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We present results for dihadron fragmentation functions from the Nambu–Jona-Lasinio-jet model evolved

from themodel scale to a typical experimental scale of4 GeV2. The numericalmethod used in this evolution is

discussed in detail. The effect of evolution on the shapes of the dihadron fragmentation functions is discussed

for a doubly favored process (u ! �þ��), as well as a singly favored (u ! �þK�) process involving light
quarks. Finally, we explore the production of KþK� pairs from an initial u, d or s quark.
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I. INTRODUCTION

Experimental processes such as deep-inelastic scattering,
semi-inclusive deep-inelastic scattering (SIDIS) and Drell-
Yan have provided invaluable information about the struc-
ture of the nucleon [1–11]. With several new experimental
facilities with 100% duty factor under construction, SIDIS
will play an increasingly important role in the develop-
ment of our theoretical and experimental understanding of
the structure of the nucleon. The elusive s-�s asymmetry
[12–15] is one area of interest that may finally be pinned
down through the results obtained at these new facilities.
The distribution of the spin of the proton [16–36] is an area
of current excitement where polarized SIDIS is potentially
extremely valuable through the study of transverse momen-
tum dependent parton distribution functions [37–47], which
will complement work on generalized parton distributions
[20,48–53].

To allow these studies to fulfill their potential, we must
develop a deep understanding of the fragmentation functions
[54], particularly their flavor, spin and transverse momentum
dependence. Fragmentation functions appear in certain scat-
tering reactions, for example, in SIDIS experiments [55,56]
and in eþe� annihilation reactions [57–61]. Experiments
are planned to use SIDIS to probe the flavor dependence of
the parton distribution functions, for example, and therefore
understanding fragmentation functions has become very
important. Phenomenological extraction of fragmentation
functions suffers from significant uncertainty, even for
favored fragmentation functions, which effects the system-
atic errors associated with extracting the flavor dependence
of parton distribution functions through SIDIS. The increas-
ing interest in SIDIS experiments led to the development
of the Nambu–Jona-Lasinio (NJL)-jet model [62–65], which
builds on the Field-Feynman quark-jet model [66], by using
an effective chiral quark model to provide a unified frame-
work in which calculations of both quark distribution and
fragmentation functions can be performed. NJL-jet model
calculations of pion fragmentation functions were obtained

in Ref. [62]. The NJL-jet model was extended to include
strange quark contributions and kaon fragmentation func-
tions were calculated in Ref. [63]. Further extensions of the
model involved the inclusion of vector meson, nucleon and
antinucleon fragmentation channels [64], as well as the study
of their transverse momentum dependence [65] and Collins
fragmentation functions [67–69].
The probability of a fragmenting quark to produce two

hadrons is represented by dihadron fragmentation functions
(DFFs). DFFs have been studied recently in Refs. [70,71]
in order to understand their dependence on invariant mass
of the two produced hadrons. The focus of Ref. [70] was
to fit parameters for a spectator model to output from the
PYTHIA event generator [72] tuned for HERMES experi-
ments [73] for DFFs with a dependence on the sum of
the light-cone momentum fractions of the two produced
hadrons and their invariant mass squared. Reference [71]
focused on studying DFFs for large invariant mass. DFFs
with no invariant mass dependence were studied in the
NJL-jet model in Ref. [74] at the model momentum scale
of Q2

0 ¼ 0:2 GeV2. In order to compare the results with

experimental data, we need to evolve the DFFs up to a
typical experimental scale. The evolution equations for the
DFFs are derived in Ref. [58] from factorization of the cross
section for the production of two hadrons in eþe� annihi-

lation in the MS factorization scheme. In Ref. [75], the
nonsinglet quark evolution equations for DFFs were studied,
while Ref. [76] focused on the QCD evolution equations
for singlet quark and gluon DFFs. The ratio of the dihadron
and single hadron fragmentation functions, which is useful
when considering experimental measurements, was also
examined in Refs. [75,76]. Initial conditions for DFFs for
different pairs of hadrons and different values of z1 and z2
are investigated in Ref. [77], with a focus on the correlation
function Rcor obtained in the Field-Feynman quark-jet
model [66].
An area of current interest in which the dihadron frag-

mentation functions of quarks may be useful are trans-
versity distributions [31]. Transversity distributions are
one of the three leading-twist distribution functions that
do not vanish when integrated over the transverse*http://www.physics.adelaide.edu.au/cssm

PHYSICAL REVIEW D 86, 114018 (2012)

1550-7998=2012=86(11)=114018(12) 114018-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.114018


momentum. They describe the quark structure of the nu-
cleon (the other two being unpolarized and helicity quark
distribution functions) and these functions enter into asym-
metries with chiral-odd versions of a special type of DFF
known as interference fragmentation functions [78–82].
Interference fragmentation functions are DFFs with a
dependence on the polarization of the fragmenting quark.
In Refs. [83–85], it was suggested that DFFs may be useful
in extracting transversity distributions by considering the
SIDIS production of two hadrons with small invariant
mass. Transversity distribution functions are not a focus
of this paper, but are presented as motivation for further
investigation into DFFs.

This work focuses on performing QCD evolution of
the DFFs from the NJL-jet model momentum scale of
Q2

0 ¼ 0:2 GeV2 to a typical experimental momentum scale

of Q2 ¼ 4 GeV2. In Sec. II we present a brief summary of
fragmentation function equations from which the model
scale solutions were obtained and used as input for the
evolution equations of the DFFs. Section III describes the
method for solving the evolution equations for single had-
ron fragmentation functions (SFFs), which are needed for
the evolution of the DFFs. It also serves as a simple version
of the method used to solve the DFF evolution equations,
while the method for solving the evolution equations for
the DFFs is described in Sec. IV. A comparison of the
model scale and evolved scale DFFs is presented in Sec. V.
Section VI shows how the evolution code works on data
from Ref. [76] as well as comparing our solutions to that
data. Our data is evolved to a range of values of Q2 in this
section to display how the up quark and gluon DFFs
change for larger values of Q2.

II. SINGLE HADRON AND DIHADRON
FRAGMENTATION FUNCTIONS FROM

THE NJL-JET MODEL

In Ref. [74], integral equations for the single hadron and
dihadron fragmentation functions from the NJL-jet model
are described, and the method employed to solve them at
the model scale of Q2

0 ¼ 0:2 GeV2 is presented. SFFs

appear in the cross section for SIDIS experiments and
thus play an important part in the theoretical understanding
of these experiments. In the NJL-jet model the SFFs,
Dh

qðzÞ, which correspond to the probability of producing

a hadron h with light-cone momentum fraction z from a
fragmenting quark q, are given by [62]

Dh
qðzÞ ¼ d̂hqðzÞ þ

X
Q

Z 1

z

dy

y
d̂Qq

�
z

y

�
Dh

QðyÞ: (1)

The first term on the right-hand side of Eq. (1) is the
renormalized elementary quark fragmentation function,
which corresponds to the process where the detected
hadron is the only emitted hadron. We refer to this term
as the driving function. The second term corresponds to the

probability of emitting a hadron after the first emission step
in the quark cascade and these terms have a sizable effect
at low values of z, while vanishing for higher z values.

To solve the second term we use d̂Qq ðzÞ ¼ d̂hqð1� zÞjh¼q �Q

to write all functions in terms of their relation to the
emitted hadron h.
Dihadron fragmentation functions are another important

tool in the theoretical understanding of the structure of
hadrons. In the NJL-jet model, the DFF are given by

Dh1;h2
q ðz1; z2Þ ¼ d̂h1q ðz1Þ

Dh2
q1ð z2

1�z1
Þ

1� z1
þ d̂h2q ðz2Þ

Dh1
q2ð z1

1�z2
Þ

1� z2

þX
Q

Z z1
z1þz2

z1

d�1

Z z2
z1þz2

z2

d�2�ðz2�1 � z1�2Þ

� d̂Qq ðz1=�1ÞDh1;h2
Q ð�1; �2Þ; (2)

where the first term corresponds to the probability of pro-
ducing hadron h1 from the quark q at the first emission step
in the cascade, followed by hadron h2 produced either
directly afterwards or further down in the quark decay
chain, while the second term is similar to the first one,
except for h1 $ h2. These two terms constitute the driving
function of the DFFs, similar to the first term in Eq. (1).
The third term on the right-hand side of Eq. (2) corresponds
to the probability of having both the detected hadrons

FIG. 1 (color online). �þ�� dihadron fragmentation function
for the u quark at the (a) model scale (Q2

0 ¼ 0:2 GeV2) and

(b) the evolved scale (Q2 ¼ 4 GeV2).
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produced after the first hadron emission. DFFs correspond
to the probability of producing two hadrons, h1 and h2, in
the decay chain of a fragmenting quark q, with light-cone
momentum fractions z1 and z2, respectively.

Results for the SFFs and DFFs from the NJL-jet model
at the model scale of Q2

0 ¼ 0:2 GeV2 are described in

detail in Ref. [74]. In this paper, they are used as the input
for the DFF evolution equations that will be discussed in
Secs. III and IV. In Fig. 1(a), we present a 3-dimensional

plot ofD�þ��
u ðz1; z2Þ, at the model scale, while in Fig. 1(b)

the result for the same DFF evolved to 4 GeV2 is shown.
These plots demonstrate the effect of evolution on the
DFFs, particularly where the functions achieve their peaks
with respect to z1 and z2.

III. EVOLUTION OF THE SFFS

To evolve the DFFs, we need to evolve the SFFs as well.
This section will focus on the evolution of the SFFs, and
will also serve as a simple introduction to the method used
to solve the DFF evolution equations. This procedure for
solving the SFF and DFF evolution equations can, of
course, be used for models other than the NJL-jet model.

The single hadron fragmentation function evolution
equations used in our calculations were based on those
presented in Ref. [86]. The evolution equations are written
in the form of nonsinglet quark, plus-type quark and gluon
fragmentation function equations. The plus-type quark and
gluon fragmentation functions are coupled and therefore
need to be solved simultaneously, whereas the nonsinglet
quark fragmentation functions are decoupled and can be
solved separately. The nonsinglet [Dh

q�i
ðz; Q2Þ] and plus-

type [Dh
qþi
ðz; Q2Þ] quark fragmentation functions are,

respectively, constructed from the combinations of SFFs,

Dh
q�i
ðz;Q2Þ ¼ Dh

qiðz; Q2Þ �Dh
�qi
ðz; Q2Þ

¼ Dh
qiðz; Q2Þ �D

�h
qiðz; Q2Þ;

(3)

and

Dh
qþi
ðz;Q2Þ ¼ Dh

qiðz; Q2Þ þDh
�qi
ðz; Q2Þ

¼ Dh
qiðz; Q2Þ þD

�h
qiðz; Q2Þ;

(4)

where qi is the fragmenting quark. These combinations,
rewritten using charge symmetry, allow for a simpler
method of solving the evolution equations.

We define the variable t as

t � � 2

�0

ln

�
�sðQ2Þ
�sðQ2

0Þ
�
; (5)

where

�sðQ2Þ ¼ 4�

,�
�0 ln

Q2

�2
QCD

�
(6)

is the leading-order strong coupling constant, �0 ¼
ð33� 2nfÞ=3 is the one-loop � function, nf is the number

of flavors and�QCD is the QCD scale parameter.1 We write

the evolution equations with respect to t rather than lnQ2 to
simplify the numerical calculation.
The QCD evolution equations for the SFFs allow us to

determine the SFFs at momentum scales that vary from the
scale at which they are originally defined. This is achieved
by calculating the rate of change of the SFF with respect to
the momentum scale. The nonsinglet, plus-type and gluon
leading-order (LO) evolution equations are, respectively,
given by

@

@t
Dh

q�i
ðz; tÞ ¼ X

j

Z 1

z

dy

y
PqjqiðyÞDh

q�j

�
z

y
; t

�
; (7)

@

@t
Dh

qþi
ðz; tÞ ¼

Z 1

z

dy

y

�X
j

PqjqiðyÞDh
qþj

�
z

y
; t

�

þ 2PgqðyÞDh
g

�
z

y
; t

��
; (8)

@

@t
Dh

gðz; tÞ ¼
Z 1

z

dy

y

�
PqgðyÞ

X
j

Dh
qþj

�
z

y
; t

�

þ PggðyÞDh
g

�
z

y
; t

��
: (9)

The left-hand sides of Eqs. (7)–(9) represent the rate of
change of the corresponding SFFs with respect to t. The
right-hand sides of these equations represent the effect that
a parton j (either a quark of flavor qj or a gluon g), that

emits a hadron h with light-cone momentum fraction z=y,
has on the evolution of the nonsinglet (q�i ), plus-type (qþi )
or gluon (g) SFFs, through the splitting functions PjiðyÞ
(obtained from Ref. [86]), where i is the parton for the
corresponding SFF on the left-hand side.
To solve Eqs. (7)–(9), we express the derivatives as finite

differences using

@fðtÞ
@t

� fðtjþ1Þ � fðtjÞ
�t

; (10)

where fðtÞ is the corresponding SFF. We divide the range
of interest for t into Nt steps of size �t.
The integrals on the right-hand side of the LO evolution

equations are converted into sums over logarithmically
discretized values of y (denoted by zl). The corresponding
equations for the nonsinglet, plus-type and gluon fragmen-
tation functions are, respectively, rearranged to obtain the
functions at the (kþ 1)th step in t such that

1In this work we take nf ¼ 3 and �QCD ¼ 0:25.
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Dh
q�i
ðzm; tkþ1Þ ¼ Dh

q�i
ðzm; tkÞ

þ �t
X
j

XNz

l¼m

�zl
zl

PqjqiðzlÞDh
q�j

�
zm
zl

; tk

�
;

(11)

Dh
qþi
ðzm; tkþ1Þ ¼ Dh

qþi
ðzm; tkÞ

þ �t
XNz

l¼m

�zl
zl

�X
j

PqjqiðzlÞDh
qþj

�
zm
zl

; tk

�

þ 2PgqðzlÞDh
g

�
zm
zl

; tk

��
; (12)

Dh
gðzm; tkþ1Þ ¼ Dh

gðzm; tkÞ

þ�t
XNz

l¼m

�zl
zl

�
PqgðzlÞ

X
j

Dh
qþj

�
zm
zl

; tk

�

þ PggðzlÞDh
g

�
zm
zl

; tk

��
: (13)

The first term on the right sides of Eqs. (11)–(13) are the
fragmentation functions at the (k)th step in t. The second
term on the right-hand side of each equation is the change
in the fragmentation function from the (k)th step to the
(kþ 1)th step in t. The SFF at Q2

0 are inserted as the input

at k ¼ 1, with the evolution to the next step, t2 ¼ t1 þ�t,
calculated using the previous result. This process is
repeated to obtain the SFF evolved to the chosen Q2 at
tNtþ1.

IV. EVOLUTION OF THE DFFS

The DFF evolution equations are derived from factori-
zation of the cross section for the production of two

hadrons in eþe� annihilation in the MS factorization
scheme in Ref. [58]. Using jet-calculus, Ref. [87] deduces
the evolution equations for DFFs with an explicit

dependence on the invariant mass of the hadron pairs,
Mh, which are addressed as extended dihadron fragmen-
tation functions. The latter are important as they relate to
experimental results that include the dependence on invari-
ant mass spectra. We concentrate on the DFF that have
been integrated over the invariant mass. The LO evolution
equation for DFFs, from Ref. [87], reads

d

d lnQ2
Dh1h2

i ðz1; z2; Q2Þ

¼ �sðQ2Þ
2�

Z 1

z1þz2

du

u2
Dh1h2

j

�
z1
u
;
z2
u
;Q2

�
PjiðuÞ

þ �sðQ2Þ
2�

Z 1�z2

z1

du

uð1� uÞD
h1
j

�
z1
u
;Q2

�

�Dh2
k

�
z2

1� u
;Q2

�
P̂i
kjðuÞ; (14)

where Q2 is the momentum scale, �sðQ2Þ is the strong
coupling constant at the corresponding momentum scale
and a sum over the repeated indices is implied. The rate at
which the DFFs change with respect to lnQ2 is represented
on the left-hand side of Eq. (14). The first term on the right-
hand side of the LO DFF evolution equation represents
the effect that a parton j fragmenting into two hadrons, h1
and h2, has on the fragmentation of parton i into the two
hadrons, through the splitting function PjiðuÞ. The second
term represents the effect of parton i splitting into two
partons, j and k, that fragment separately to produce h1 and
h2 with light-cone momentum fractions u and 1� u,

respectively, through the splitting function P̂i
kjðuÞ. For the

QCD evolution of the DFFs, both PjiðuÞ and P̂i
kjðuÞ were

obtained from Ref. [87].
In Eq. (14), the parton i can be either a quark, antiquark

or gluon. We choose to express the evolution equations for
the quark and gluon DFFs, respectively, written in terms
of t [Eq. (5)] as

d

dt
Dh1h2

qi ðz1; z2; tÞ ¼
Z 1

z1þz2

du

u2
Dh1h2

qj

�
z1
u
;
z2
u
; t

�
PqjqiðuÞ þ

Z 1�z2

z1

du

uð1� uÞD
h1
g

�
z1
u
; t

�
Dh2

qk

�
z2

1� u
; t

�
P̂qi
qkgðuÞ

þ
Z 1

z1þz2

du

u2
Dh1h2

g

�
z1
u
;
z2
u
; t

�
PgqiðuÞ þ

Z 1�z2

z1

du

uð1� uÞD
h1
qj

�
z1
u
; t

�
Dh2

g

�
z2

1� u
; t

�
P̂qi
gqjðuÞ; (15)

d

dt
Dh1h2

g ðz1; z2; tÞ ¼
Z 1

z1þz2

du

u2
Dh1h2

qj

�
z1
u
;
z2
u
; t

�
PqjgðuÞ þ

Z 1�z2

z1

du

uð1� uÞD
h1
qj

�
z1
u
; t

�
Dh2

�qj

�
z2

1� u
; t

�
P̂g

�qjqj
ðuÞ

þ
Z 1

z1þz2

du

u2
Dh1h2

g

�
z1
u
;
z2
u
; t

�
PggðuÞ þ

Z 1�z2

z1

du

uð1� uÞD
h1
g

�
z1
u
; t

�
Dh2

g

�
z2

1� u
; t

�
P̂g
ggðuÞ: (16)

To obtain nonsinglet [Dh1h2
q�i

ðz1; z2; tÞ] and plus-type [Dh1h2
qþi

ðz1; z2; tÞ] quark DFFs we use the combinations

Dh1h2
q�i

ðz1; z2; tÞ ¼ Dh1h2
qi ðz1; z2; tÞ �Dh1h2

�qi
ðz1; z2; tÞ ¼ Dh1h2

qi ðz1; z2; tÞ �D
�h1 �h2
qi ðz1; z2; tÞ; (17)

and

CASEY et al. PHYSICAL REVIEW D 86, 114018 (2012)

114018-4



Dh1h2
qþi

ðz1; z2; tÞ ¼ Dh1h2
qi ðz1; z2; tÞ þDh1h2

�qi
ðz1; z2; tÞ ¼ Dh1h2

qi ðz1; z2; tÞ þD
�h1 �h2
qi ðz1; z2; tÞ; (18)

respectively. The combination of terms on the second line of each equation has been rewritten using charge symmetry and
this is the form that is employed to solve the LO DFF evolution equations.

Using Eqs. (17) and (18), we write the evolution equations in terms of the nonsinglet quark, plus-type quark and gluon
DFFs as

d

dt
Dh1h2

q�i
ðz1; z2; tÞ ¼

X
j¼u;d;s

Z 1

z1þz2

du

u2
Dh1h2

q�j

�
z1
u
;
z2
u
; t

�
PqjqiðuÞ þ

X
k¼u;d;s

Z 1�z2

z1

du

uð1� uÞD
h1
g

�
z1
u
; t

�
Dh2

q�
k

�
z2

1� u
; t

�
P̂qi
qkgðuÞ

þ X
j¼u;d;s

Z 1�z2

z1

du

uð1� uÞD
h1
q�j

�
z1
u
; t

�
Dh2

g

�
z2

1� u
; t

�
P̂qi
gqjðuÞ; (19)

d

dt
Dh1h2

qþi
ðz1; z2; tÞ ¼

X
j¼u;d;s

Z 1

z1þz2

du

u2
Dh1h2

qþj

�
z1
u
;
z2
u
; t

�
PqjqiðuÞ þ 2

Z 1

z1þz2

du

u2
Dh1h2

g

�
z1
u
;
z2
u
; t

�
PgqiðuÞ

þ X
k¼u;d;s

Z 1�z2

z1

du

uð1� uÞD
h1
g

�
z1
u
; t

�
Dh2

qþ
k

�
z2

1� u
; t

�
P̂qi
qkgðuÞ

þ X
j¼u;d;s

Z 1�z2

z1

du

uð1� uÞD
h1
qþj

�
z1
u
; t

�
Dh2

g

�
z2

1� u
; t

�
P̂qi
gqjðuÞ; (20)

d

dt
Dh1h2

g ðz1; z2; tÞ ¼
X

j¼u;d;s; �u; �d;�s

Z 1

z1þz2

du

u2
Dh1h2

qj

�
z1
u
;
z2
u
; t

�
PqjgðuÞ þ

Z 1

z1þz2

du

u2
Dh1h2

g

�
z1
u
;
z2
u
; t

�
PggðuÞ

þ X
j¼u;d;s; �u; �d;�s

Z 1�z2

z1

du

uð1� uÞD
h1
qj

�
z1
u
; t

�
Dh2

�qj

�
z2

1� u
; t

�
P̂g

�qjqj
ðuÞ

þ
Z 1�z2

z1

du

uð1� uÞD
h1
g

�
z1
u
; tÞDh2

g

�
z2

1� u
; t

�
P̂g
ggðuÞ

¼ X
j¼u;d;s

Z 1

z1þz2

du

u2

�
Dh1h2

qþj

�
z1
u
;
z2
u
; t

�
PqjgðuÞ

�
þ

Z 1

z1þz2

du

u2
Dh1h2

g

�
z1
u
;
z2
u
; t

�
PggðuÞ

þ X
j¼u;d;s; �u; �d;�s

Z 1�z2

z1

du

uð1� uÞD
h1
qj

�
z1
u
; t

�
Dh2

�qj

�
z2

1� u
; t

�
P̂g

�qjqj
ðuÞ

þ
Z 1�z2

z1

du

uð1� uÞD
h1
g

�
z1
u
; t

�
Dh2

g

�
z2

1� u
; t

�
P̂g
ggðuÞ: (21)

For clarity, we show the sums over the repeated indices
and use Eq. (21) to display how the combinations are
applied to simplify the equations. The nonsinglet quark
evolution equation is decoupled from the plus-type
quark and gluon DFFs and can be evolved separately
from them. Using Eq. (10) and converting integrals
into sums over logarithmically discretized values of u,
expressions for the DFFs evolved to the (kþ 1)th step
in t can be obtained, producing results analogous to
Eqs. (11)–(13).

V. RESULTS

QCD evolution equations are derived in the regime
where perturbative approximations are valid, that is where
the scaleQ � �QCD. The scale of the underlying model in

these calculations (Q2
0 ¼ 0:2 GeV2) is low, thus one needs

to be cautious when applying the evolution equations.
For that reason here we first present the results for model
SFFs for u ! �þ and u ! Kþ evolved to Q2 ¼ 4 GeV2.
We compare these results with empirical parametrizations
of experimental data to ensure a reasonable description.
Then we present the results comparing the model scale
DFFs with those evolved toQ2 ¼ 4 GeV2 for u ! �þ��,
u ! �þK� and q ! KþK�, where q ¼ u, d, s. The first

subsection explores the evolution of D�þ��
u by comparing

the model and evolved DFFs at particular values of z1 or z2,
while the second subsection focuses on favored and unfa-

vored hadron emission in the evolution of D�þK�
u . Finally,

the last subsection demonstrates the evolution of DKþK�
q

for q ¼ u, d or s.
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A. Q2 evolution of D�þ
u and DKþ

u

The results of the evolution of our model calculated
SFFs for up quark to �þ and Kþ to the scale Q2 ¼
4 GeV2 are shown in Fig. 2. In the plots the red solid
line represents the NJL-jet model calculated fragmentation
functions for (a) �þ and (b) Kþ evolved at the leading
order from the model scale of Q2

0 ¼ 0:2 GeV2 to scale of

Q2 ¼ 4 GeV2. The grey dashed lines with the grey bands
show the HKNS parametrizations with their uncertainties
taken from Ref. [55] and the dash-dotted lines represent the
DSS parametrizations of Ref. [56], both at the leading
order. From these plots it appears that the NJL-jet model
compares favorably to the empirical parametrizations
within their uncertainties. Thus we can proceed with the
evolution of our model DFFs.

B. Q2 evolution of D�þ��
u

We consider the DFF for an up quark fragmenting to �þ
and��. When the up quark fragments to�þ, for which it is
the favored emission channel, it produces a down quark,
which has the favored emission channel to ��. Since both
emissions are favored channels for the detected hadrons in

this quark cascade, the DFF has sizable peaks in the higher
z2 and z1 regions for z1 ¼ 0:5 [Fig. 3(a)] and z2 ¼ 0:5

[Fig. 3(b)], respectively. For D�þ��
u , the second term of

Eq. (2) is zero (because d̂�
�

u ¼ 0) and the integral term is
small, so this DFF is dominated by the first term of Eq. (2).

The model scale plot forD�þ��
u fixed at z1 ¼ 0:5 [Fig. 3(a)]

has the shape of a favored single hadron fragmentation
function since fixing z1 effectively makes the first term on
the right-hand side of Eq. (2) a constant multiplied by the
favored fragmentation D��

d . For z2 fixed at 0.5 [Fig. 3(b)]

the model scale D�þ��
u is shaped by the elementary quark

fragmentation function d̂�
þ

u , resulting in a peak at higher z1,
while having a very small contribution at low values of z1.
After evolution of the DFF, there is a reduction in magnitude
and a shift in the peak towards the low z2 region for z1 ¼ 0:5
[Fig. 3(a)]. When z2 is fixed at 0.5 [Fig. 3(b)], the magnitude
of the DFF is reduced and the peak value shifts towards the
low z1 region. Both plots in Fig. 3 display a range of values
at low z where the evolved DFF obtains a larger magnitude
than the model scale DFF. At higher momentum scales, the
low z1 and z2 regions of the DFFs grow in magnitude
because they can access the gluon emission channel.
We present the results for z1 and z2 fixed to 0.2 in

Figs. 4(a) and 4(b), respectively, to investigate the DFF at
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FIG. 2 (color online). NJL-jet fragmentation functions of u
quark to (a) �þ and (b) Kþ evolved at leading order to
Q2 ¼ 4 GeV2 (shown by solid red line) compared to HKNS
[55] and DSS [56] parametrizations at the same scale (shown by
a gray dashed line with a gray uncertain band and a black dash-
dotted line respectively).
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FIG. 3 (color online). �þ�� dihadron fragmentation functions
for the u quark at the model scale (Q2

0 ¼ 0:2 GeV2, shown by

dotted red line) and the evolved scale (Q2 ¼ 4 GeV2, shown by
solid black line) for (a) z1 ¼ 0:5 and (b) z2 ¼ 0:5.
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low fixed light-cone momentum fraction. The structure of

the model scale D�þ��
u for z1 ¼ 0:2, shown in Fig. 4(a),

is similar in shape to that of the model scale DFF at
z1 ¼ 0:5, having the peak in the higher z2, except it is
spread out more and has a lower peak value. At z2 ¼ 0:2,
the structure of the model scale DFF is again similar to
the corresponding z2 ¼ 0:5 plot in Fig. 3(b), being small
in the low z1 region and having a large peak in the higher
z1 region, which is rather narrow. Evolution of the DFF
results in a shift of the peak towards the lower z regions,

with the magnitude of the evolved D�þ��
u becoming

larger than the model scale D�þ��
u at midrange values

of the allowed light-cone momentum fraction; rather than
in the lower range of values that was observed for the z1
and z2 fixed to 0.5 results. The shape of the evolved

D�þ��
u for z2 ¼ 0:2 in Fig. 4(b) appears very similar to

that of the evolved D�þ��
u for z2 ¼ 0:5 in Fig. 3(b),

whereas the shape for the evolved D�þ��
u for z1 ¼ 0:2

[Fig. 4(b)] is quite different to the corresponding result at
z1 ¼ 0:5 in Fig. 3(a). Instead of the concave structure at
z1 ¼ 0:5 shown in Fig. 3(a), at z1 ¼ 0:2 [Fig. 4(a)] the
evolved DFF has a large contribution at low z2 and
steadily decreases as z2 increases.

C. Q2 evolution of D�þK�
u

In Fig. 5 we present the results for D�þK�
u , where the up

quark is a favored channel for�þ emission, but the remnant
down quark is an unfavored channel forK� emission. At the

model scale, D�þK�
u shows no contribution in the large z2

and z1 regions for z1 [Fig. 5(a)] and z2 [Fig. 5(b)] fixed at

0.5, respectively. For D�þK�
u at the model scale the second

term of Eq. (2) is zero (because d̂K
�

u ¼ 0) and the integral

term is small, so D�þK�
u is dominated by the first term of

Eq. (2). In Fig. 5(a), the model scale DFF has the structure
of the unfavored DK�

d , while also being suppressed in

magnitude by d̂�
þ

u ðz1 ¼ 0:5Þ, which achieves its peak value
in the high z1 region while vanishing in the low z1 region.
For z2 ¼ 0:5 [Fig. 5(b)], the model scale DFF shows a very
small magnitude for values of z1 because of the combination

of d̂�
þ

u multiplied by DK�
d . Elementary fragmentation func-

tions for favored emission channels are very small in the low
z region, and achieve large peak values in the high z region.

This forcesD�þK�
u ðz1; z2Þ to have a very small magnitude in

the low z1 region as it is dependent on d̂�
þ

u ðz1Þ. DK�
d is an

unfavored SFF and therefore is constructed by the integral
term on the right-hand side of Eq. (1) because the first term
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FIG. 4 (color online). �þ�� dihadron fragmentation functions
for the u quark at the model scale (Q2

0 ¼ 0:2 GeV2, shown by

dotted red line) and the evolved scale (Q2 ¼ 4 GeV2, shown by
solid black line) for (a) z1 ¼ 0:2 and (b) z2 ¼ 0:2.
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equals zero. Unfavored SFFs peak in the low z region and
have very small magnitudes in the medium to high z
region. Both of these effects combine to cause the resultant
low peak in the middle of the allowed region of z1.

When the DFF is evolved there is a shift towards the low
z2 region for z1 fixed at 0.5 [Fig. 5(a)] and towards the low
z1 region for z2 fixed at 0.5 [Fig. 5(b)]. We observe that the
evolved DFF in Fig. 5 has a larger magnitude in the low z1
and z2 regions, while steadily decreasing as z1 and z2
increase. This is quite different to the results shown in
Fig. 3, where there is either a large contribution for almost
all the allowed range of values of z2 [Fig. 3(a)] or a
substantial peak still in the higher z1 values with the
magnitude of the DFF decreasing as z1 is decreased.
In both those cases, the DFF is largest away from the low
values of z2 and z1. This effect could be caused by the
down quark, which is produced in both fragmentations
after the up quark fragments to �þ, being an unfavored
emission channel for K�, as opposed to the favored emis-
sion channel for ��. The favored emission channel loses
magnitude at higher z1 as the momentum scale is
increased, while the unfavored emission channels, which
have no higher z1 peak, increase at lower z1 due to the
greater access to the gluon emission channel.

D. Q2 evolution of DKþK�
q for q ¼ u, d or s

WenowconsiderDKþK�
q forq ¼ u [Fig. 6(a)],d [Fig. 6(b)]

or s [Fig. 6(c)]. The q ¼ u and q ¼ s DFFs both have
large peaks in the high z2 region at the model scale since
both are favored fragmentation channels in the driving

function of DKþK�
q . The first term on the right-hand side

of Eq. (2) produces most of the magnitude of the model

scale DKþK�
u because the second term equates to zero and

the integral term is small. DKþK�
s emerges from the second

term on the right-hand side of Eq. (2) because the first term
equates to zero and the integral term of the DFF is small.

The first term on the right-hand side of Eq. (2) for DKþK�
u

contains the elementary quark fragmentation function for
the fragmentation from an up quark to Kþ as a function of
z1, multiplied by DK�

s ðz2=ð1� z1ÞÞ=ð1� z1Þ. For z1 fixed
to 0.5, this term simplifies to a constant multiplied by

DK�
s ðz2=ð1� z1ÞÞ. However, for DFFs such as DKþK�

s ,
which emerge from the second term on the right-hand

side of Eq. (2), fixing z1 to 0.5 restricts d̂K
�

s ðz2Þ to values
of z2 less than 0.5. This suppresses the term considerably

since the z2 > 0:5 region of d̂K
�

s ðz2Þ is where the function
achieves its larger values. This is why the u ! KþK� DFF
is larger than the s ! KþK� DFF when z1 is fixed to 0.5.

After QCD evolution, the DFFs for fragmenting up
[Fig. 6(a)] and strange [Fig. 6(c)] quarks at z1 ¼ 0:5 show
the shift of the peak value to the lower z2 region, with

DKþK�
u having a structure similar to that seen for the evolved

D�þ��
u at z1 ¼ 0:5 [Fig. 3(a)], while DKþK�

s has a structure

similar to that of the evolvedD�þ��
u at z2 ¼ 0:5 [Fig. 3(b)].

For DKþK�
d , the model scale plot is very small compared to

DKþK�
u and DKþK�

s , since it is unfavored for both detected
hadrons. When the momentum scale is evolved up to

4 GeV2, DKþK�
d increases in the low z2 region for z1 fixed

to 0.5, because of the effects of gluon fragmentation.

VI. COMPARISON WITH OTHER WORK

With very little in the way of DFFs from experiments
being available for comparison, we look to compare our

0. 0.1 0.2 0.3 0.4 0.5
0.

0.05

0.1

0.15

0.2

0.25

z2

Evolved Scale

4 GeV2

Model Scale

0.2 GeV2

0. 0.1 0.2 0.3 0.4 0.5
0.

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

z2

Evolved Scale

4 GeV2

Model Scale

0.2 GeV2

0. 0.1 0.2 0.3 0.4 0.5
0.

0.01

0.02

0.03

0.04

0.05

0.06

z2

Evolved Scale

4 GeV 2

Model Scale

0.2 GeV 2

FIG. 6 (color online). KþK� dihadron fragmentation func-
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results with the work presented in Ref. [76]. We will
first show that using our code and their parametrized
DFFs as initial conditions, we do indeed obtain solutions
comparable with those presented in Ref. [76] when evolved
to Q2 ¼ 109 GeV2. We also present our data evolved to a

range of different scales for D�þ��
u .

First, we briefly describe the procedures used in
Ref. [76]. The evolution equations used there are those of
Eqs. (15) and (16), with only minor rewriting of terms in
the equations. For the gluon DFF evolution equations, the
difference in the equations arises from alternate definitions
of the functions. In Ref. [76], the DFF is taken to be
identical for the up, down and strange quarks, and so the
gluon evolution equation term involving these functions is
written with the function multiplied by a factor of 2nf,

whereas the DFFs in our approach differ and so we sum
over each flavor. Similar reasoning is used for the other
terms in the gluon evolution equation. To obtain the initial
DFF at Q2 ¼ 2 GeV2, the authors of Ref. [76] simulate
three million dijet events, distributed equally over the
number of flavors (nf ¼ 3), using JETSET. The resultant

DFFs are parametrized by fitting to a functional form:

Dðz1; z2Þ ¼ Nz�1

1 z�2

2 ðz1 þ z2Þ�3ð1� z1Þ�1ð1� z2Þ�2

� ð1� z1 � z2Þ�3 ; (22)

where N, �1, �2, �3, �1, �2 and �3 are the parameters
fitted by minimizing the logarithm of �2. The fit describes
the JETSET results better at larger values of z1 and z2,
while not reproducing the results well for low values
of z1 and z2. Values for the parameters are provided
for the quark and gluon DFFs for momentum scales of
Q2 ¼ 2 GeV2 and Q2 ¼ 109 GeV2. The SFFs used are
obtained from the parametrization in Ref. [88]. The DFFs
are QCD evolved from the initial scale of Q2 ¼ 2 GeV2,
and results are presented for several values ofQ2, including
Q2 ¼ 109 GeV2.

Using the initial parametrized DFFs at Q2 ¼ 2 GeV2,
in Fig. 7 we present the comparison of the parametrized
�þ�� up quark and gluon DFFs obtained from JETSET at
Q2 ¼ 109 GeV2 (dotted red line) with the evolved solu-
tions (blue circles) both taken from Ref. [76]. The solutions
obtained using our code on the same initial parametrized
DFFs (black crosses) and the solution to NJL-jet model
DFFs evolved to the same momentum scale (solid orange
line) are shown too.2 We also consider solutions for the
parametrized DFFs evolved using an altered version of our
code that treats the QCD evolution of the SFFs with the
same parametrized evolution as in Ref. [76] (purple dot-
dashed line), rather than using the evolution equations.
This serves the purpose of exhibiting how well our code
reproduces the parametrized JETSET results.

The results for the NJL-jet model evolved to Q2 ¼
109 GeV2 are similar to the parametrized JETSET results
of Ref. [76] for values of z2 above 0.2 for both the up
quark [Fig. 7(a)] and gluon [Fig. 7(b)] DFFs. Below
z2 ¼ 0:2, our solutions are smaller. Such differences may
be expected as the parametrization in Ref. [76] overesti-
mates the JETSET results in the low z1 and z2 regions, and so
the NJL-jet model results may well be closer to the actual
JETSET output.

We also observe that for the up quark DFF [Fig. 7(a)],
the solution for the parametrized JETSET input evolved
using our code produces similar results to the parametrized
solution of the JETSET results atQ2 ¼ 109 GeV2 for values
of z2 greater than approximately 0.1. The gluon DFF
[Fig. 7(b)] solutions differ only at values of z2 lower than
0.25. In order to understand this difference we explored
using the parametrized evolution of the SFFs [88] used by
Ref. [76]. This produced an improved comparison between
the parametrized JETSET solution and the DFFs obtained
through our code. It is shown that by employing the
parametrized SFF evolution we produce results that are
similar to the parametrized JETSET solutions for both the up
quark [Fig. 7(a)] and gluon [Fig. 7(b)] for values of z2
above approximately 0.1.
In Fig. 8, we present the results for the NJL-jet model

DFFs evolved to a range ofQ2 values: 5 GeV2 (blue dotted
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FIG. 7 (color online). �þ�� dihadron fragmentation functions
for z1 ¼ 0:5 at Q2 ¼ 109 GeV2 for a fragmenting (a) u quark
and (b) gluon—see text for details.

2These comparisons are at best semiquantitative as we do not
know the value of �QCD used in Ref. [76].
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line), 20 GeV2 (black dash-dotted line), 50 GeV2 (green
dashed line) and 109 GeV2 (orange solid line). For z1 ¼
0:5, the results show that as Q2 increases, the DFFs appear
to gradually reduce. The peak value is also observed to
shift towards lower z2 values.

VII. CONCLUSIONS AND OUTLOOKS

In this article, solutions are presented for dihadron frag-
mentation functions from the NJL-jet model evolved to
a typical experimental scale of Q2 ¼ 4 GeV2, from the
model scale of Q2

0 ¼ 0:2 GeV2. We first presented a brief

summary of the integral equations used to obtain the model
scale SFFs and DFFs in Sec. II. Sections III and IV
describe the numerical method used to solve the evolution
equations for SFFs and DFFs, respectively. The QCD
evolution equations for the SFFs and the FORTRAN code
used to solve them was based on the method described in
Refs. [86,89–91]. The method used rearranges the evolu-
tion equations into nonsinglet quark and coupled plus-type
quark and gluon equations, followed by discretizing the
variables z and t and converting the integral terms into
sums over the integration variable. The same method is
employed to solve the QCD evolution equations for the
DFFs with the variables z1, z2 and t being discretized.

Section V compares the model scale DFFs with the
evolved DFFs for �þ��, �þK� and KþK�. In Sec. VB

we investigated the evolution of D�þ��
u by comparing the

model scale and evolved scale DFFs when either z1
[Fig. 3(a)] or z2 [Fig. 3(b)] is equal to 0.5. We also consid-
ered z1 [Fig. 4(a)] or z2 [Fig. 4(b)] equal to 0.2. For the
fragmentation of the up quark to�þ�� we noted that the up
quark was a favored emission channel for the �þ, while the
down quark produced after the up quark fragments to a �þ
is a favored emission channel for the ��. The evolved DFF
showed a shift in the peak value towards the lower z regions,
with each plot showing the evolved DFF obtaining a larger
magnitude than the model scale DFF in the lower z region.

The focus of Sec. VC is on the evolution of D�þK�
u .

Similar to D�þ��
u , the up quark is the favored emission

channel for �þ, however the produced down quark is an
unfavored emission channel for K�. The magnitude of

the model scale DFF was significantly smaller for D�þK�
u

(Fig. 5) than for D�þ��
u (Fig. 3) at light-cone momentum

fractions fixed to 0.5. After evolution, D�þK�
u displayed a

similar shift in the peak value towards the low z region. For
z1 ¼ 0:5 [Fig. 5(a)], the evolved DFF does not obtain a
larger magnitude than the model scale DFF in the lower z2
region, whereas for z2 ¼ 0:5 [Fig. 5(b)] the evolved DFF
obtains a substantial increase over the model scale DFF in
the lower z1 region. This demonstrates the effect evolution
has on favored and unfavored emission channels.

Finally, Sec. VD demonstrates the evolution of DKþK�
q

for q ¼ u, d or s. DKþK�
q has favored fragmentation chan-

nels for both the up quark and strange quark. This is
observed in the results presented in Fig. 6 where both

DKþK�
u and DKþK�

s have large peaks in the upper z2 region.

Both DKþK�
u and DKþK�

s display the shift of the peak value
to the lower z region that has been shown in other favored
emission channels at light-cone momentum fractions of 0.5.
The down quark is an unfavored emission for both Kþ and

K�, and soDKþK�
d has a very small magnitude at the model

scale. EvolvingDKþK�
d shows a considerable increase in the

lower z2 region, though the magnitude is still much lower

than that of DKþK�
u and DKþK�

s at z1 ¼ 0:5.
Evolution of the DFFs has the effect of reducing the

magnitudes at higher z, resulting in peaks occurring earlier
in the range of z values with a reduced magnitude. If
the magnitude of the DFF was small at the model scale,
a significant increase in the magnitude at the low z region
is observed after evolution. The first of these two ef-
fects generally occurs for the favored emission channels,
where the light-cone momentum fraction of the emitted
hadron is not in the low z region. The second effect
typically occurs when the fragmentation channel is unfa-
vored or when the emitted hadron carries a small light-cone
momentum fraction.
In Sec. VI, we evolve the parametrized JETSET data at

2 GeV2 from Ref. [76] to 109 GeV2 using our code to
compare the solutions obtained with the parametrized
JETSET data at the same scale for both the up quark and
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gluon fragmenting to �þ�� (Fig. 7). We also presented
solutions for the NJL-jet model up quark and gluon DFFs
evolved to Q2 values of 5 GeV2, 20 GeV2, 50 GeV2 and
109 GeV2 (Fig. 8). The solutions show that for z1 ¼ 0:5,
the DFFs are reduced as Q2 increases and the peak value
shifts towards the lower z2 region.

Extensions of the NJL-jet model for single hadron frag-
mentation functions such as the inclusion of hadronic
resonances and their decays [64] and inclusion of the
transverse momentum dependence [65] have been accom-
plished using a Monte Carlo framework. These extensions

are possible for DFFs as well, but they are beyond the
scope of this work and are left for the future.
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