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We compute the transverse energy-energy correlation (EEC) and its asymmetry (AEEC) in next-to-

leading order in �s in proton-proton collisions at the LHC with the center-of-mass energy Ec:m: ¼ 7 TeV.

We show that the transverse EEC and the AEEC distributions are insensitive to the QCD factorization and

the renormalization scales, structure functions of the proton, and for a judicious choice of the jet size, also

the underlying minimum bias events. Hence they can be used to precisely test QCD in hadron colliders

and determine the strong coupling �s. We illustrate these features by defining the hadron jets using the

anti-kT jet algorithm and an event selection procedure employed in the analysis of jets at the LHC and

show the �sðMZÞ dependence of the transverse EEC and the AEEC in the anticipated range 0:11 �
�sðMZÞ � 0:13.
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I. INTRODUCTION

Hadron jets are powerful quantitative tools to study
quantum chromodynamics (QCD) in high energy phys-
ics. In eþe� colliders PETRA, PEP and LEP, and also
in the electron-proton collider HERA, jet studies have
been undertaken extensively. These include the mea-
surements of the inclusive variables, such as thrust,
acoplanarity and hadron energy flow, as well as the
exclusive jet distributions, yielding a consistent and
precise value of the QCD coupling constant �sðMZÞ [1].
At the hadron colliders Tevatron and the LHC, QCD
predictions for jets have been compared with the mea-
sured transverse momentum (pT) distributions, and also
with the multijet rates [2–4] assuming a jet algorithm
[5–7]. The theoretical framework for calculating the jet
cross sections in hadronic collisions in the next-to-
leading order (NLO) accuracy has been in place for
well over a decade [8,9], which has been employed in
the QCD-based analysis of the data.

In comparison to the eþe� and the ep experiments,
event shape variables have so far received less attention
in the analysis of the data from the hadron colliders, though
first results have been lately published on the measurement
of the transverse thrust and the thrust minor distributions
[10] by the CDF Collaboration [11]. Studies of the had-
ronic event shapes in pp collisions at the LHC have just
started, initiated by the CMS Collaboration using the
central transverse thrust and the central transverse minor
variables, where the term central refers to the jets in the
central region of the detector [12]. This is followed by a
similar analysis by the ATLAS Collaboration [13]. The
distributions in these variables have been compared with a

number of Monte Carlo (MC) simulations, with PYTHIA6
[14], PYTHIA8 [15] and HERWIGþþ [16] providing a
good description of the data. However, a benchmark in this
field, namely a quantitative determination of �sðMZÞ at the
LHC from the analysis of data on event shapes is still very
much a work in progress.
In this paper, we calculate the transverse energy-energy

correlation (EEC) and its asymmetry proposed some time
ago [17] as a quantitative measure of perturbative QCD in
hadronic collisions. The analogous energy-energy correla-
tion function measurements-the energy weighted angular
distributions of the produced hadron pairs in eþe�
annihilation-were proposed by Basham et al. [18]. The
EEC and its asymmetry (AEEC) were subsequently calcu-
lated in Oð�2

sÞ [19,20], and their measurements have
impacted significantly on the precision tests of perturbative
QCD and in the determination of �s in eþe� annihilation
experiments (for a recent review, see Ref. [21]). Transverse
EEC distributions in hadronic collisions [17], on the other
hand, are handicapped due to the absence of the NLO
perturbative QCD corrections. In the leading order in
�sð�Þ, these distributions show marked sensitivities on
the renormalization and factorization scales � ¼ �R and
� ¼ �F, respectively, thereby hindering a determination
of �sðMZÞ. We aim at remedying this drawback by pre-
senting a calculation of the transverse EEC function and its
asymmetry in Oð�2

sð�ÞÞ, which reduces the scale depen-
dence to a few percent.
The paper is organized as follows. Section II collects the

definitions and some leading-order features of the transverse
energy-energy correlation. In Sec. III, we present the nu-
merical results calculated at next-to-leading order in �s and
demonstrate that the transverse EEC and its asymmetry are
robust against variations of various parameters except for
�s, for which we present the NLO results in the range
0:11<�sðmZÞ< 0:13 at the LHC (

ffiffiffi
s

p ¼ 7 TeV). We con-
clude in the last section.
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II. TRANSVERSE ENERGY-ENERGY
CORRELATION AND ITS ASYMMETRY

We start by recalling the definition of the transverse EEC
function [17]
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The first sum on the right-hand side in the second of the
above equations is over the events A with total transverse
energy EA

T ¼ P
aETa

A � Emin
T , with the Emin

T set by the
experimental setup. The second sum is over the pairs of
partons ða; bÞ whose transverse momenta have relative
azimuthal angle � to �þ ��. In addition, the fiducial
volume is restricted by the experimental acceptance in the
rapidity variable �.

In leading order QCD, the transverse energy spectrum
d�=dET is a convolution of the parton distribution func-
tions (PDFs) with the 2 ! 2 hard scattering partonic sub-
processes. Away from the end points, i.e., for � � 0� and
� � 180�, in the leading order in �s, the energy-weighted
cross section d2�=dETd� involves the convolution of the
PDFs with the 2 ! 3 subprocesses, such as gg ! ggg.
Thus, schematically, the leading contribution for the trans-
verse EEC function is calculated from the following
expression:
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where �̂
a1a2!b1b2b3 is the transverse energy-energy

weighted partonic cross section, xi (i ¼ 1, 2) are the frac-
tional longitudinal momenta carried by the partons,
fa1=pðx1Þ and fa2=pðx2Þ are the PDFs, and the ? denotes a

convolution over the appropriate variables. The function
defined in Eq. (2) depends not only on �, but also on the
ratio Emin

T =
ffiffiffi
s

p
and rapidity�. In general, the numerator and

the denominator in Eq. (2) have a different dependence on
these variables, as the PDFs are weighted differently.
However, as already observed in Ref. [17], certain normal-
ized distributions for the various subprocesses contributing
to the 2 ! 3 hard scatterings are similar, and the same
combination of PDFs enters in the 2 ! 2 and 2 ! 3 cross
sections; hence the transverse EEC cross section is to a
good approximation independent of the PDFs (see, Fig. 1
in Ref. [17]). Thus, for a fixed rapidity range j�j<�c and
the variable ET=

ffiffiffi
s

p
, one has an approximate factorized

result, which in the LO in �s reads as
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In the above equation, nf is the active quark flavor number

at the scale � and the hadronization scale � is determined
by the input �sðmZÞ. The function Fð�Þ and the corre-
sponding transverse EEC asymmetry defined as
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were worked out in Ref. [17] in the leading order of �s for
the CERN SPS p �p collider at

ffiffiffi
s

p ¼ 540 GeV. In particu-
lar, it was shown that the transverse EEC functions for the
gg, gq and q �q scatterings had very similar shapes, and
their relative contributions were found consistent to a good
approximation with the ratio of the corresponding color
factors 1:4/9:16/81 for the gg, gqð¼ g �qÞ and q �q initial
states over a large range of �.

III. NEXT-TO-LEADING ORDER RESULTS FOR
THE TRANSVERSE EEC AND ITS ASYMMETRY

We have used the existing program NLOJETþþ [9],
which has been checked in a number of independent NLO
jet calculations [22], to compute the transverse EEC and its
asymmetry AEEC in the NLO accuracy for the LHC proton-
proton center-of-mass energy

ffiffiffi
s

p ¼ 7 TeV. Schematically,
this entails the calculations of the 2 ! 3 partonic subpro-
cesses in the NLO accuracy and of the 2 ! 4 partonic
processes in the leading order in �sð�Þ, which contribute
to the numerator on the rhs of Eq. (2). We have restricted the
azimuthal angle range by cutting out regions near � ¼ 0�
and � ¼ 180�. This would, in particular, remove the self-
correlations ða ¼ bÞ and frees us from calculating the
Oð�2

sÞ (or two-loop) virtual corrections to the 2 ! 2 pro-
cesses. Thus, with the azimuthal angle cut, the numerator in
Eq. (2) is calculated from the 2 ! 3 and 2 ! 4 processes to
Oð�4

sÞ. The denominator in Eq. (2) includes the 2 ! 2 and
2 ! 3 processes, which are calculated up to and including
the Oð�3

sÞ corrections.
In the NLO accuracy, one can express the EEC cross

section as

1
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It is customary to lump the NLO corrections in a so-called
K factor (which, as shown here, is a nontrivial function
of �), defined as
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KEECð�Þ � 1þ �sð�Þ
�

Gð�Þ: (7)

The transverse EEC asymmetry in the NLO accuracy is
likewise defined as
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and the corresponding K factor is defined as

KAEECð�Þ � 1þ �sð�Þ
�

Bð�Þ: (9)

The principal result of this paper is the calculation of the
NLO functions KEECð�Þ and KAEECð�Þ and in demonstrat-
ing the insensitivity of the EEC and the AEEC functions
calculated to NLO accuracy to the various intrinsic param-
etric and the underlying event uncertainties.

We now give details of the computations: In transcribing
the NLOJETþþ [9] program, we have replaced the
default structure functions therein by the state-of-the-art
PDFs, for which we use the MSTW [23] and the CT10 [24]
sets. We have also replaced the kT jet algorithm by the

anti-kT jet algorithm [7] for defining the jets, in which the
distance measures of partons are given by

dij ¼ minðk�2
ti ; k�2

tj Þ ð�i � �jÞ2 þ ð�i ��jÞ2
R2

;

diB ¼ k�2
ti ;

(10)

with R being the usual radius parameter. We recall that the
NLO corrections we are using [9] have been computed in
the Catani-Seymour dipole formalism [6]. In particular, it
involves a certain cutting of the phase space of the dipole
subtraction terms and the numerical calculations require the
generation of a very large number of events [we have gen-
erated Oð1010Þ events on the DESY Theory PC cluster] to
bring the statistical accuracy in the NLO EEC distribution to
the desired level of below a few percent. We have assumed
the rapidity range j�j � 2:5, have put a cut on the transverse
energy ET > 25 GeV for each jet and require ET1 þ ET2 >
500 GeV for the two leading jets. The latter cut ensures that
the trigger efficiencies for the LHC detectors will be close
to 100%. We have set the transverse energy of the hardest
jet as the default factorization and renormalization scale,
i.e., �F ¼ �R ¼ Emax

T . We then vary the scales �F and �R
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FIG. 1 (color online). Differential distribution in cos� of the transverse EEC cross section [(a), (b)] and its asymmetry [(c), (d)]
obtained with the PYTHIA6 MC program [15] with and without the underlying events at

ffiffiffi
s

p ¼ 7 TeV and the anti-kT algorithm with
two assumed values of the jet-size parameter R ¼ 0:6 [(a), (c)] and R ¼ 0:4 [(b), (d)].
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independently in the range 0:5Emax
T � ð�F;�RÞ � 2Emax

T to
study numerically the scale dependence.

The effects induced by the underlying event, multiparton
interactions and hadronization effects have been studied
by us using the PYTHIA6 MC [15]. In Fig. 1, we show a
comparison of the transverse EEC and its asymmetry for
R ¼ 0:6 and R ¼ 0:4 with and without the underlying

event effects (UE). In Fig. 2, the results of the transverse
EEC and its asymmetry at the hadron and parton level are
presented for R ¼ 0:6 and R ¼ 0:4. To better display this,
we show in Fig. 3 the normalized distribution of the
hadronization factor (left) and the underlying events factor
(right), from which it is easy to see that both the hadroni-
zation and the UE effects are small. Typically, the effect of
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FIG. 2 (color online). Differential distribution in cos� of the transverse EEC cross section [(a), (b)] and its asymmetry [(c), (d)]
obtained with the PYTHIA6 MC program [15] at the hadron and parton level at

ffiffiffi
s

p ¼ 7 TeV for the indicated values of the jet-size
parameter R.
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the PYTHIA6 MC program [15] for the two indicated values of R.
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hadronization on the transverse EEC is� 5% and from the
underlying event � 6% for the jet-size parameter
R ¼ 0:6. The corresponding numbers are �5% and �2%
for R ¼ 0:4. The parameter specifying the jet size in the
anti-kT algorithm is chosen as R ¼ 0:4 in the rest of this
paper, as this choice makes the transverse EEC distribution
less sensitive to the underlying minimum-bias events.
Moreover, a smaller value of R induces smaller distortions
on the EECdistribution for the smaller values of the angle�.

An important issue is the effect of the parton showers in
the transverse EEC and the AEEC distributions. They are
crucially important in the � ! 0� and � ! 180� angular
regions, but their effect is expected to be small in the central
angular range on which we have concentrated. We have
checked this (approximately) by comparing the results in
the LO accuracy with those from the parton shower-based
MC generator PYTHIA6 [15], which is accurate in the
leading log approximation and also includes some NLO
terms. Matching the NLO computations with the parton
shower simulations in the complete next-to-leading log
accuracy is the aim of several approaches, such as the
POWHEG method pioneered and subsequently developed
in Refs. [25,26], which would allow to quantitatively com-
pute the end-point region in the transverse EEC cross section
[27]. Likewise, resummed perturbative techniques have
been developed in a number of dedicated studies for some
event shape variables in hadronic collisions [10,28], which
would expand the domain of applicability of the perturbative
techniques to a wider angular region in �.

In view of the preceding discussion, we have restricted
cos� in the range ½�0:8; 0:8�which is sliced into 20 bins for
the presentation of our numerical results. We first show the
dependence of the transverse EEC calculated in the NLO
accuracy on the PDFs in Fig. 4 for the two widely used sets
MSTW [23] and CT10 [24] using their respective central
(default) parameters. This figure shows that the PDF-related
differences on the transverse EEC are negligible, with the

largest difference found in some bins amounting to 3% (but
typically they are <1%). We also remark that the intrinsic
uncertainties from the MSTW2008 PDFs taking the first ten
eigenvectors of the PDF sets to evaluate the distributions are
found negligibly small in the transverse EEC (at most a few
per mill), while in the case of CT10, these uncertainties are
somewhat larger but still below 1% in the EEC. The insen-
sitivity of the transverse EEC cross section to the PDFs
provides a direct test of the underlying partonic hard pro-
cesses. In what follows, we will adopt the MSTW [23] PDF
set as it provides a correlated range of �sðMZÞ and the
structure functions for the current range of interest for
�sðMZÞ: 0:11<�sðMZÞ< 0:13.
We next explore the dependencies of the transverse EEC

cross section and its asymmetry on the factorization and the
renormalization scales in the range ð�F;�RÞ ¼ ½0:5; 2� �
Emax
T and display them in Fig. 5 for the transverse EEC

and Fig. 6 for the asymmetric transverse EEC. Effects of
the variations in the scales�F and�R on the transverse EEC
cross section in the LO are shown in Figs. 5(a), 5(c), and 5(e),
which are obtained by setting the scales �F ¼ �R, fixing
�F ¼ Emax

T and varying �R, and fixing �R ¼ Emax
T and

varying �F, respectively. The corresponding asymmetry of
the transverse EEC cross sections are displayed in Figs. 6(a),
6(c), and 6(e).We note that the dominant scale dependence in
the LO arises from the variation of the renormalization scale
�R. This is understandable as the LO matrix element has no
�R-compensating contribution. The results obtained in the
NLOare shown in Figs. 5(b), 5(d), and 5(f) for the transverse
EEC and in Figs. 6(b), 6(d), and 6(f) for the asymmetry.
One observes significantly less dependence on the scales;
in particular the marked �R dependence in the LO is now
reduced. Typical scale variance on the transverse EEC dis-
tribution in the NLO is found to be 2–3%, with the largest
effects in some bins reaching 5%. This scale insensitivity
in the NLO accuracy is crucial to undertake a quantitative
determination of �s from the collider jet data.
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FIG. 4 (color online). Dependence of the transverse EEC cross section (a) and its asymmetry (b) on the PDFs at NLO in �s. Red
entries (solid boxes) correspond to the MSTW [23] PDFs and the black ones (solid triangles) are calculated using the CT10 PDF set
[24]. The errors shown reflect the intrinsic parametric uncertainties in each PDF set and the Monte Carlo integration uncertainties.
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Having shown that the uncertainties due to underlying
events and the PDFs are negligible, and the scale dependence
is much reduced in the NLO, we present our results for the
transverse EEC in the LO and the NLO accuracy in Fig. 7(a),
and the corresponding results for the transverse AEEC in
Fig. 7(b). We also compute these distributions from a
MC-based model which has the LO matrix elements and
multiparton showers encoded. To be specific, we have used
the PYTHIA8 [15] MC program and have generated the

transverse EEC and the AEEC distributions, which are also
shown in Figs. 7(a) and 7(b), respectively. This comparison
provides a practically convenient way to correct the
PYTHIA8 MC-based theoretical distributions, often used
in the analysis of the hadron collider data, due to the NLO
effects. InFig. 7(c),we show the functionKEECð�Þ defined in
Eq. (7) (denoted as NLO/LO in the figure) and another
phenomenological function in which the NLO transverse
EEC distribution is normalized to the one generated by the
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FIG. 5 (color online). Dependence of the transverse EEC on the scales �F, and �R in LO (a, c, e) and in the NLO (b, d, f) in �s for
the indicated values of the scales. Figure (a) and (b) are obtained by setting �F ¼ �R and varying it �F ¼ �R ¼ ½0:5; 2� � Emax

T ;
(c) and (d) are obtained by fixing �F ¼ Emax

T and varying �R, whereas (e) and (f) are derived varying �F with fixed �R ¼ Emax
T .
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PYTHIA8 [15] MC program (denoted as NLO/PYTHIA).
The corresponding function KAEECð�Þ, defined in Eq. (9),
is shown in Fig. 7(d). Here also we show the corresponding
phenomenological function in which the transverse EEC
obtained in NLO is normalized to the ones generated by
the PYTHIA MC. We remark that the effects of the NLO
corrections are discernible, both compared to the LO and
PYTHIA8 [15], and they are significant in the large-angle
region (i.e., for cos�< 0). To summarize the NLO effects
in the EEC distribution, they reduce the scale dependence,

in particular on �R, and distort the shape of both the EEC
and AEEC distributions providing a nontrivial test of the
NLO effects.
Having detailed the intrinsic uncertainties from a num-

ber of dominant sources, we now wish to investigate the
sensitivity of the transverse EEC and the AEEC on
�sðMZÞ. In relating the strong coupling �sð�Þ at a certain
scale relevant for the collider jets, such as � ¼ Emax

T , to
the benchmark value �sðMZÞ, we have used the two-loop
� function and the explicit formula for transcribing �sð�Þ
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FIG. 6 (color online). Same as Fig. 5 but for the asymmetric transverse EEC.
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to �sðMZÞ can be seen in Eq. (4). Results for the trans-
verse EEC and the AEEC are shown in Figs. 8(a) and 8(b),
respectively, for the three indicated values of �sðMZÞ: ¼
0:11 (blue),¼ 0:12 (red),¼ 0:13 (black). The scale uncer-
tainties are included only in the curve correspond-
ing to �sðMZÞ ¼ 0:12, as it is close to the current
world average �sðMZÞ ¼ 0:1184 [29] and hence our
focus on this value. To demonstrate the intrinsic errors
in the calculations of the transverse EEC and its asymme-
try, we show the percentage size of the errors in the lower
part of Figs. 8(a) and 8(b), respectively, for �sðMZÞ ¼
0:12. Concentrating first on the transverse EEC, we
see that the bin-by-bin errors are typically þ2% and
�6% (for j cos�j � 0:6), and somewhat larger for
j cos�j> 0:6. A part of this error is of statistical origin
in our MC-based theoretical calculations and is reduc-
ible, in principle, with the help of a more effective
importance sampling algorithm in the event generation.
However, a part of the error is irreducible, given the
current theoretical (NLO) precision. This is quantified
for the normalized integrated transverse EEC cross
section over the cos� range shown in the figures
above, which largely removes the statistical (bin-by-bin)
error:

�sðmZÞ 0.11 0.12 0.13D
1
�0

d�0
d�

E
0:092þ0:001

�0:005 0:101þ0:001
�0:005 0:111þ0:001

�0:005

The computational error on the transverse AEEC
is larger, as shown in Fig. 8(b) for �sðMZÞ ¼ 0:12. In
particular, the errors for the last four bins in the AEEC
cross section are large due to the intrinsically small value
of this cross section as cos� ! 0. However, in the region
�0:8 � cos� � �0:4, a clear dependence of the differen-
tial transverse AEEC on �sðMZÞ is discernible. This is also
displayed for the normalized integrated transverse AEEC
cross section given below (in units of 10�3), in which the
last four bins contribute very little:

�sðmZÞ 0.11 0.12 0.13
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1
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d�0asymm

d�

E
13:6þ0:2

�1:4 14:8þ0:3
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Details of the calculations and numerical results for
other values of the parameter R, cuts on pTmin and the
center-of-mass energies for the LHC and the Tevatron will
be published elsewhere.

IV. SUMMARY

To summarize, we have presented for the first time NLO
results for the transverse EEC and its asymmetry for jets
at the LHC. These distributions are shown to have all the
properties that are required for the precision tests of pertur-
bative QCD. In particular, they (i) are almost independent
of the structure functions, with typical uncertainties at 1%,
(ii) show weak scale sensitivity; varying the scale from
� ¼ ET=2 to � ¼ 2ET , the uncertainties are less than 5%
with the current (NLO) theoretical accuracy, (iii) their de-
pendence on modeling the underlying minimum bias events
for judicious choice of the parameter R is likewise mild,
ranging typically from 2% to 5% as one varies fromR ¼ 0:4
to R ¼ 0:6, and (iv) preserve sensitivity to �sðMZÞ; varying
�sðMZÞ ¼ 0:11 to 0.13, the transverse EEC (AEEC) cross
section changes approximately by 20% (15%), and thus
these distributions will prove to be powerful techniques
for the quantitative study of event shape variables and in
the measurement of �sðMZÞ in hadron colliders.
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