi
2

p
�
	2� 2ffiffiffi

3
p 	3;

g42¼�1

3
ð ffiffiffi

2
p

v0þv8Þ	2; g43¼�ð ffiffiffi
2

p
v0

0 þv8
0Þ	0

1;

g51¼� 1ffiffiffi
6

p
�
v0ffiffiffi
2

p �v8

�
k; g52¼0¼g53;

G1¼ðRsÞ51½ðR��0 Þ112g11þðR��0 Þ11ðR��0 Þ12g12
þðR��0 Þ122g13�;

G2¼ðRsÞ52½ðR��0 Þ112g21þðR��0 Þ11ðR��0 Þ12g22
þðR��0 Þ122g23�;

G3¼ðRsÞ53½ðR��0 Þ112g31þðR��0 Þ11ðR��0 Þ12g32
þðR��0 Þ122g33�;

G4¼ðRsÞ54½ðR��0 Þ112g41þðR��0 Þ11ðR��0 Þ12g42
þðR��0 Þ122g43�;

G5¼ðRsÞ55½ðR��0 Þ112g51þðR��0 Þ11ðR��0 Þ12g52
þðR��0 Þ122g53�;

G¼G1þG2þG3þG4þG5: (A30)

The expressions of mass matrices for a-a0 and �-�0
mesons are given below:

ðMaa0
2Þ11 ¼ m�

2 � A11	1 � B11	2 � C11	3 �D11vyk;

(A31)

ðMaa0
2Þ22 ¼ m�02 � A22	1

0 � B22	2; (A32)

ðMaa0
2Þ12 ¼ 1

2
½	m � A12	2 � B12	3�; (A33)

ðM��02Þ11 ¼ m�
2 � 1

3
A11	1 � B11	2 þ C11	3 þD11vyk;

(A34)

ðM��02Þ22 ¼ m�02 � 1

3
A22	1

0 � B22	2; (A35)

ðM��02Þ12 ¼ 1

2
½	m þ B12	3�; (A36)

where

A11 ¼ �v0
2 � ffiffiffi

2
p

v0v8 � v8
2

2
; (A37)

B11 ¼ �v0
02

6
� v0

0v8
0

3
ffiffiffi
2

p � v8
02

12
; (A38)

C11 ¼
ffiffiffi
2

3

s
v0

0 � 2ffiffiffi
3

p v8
0; (A39)

D11 ¼ � v0

2
ffiffiffi
3

p þ v8ffiffiffi
6

p ; (A40)

A22 ¼ �v0
02 � ffiffiffi

2
p

v0
0v8

0 � v8
02

2
; (A41)

B22 ¼ �v0
2

6
� v0v8

3
ffiffiffi
2

p � v8
2

12
; (A42)

A12 ¼ � 2

3
v0v0

0 �
ffiffiffi
2

p
3

v8v0
0 �

ffiffiffi
2

p
3

v0v8
0 � 1

3
v8v8

0;

(A43)

B12 ¼ 2

ffiffiffi
2

3

s
v0 � 4ffiffiffi

3
p v8: (A44)

The expressions of mass matrices for �-�0 and K-K0
mesons are given below:

ðM��02Þ11 ¼ m�
2 � E11	1 � F11	2 �G11	3 �H11vyk;

(A45)

ðM��02Þ22 ¼ m�02 � E22	1
0 � F22	2; (A46)

ðM��0
2Þ12 ¼ 1

2
½	m � E12	2 � F12	3�; (A47)

ðMKK02Þ11 ¼ m�
2 � I11	1 � F11	2 þG11	3 þH11vyk;

(A48)

ðMKK02Þ22 ¼ m�02 � J22	1
0 � F22	2; (A49)
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ðMKK02Þ12 ¼ 1

2
½	m � K12	2 þ F12	3�; (A50)
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F11 ¼ �v0
02

6
þ v0

0v8
0

6
ffiffiffi
2

p � 5v8
02

24
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ffiffiffi
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F12 ¼ 2
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v0 þ 2ffiffiffi

3
p v8; (A58)

I11 ¼ �v0
2

3
þ v0v8
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p � 7v8
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6
; (A59)
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